THE ARTINIAN Λ-MODULE AND THE PAIRING ON THE CYCLOTOMIC Z_{l}-EXTENSIONS

Yasumasa AKAGAWA

(Received December 21, 1989)

Introduction

Let l be a prime number, \boldsymbol{Z}_{l} the ring of the l-adic integers, and $\Lambda=\boldsymbol{Z}_{l}[[T]]$ the formal power series ring of indeterminate T over \boldsymbol{Z}_{l}. Let K be an algebraic number field containing ζ_{1} (and $\sqrt{-1}$ if $l=2$) and $k_{\omega}=k\left(\zeta_{\infty}\right)=k\left(\zeta_{n} \mid n=1,2, \cdots\right)$ the cyclotomic \boldsymbol{Z}_{l}-extension over $k ; \zeta_{n}=\exp \left(2 \pi \mathrm{i} / l^{n}\right)$. Given an abelian extension M / k_{ω} which is Galois over k and restricted by some local conditions, we can regard the Galois group $\operatorname{Gal}\left(M / k_{\omega}\right)$ as a Noetherian Λ-module and develope the socalled Iwasawa theory. In this paper we shall treat such Noetherian Λ-modules comming from Galois groups and their (twisted) duals, which are regarded as Artinian Λ-modules naturally. The main instrument for the study is a pairing Ψ on some two Artinian Λ-modules X and Y. In [4] a pairing works effectively but our Ψ is different from this essentially, Ψ is actually defined on the whole $X \times Y$ and non-degenerate except Λ-divisible parts and a finite factor. So we shall know that X and Y have similar types of Artinian Λ-modules each other. Specially if we take the maximal unramified abelian l-extension over k_{ω} fully decomposed at every prime spot over (l) on the one hand and an l-ramified abelian l-extension which is maximal under a local condition such that any $\zeta_{n} \in k\left(\zeta_{n}\right)$ is written as a local norm from this field to $k\left(\zeta_{n}\right)$ at every spot on the other hand, the results will be most typical. Actually the arguments of this case will be used effectively in the study of Leopoldt's conjecture.

1. Noetherian $\boldsymbol{\Lambda}$-modules

Throughout this paper we fix a prime number l. Let \boldsymbol{Z}_{l} be the ring of the l-adic integers and $\Lambda=\boldsymbol{Z}_{l}[[T]]$ be the ring of formal power series of indeterminate T over \boldsymbol{Z}_{l}. It is well known that Λ is a local ring of Krull dimension 2, with the maximal ideal $\boldsymbol{m}=(l, T)$. A proper prime ideal \boldsymbol{p} of Λ is always principal and written $\boldsymbol{p}=(l)$ or $\boldsymbol{p}=(P(T))$ by a distinguished polynominal $P(T) \in \boldsymbol{Z}_{[}[T]$, i.e. the one of the form $P(T)=T^{n}+a_{n-1} T^{n-1}+\cdots+a_{0} \equiv T^{n} \bmod (l)$ in $\boldsymbol{Z}_{l}[T]$. The unit group Λ^{\times}of Λ has a subgroup $(1+T)^{Z_{l}}$ isomorphic to \boldsymbol{Z}_{l} in the evident manner through multiplication-addition translation. Let Γ be a topological
group isomorphic to \boldsymbol{Z}_{l} with a generator $\gamma: \Gamma=\langle\gamma\rangle=\gamma^{\boldsymbol{Z}_{l}}$. A \boldsymbol{Z}_{l} - Γ-module is a Λ-module as it were, defining the action of γ on it to coincide with the multiplication map of $1+T$. Put $T_{m}=(1+T)^{m}-1 \in \mathcal{Z}_{l}[T]$ a distinguished polynomial, and $\boldsymbol{Z}_{l}\left[\left[T_{m}\right]\right]=\Lambda_{m} \subset \Lambda$. Put $\gamma_{m}=\gamma^{l^{m}}, \Gamma_{m}=\left\langle\gamma_{m}\right\rangle \subset \Gamma ; m=0,1, \cdots$. A Λ-module or a $\boldsymbol{Z}_{l}-\Gamma$-module is a Λ_{m}-module or a $\boldsymbol{Z}_{l}-\Gamma_{m}$-module in the same time by the restrictions, making the correspondence $1+T_{m} \rightleftarrows \gamma_{m}$. A characterestic Λ_{m}-submodule of a Λ-module is a characteristic Λ-submosule as it were. From now on we treat only locally compact modules. For a Λ-module M, the torsion, the Λ-torsion, the divisibility, and the Λ-divisibility are denoted by

$$
\begin{gather*}
\text { Tor } M=\left\{\sigma \in M \mid z \sigma=0 \text { for some } z(\neq 0) \in Z_{l}\right\} \tag{1.1}\\
\Lambda \text {-tor } M=\{\sigma \in M \mid f(T) \sigma=0 \text { for some } f(T)(\neq 0) \in \Lambda\} \tag{1.2}\\
l^{\infty} M=\left\{\sigma \in M \mid \sigma=z \tau \text { by a } \tau \in M \text { for any } z(\neq 0) \in Z_{l}\right\} \tag{1.3}\\
\Lambda^{\infty} M=\{\sigma \in M \mid \sigma=f(T) \tau \text { by a } \tau \in M \text { for any } f(T)(\neq 0) \in \Lambda\} . \tag{1.4}
\end{gather*}
$$

We shall denote the direct sum of two modules M and N by $M \dot{+} N$ and that of r copies of M by $\dot{r} M$. A Λ-homomorphism $\varphi: M \rightarrow N$ with finite kernel and finite cokernel is called a pseudo- Λ-isomorphism, and denoted by $\varphi: M 工 N$. Given M and N, when there is a $\varphi: M \hookrightarrow N$ we denote $M \hookrightarrow N$ and when $M \hookrightarrow N$ and $N \leftrightarrows M, M \underset{\leftrightarrows}{\leftrightarrows} N$. When a non-negative integer r and a set of prime power ideals $\left\{\boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right\}$ in Λ are given, we put

$$
E\left(r ; \boldsymbol{p}_{1}^{e_{1}}, \cdots, \boldsymbol{p}_{s}^{e_{s}}\right)=\dot{\boldsymbol{r}} \Lambda \dot{+} \Lambda / \boldsymbol{p}_{1}^{e_{1}} \dot{+} \cdots \dot{+} \Lambda / \boldsymbol{p}_{s}^{e_{s}} .
$$

We shall call this typical Noetherian Λ-module an elementary Noetherian Λ module and $\left\{r: \boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right\}$ its invariant. Two elementary Noetherian Λ modules are pseudo- Λ-isomorph (actually Λ-isomorph) only when their invariants coincide. Use an abbreviation $E\left(0 ; \boldsymbol{p}_{1}{ }^{{ }^{e}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right)=E\left(\boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right)$.

Theorem 1.1. (Iwasawa-Serre-Cohn and others [5]) For a Noetherian Λ-module M there is an elementary Noetherian Λ-module

$$
E(M)=E\left(r ; \boldsymbol{p}_{1}^{e_{1}}, \cdots, \boldsymbol{p}_{s}^{e_{s}}\right)
$$

such that

$$
M \xrightarrow{\leftrightarrows} E(M) .
$$

The invariant of $E(M)$ is uniquely determined depending only on M, not on $\varphi: M \xrightarrow{\sim}$ $E(M)$. For any $\varphi: M \leftrightarrows E(M), \operatorname{Ker} \varphi$ coincides always with the characteristic Λ module Fin M the maximal finite Λ-submodule of M.

