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1. Let Q be a bounded domain in R? with smooth boundary 8Q. Let
B(&,w,) (i=1, -, n) be balls of radius & with centers w,, -+, w,. We consider
the eigenvalue problem of the Laplacian in

Qw(m) = Q\U 'l!-l B(S) wi)
under the Dirichlet condition on its boundary. Under some scaling limit €—0,
n—oo, n’6—>a we know that the spectra of —A in Q,,) under the Dirichlet
condition on 8Q,, tends to the spectra of Schrodinger operator —A-4-cV in Q
under the Dirichlet condition on 9Q.

There are two main directions in previous research works concerning relat-
ed problems. One is homogenization as was studied in [3], [7], and another
direction is to calculate the eigenvalue of —A in Q,, in statistical setting,

the later of which this paper concerns.
Let V(x) be a positive continuous function on & satisfying

S V(x)de—1.

Q

Then, Q can be thought as probability space by the probability law
P(xE4) = SA V(%) dx .

Let Q" be the product probability space; the corresponding probability law is
denoted also by P for any n. Fix BE[d—2,d). Setting E=m™, we take m in
place of & as a parameter. Fix and define n=[m"], u (w(m))=the j-th eigenvalue
of —A in Q) under the Dirichlet condition on Q. Each u(w(m)) is view-
ed as a random variable on Q".

Problem A. Can one say anything about the statistics of u,(w(m)) on
Q" when m—>o0?

We know the following partial answer.
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Theorem. (LLN, law of large numbers, Kac [6], Rauch-Taylor [10],
Huruslov-Marchenko [5], Chavel-Feldman [2], etc.)
Assume that d >3 and B=d—2. Then

lim P(w(m) Q% | p(m)—u} <€) =1.

Here u) is the j-th eigenvalue of —A-+c,V (x) in Q under the Dirichlet condition
on its boundary 0Q; the constant c;=(d—2)|S*"| being the (d—1) dimensional
area of the unit sphere in R°.

Recall that ¢,=2z%. More precisely we have the following LLN with
remainder estimate. Let u,(V;m) be the j-th eigenvalue of the Schrodinger
operator —A+ 272 mP~2 V(x) in Q under the Dirichlet condition on 8Q. When
B>2, we assume that V(x)= Q|

Theorem 1. Assume that d=4. Fix B€[2,12/5). Fix €>0. Then,
P(00(m) EQ°; =D~ | (a0 (m))— (V'3 m) | <mP=?)
tends to 1 as m tends to infinity.

Remarx. For B€(2, 12/5), 6—(5/2) 8>0. The above result can be thou-
ght as LLN with remainder estimate. Even in the special case 8=2 (and d=4)
Theorem 1 supply a better estimate than the theorem cited previously. It is
of great interest to the author to give CLT for d=4. Thus, this paper can be
thought as a bridgehead to the answer. The author does not know whether the
random variable m#(u ,(w(m))— p (V'; m)) tends in law to some Gaussian random
variable for some £ as m tends to infinity or not, even if we know that the answer
is YES when d=3, BE€][L, 5/4), E=1—(B/2). See [9]. To get CLT in the
later case the authour used perturbative expansion, abbreviated PIA, of the
Green function. In this paper too we employ PIA to prove Theorem 1.

The author considers that determing CLT (or fluctuation) result for d >4,
BE[d—2,d) may be a very challenging problem for the people working on
analysis, probability theory and mathematical physics.

Here the author offers the following unsolved research theme. For d=3,
B€E([1,5/4) we have CLT as mensioned above. Can one get CLT with the aid
of Brownian motion? Analysis of Brownian motion is a strong and standard
tool to attack probabilistic problem. For the problem prsented in this paper,
see [1], [2], [11], [12]. We obtained LLN by using Brownian motion (also, by
analytic method). However, we do not know whether Brownian motion can
be a key to CLT of the above problem or not. The following question may be
a good pilot for further progress. Can one get CLT for

3 exp (—tp;(w(m))) ?
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Main aim of this paper: lies in a systematic development of the calcu-
lus of PIA (point interaction approximation). To develop our research we
encounter the situation of getting statistical properties of

Gw, ),
() 36w, w)
etc. It is a standard technique to get expectation
EC G(w;, w,)) .
(2 G, w))

However, the Green function G(x,y)=(—A+N\)"(x,y) is not of Hilbert-
Schmidt class when d >4. The fact that the Green function is not of Hilbert-
Schmidt class is not so important in the previous papers. We must modify the
argument that is previously employed. We construct large subset Q%(n) of Q"
so that

(**) [Q"\Q*(n)|— 0

and (*) does not behave very badly on Q*(n). A simple method of constructing
Q*(n) suffices to this end. We set

Q*(n) = {(wy, -, w,) EQ"; |w,—w;| >m=" for any 4,j}.

Here p is a constant satisfying p>>@B/2. Then, we see that it possesses the re-
quired properties.

Owing to the above modification our calculus involves delicate points for
d=+4.

2. PIA.

Let T be a fixed number. We put A=7Tm"-“~? and we consider the Green
operator of —A-+\ in Q,(, under the Dirichlet condition on its boundary.
Hereafter d=4, but we write d for 4 indicating the role the dimension number
d plays. We consider the following condition O,(m) for w(m)=(w,, ***, w,) EQ".
O,(m): sup (the number of balls of radius 1/m with the center w, such that ball

intersect K)<(log m)?, where &, denotes the family of open balls of radius
m~#,

We see that
P(w(m)€Q"; Oy(m) holds)>1—m~¥

for any N and any sufficiently large m depending on N. See [9]. If we suppose
O,(m), then we know that only one connected componnet w of Q,( plays an
important role and all the components other than & are negligible in our analysis
of p;(w(m)) as m—>oco. See [9].
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Let G(x,y) be the Green function of —A-+X in Q under the Dirichlet
condition on 9. Recall that A=TmP-¢“-?, Thus, A—>c when B8>d—2,
m—>co, Let G(x,y;w(m)) be the Green function of —A-+X\ in o under the
Dirichlet condition on 8w. Hereafter we always assume that w(m) satisfies O,(m).

Let G(G,(m, respectively) be the bounded linear operator on L¥Q) (L¥w),
respectively) defined by

€N ={_GEnima,

(Comd) @ = | G(x,y; 0m)2(3) dy,

respectively. 'The eigenvalue problem of the Laplacian with respect to o is
transformed into the eigenvalue problem of G,u,). As making m— oo, we see
that p(w(m))+N is approximated by the j-th eigenvalue of the Schrédinger
operator —A—+-27? mP~2 V' (x)4\ under the Dirichlet condition.

Let A denote the Green operator of the above Schrodinger operator. To
approximate G, by A we introduce the following kernel. We denote by = the
constant G*(0, 1/m, \)~! where G*(x, y, A) is the Green function of —A- in
R?, that is, it satisfies (—A+2\) G¥*(x, y, A)=8(x—y). It has the asymptotic
form =272 m~% exp (— A2 m™Y)4-0 (AV2 m™3) for d=4.

(2.1) h(x, y; w(m))
= G(%,5)—7 3 G(x, w) G(w, )
+ é: (’_T)s E(s) G(x’ wi;) Gt(l) G(wi,a y) .

Here Go=G(w,,, w;,) G(w,, w;)-G(w,, _,, w,) and the indices in 3}, run over
all 4, -, 1, satisfying 1<g,, -+, 4,<m such that 7,%4. when v=#pu. We use the
notational convention G;=1 when s=1 and G;;=G(w;, w;). It should be
remarked that the product like G(x, w,) G, G(w,, w;) G(w,,, y) are excluded
by the above rule. The above form (2.1) was discussed extensively when d=3
in [9].

We put

(How) @) = | b y;0m) f0)dy, x€a
and
(Hawd) ) = | y;wm)g() dy, v

We have the following Theorem.

Theorem 2. Fix BE[2,4). Fix an arbitrary €>0. Then, there exisis
a constant T in N such that
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(2.2) P(||G otmy— Hyo)| L (LA w), LAw)) Sm* 28 N2 >1—m~*
holds.

This formula gives an asymptotic behaviour of G, as m—>oo in pro-
babilistic context. Let X, be the characteristic function of w. We can deduce
from Theorem 2 that ||(G () — Hym) (Xu f)l|12) for f ELX(Q) is a remainder in
some sense for 8<C12/5. An application of Theorem 2 on spectral result is
given in the section eight. The reader who want to know the reason why we
can deduce Theorem 2 from Proposition 3.8 may be reffered to §8.

3. LP-method. Hereafter d=4. In this section we want to study
(3.1) 1Gtm— Hatml |2 -

It should be noticed that we are assuming O,(m).

Lemma 3.1. Fix p>2. If u€C=(0) N C’(w) satisfies

(—A+N)u(x) =0, x€o
u(x) =0, x€0QN0w
and
max {|u(x)|; x€0B,N0w} =M,, r=1,-,n.

Here M, is zero when 8B, N 0w=¢. Then,
|l SC m=# 33 M, .
r=1
Proof. By the Hopf maximum principle
lu(x)| <Cm™2 b3 exp (—A2 |a—w,|/C") |x—w,| "2 M,
r=1
for some constant C, C'. We have
k 1p
([ 7= a’r) <Cm-w»
1m
for p>2. Thus, we get the desired result by Minkowski’s inequality.

Lemma 3.2. There is a constant C such that

|G Sl SC N[ fllz2@)  (£>2)
and

G fllzo) < C A1 || oot
holds.

As a corollary of Lemma 3.1 and the fact that u=(Gym—Hyuwm) (Xuf)
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satisfies Lemma 3.1 we get the following.

Proposition 3.3. Fix f€C~(Q). Assume that w(m) satisfies Oy(m). Then,

(Gt —Hutw) (X Pl <Cm~1? 31 M,
for p>2.

As was discussed in [9] it is very useful to introduce the rearrangement
of the Green function. For s=0, we put

(I7f) (%) = (Gf) (x)—7 G(x, w,) (Gf) (w,) -
For s>1, we set I; f as the following term
2o G(x wy) GG (GS) (4,)
—7 3 G(%, w,) Gyyy Gy Gy, (GS) (w3,) -

Here the indices 7, -+, 7, in 3Ys, run over all &, +-, 7, satisfying i,34u if v p
and 4,7 for v=1, -, 5. For s>2 we set I; f as the following term

230 G, w) GGy, (GS) (1) -

Here the indices 7,, -+, 7, in 3){{) run over all g, -+, ¢, satisfying ¢,=du if v p
and exactly one of 7,(»>2) is equal to . We have the rearrangement.