The pseudo- Λ-isomorphism $M \xrightarrow{\leftrightarrows} E(M)=E\left(r ; \boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right)$ does not mean $E(M) \leftrightarrows M$. But, if $r=0$ we can compose $E(M) \xrightarrow[\rightarrow]{\rightarrow} M$ easily. For example, if
$\varphi: M \xrightarrow{\rightarrow} E(M)$ is injective with $r=0$ and $l^{c} \operatorname{Coker}(\varphi: M 工 E(M))=\{0\}, c \geq 0$, we can form a Λ-homomorphism $\varphi^{\prime}: E(M) \leadsto M$ with trivial kernel and the cokernel such that l^{c} Coker $\varphi^{\prime}=\{0\}$ also easily.

We call the invariant of $E(M)$ the invariant of M and denote it by inv M and define the characteristic polynomial of M by

$$
f_{M}(T)=\Pi P_{i}(T)^{e_{i}} \quad\left(\boldsymbol{p}_{i}^{e_{i}}=\left(P_{i}(T)^{e_{i}}\right) \in \operatorname{inv} M, \boldsymbol{p}_{i} \neq(l)\right)
$$

and the essential exponent of M by

$$
\begin{gathered}
\boldsymbol{e}(M)=\max e_{i} \quad\left(\boldsymbol{p}_{i}{ }_{i} \in \operatorname{inv} M, \boldsymbol{p}_{i}=(l)\right) \\
\left(=0 \text { if there is no } \boldsymbol{p}_{i}=(l)\right) .
\end{gathered}
$$

When $\boldsymbol{e}(M)=0$ namely \mid Tor $M \mid<\infty, M$ is said pseudo-torsion free. The minimal number $e(M)$ such that $l^{e(M)}$ Tor $M=\{0\}$ is called exponent of M, e.g. $l^{e(M)} M$ is pseudo-torsion free and $l^{e(M)} M$ is torsion free.

Theorem 1.2. (Iwasawa) For a Noetherian Λ-module M, Λ-tor M is characterized as the maximal Λ-submodule (or Λ_{m}-submodule, $m \geq 0$) of M with finite \boldsymbol{Z}_{l}-rank therefore

$$
\Lambda_{m} \text {-tor } M=\Lambda \text {-tor } M \quad \text { for any } \quad m \geq 0
$$

Put $\operatorname{deg} f_{M}(T)=\lambda$. Then

$$
\begin{equation*}
\Lambda \text {-tor } M / \text { Tor } M \simeq \dot{\lambda} \boldsymbol{Z}_{l} \quad\left(\text { as } \boldsymbol{Z}_{l} \text {-modules }\right) \tag{1.5}
\end{equation*}
$$

Specially when M is pseudo-torsion free,

$$
\begin{equation*}
T_{m^{\prime}} \Lambda \text {-tor } M=l^{m^{\prime}-m} T_{m} \Lambda \text {-tor } M \tag{1.6}
\end{equation*}
$$

for every $m \gg 0$ (every sufficiently large $m \geq 0$) and $m^{\prime} \geq m$ and (1.5) can become precisely

$$
\begin{equation*}
\Lambda \text {-tor } M=(\Lambda \text {-tor } M)_{f r} \dot{+} \operatorname{Fin} M \quad\left(\Lambda_{m} \text {-direct }\right) \tag{1.7}
\end{equation*}
$$

for every $m \gg 0$ where $(\Lambda \text {-tor } M)_{f r}$ is a Λ_{m}-submodule of Λ-tor M (not unique) isomorphic to $\dot{\lambda} \boldsymbol{Z}_{l}$.

Proof. Only the last statement concerned to (1.7) will be required to prove. Since \mid Fin $M \mid<\infty$, there is an $m_{0} \geq 0$ such that $T_{m_{0}}(\Lambda$-tor $M) \subset l^{l^{e(M)}} \Lambda$-tor M. When we take as $(\Lambda \text {-tor } M)_{f q}$ any \boldsymbol{Z}_{l}-direct complement of Fin M in Λ-tor M $\left(\underset{\rightarrow}{\sim} \dot{\lambda} Z_{l}+\right.$ Fin $\left.M\right)$ it is a Λ_{m}-submodule for $m \geq m_{0}$ therefore (1.7) will be obtained.

For a Noetherian Λ-module $M, l^{e(M)} M$ is pseudo-torsion free. In the remained part of this section we treat only pseudo-torsion free case.

Theorem 1.3. For a pseudo-torsion free Noetherian Λ-module M

$$
\begin{equation*}
M=M_{\Delta t f}+\Lambda \text {-tor } M \quad\left(\Lambda_{m} \text {-direct }\right) \tag{1.8}
\end{equation*}
$$

for every $m \gg 0$, where $M_{\Delta t f}$ is a Λ_{m}-torsion free Λ_{m}-submodule of M (not nesessarily unique). So, combining this with (1.7),

$$
\begin{equation*}
M=M_{\Delta t f} \dot{+}(\Lambda \text {-tor } M)_{f r} \dot{+} \text { Fin } M \quad\left(\Lambda_{m}-\operatorname{direct}\right) \tag{1.9}
\end{equation*}
$$

for every $m \gg 0$.
Proof. Let $\varphi: M / \Lambda$-tor $M 工 \dot{r}_{0} \Lambda=\dot{r} \Lambda_{m}\left(m \geq 0, r=r_{m}=r_{0} l^{m}\right)$. Since $|\operatorname{Coker} \varphi|$ $<\infty, T_{m} \operatorname{Coker} \varphi=\{0\}$ for $m \gg 0$. Then by the elementary divisor theory we may put

$$
\begin{equation*}
\operatorname{Im} \varphi=\left(l^{c_{1}}, T_{m}\right) \dot{+} \cdots \dot{+}\left(l^{c}, T_{m}\right) \subset \dot{r} \Lambda_{m} ; m \gg 0 \tag{1.10}
\end{equation*}
$$

Fix such an m and put $\max \left\{c_{k}\right\}=c, m+c=m^{\prime}$. Take $\sigma_{1}, \cdots, \sigma_{r}$ and $\tau_{1}, \cdots, \tau_{r} \in$ M such that

$$
\begin{aligned}
& \varphi\left(\sigma_{k}\right)=l^{c_{k} \in\left(l^{c_{k}}, T_{m}\right) \quad \text { the } k \text {-th direct factor of (1.10) }} \\
& \varphi\left(\tau_{k}\right)=T_{m} \in \text { the same. }
\end{aligned}
$$

Put $T_{m} \sigma_{k}-l^{c}{ }^{c} \cdot \tau_{k}=\rho_{k}$ which is in Λ-tor M. From (1.6) we may assume, renewing m by a large one if necessary, $T_{m}(\Lambda$-tor $M) \subset 2 l(\Lambda$-tor $M)$ accordingly

$$
N_{m^{\prime} m}(\Lambda \text {-tor } M) \subset l^{c}(\Lambda \text {-tor } M)
$$

where

$$
\begin{equation*}
N_{m^{\prime} m}=T_{m^{\prime}} T_{m}^{-1}=1+\left(1+T_{m}\right)+\cdots+\left(1+T_{m}\right)^{l c-1} \in Z_{l}\left[T_{m}\right] \tag{1.11}
\end{equation*}
$$

So, we can take $\rho_{k}^{\prime} \in \Lambda$-tor M such that $N_{m^{\prime} m} \rho_{k}=l^{c} k \cdot \rho_{k}^{\prime}$. Then

$$
\begin{equation*}
T_{m^{\prime}} \sigma_{k}-l_{k}^{c}\left(N_{m^{\prime} m_{k}}+\rho_{k}^{\prime}\right)=0 \tag{1.12}
\end{equation*}
$$