(Han 8) (%) = 2 (—7)" (17 8) (%)
+ 27 I3 8) ) +H(=7)"(Z7" 8) (%) ,

where

(27" 8) (%) = (Xmwoy+2mm) G (%, wy,)-++(GE) (w0 ) -
We put

G(x: y)—G*(x»J’, 7\') = S(x:y) .
We need the following Lemma 3.4 whose proof is as in the proof of

Lemma 3.4 in [9]. Note that d=4 in the following.

Lemma 34. Fix BE[2,4). Assume that w(m) satisfies Oy(m). Then,
there exists a constant C independent of m such that (3.2) and (3.3) hold.

3.2) r?axawl G (%, w;)—G(w,, w;)| <C m™ Dy(w;, w,, A]C)
*€0B_N

3.3) rggaxawl S(x, w,) G(w,, w;)| <C(log m)* mdy(w;, w,, A|C)
2E rn

where Do(x, y, \) denote exp (—AY? |x—y|) |x—y|~°.

To get a bound for 33 M, we need some lemmas on I;f. First we have
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the following

Proposition 3.5. Fix fEC~(Q). Fix £>0 and p>2. We assume O,(m).
Then, there exists a constant C independent of f, m such that

(3.4) 3 max | I(X, f) ()]
<c (m* BN m) || £l rcad
holds where w=—((2—(4/p)) B/4)+(B/p")+&.
Proof. Denote X, f by f,. We put

Jr = (Gf.) (%)—(Gf.) ()
Jr = —78(x w,) (Gf.) (w,) .
Let B(r; *) be the ball {x; |x—w,|<3m=P*}. Then, we have
(3.5) > %éx | 4
<4 Pmax |€(Xa ) (9]

+emin ] @y MO) L) dy

observing |G(x,y)—G(w,, y)| <C ®4(w,,y, A\J/C) for yEB(r, *)°Nw. By the
Holder inequality we see that the first term in the right hand side of (3.5) does not
exceed

mt ([ 1D X0 (5) dyy
for E=((4/p")—2) (8/4) obscrving
(gB(r:*) G(x, )" dy)¥’ <Cmt.
Therefore, it is estimated by
om0 (53| 1(f(9)12 Xt 0 (5) dy)e

<Cmt+0) ([ 1 (512 (5 %o (3)) )

By O,(m) we see that
2 XB(r ; 30(%) <C (log m)?.

The second term in the right hand side of (3.5) does not exceed

(3.6) m | 1)1 @sw,,5) dy
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Here the sum for 7 in (3.5) run over r such that
| y—w,| >3m=F .
We are now going to estimate 2", Dy(w,,y). We put
Fy={r; kmPt<| y—w,| <(k+41) m~P4}
for k=0, 1, 2, ---. Then,
(3.7) > ’E‘@S(wn )
<cC ;.E:'s' exp (— A2 km~P%) (km~P*)=3 k3 (log m)?

observing that #(r; w,EF;) <Ck(logm)®. Thus, we see that (3.7) does not
exceed CmP(log m)? A~? observing the fact that m®®# is less than the bound
for B€[2,4). We have similar result for J?.

Summing up these facts we get the desired result.

Propositions 3.6, 3.7 gave estimates for I3 f, I:f. These are probabilistic
results. Expectation over Q" is modified so that we can avoid divergence when
we consider Propostion 3.7 that follows.

Proposition 3.6. We assume the same assumption as in Proposition 3.5.
Fix £>0. Then, there exists C such that

(38)  P(D max |L(Lf) ()] Smi(nfCN) mP= N2 D)= 1—m~
where D=||G (X, f)l|z>.

Proof. By Lemma 3.4 we see that the left hand side of (3.8) does not
exceed D times

3.9 m~(log m)? Z ; Dy(w,, w;,) Gres) -
Here r U I is self-avoiding observing the definition of I; f. We have
E( 3} in (3.9))<C’ (CA7Y)=0/ (mPy+1.

Proposition 3.7. Fix £€>0. Under the same assumption as in Proposition
3.5 it holds that

(3.10) P(3} max |I;(X,f) (%)
<m?(mP|C\)' N2-D)>1—m™

for some constant C.
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Proof. We see that the left hand side of (3.10) does not exceed ||G f,||z
times

(3.11) 23 Gy G Giyyiy»

where [ is self-avoiding and exactly one of I is equal to . We use calculation
Eg which is presented in section four. Let us assume that ,=7. Then, (3.11)
is equal to

G2, Gy .

rigdy
We have
ER(GTi, Grig+)
<( Sn(,-,r) G’ dw,) max S G, dw,-dw,, .
Thus, we get the desired result by Lemma 4.3 and the fact that the number
of distinct indices are at most (mf)’. When 7,=r (v >3), then we get
(3.12) (G, Gy Griyay Gy yil)
SSR(G"-{“G;,,_V) max S Gmﬂ...Jwiwl...
By Lemma 4.4, we get the desired result.
Summing up these facts we get the following.
Proposition 3.8. Fix £>0. Fix p>2. Then,
P(w(m)EQ"; w(m) satisfies O\(m) and (3.13)) >1—m™*
holds, where

(3.13) (G oty —Houtmy) (X )12,
SCm* =D {(m* 8 N2 m®) || |2

+mP N (|G (X )l
FA NG (X )=}
It should be remarked by our argument that the constant C in the inequali-
ty (3.13) is f-independent. Take f=X,f. Thus, by duality argument (L?)'=L?#
and interpolation inequality gives Theorem 2.