Put $r^{\prime}=r l^{c}$ and determine $\sigma_{1}^{\prime}, \cdots, \sigma_{r^{\prime}}^{\prime}, \tau_{1}^{\prime}, \cdots, \tau_{r^{\prime}}^{\prime} \in M$ so that

$$
\begin{aligned}
\sigma_{k+1}^{\prime} & = \begin{cases}\sigma_{j+1} & \text { if } k=l^{c} j, \quad 0 \leq j<r \\
T_{m}^{j} \tau_{j} & \text { if } k=i+l^{c} j, \quad 1 \leq i<l^{c}, \quad 0 \leq j<r\end{cases} \\
\tau_{k+1}^{\prime} & = \begin{cases}N_{m_{m}^{\prime} m} \tau_{j+1}+\rho_{j+1}^{\prime} \quad \text { if } k=l^{c} j, \quad 0 \leq j<r \\
T_{m^{\prime}}^{\prime} \sigma_{k+1}^{\prime} & \text { if } k=i+l^{c} j, \quad 1 \leq i<l^{c}, \quad 0 \leq j<r\end{cases}
\end{aligned}
$$

and then $c_{1}^{\prime}, \cdots, c_{j^{\prime}}^{\prime} \geq 0$ by

$$
c_{k+1}^{\prime}= \begin{cases}c_{j+1} & \text { if } \quad k=l^{c} j, \quad 0 \leq j<r \\ 0 & \text { if } \quad k=i+l^{c} j, \quad 1 \leq i<l^{c}, \quad 0 \leq j<r\end{cases}
$$

From (1.12)

$$
T_{m^{\prime}} \sigma_{k}^{\prime}=l_{k}^{c_{k}^{\prime}} \cdot \tau_{k}^{\prime} ; k=1, \cdots, r^{\prime}
$$

therefore

$$
\left\langle\sigma_{1}^{\prime}, \cdots, \sigma_{r^{\prime}}^{\prime}, \tau_{1}^{\prime}, \cdots, \tau_{r^{\prime}}^{\prime}\right\rangle \cong\left(l^{c_{1}^{\prime}}, T_{m^{\prime}}\right) \dot{+} \cdots \dot{+}\left(l^{c^{\prime}}, T_{m^{\prime}}\right) \subset \dot{r}^{\prime} \Lambda_{m^{\prime}}
$$

namely this can be adopted as $M_{\Delta t f}$, then (1.8) is $\Lambda_{m^{\prime}}$-direct.
We define $c=c(M) \geq 0$ by

$$
l^{c}=\text { exponent of Coker }\left(\varphi: M / \Lambda \text {-tor } M \hookrightarrow \dot{r}_{m} \Lambda_{m}\right) ; m \gg 0,
$$

which is used already in the above proof. Every sufficiently large $m \geq 0$ will be said steadily large, when it admits the Λ_{m}-direct decomposition (1.7), T_{m} Fin $M=0, T_{m} \operatorname{Coker}\left(\varphi: M / \Lambda\right.$-tor $\left.M \xrightarrow[\rightarrow]{\sim} \dot{r}_{m} \Lambda_{m}\right)=0$, and $T_{m^{\prime}} \Lambda$-tor $M=l^{m^{\prime}-m} T_{m^{\prime}} \Lambda$-tor $M \subset 2 l \Lambda$-tor M for any $m^{\prime} \geq m$.

Proposition 1.4. Let M be a torsion free Λ-torsion Λ-module. Then $M \approx \dot{\lambda} Z_{l}$ as \boldsymbol{Z}_{l}-module. Let $E(M)=E\left(\boldsymbol{p}_{1}{ }^{{ }_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right)$. Then there are Λ-submodules M_{1}, $\cdots, M_{s} \subset M$ such that $E\left(M_{i}\right)=E\left(p_{i}{ }^{{ }_{i}}\right), M_{i} \cap \Sigma_{j \neq i} M_{j}=\{0\}\left(\right.$ so $\left.\Sigma_{i} M_{i}=\dot{\Sigma} M_{i}\right)$, and $\left|M: \Sigma_{i} M_{i}\right|<\infty$.

Proof. The first assertion $M \cong \dot{\lambda} Z_{l}$ is a direct consequence of Theorem 1.2. Fix a $\varphi: M \cong E(M)$ and decompose $E(M)=E\left(\boldsymbol{p}_{1}{ }^{{ }_{1}}\right) \dot{+} \cdots \dot{+} E\left(\boldsymbol{p}_{s}{ }^{{ }_{s}}\right)$. Put $M_{i}=$ $\boldsymbol{\rho}^{-1}\left(\operatorname{Im} \varphi \cap E\left(\boldsymbol{p}_{i}{ }^{i}\right)\right)$. The three properties for M_{i} will be easily checked.

When $E(M)=E\left(\boldsymbol{p}^{\boldsymbol{e}}\right)$ we say the Noetherian Λ-module M is pseudo-indecomposable. From the above arguments, pseudo-indecomposable torsionfree M is characterized as a Noetherian Λ-module such that $\left|\boldsymbol{p}^{e} M\right|<\infty$ but $\left|\boldsymbol{p}^{e-1} M\right|$ $=\infty$ for some prime $p=(P(T))(\neq l \Lambda)$ in Λ and $e>0$. This e is determined by $\operatorname{rank}_{Z_{l}} M=e \cdot \operatorname{deg} P(T)$.

2. Artinian Λ-modules

Let \boldsymbol{R} be the additive group of the real numbers, \boldsymbol{Z} that of rational integers, and $\boldsymbol{T}=\boldsymbol{R} / \boldsymbol{Z}$ be the 1-torus. Let $\boldsymbol{T}_{l}=\boldsymbol{Q}_{l} / \boldsymbol{Z}_{l}, \boldsymbol{Q}_{l}$ being the l-adic rational numbers. From now on we fix a $\kappa \in 2 l \boldsymbol{Z} \boldsymbol{Z}_{l}$ and define an l-divisible group W by

$$
\begin{equation*}
W \cong \lim _{\rightarrow} \Lambda /\left(l^{n}, T-\kappa\right) \tag{2.1}
\end{equation*}
$$

where the injective limit is given by the l-times map

$$
\begin{align*}
& \Lambda /\left(l^{n}, T-\kappa\right) \rightarrow \Lambda /\left(l^{n+1}, T-\kappa\right) \tag{2.2}\\
& \left(F(T) \bmod \left(l^{n}, T-\kappa\right) \mapsto l F(T) \bmod \left(l^{n+1}, T-\kappa\right)\right)
\end{align*}
$$

namely, $W \cong T_{l}$ abstructly and $T w=\kappa w ; w \in W$. We denote for a Λ-module M

$$
\hat{M}=\operatorname{Hom}(M, W)
$$

which is a $\boldsymbol{Z}_{l}-\Gamma$-module, so a Λ-module by the usual right γ-action

$$
\begin{align*}
& x^{\gamma}(\sigma)=\left(x\left(\sigma^{\gamma^{-1}}\right)\right)^{\gamma}=x((1+\bar{T}) \sigma) ; x \in \hat{M}, \sigma \in M \tag{2.3}\\
& \quad \text { where } \bar{T}=(1+\kappa)(1+T)^{-1}-1 \in \Lambda .
\end{align*}
$$

For $F(T) \in \Lambda$ we denote $\bar{F}(T)=F(\bar{T})$. Then $F(T) \mapsto F(T)$ defines an involutive automorphism (i.e. $\overline{\bar{F}}(T)=F(T)$) of Λ. Since Λ is a pro- l group, the Pontrijagin dual $M^{*}=\operatorname{Hom}(M, T)$ of a Λ-module M with left γ-action (i.e. $x^{\gamma}(\sigma)=$ $\left.\left(x\left(\sigma^{\gamma}\right)\right)^{\gamma^{-1}}=x\left(\sigma^{\gamma}\right)\right)$ can be identified to Hom $\left(M, \boldsymbol{T}_{l}\right)$ which is, regardless the Γ action, equal to \hat{M}. When a \boldsymbol{Z}_{l} - Γ-module M is given, we made it a Λ-module identifying the action of γ to that of $(1+T)$-multiplication, conserving the same notation M. If we identify the action of γ to $(1+\bar{T})$-multiplication on the other hand, we obtain a new Λ-module which we shall denote by \bar{M}. From (2.3)

$$
\begin{equation*}
\hat{M}=\bar{M}^{*}\left(=\left(M^{*}\right)^{-}=(\bar{M})^{*} \text { being the same }\right) \tag{2.4}
\end{equation*}
$$

As we are treating always locally compact modules the following facts are held
i) $\hat{\hat{M}}=M$
ii) \hat{M} is Artinian if and only if M is Noetherian
iii) $l^{\infty} \hat{M}=\hat{M}$ if and only if Tor $M=\{0\}$
iv) $\Lambda^{\infty} \hat{M}=\{0\}$ if and only if Λ-tor $M=M$.

When M is Noetherian Λ-module we denote

$$
M(n)=M / l^{n} M ; n \gg 0
$$

and when X is Artinian

$$
X(n)=\left\{x \in X \mid l^{n} x=0\right\} ; n \gg 0
$$

(so $\left.M(n)=(\hat{M}(n))^{\wedge}\right) . \quad E . g . \quad \boldsymbol{Z}_{l}(n) \cong \boldsymbol{T}_{l}(n) \cong \boldsymbol{Z} / l^{n} \boldsymbol{Z}$. When F is Noetherian and Artinian in other words $|F|<\infty$, we use only $n \geq e(F)$, so there will come out no confusion. We call the typical Artinian Λ-module

$$
\begin{aligned}
\hat{E}\left(r ; \boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right) & =\left(E\left(r ; \boldsymbol{p}_{1}^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right)\right)^{\wedge} \\
& =\dot{r} \hat{\Lambda} \dot{+}\left(\Lambda / \boldsymbol{p}_{1}{ }_{1}\right)^{\wedge} \dot{+} \cdots \dot{+}\left(\Lambda / \boldsymbol{p}^{e_{s}}\right)^{\wedge}
\end{aligned}
$$

an elementary Artinian Λ-module. We have streightfoward versions of Theorems 1.1~1.4 as follows.

Theorem 2.1. For an Artinian Λ-module X there is an elementary Artinian Λ-module $E(X)=\hat{E}\left(r ; \boldsymbol{p}_{1}{ }^{{ }_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right)$ such that $E(X) \xrightarrow{\sim} X$. The invariant of $(E$ $(X))^{\wedge}\left\{r ; \boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}_{s}{ }^{{ }^{e}}\right\}$ choice of $\varphi: E(X) \xrightarrow{\sim} X$. For any $\varphi: E(X) \xrightarrow{\sim} X, \operatorname{Im} \varphi$ is always coincided with

Cofin X the minimal Λ-submodule of X with finite index.
We call the invariant of $(E(X))^{\wedge}$ the invariant of X and denote it by inv X namely under the notations of Theorem 2.1 inv $X=\left\{r ; \boldsymbol{p}_{1}{ }^{{ }^{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e} s\right\}$. The characteristic polynomial of X, the essential coexponent of X, and the coexponent of X are given by $f_{X}(T)=f_{\hat{X}}(T)=\Pi P_{i}(T)^{e_{i}}\left(\boldsymbol{p}_{i}=\left(P_{i}(T)\right)\right), c(X)=\max _{i} \boldsymbol{p}_{i}-(l) e_{i}$, $l^{c(X)}=\left(\right.$ the exponent of $\left.X / l^{\infty} X\right)$. When $c(X)=0, X$ is called pseudo- l-divisible.

Theorem 2.2. For an Artinian Λ-module $X, \Lambda^{\infty} X$ is characterized as the minimal Λ-submodule (or Λ_{m}-submodule, $m \geq 0$) of $l^{\infty} X$ with the factor module of finite \boldsymbol{T}_{l}-rank so uniquely determined for any $m \geq 0$ by

$$
\Lambda_{m}^{\infty} X=\Lambda^{\infty} X ; m \geq 0
$$

Put $\operatorname{deg} f_{X}(T)=\lambda . \quad$ Then

$$
\begin{equation*}
l^{\infty} X / \Lambda^{\infty} X \cong \dot{\lambda} T_{l} \quad\left(\text { as } Z_{l} \text {-module }\right) \tag{2.6}
\end{equation*}
$$

Specially if X is pseudo-l-divisible,

$$
l^{n} \operatorname{Ker} T_{m^{\prime}}=\operatorname{Ker} T_{m} ; T_{m^{\prime}}, T_{m} \in \text { Endomorphlsm }\left(l^{\infty} X / \Lambda^{\infty} X\right)
$$

for any $m \gg 0$ and $m^{\prime}=m+n \geq m$, and

$$
\begin{equation*}
X / \Lambda^{\infty} X=\left(X / \Lambda^{\infty} X\right)_{f r} \dot{+} \operatorname{Fin} X \quad\left(\Lambda_{m} \text {-direct }\right) \tag{2.7}
\end{equation*}
$$

where $\left(X / \Lambda^{\infty} X\right)_{f r}$ is the Λ_{m}-submodule of $X / \Lambda^{\infty} X$ isomorphic to $\dot{\lambda} T_{l}$ and Fin X is a maximal \boldsymbol{Z}_{l}-direct factor with finite order (not unique), so $\left(X / \Lambda^{\infty} X\right)_{f r}=l^{\infty}\left(X / \Lambda^{\infty} X\right)$.

Theorem 2.3. For a pseudo-l-divisible Artinian Λ-module X

$$
\begin{equation*}
X=\Lambda^{\infty} X \dot{+} X_{\Delta d f} \quad\left(\Lambda_{m}-\text { direct }\right) \tag{2.8}
\end{equation*}
$$

for every $m \gg 0$ where $X_{\Delta d f}$ is a Λ_{m}-divisibility-free submodule of X (not unique) so, combining with (2.7)

$$
\begin{equation*}
X=\Lambda^{\infty} X \dot{+} l^{\infty}\left(X_{\Delta d f}\right) \dot{+} \operatorname{Fin} X ; m \gg 0 . \tag{2.9}
\end{equation*}
$$

Corollary 2.4. When X is Artinian in general,

$$
\begin{equation*}
X=\left(\Lambda^{\infty} X \dot{+} l^{\infty}\left(X_{\Delta d f}\right)\right)+(\text { bounded exponent }) \tag{2.10}
\end{equation*}
$$

Theorem 2.5. Let X be a Λ-divisibility-free and l-divisible Artinian Λ module. Then $X \cong \dot{\lambda} \boldsymbol{T}_{I} ; \lambda=\operatorname{deg} f_{X}(T)$. Fix a $\varphi: E(X) \sim X$ and let $E(X)=\hat{E}\left(\boldsymbol{p}_{1}{ }^{{ }_{1}}\right.$, $\left.\cdots, \boldsymbol{p}_{s}^{e_{s}}\right)=\hat{E}\left(\boldsymbol{p}_{1}{ }^{{ }^{1}}\right)+\cdots,+\hat{E}\left(\boldsymbol{p}_{s}{ }^{e_{s}}\right)$. When we put $\varphi\left(\hat{E}\left(\boldsymbol{p}_{i}{ }^{e^{i}}\right)=X_{i}\right.$, we obtain three facts: i) $E\left(X_{i}\right)=\hat{E}\left(p_{i}{ }^{{ }^{i}}\right)$, ii) $X=X_{1}+\cdots+X_{s}$, and iii) $\left|X_{i} \cap \Sigma_{j \neq i} X_{j}\right|<\infty ; i=1$, \cdots, s.

As we have seen in Section $1, E(X) \xrightarrow{\sim} X$ does not mean $X \leadsto E(X)$. But if $\Lambda^{\infty} X=\{0\}$, after easy discussion we can form the inverse.