4. Calculation involving G, We put R(m)={w(m)€Q"; |w,—w,|>
m~"* for any 7, j(i=j)}. Then, we have the following

Lemma 4.1. Fix p>B/2. There exists a constant €>0 such that (4.1)
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holds for sufficiently large m:
(4.1) P(w(m)EQ"; w(m)E R(m))>1—m™" .

Proof. Fix x. Then, the measure of the set {w;; |x—w;| <m~*} is of order
m™*,  If we get n? m~4—0, then (4.1) holds.

We put I1(5, -, i)=A{(w; =, w,); |0, —w,, | >m~} for 1<v<p<h.
Then, we define

(4.2) 8_@(]"(@0,,1’ e w,,))
- Sn(;h...',-h)f(wiv Wy, Jw,-l'"tiw,.h ,

if the variables w,, -+, w;, are all distinct. Here dw;=V (w;) dw;. The follow-

ing inequality is essential to consider probabilistic result.
(*+3) S (n(.-.,...,;,,...,.-.)lg(w"" s Wy s )| dwyed,

) lg (@, ++5 w;,, +°)| (‘iwn“"iwi,) jwisn‘“

S Sn(i:+1p"'.ik) ( Sn(ib'".is
We introduce the integral over R(m).

We put
ERm) (f(wiyy =+ wy))

= Sgg(m)f(wip R w,-,,) le sz...d'w” i

Note that ER(m) (f(w;,, ***, w;,)) <ER(f(w;,, *++, w;,)), if f=0. Thus, we used
the above inequality to get some probabilistic bound. Delicateness of analysis
using ER(m) is presented in the section six.

In this section we want to study €q (12; G; Gy). The result we presented
is important to study Ex(||Hum—4'|12w). We write the term G, -G, _ ;.
for G;. We also write the term Gj j,---Gj,_;, for G;. If we want to get a
bound for E(G; G;) we must classify the indices 7 U J.

DEFINITION. Assume that both I=I(s)>4, -2, and J=J(#)Dj, >, J:
are self-avoiding. If there are exactly ¢ couples of (k(R),p(k)) (k=1, -+, q)
such that 7,4)=j,w, we say that (3, -+, 7,) and (j, :**, j;) have g-intersections and
it is denoted by #(I N J)=g¢.

Lemma 4.2. Fix p>f/2 and €>0. Assume that $(I N J)=q. Then,

(44) E@(Gy Gj) <C'mHa=d (CAKe-D=6+-D (g > 1)
C/(CN)>- 6+ (g=0).

The folloiwng Lemmas 4.3, 4.4 enable us to get Lemma 4.2.
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Lemma 4.3. We have
(4.5) Sn( |G dw,<Clog m).

Proof. It is easy to see (4.5).
Let G,)(x, y) be the iterated kernel of the Green function defined by

Ga(*,y) = G(x ),
G y) = Sn Gu(x, 2) G(zyy)dz (B =1,).
Lemma 4.4. We have
(4.6) miaX Sn(,-,,) Gy (w;, wj.)2 ij.
<C(log m) (CA7Y)*-2,

Proof. By observing the singularity of the iteration of the resolvent ker-
nel function we get (4.6).

Proof of Lemma 4.2. First we consider the case where (I N J)=¢=>2.
We assume that z,4)=j,u) for k=1, ---, g. We define 7(k) as in the proof of
Lemma 3.7 in [9]. When ¢>2, we define the contracted term G§° and G by

q-1
o ___
7= LII Ghte+1-0) (‘w.‘;,cp’ wl'h(l+1))

7= :];I: G G40-r @) (Wjriis Wiraas) -
Then, Eg(G; G;) does not exceed
ER(G° GF) X (CA1)HO-1HE=HD D =D+ -r(@)
observing
S G(w, 2) dw<CA™.

Since Eg(G5°)? is estimated by Lemma 4.4 we get the desired result. We have
(4.2) for the case ¢=0, 1.

5. Lemmas on integration over small set w°. In this section we
obtain certain estimate for the integrand of the following form. The positive
functions @ and & are chosen as below. We consider

(5.1) S @ (w, %) B(x, w,) dx.

Since |w®|—0 as m tends to infinity, (5.1) is smaller than
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(5.2) gn @ (w,, %) B (x, w,) dx .

Since »° has small measure, (5.1) is very small compared to (5.2). We want
to make rigorous proof for this intuition.

Let us begin with the following integral (5.3), where ®(x, y) is a positive
function depending only on |x—y], that is ®(x, y)=®*(|x—y|) for some &*.
We assume that ®*(7) is a decreasing function. We assume that |®*(r)| <+ oo
for r>0, |®*(0)| <M <+ o0 and

S” D¥(r) PV dr < oo .
0

Consider

(5.3) max g LD (w, %) dx.

We assume that w(m) satisfies O,(m). It should be noted that there is connected
component decomposition

N ;
of = U o
i=1

such that diam (@?) <3 m~Y(log m)? and &S w, for some k. Then,
w°C 9 {x; |x—w;| <3m~*(log m)%}.
Therefore,
(5.4) |€| <C’ mP-4(log m)® .
The term (5.3) can be estimated by the following method. We put
AP = o N {o; km PAL | x—w, | < (k1) m=PH}
for k=0,1,2, ---. Fixs. Then,

SAS,) D (w,;, x) dx
<(the number of p such that |w,—w;| <2 m~P/*)
3m—Y(log m)2
[T eryrar.
0

Next we have
(5.5 L%‘.) D (w,, %) dx < | 45D | D*(km-#1)
<Cm*(log m)®® ®*(km=PH) k.