When $E(X)=\hat{E}\left(\boldsymbol{p}^{e}\right)$ we say the Artinian Λ-module X is pseudo-indecomposable, similarly as Noetherian case. The pseudo-indecomposable l-divisible Λ-module is characterized as an Artinean Λ-module such that $\left|\boldsymbol{p}^{e} X\right|<\infty$ but $\left|\boldsymbol{p}^{e-1} X\right|=\infty$ for some prime $\boldsymbol{p}=(P(T))(\neq(l))$ in Λ and $e>0$. Then $E(X)=$ $\hat{E}\left(\boldsymbol{p}^{e}\right)$ and $X \xrightarrow{\sim} \boldsymbol{T}_{l}{ }^{e \cdot \operatorname{deg} P(T)}$ abstractly.

3. Pairing

We denoted the l^{n}-torsion of an Artinian Λ-module X by

$$
X(\mathrm{n})=\left\{x \in X \mid l^{n} x=0\right\}
$$

In this section X and Y are Artinian Λ-modules. Assume that there are pairing maps

$$
\psi_{n}: X(n) \times Y(n) \rightarrow W(n)
$$

at all $n \geq 1$ satisfying

$$
\begin{gather*}
\psi_{n}\left(x+x^{\prime}, y\right)=\psi_{n}(x, y)+\psi_{n}\left(x^{\prime}, y\right) \tag{3.1}\\
\psi_{n}\left(x, y+y^{\prime}\right)=\psi_{n}(x, y)+\psi_{n}\left(x, y^{\prime}\right) \\
\psi_{n}\left(l x^{\prime \prime}, y\right)=\psi_{n+1}\left(x^{\prime \prime}, y\right) \tag{3.2}\\
\psi_{n}\left(x . l y^{\prime \prime}\right)=\psi_{n+1}\left(x, y^{\prime \prime}\right)
\end{gather*}
$$

for any $x, x^{\prime} \in X(n), y, y^{\prime} \in Y(n), x^{\prime \prime} \in X(n+1), y^{\prime \prime} \in Y(n+1)$. Then we call the set $\psi=\left\{\psi_{n}\right\}$ a pairing of $X \times Y$. When a topological group Δ acts on X, Y, and W and ψ satisfies further

$$
\begin{equation*}
\psi_{n}\left(x^{\delta}, y^{\delta}\right)=\psi_{n}(x, y)^{\delta} ; \quad \delta \in \Delta \tag{3.3}
\end{equation*}
$$

for $x \in X(n)$ and $y \in Y(n)$, we call ψ a Δ-pairing of $X \times Y$. A Γ-pairing is specially called Λ-pairing, for which (3.3) is equivalent to

$$
\begin{equation*}
\psi_{n}(F(T) x, y)=\psi_{n}(x, F(T) y) ; \quad F(T) \in \Lambda \tag{3.4}
\end{equation*}
$$

because, if (3.3), $\psi_{n}(T x, y)=\psi_{n}((1+T) x, y)-\psi_{n}(x, y)=\psi_{n}\left(x,(1+T)^{-1} y\right)^{\gamma}-$ $\psi_{n}(x, y)=\psi_{n}(x, \bar{T} y)$ and vise versa. Let $X^{\prime} \subset X$ and $Y^{\prime} \subset Y$ be Λ-submodules. We put

$$
\begin{array}{ll}
X^{\prime \perp}\left(\psi_{n}\right) & =\left\{y \in Y(n) \mid \psi_{n}(x, y)=0\right. \\
Y^{\prime \perp}\left(\psi_{n}\right)=\left\{x \in X(n) \mid \psi_{n}(x, y)=0\right. & \text { for any } \left.x \in X^{\prime}(n)\right\} \\
\left.y \in Y^{\prime}(n)\right\} .
\end{array}
$$

Since

$$
X^{\prime \perp}\left(\psi_{n}\right) \subset X^{\prime \perp}\left(\psi_{n+1}\right) \text { and samely } \quad Y^{\prime \perp}\left(\psi_{n}\right) \subset Y^{\prime \perp}\left(\psi_{n+1}\right)
$$

because of (3.2), we can define

$$
X^{\prime \perp}(\psi)=\lim _{\rightarrow} X^{\prime \perp}\left(\psi_{n}\right) \subset Y \quad \text { and } \quad Y^{\prime \perp}(\psi)=\lim _{\rightarrow} Y^{\prime \perp}\left(\psi_{n}\right) \subset X
$$

which are Λ-submodules respectively if ψ is Λ-pairing. In general

$$
X^{\prime \perp}(\psi)(n) \supset X^{\prime \perp}\left(\psi_{n}\right)
$$

and the equality is held if X^{\prime} is divisible, because of (3.2). Similar facts will be held for Y^{\prime}. When $l^{d}\left(Y^{\perp}(\psi)\right)=\{0\}$ for some $d \geq 0, \psi$ is said left pseudo-nondegenerate and the minimal d_{l} of such d is called the left degeneracy of ψ. When $d_{l}=0, \psi$ is said left nondegenerate. The terminologies about right hand side will be used similarly. We put $\max \left\{d_{1}, d_{r}\right\}=d(\psi)$ and call it merely degeneracy of ψ.

Proposition 3.1. i) Let X, X^{\prime}, Y, and Y^{\prime} be Artinian Λ-modules. Assume there are Λ-homomorphisms

$$
\varphi_{X}: X \rightarrow X^{\prime}, \quad \varphi_{Y}: Y \rightarrow Y^{\prime}
$$

If a Λ-pairing $\psi^{\prime}: X^{\prime} \times Y^{\prime} \rightarrow W$ is given, we can define a Λ-pairing $\psi: X \times Y \rightarrow W$ by

$$
\psi_{n}(x, y)=\psi_{n}^{\prime}\left(\varphi_{X}(x), \varphi_{Y}(y)\right) .
$$

ii) Assume both φ_{X} and φ_{Y} are surjective and there are $c \geq 0$ and $c^{\prime} \geq 0$ such that

$$
l^{c}\left(\operatorname{Ker} \varphi_{X}\right)=\{0\} \text { and } l^{c^{\prime}}\left(\operatorname{Ker} \varphi_{Y}\right)=\{0\}
$$

If there exists a Λ-pairing $\psi: X \times Y \rightarrow W$, we define $\psi_{n}^{\prime}: X^{\prime}(n) \times Y^{\prime}(n) \rightarrow W(n)$ by

$$
\psi_{n}^{\prime}\left(\varphi_{X}(x), \varphi_{Y}(y)\right)=\psi_{n}\left(l^{c} x, l^{c^{\prime}} y\right)
$$

Then ψ_{n}^{\prime} is well-defined and $\psi^{\prime}=\left\{\psi_{n}^{\prime}\right\}$ is a Λ-pairing on $X^{\prime} \times Y^{\prime}$. The succession of this map $\psi \rightarrow \psi^{\prime}$ after the one $\psi^{\prime} \rightarrow \psi$ given in i) coincides with $l^{c+c^{\prime}}$-times map $\psi^{\prime} \rightarrow l^{c+c^{\prime}} \psi^{\prime}$

When specially X and Y are divisible (accordingly so are X^{\prime} and Y^{\prime}), $\psi^{\prime}=0$ will follow only if $\psi=0$.

Proof. Only the last assetion will be required to prove. From the divisibilities of X and Y any $x \in X(n)$ and $y \in Y(n)$ have $l^{-c-c^{\prime}} x \in X\left(n+c+c^{\prime}\right)$ and $l^{-c-c^{\prime}} y \in Y\left(n+c+c^{\prime}\right)$. If $\psi^{\prime}=0$,

$$
\begin{aligned}
\psi_{n}(x, y) & =\psi_{n+c+c^{\prime}}\left(l^{-c-c^{\prime}} x, y\right) \\
& =\psi_{n+c+c^{\prime}}\left(l^{c}\left(l^{-c-c^{\prime}} x\right), l^{c^{\prime}}\left(l^{-c-c^{\prime}} y\right)\right) \\
& =\psi_{n+c+c^{\prime}}^{\prime}\left(\varphi_{X}\left(l^{-c-c^{\prime}} x\right), \varphi_{Y}\left(l^{-c-c^{\prime}} y\right)\right)=0
\end{aligned}
$$

Our interests are on the pseudo-nondegeneracy of ψ, so the discussion will
be limitted in the case where X and Y are divisible.
Theorem 3.2. Let X and Y be divisible Artinian Λ-modules and $f_{X}(T)$ and $\bar{f}_{Y}(T)$ have no common prime factor. Then any Λ-pairing $\psi: X \times Y \rightarrow W$ is trivial.

Proof. Case 1. One of X and Y is $\hat{\Lambda}$-free, say $X=\dot{r} \hat{\Lambda}$. Take $x \in X(n)$ and $y \in Y(n)$. Since both X and Y are injective limits of finite l-groups, there is $m \gg 0$ such that

$$
T_{m} x=0, \quad T_{m} y=0, \quad \text { and } \quad T_{m} W(n)=0
$$

Since $\Lambda=\lim _{\leftarrow}{ }_{m, n}\left(\Lambda /\left(l^{n}, T_{m}\right)\right)$, we have $\hat{\Lambda}=\lim _{m, n}\left(\Lambda /\left(l^{n}, T_{m}\right)\right)^{\wedge}$ so

$$
X(n)=\dot{r}\left(\lim _{\rightarrow}\left(\Lambda /\left(l^{n}, T_{m}\right)\right)^{\wedge}\right)
$$

Here $\left(\Lambda /\left(l^{n}, T_{m^{\prime}}\right)\right)^{\wedge} \cong\left(\Lambda /\left(l^{n}, T_{m^{\prime}}\right)\right)^{*}$ as Λ_{m}-modules if $m^{\prime}>m$ because of $T_{m} W(n)$ $=0$ and $\Lambda /\left(l^{n}, T_{m^{\prime}}\right) \cong \boldsymbol{Z}_{l}(n)\left[\Gamma\left(m^{\prime}\right)\right]$ a self-dual Λ_{m}-module. Put $\Gamma\left(m, m^{\prime}\right)=\Gamma^{l^{m}} /$ $\Gamma^{l^{\prime \prime \prime}} \subset \Gamma\left(m^{\prime}\right)=\Gamma / \Gamma^{m^{\prime \prime}}$. Since $Z_{l}(n)\left[\Gamma\left(m^{\prime}\right)\right]^{\Gamma\left(m, m^{\prime}\right)}$ (the submodule of $\Gamma\left(m, m^{\prime}\right)$ invariant elements) coincides with the norm group $N_{\Gamma\left(m m^{\prime}\right)} \boldsymbol{Z}_{l}(n)\left[\Gamma\left(m^{\prime}\right)\right]$ we can write with $x^{\prime} \in X(n)$ and $m^{\prime}=m+n$,

$$
x=N_{m^{\prime} m} x^{\prime}=\left[1+\left(1+T_{m}\right)+\cdots+\left(1+T_{m}\right)^{)^{n}-1}\right] x^{\prime} .
$$

So

$$
\begin{aligned}
\psi_{n}(x, y) & =\psi_{n}\left(N_{m^{\prime} m} x^{\prime}, y\right)=\psi_{n}\left(x^{\prime}, \overline{N_{m^{\prime} m}} y\right) \\
& =\psi_{n}\left(x^{\prime}, l^{n} y\right)=0 .
\end{aligned}
$$

Case 2. One of X and Y is Λ-divisible, say $\dot{r} \hat{\Lambda} \sim X$ surjective. Think of this $\dot{r} \tilde{\Lambda} \rightarrow X$ and $Y \xrightarrow{\text { id. }} Y$. From the results of Case 1 and Proposition 3.1, $l^{c} \psi=0$ if $l^{c}(\operatorname{Ker}(\dot{r} \hat{\Lambda} \rightarrow X))=0$. So, from (3.2) and the divisibilities of X and $Y, \psi=0$. Case 3. $\Lambda^{\infty} X=\{0\}$ and $\Lambda^{\infty} Y=\{0\}$. Since $E(X) \xrightarrow{\rightarrow} X$ and $E(Y) \xrightarrow[\rightarrow]{\sim} Y$ are both surjective from the divisivilities of X and Y, we have

$$
\bar{f}_{X}(T) X=\{0\}, \quad \bar{f}_{Y}(T) Y=\{0\}
$$

From GCM $\left\{f_{X}(T), f_{Y}(T)\right\}=1$ we can find $\mathrm{A}(T), B(T) \in \Lambda$ and $m \geq 0$ such that

$$
A(T) f_{X}(T)+B(T) f_{Y}(T)=l^{m}
$$

Here, for any $x \in X(n)$ and $y \in Y(n)$ we take $l^{-m} x \in X(m+n)$ and $l^{-m} y \in Y(m+$ n) then

$$
\begin{aligned}
\psi_{n}(x, y) & =\psi_{m+n}\left(x, l^{-m} y\right) \\
& =\psi_{m+n}\left(B(T) f_{Y}(T) l^{-m} x . l^{-m} y\right) \\
& =\psi_{m+n}\left(B(T) l^{-m} x, l^{-m} f_{Y}(T) y\right) \\
& =0 .
\end{aligned}
$$

General case. Using Theorem 2.3 we decompose

$$
X=X_{\Lambda d f} \dot{+} \Lambda^{\infty} X, \quad Y=Y_{\Lambda d f} \dot{+} \Lambda^{\infty} Y
$$

From the above results, the four restrictions $\psi_{X_{\Lambda_{d f \times Y \Lambda^{d f}}}, \cdots \text { etc. are all naught }}$ pairings.

Corollary 3.3. When X and Y are divisible and $\psi: X \times Y \rightarrow W$ is a Λ pairing,

$$
Y^{\perp}(\psi) \supset \Lambda^{\infty} X, \quad X^{\perp}(\psi) \supset \Lambda^{\infty} Y
$$

By the similar calculations used in the above proof Case 3, the next theorem is easy therefore the proof is omitted.

Theorem 3.4. Let X and Y be divisible Artinian pseudo-indecomposable Λ-modules such that $E(X)=\hat{E}\left(\boldsymbol{p}^{e}\right), E(Y)=\hat{E}\left(\overline{\boldsymbol{p}}^{f}\right)$ with e, $f \geq 1$ where \boldsymbol{p} is a prime in Λ. Then, for any Λ-pairing $\psi: X \times Y \rightarrow W$,

$$
Y^{\perp}(\psi) \supset \overline{\boldsymbol{p}}^{f} X \quad \text { and } \quad X^{\perp}(\psi) \supset \boldsymbol{p}^{e} Y
$$

Therefore if $e>f($ or $e<f) \psi$ is left (or right resp.) degenerate, accordingly if $e \neq$ f, ψ is degenerate.

Let

$$
\begin{aligned}
& X=\Lambda^{\infty} X+\left(l^{\infty} X\right)_{\Lambda d f}+(\text { bounded exponent }) \\
& Y=\Lambda^{\infty} Y+\left(l^{\infty} Y\right)_{\Lambda d f}+(\text { bounded exponent })
\end{aligned}
$$

as in Corollary 2.4. From Corollary 3.3

$$
\left.\psi\right|_{\Lambda^{\infty}{ }_{X \times *}}=0 \text { and }\left.\psi\right|_{* \times \Lambda^{\infty} X}=0
$$

Of course

$$
\left.\left.\psi\right|_{(\text {bounded }} \exp -\right) \times * \text { and }\left.\psi\right|_{* \times(\text { bounded }} \text { exp-) }
$$

have both bounded exponents. So, about the pseudo-nondegeneracy of ψ only to investigate

$$
\left.\psi\right|_{\left(l^{\infty} X\right)_{\Delta d f} \times\left(l^{\infty} Y\right)_{\Delta d f}}
$$

is interseting. When the last is pseudo-nondegenerate, we say ψ is essentially pseudo-nondegerate.