Therefore,
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(5.6) ﬁ: (5.5), < C"(log m)® mP~4(m~P1) 3 (km~P/AY® *(km~1)
=1 k=1
<C'mP4(log m)® S" O*(r) P dr .
0

Summing up these facts we get the following.

Lemma 5.1. Under the same assumption as above we get

(5.7) (5.3)<C {(log m)? Sa‘m " 4 r) 1 dr

0
- mP-4(log m)® S: O*(r) 7 dr}.

As a corollary of Lemma 5.1 we have

Lemma 5.2. Under the same assumption as above we get
(5.8) max S..,o ®y(w,, %, 1/C) dx

<C"((m™(log m)?)*~*(log m)?
o+ m~(log m ()2

holds for 0<0<4.

We want to examine (5.1). We assume that ®(x, w,)=®(x, w;, A/C),
O(x, w N=Po(w;, x, A/C). We do not take care the constant C in ®(x, y, A/C),
since the constant C does not make any important role when we estimate formulas
of this paper. We put

D, = o N {x; |x—w,;| <(2/3) |w,—w;|}
D, = o° N {x; |x—w,;| <(2/3) |w;—w; |}
D3 = Coc n (DIU DZ)C .
We have
SD Dy(w;, x) Dy(x, w;) dx
1
<cC (S D Do(w;, x) dx) Dy(w;, wj, MC')
1
<C(5.8) Dy(w;, w;) .

We have a bound for the integral over D,.
We put
D, = DsN {x; |w,—x| <8m~P/4}
D; = DyN {x; |w,—x| <8m~P/}

and
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Ds = DN {x; |w;—x| >8m=P1,
|0, —a| >8m=P/}.

Then, D;=D,U D;U Ds. We have
659 I @, & w,)ds| <@w, w,MC") | B w)ds.
4 4

Observing the fact that the number of distinct connected component of »° in
D, is at most C’(log m)* we see that the right hand side of (5.9) does not exceed

Dy(w;, w;, M|C") (log m)? (m™*(log m)z)“'"' .

We also have a bound for the integral over D;.
Finally we get

| SD @ (w;, x) D(x, w;) dx|
é C(m™(log m)*)* 2",' Do(w;, w,) Dy(w,, w;),

where the indices 7 in 33’ run over all » with respect to Ds. It is checked by the
fact that diam o €m~#* and that the number of p satisfying w,E {x; [x—y| <
m~Pl} <(log m)®4-1,

2’ Qo(wir wr) q)o’(wn wj)
< C mP(log m)* SQ(D"(w" 2) Dy(2, w;) dz .
We combine above facts and we get the following.

Lemma 5.3. Under the same assumption as above we get

(5.10) (5.1)<CP(m, 0) By(w;, w,)
+CP(m, 6") Dyw,, w,)

+Cm=4(og m)* | @ufw, 3) @ts, w) &5,
where

P(m, 0) = (m™*(log m)*)*~*(log m)?
+mﬂ“(log m)lo().'llz)“'o .

6. Probabilistic approach to Hilbert-Schmidt norm estimation.

In this section we want to prove the following Proposition 6.1. We put

e = s 2 ddy.
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which is an aubse of integral kernel and the integral operator defined by f.
Let A’ denote the operator given by
A =G+ g (—mmPy’ J,G(VG®)*,
where J,=(1—(1/n))-+(1—(s—1)/n). We study A’ in place of A, since
[|A—A’||120) < Cm~PA~2 and its difference is negligible to consider spectral result.

Proposition 6.1. Fix an arbitrary €>0. Then, there exists a constant
T>1 such that

(6.1) P(w(m)EQ"; w(m) satisfies O,(m) and (6.2))
>1—m=*

holds as m tends to infinity, where

(6.2) N H oy — A2 <m** mP-4(log m)®° A" .
Proof.
It is easy to see that
(6.3) lHu—Allla<(log m)* S IV,
where

vz ={ | 56 w,) 6 6w,
—(7* m®) J, G(VG)* (x, y)}? dxdy .

For the sake of simplicity we first discuss the case s=1.
First step. When s=1, G;=1. We have the following.

(64 IVAIE—( 3 7 G, w7
i
—27*mP EI} G(VG) (w;, w;)

+en | GG (v, %) d)|
Q
< C(mP* (log m)P A2

+m=¢ (log m)* ,E,} G(w;, w;) Ga)(w,;, w;)
i%j

+mP=8 (log m)*° 33 G(w;, w,)?
i

+ m2P-6 (log m)m G (3)) ,

where G(;,)=I}1ax G, ).

We put
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Ll = 32,; 7 G(x’ wi) G(w:" y) G(x» w,.) G(wj’ y)
i$s
L= —27'm* 3 G(x, w) G(w;, y) (G(VG)) (. )

L; = 7*m® G(VG) (x, y)?
L=+ 2 G(x, w,)? G(w;, y)*.

By definition we have
(6.5) vtz = 33§ Zodwdy.

We have the following general formula.

(6.6) [§ e £ dndy
<, (161
+. (), 1w dndy.

We see that the left hand side of (6.4) does not exceed

k=1

S(o}xm)a |Lk| Jx dy—l—Sme IL" dx dy *
By the formula (6.6), we get

67) (Il dedy<e S Gow, w) (GXoVG) (w, w)).
ifj

By Lemma 5.3 we obtained

(6.8) [(GXo VG) (w;, w;) | <C(m~*(log m)*° G(w;, w;)
+mP=4(log m)*® Gu)(w;, w PR

By (6.7), (6.8) we have a bound for (6.7) (the left hand side).
By the formula (6.6) we get

69 ([ 1Ll&dy<cemw s G6R (,v) G, o
<C7*mP G 2 S.." G(w; y)dy .