Theorem 3.5. Let X and Y be divisible Λ-divisibility-free Artinian Λ modules and $\psi: X \times Y \rightarrow W$ be a pseudo-nondegenerate Λ-pairing. When $E(X)=$ $\hat{E}\left(\boldsymbol{p}_{1}{ }^{{ }^{1}}, \cdots, \boldsymbol{p}_{s}{ }^{e_{s}}\right), E(Y)$ is of the form

$$
E(Y)=\hat{E}\left(\overline{\boldsymbol{p}}_{1}^{e_{1}}, \cdots, \overline{\boldsymbol{p}}_{s}^{e_{s}}\right)
$$

Put

$$
X=X_{1}+\cdots+X_{s}, \quad\left|X_{i} \cap \Sigma_{j \neq i} X_{j}\right|<\infty
$$

where $E\left(X_{i}\right)=\hat{E}\left(p_{i}{ }^{\boldsymbol{e})}\right.$ the i-th direct factor of $E(X)$ (cf. Theoren 2.5). Then we can put

$$
Y=Y_{1}+\cdots+Y_{s}, \quad\left|Y_{i} \cap \Sigma_{j \neq i} Y_{j}\right|<\infty
$$

where $E\left(Y_{i}\right)=\hat{E}\left(\overline{\boldsymbol{p}}_{\boldsymbol{i}}{ }^{\boldsymbol{i}}\right)$ the i-th direct factor of $E(Y)$ and

$$
\left.\psi\right|_{X_{i} \times Y j} \text { is } \begin{cases}\text { pseudo-nondegenerate } & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Proof. Let $E(X)=\hat{E}\left(\boldsymbol{p}_{1}{ }^{e_{1}}, \cdots, \boldsymbol{p}^{\boldsymbol{e}_{s}}\right)$ and $E(Y)=\hat{E}\left(\boldsymbol{q}_{1}{ }^{\left.{ }^{f_{1}}, \cdots, \boldsymbol{q}_{t}{ }^{f_{t}}\right) \text {. Put } X_{2}+~}\right.$ $\cdots+X_{s}=X_{1}^{\prime}(=0$ if $s=1)$. Then

$$
X=X_{1}+X_{1}^{\prime} \quad \text { and } \quad l^{e}\left(X_{1} \cap X_{1}^{\prime}\right)=0 \quad \text { for some } \quad e \geq 0
$$

Put $Y_{1}=l^{\infty}\left(X_{1}^{\prime \perp}(\psi)\right)$ and $Y_{1}^{\prime}=l^{\infty}\left(X_{1}^{\perp}(\psi)\right) . \quad$ Since $l^{e}\left(X_{1}(n) \cap X_{1}^{\prime}(n)\right)=0$, it follows that

$$
\begin{gathered}
l^{e} Y(n) \subset X(e)^{\perp}\left(\psi_{n}\right) \quad(n \geq e) \\
\subset X_{1}^{\perp}\left(\psi_{n}\right)+X_{1}^{\prime \perp}\left(\psi_{n}\right)
\end{gathered}
$$

and consequently

$$
Y=l^{e} Y=Y_{1}+Y_{1}^{\prime}
$$

From this we know that $s \geq 2$ means $t \geq 2$. Interchanging X and $Y, s=1$ if and only if $t=1$. The proof will be done by the induction about s easily from here.

4. Λ-modules comming from Galois theory of the cyclotomic \boldsymbol{Z}_{l}-extension

We fix an algebraic number field k having a finite degree over the rational numer field \boldsymbol{Q} and its algebraic closure $k^{a l g} / k$. The algebraic closure of the local field $k_{\mathfrak{p}}$, the completion of k at a prime spot \mathfrak{p}, is obtained by the composite of $k_{\mathfrak{p}}$ and $k^{a l g}: k_{\mathfrak{p}}^{a l g}=k_{p} k^{a l g}$. An algerbraic extension of k is always taken in $k^{a l g} / k$ and the local one in $k_{\mathfrak{p}}^{a} / \boldsymbol{g} / k_{\mathfrak{p}}$. We put

$$
\zeta_{n}=\exp \left(2 \pi i / l^{n}\right) \in k^{a l l_{g}} ; \quad n=0,1, \cdots
$$

For a local or global field F the rational integer $\nu \geq 0$ such that $\zeta_{\nu} \in F$ but $\zeta_{\nu+1} \notin F$ will be denoted by $\nu(F)$. When a Galois extension of a field has a pro-l group as its Galois group, we call this extension a Galois l-extension and a subfield of a Galois l-extension merely l-extension. Let $\infty>\nu(F)=\nu \geq 1$ (≥ 2 if $l=2$). We put $F_{n}=F\left(\zeta_{\nu+n}\right) ; \mathrm{n} \geq 0$, the cyclotomic cyclic extension of degree l^{n} and $F_{\omega}=F\left(\zeta_{\infty}\right)$
$=F\left(\zeta_{n} \mid n=1,2, \ldots\right)$ the cyclotomic \boldsymbol{Z}_{l}-extension. Let $\operatorname{Gal}\left(F_{\omega} \mid \boldsymbol{F}\right)=\Gamma=\langle\gamma\rangle$ and $\gamma: \zeta_{n} \mapsto \zeta_{n}^{1+\kappa}, \kappa \in 2 l \boldsymbol{Z}_{l}, n=1,2, \cdots$. We define an involutive automorphism $F(T) \rightarrow F(T)$ in Λ as in Section 3. Assume we are given a Galois l-extension Ω / F containing F_{ω}. Put

$$
M=\operatorname{Gal}\left(\Omega / F_{\omega}\right) / \operatorname{Gal}\left(\Omega / F_{\omega}\right)^{c}
$$

where $\operatorname{Gal}\left(\Omega / F_{\omega}\right)^{c}$ denotes the commutator subgroup of Gal $\left(\Omega / F_{\omega}\right)$. After any extending of γ in $\mathrm{Gal}(\Omega / F)$, via the inner automorphism $\sigma \mapsto \boldsymbol{\gamma}^{-1} \sigma \gamma, M$ becomes a \boldsymbol{Z}_{l} - Γ-module, accordingly a Λ-module. By Kummer theory we can identify

$$
\hat{M}(n)=\left(\Omega^{l^{n}} \cap F_{\omega}^{\times}\right) /\left(F_{\omega}^{\times}\right)^{n}
$$

Therefore, noting that $\left(\left(\Omega^{l^{n}} \cap F_{\omega}^{\times}\right) /\left(F_{\omega}^{\times}\right)^{n}\right)^{\Gamma}=\left(\Omega^{i^{n}} \cap F^{\times}\right) /\left(F^{\times}\right)^{)^{n}\left\langle\zeta_{\nu(F)}\right\rangle \text { where }(*)^{\Gamma} ; ~}$ means the subgroup of the Γ-invariant elements, we know

Lemma 4.1. (4.1) $\quad(M / \bar{T} M)^{\wedge}(n)=\left(\Omega^{l^{n}} \cap F^{\times}\right) /\left(F^{\times}\right)^{l^{n}}\left\langle\zeta_{\nu(F)}\right\rangle$. Therefore

$$
\begin{equation*}
(M / \bar{T} M)^{\wedge}=\lim _{\rightarrow}\left(\Omega^{l^{n}} \cap F^{\times}\right) /\left(F^{\times}\right)^{l^{n}\left\langle\zeta_{\nu(F)}\right\rangle} \tag{4.2}
\end{equation*}
$$

being defined by the l-times map $\left(\Omega^{l^{n}} \cap F^{\times}\right) /\left(F^{\times}\right)^{n}\left\langle\zeta_{v(F)}\right\rangle \rightarrow\left(\Omega^{l^{n+1}} \cap F^{\times}\right) /\left(F^{\times}\right)^{l^{n+1}}$ $\left\langle\zeta_{\nu(F)}\right\rangle$ such that $x \bmod \left(F^{\times}\right)^{l^{n}}\left\langle\zeta_{\nu(F)}\right\rangle \mapsto x^{l} \bmod \left(F^{\times}\right)^{n^{n+1}}\left\langle\zeta_{\nu(F)}\right\rangle$.