Therefore, by Lemma 5.2 we have a bound for (6.9) which is
Cr*mP Gy mP-2 (log m)™° .

We have
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SS(an)O IL3I ax dy
<C m?*#* L" ( Sn (log |x—y]|)? e~ N 1s-sile dx) cfy
<Cm*# |C|(AV2)E0 .

We know that |w®| does not exceed mP~4(log m)®.
We also have

SS | Ly| dx dy<Cr*m? (log m)?
= O(mP~4(log m)?) .

Summing up these facts we obtain (6.4).
Second step. When s>2, we have the following. Here we write w,, as 7
and wj, as j, for the sake of simplicity. But, we usually use w;, in this paper.

(610) WIVAIE= 3 7 Gooli 1) Gaolin i) G
—27mt [, 5 GVGY iy ) Gy

et 2 ({ GGy (s, ) dx dy|
STZ‘{m_z(log m)mkInE.r)=o G(z)(ivjl) G!I G(in ]s)

+mPHlogm)® 3 Gty j1) G i) Gis

KInIH=0
-2 10 .. ..

+m~*(log m) x1r§=o G (i, j1) Gty js) Gis}

+ 72 mP(m~*(log m)® (CA~Y)*"* XI} G, exp (—A2|4,—4,|[C)

~+7% mPs~F(log m)® (C ATh)s-E ? G;G(1y, 3,)

+7% m?P* mP~4(log m)® (CA~Y)%*

2,2
+C(logm)® w%zz Gy
—l—C(lOg m) 72”([ E)ZI G(z)(ilyjl) Gy

iy
+Cr* 2 Golivji) Golis ji) Gir -
iy etis
We want to prove (6.10). We put
K= > 7% G(x» ‘wil) G(x» wf'l) G(wis’ y) G(win y) GI/

¥INI=0
K,= —27*mPJ, 3 G(x,w,) G, G(y, w;,) G(VG)' (%,9)
K, = t* m® JY(G(VGY (x,))*.
Then, (6.10) does not exceed
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i=1
where

K, = Tst%})ZIG(x, w,) G(x,w;) G(w,, y) G(wj,,y) Gi; .

We first examine

(6.11) Sj(uwo |K, | dxdy.
By (6.6) we see that (6.11) does not exceed
612 3 Gy, ) G|, G, ) G w;) dy)

+ Gl w3) Grr (| , G w,) Glas, 3) di)

By Lemma 5.3. we have a bound for (6.11). The terms which comes from
(6.11) are represented as the first, the second and the third terms in the right hand
side of the inequality in (6.10).

We have

<crm 53|, ey, w,) G, ) ) G,
Since s>2, we see that
6.14)  (G(VG)™) (%, y) SC(CA)~" exp(—\¥2|x—y] [C) .
And we have

GVG)y ™y, wy) G(w;,, )
<Cexp(—M" |w,—w,|/C") (G(VG)™) (3, iy, MC”) G(w;,, 3, A/C) .

Here G(x,y, A[/C) is the Green function associated with —A-+4(A/C). By
Lemma 5.3 we get a bound for (6.13) which are represented as the fourth, the
fifth terms in the right hand side of the inequality in (6.10).

We have

(619 eup 151 85
< m |of| max | GVGY (39 ds
y Q

<7* m*® mP~* (log m)® (CA"1)>~*

iV

for £€>0.
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Finally we examine

0= SLXO | Kl th?y

There are four cases.
(l) il=jl) ix=j;
(i) 74y, t=],
(i) #4=jy, t,7F J,
(IV) zl=*=]l) l,=f=],
When we consider the case (i), we have
| G wpasi<ciogm.

Therefore,
<C(l 2 % .
|QO| <C(log m)* ~ wn%‘,jzzG,;

when we consider the case (ii), we have

Y 2s

|01 <Cllogm) 7 51 Golw,, ;) G
iy
The case (iii) is similar to the case (ii). For the case (iv) we have
ol <Cr* 'a:ﬂnz] Golw,,, w;) Go(w;, w;,) Gyy .
iy

Summing up these facts we get the desired result.
Integration over R(m). (as the thrid step).

To get probabilistic result we reconsider the integral over R(m).

positive function, then we see that
ERm)(f (Wi -+, wi)) SER(f(wyyy ++, w3))
where
ERm)(f(wy *+*» wy,))
= So"f(wil, o, w,,) XR(m) dw,++-dw,, .
If we want to know the exact value (with remainder) of
(6.16) ERm)(f(yyy -+ w3))

its calculation involves some delicateness. Consider the integral

(6.17) [ @0 ey w,) ooy

19

Iffisa

The difference (6.16)-(6.17) is calculated as the remainder and (6.17) is a value
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to be desired. It should be noticed that f(w,, -, w;,) is a function of =, -,
w,,. However, if we want to calculate ER(m)(f), we should be careful to con-
sider hidden variables which are other than w,, -+, w,,.

Let us begin with estimating

Eim) (5 fw)—n |_f(x) .
Assume that | f| <C< 4 oo for the sake of completeness. Then,

SQ. f(w,) 1—XR(m)) () dw,--dw,

S(A—1R(m)|) || fllzo<m® m~** || fllo= .
Thus,

(6.18) |0 (S f@))—n | _f(x) dxl <nm=* | fllz=

This inequality can be generalized when f is locally uniformly integrable in the
sense that

], 0 B
for any s>0. In this case
| Eam (S f@))—n |_f(x) ds] <n* Cos
Assume the following local integrability for f:
max | 1f(9)| dy<Do<t-oo

and the similar inequality for g(y, x)=f(x, y) for any s>>0. We have the follow-
ing estimate

(6.19) |Ean ( 5 f(w, w)—nn—1) ([ f(n5) dxdy]
iFi
<n*D,-»,

observing that
ISR(m)fdw_Sn,,f‘iwl (dw = ‘l;Ildwi)
= :2=z Sn"'l( Slw,-wﬂsm-n | f (w1, w,) | dily) sz---cfw”

+ 12=1 Sa"'l ( S'Wz‘lvlem'P | f (20, wp) | dw,) duw, -+ dw,

jF2
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+ j2=1 ggl'l, ( Slwa—wﬂSm'p If(wb ZUz) l Jw;,) le dwz Jw4-..dw"
i3
R
<n? D,,,—p .

We apply ER(m) to the terms in the left hand side of the inequalities (6.4)
and we get

(6.20) ERm) (IVAIe—(Z 7* Gyt o 7" m® Sn G(VGY) dx))
— _*n Sn G(VGY (x, x) dx+O(mP-+4(log my G1p)
observing that #(n—1)—n*=—n and (6.18), (6.19). Since

ER(m) (the terms in the right hand side of the inequality (6.4))
<Eq(7)

<m*-¢ (log m)" Sg 0@ ) Go(xy)dxdy

+m* -8 (log m)* SLZ Ge (x,y)*dx dy
+m*-5 (log m)® G p-+mP~*(log m)® A*2,
we get the following
(6.21) Exm) (I1IVAIIE)
— O(m‘ﬁ“‘“’ (log m)z G'“)—i—mﬁ" (log m)s A2
+m? -5 (log m)® G 5)4-m**~2 (log m)® G,
+mﬂ-4 (_;(4))

for any fixed €>0.

We are going to apply ER(m) to (6.10). Before doing it we study some
inequality. We denote ®y(x,y, A/100C) as Wy(x, y) and we consider the fol-
lowing integral

(6.22) L Wy, w)) Vo, w;) dw,

where S={w;; |w,—w,;| <m™° or |w,—w;| <m™*}. When |w,—w;|>3m™" we
see that (6.22) dones not exceed
Tm-—P ,
(6.23) C \Ifo(w’, w,,) S e dr—l— oo
0
<C” (m‘(“"')" Wo(wy, wi)-+m= 0 Wo(w,, wy)) .

Here we used the fact that |w;—w,|>C"|w,—w,|, (|w,—w,|/C)=C"*
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|w;—w,| 7%, The same inequality holds for the case |w,—w;| <3m=". By ge-
ometric observation we can say more about it. We have

(6’24) sup ‘ ‘I—,O(wa wj) \Po(wj) wk) Jw,l

z Slw,’-xISm'P
Scrf(m—a—o’)p \I,o+m—(4—0)p ‘I’o’) .

Our claim in calculating ER(m) ((6.10)) is the following.

(6.25) ER(m) (wnEJ])_O---, in the left hand side of the inequality of (6.10))

= [y 7% m?* “ G(VG): (%, y) dxdy
02
‘*‘O(("'mﬂ)zs m*P(m= 4" | W %Gy |
+m | W kG -y | +m7% | Gop*'¥,|)
Here

| frgl = max | 175 2)g(x )| ds.

!’

Assume that 5,=1, -+, 5=k, -, f,=s and jy=1', -+, i=F', -+, j;=5¢".
We put

Pj'k - SQ”“ (Sle"WHSm‘p G(Z)(wl’ wll) G(Z)(w" w‘,) GIJ) dw}'
d(v.o.t. w;).

Here v.0.t. means variables other than. 'There are four cases. (i) j=1 or j=1’,
(ii) j=s or j=¢', (iii) (FE(, -++, s) but j=*1, j=Fs) or (& (', «-+, s") but jF1’,
JEs), (V) jeE, =, ) U, -, 8).

First we study the case (i). We assume that j=1. We know that
|Goxx, )| SC Wo(x,y), |G(x, y)| <C W¥y(x,y) for any €>0. Therefore,

629 | Golw,wr) Bw,w) Gy Golw, w) Gy du,
SC'(m~ =P Wy(wy, w,)+m™? Vy(wy, w,)) Gpipee)
X Ge(ws wy) Gy
Therefore,

[P el < So"l (6.26) dw, dw,--dw,
<C Sgnz ((m'(4—!)9 \Pz(wlf, w2)+m—29 ‘I’.(wll, wz))
X G g1y, w,) dwwy dw, .

We also have the same inequality for P; ; for the case (ii).
We now consider the case (iii). Assume that jE(1, «++,s). Then,
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Slw;-w;,ls’n'p Gim1,; G i1 A, SCm? Wow o, w4) -

Therefore, we have

|Pj| <Cm™ |(Gea*¥y)| .

Summing up these facts we get (6.25).
For the sake of simplicity we put

L) = ||, Gw6y) @ yrdedy.

We want to show

gﬂ(m) (’_ZTZS mﬂs JS ; G(’+3) (wh, wia) GI)
= Qp?S gy2Ps ]? L(s)+0(r* m2Bs m”‘z"(C),“‘)s‘z G (643) -

We write
O;n= SQ"—I ( Sm,-—w,,ISm'P Gera (w1, w;,) Gy ij) d(v.o.t. w;)

We assume that z;=k. There are three cases (i), (ii), (iii).
(i) j=1orj=s,

(i) jE(, -+, s)butj=1,j=*s,

(i) je(1, -+, 9).

We have

| Qj,kl S-G(.H-Ii) S _ ( S _p GlZ G23"'G3....13 le) d('z).o.t.)
Q" 1" Jlwg-w,l<m

<Gy m™P(CAY2

We have the same estimate for the case (ii).
For the case (iii) we have

10,4l SC"m (O Gy
Summing up these result we get the desired result.
It is easy to see that
ER(m) (L(5)) = L(s)+0 (n* m™ L(s)) .
As a consequence of the above results we get the following

|“Vs”|i = 7% m* (st—jg) L(s)
_I_TZs mzﬂs+25 O(H(S))
+ O (g (the right hand side of the inequality in (6.10)),

23
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where

H(s) = m™(| Gor-p*¥e| + | Geo* ¥, |)
+m=¢? | Ggpeyyi Wy |
+mP2(C A2 G gy tm* L(s) .
From now on we discuss € (the right hand side of (6.10)).

There are nine terms in the right hand side of the inequality in (6.10). We
use

€ g (the term) < E(the term)

for the first ~ the seventh terms in the right hand side of the inequality in (6.10).
Here E denotes the expectation over Q". Then, we get

Eaq( I'Z:i the &' term in the right hand of the inequality in (6.10))
<C 7 m?® {m~*(log m)* G ey +m"~*(log m)® Gys
+m*(log m)"® (CA™)*~" | G-y |
+mP=4(log m)® (CA~Y)%-*
+m~P(log m)* (CA)"=* | Gi-p*Py |}

We see that
|the (74 8*4-9*") terms|
<C(logm)*+* > Gy
KInDH>1
observing that G)(w,,, w;,) <C(log m) for |w, —w; | =>m=". By Lemma 4.2 we
see that
Eaq( ,’2’ the k™ term)
=7
<C(log m)? (TA"1 mP)>* (A2 m~F)
using that
3 (mPH(CNY) s
q21
converges.

Summing up these facts we get

ER(m) (the right hand side of the inequality in (6.10))
L C'(rmP|CN)* {m~2(log m)™® AT +-mP~*(log m)™® A®
+m~*(log my A***}

observing that
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Gy<c(Cny-2-t
for s>3, £>0 and
|Gl =max || Gulw, 2) @4(z, ) ds|
SC'(CAYy-s.
Summing up these facts we get

(6.27)  Exem (IV.IIF)
— (Tmp /Cx)z’(m"’(log m)4 A: _I_mzﬂ-zp ALte +m2ﬂ—(4—!)p Azt
3B e gy 2B-ap ¢ —l—m"z(log m)lo ALFe
~+mP~4(log m)® A*+m~P(log m)® A?**) .

As a conclusin of (6.3), (6.21) and (6.27), we get our proof of Proposition
6.1 when we take sufficiently large p.

We here make a comment on our argument. We do not take E over Q”,
since E(GY;) can be divergent when #( N J)>1. Thus, we used ER(m) to avoid
this divergence. Owing to the usage of E®(m) our calculation becomes very
long. The author hopes some simplification of our calculus.

7. OnA'.

In this section we want to examine
1Xe A" Xu— A"l 20> -
It does not exceed
(7.1) (1—%X.) 4" Xl 2@+ 114"(1—=X)ll2) -
By the duality argument we have to estimate
I(1—%.) 4’ll2)
to get a bound for (7.1). Fix f€L¥Q). Then,
1[04 @y e

SR OLES

<on | (|6 roray a

<ontmax ([, G 3) ) 1w

As we studied before, we get
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max S , G(®,9) dx<C m™(log m)®

when w(m) satisfies Oy(m).
As a conclusion we get the following

Proposition 7.1. Assume that w(m) satisfies Om). Then, there exists a
constant C such that

(7.2) 1%y A" Xy— A'| 12y <SC A2 m~Y(log m)?
holds.

8. Spectral result. Proof of Theorem 1. We want to get spectral
properties of G,). Let A{)(w(m)) (=1, 2, 3) and A" be the j-th eigenvalue
of the operators Gy (1=1), H,m (1=2), X, A’ X, (1=3), A'(i=4).

By the spectral theory of operators applied to Theorem 2, Proposition 6.1,
Proposition 7.1 we see that the measure of the set w(m) satisfying

[AG—AP | < m%(mCAP-4 - mPA-Y(log m)® \*2)
AP —AP | < C m** B (log m)®
since G, and X, A'X,, are positive compact operators. Hereafter we assume
that V'=|Q| ! when 8>2. We consider the case A=Tm?~2. Then, A" (w(m))
— (s (20 (m))+ TmP %) and AO(w(m)=(s,(V; m)+Tm3)" with pu,(V'; m)—
p;i+27*mP2| Q| 7t for 8>2. 'Therefore,
“"j(w(m))—”‘j(V; m)|
< Cmst+2B-2) (m(3/2)5—4 +m(512)—2(10g m)s A2
+m~*2(log m)®) .

As a conclusion we get Theorem 1. It is a natural question to ask the optimal
84(B) and the fluctuation associated with optimal exponent §y(3).

AppenpuM. We list the papers [13], [14].
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