When $\operatorname{Gal}(\Omega / F)$ is a free pro-l group with r free generators we call Ω / F a free pro-l extension of rank r.

Lemma 4.2. Assume Ω / F is a free pro-l extension of rank r. Fix an $m \geq 0$ and put $\mathrm{Gal}\left(F_{m} / F\right)=\Gamma(m)=\Gamma / \Gamma^{l^{m}}$. Then

$$
\begin{equation*}
M \cong(r-1)^{\bullet} \Lambda \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{\leftarrow}\left(\left(\Omega^{\Omega^{n}} \cap F_{m}^{\times}\right) /\left(F_{m}^{\times}\right)^{n}\right) \cong\left\langle\zeta_{\nu(F)+m}\right\rangle \times(r-1)^{\cdot} Z_{l}[\Gamma(m)] \tag{4.4}
\end{equation*}
$$

being defined by the canonical map $\left(\Omega^{\Omega^{n+1}} \cap F_{m}^{\times}\right) /\left(F_{m}^{\times}\right)^{l^{n+1}} \rightarrow\left(\Omega^{l^{n}} \cap F_{m}^{\times}\right) /\left(F_{m}^{\times}\right)^{l^{n}}(x \bmod$ $\left.\left(F_{m}^{\times}\right)^{)^{n+1}} \mapsto x \bmod \left(F_{m}^{\times}\right)^{m}\right)$.

Proof. Take $\left\{\gamma, \sigma_{1}, \cdots, \sigma_{r-1}\right\}$ a free generator system of $\operatorname{Gal}(\Omega / F)$ so that γ is as above and $\left.\sigma_{i}\right|_{F_{\omega}}=$ id., $i=1, \cdots, r-1$. We know for the free pro-l group $\mathrm{Gal}(\Omega / F)$ and its normal subgroup $\operatorname{Gal}\left(\Omega / F_{n}\right)$ with finite cyclic factor group $\Gamma(n)=\Gamma / \Gamma^{l^{n}}$,

$$
\operatorname{Gal}\left(\Omega / F_{n}\right)=\left\langle\gamma^{l^{n}}, \gamma^{-j} \sigma_{i} \gamma^{j} \mid 1 \leq i \leq r-1,0 \leq j \leq l^{n}-1\right\rangle
$$

a free pro- l group of rank $(r-1) l^{n}+1$. (Schreier's Theorem, regardless pro- l topology. To modify it in the case of pro-l group is an elememtary work.) Therefore

$$
\operatorname{Gal}\left(\Omega / F_{\omega}\right) / \operatorname{Gal}\left(\Omega / F_{n}\right)^{c} \cong(r-1)^{\cdot} Z_{l}[\Gamma(n)]
$$

Taking $\lim _{\leftarrow}$, we have

$$
M \simeq(r-1)^{\circ} \Lambda
$$

The next (4.4) is a direct consequence of (4.1) and (4.3).
Now, at each \mathfrak{p} in k we shall fix a free pro-l extension $\Omega^{\mathfrak{p}} / k_{\mathfrak{p}}$ satisfying

$$
\begin{equation*}
\Omega^{p} \supset k_{p \omega} . \tag{4.5}
\end{equation*}
$$

When \mathfrak{p} is not on $(l), \Omega^{\mathfrak{p}}$ is necessarily the unramified \boldsymbol{Z}_{l}-extension. For any finite l-extension K / k and a prolongation $\mathfrak{P} \mid \mathfrak{p}$, we put

$$
\Omega^{\mathfrak{B}}=\Omega^{\mathfrak{p}} K / K_{\Re}
$$

which is also a free pro-l extension, because we can regard $\mathrm{Gal}\left(\Omega^{\mathfrak{B}} / K_{\mathfrak{B}}\right) \subset \mathrm{Gal}$

$$
\xi=\lim \left(\xi_{n} \bmod \left(K_{\stackrel{\beta}{ } \times}^{\times}\right)^{n}\right) ; \xi_{n} \in K_{\text {氺 }}^{\times}, \quad \xi_{n} \equiv \xi_{n+1} \bmod \left(K_{\mathfrak{B}}^{\times}\right)^{n} .
$$

We call ξ an $\Omega^{\mathfrak{B}}$-element if

$$
K_{\Re_{\infty}\left(l^{n} \sqrt{\xi_{n}}\right) \subset \Omega^{\Re} ; \quad n=1,2, \ldots}
$$

The group of the $\Omega^{\mathfrak{B}}$-elements will be denoted by $E_{\mathfrak{B}}$, which is nothing but the left hand side of (4.4). Therefore

Proposition 4.3. Let $\operatorname{rank} \operatorname{Gal}\left(\Omega^{\mathfrak{p}} / k_{\mathfrak{p}}\right)=r_{\mathfrak{p}}$. Let $k_{\mathfrak{p} m}=K_{\mathfrak{ß}}$. We have $\overline{K_{\mathfrak{B}}^{\times}} \supset$ $E_{\mathfrak{ß}} \supset\left\langle\zeta_{\nu(\mathfrak{B})}\right\rangle ; \nu(\mathfrak{F})=\nu\left(K_{\mathfrak{F}}\right)$, and

$$
\left.E_{\Re} \cong\left\langle\zeta_{\nu(\mathfrak{B})}\right\rangle \times\left(r_{\mathfrak{p}}-1\right)^{\bullet} Z_{l}[\Gamma(m)] \quad \text { (direct }\right)
$$

Regard $\overline{k_{\mathfrak{p}}^{\times}} \subset \overline{K_{\mathfrak{B}}^{\times}}$canonically, the former being composed of all the $\operatorname{Gal}\left(K_{\mathfrak{B}} / k_{\mathfrak{p}}\right)$ invariant elements. Then $E_{\mathfrak{p}}=E_{\Re} \cap \overline{k_{\mathfrak{p}}^{\times}}=N_{K_{\mathfrak{\beta}} / k p} E_{\mathfrak{\beta}}$.

A local abelian l-extension $F / K_{\mathfrak{B}}$ will be called an $\Omega^{\mathfrak{B}}$-orthogonal extension if

$$
\begin{gathered}
E_{\mathfrak{B}} \subset \overline{N_{F / K_{\mathfrak{B}}} F^{\times}}\left(=\cap K_{\mathfrak{B}} \subset F^{\prime} \subset F,\left[F^{\prime}: K_{\mathfrak{B}}\right]<\infty N_{F^{\prime} / K_{\mathfrak{B}}} \overline{F^{\prime \times}} \subset \overline{K_{\mathfrak{\leftrightarrow}}^{\times}}\right. \\
\text {a compact subset })
\end{gathered}
$$

For example, if \mathfrak{F} is not on (l), then $\Omega^{\mathfrak{\beta}}=K_{\Re_{\omega}}$. When $\Omega^{\mathfrak{B}}=K_{\Re_{\omega}}, E_{\mathfrak{\beta}}=\left\langle\zeta_{\nu(\mathfrak{F})}\right\rangle$ and an $\Omega^{\mathfrak{\beta}}$-orthogonal extension is the compound of all the \boldsymbol{Z}_{l}-extensions or one of its subextensions.

Proposition 4.4. If \mathfrak{B} is not on (l), an $\Omega^{\mathfrak{B}}$-orthogonal extension of $K_{\mathfrak{B}}$ is nothing but the cyclotomic (or samely, unramified) \boldsymbol{Z}_{l}-extension $\Omega^{\mathfrak{B}} / K_{\mathfrak{B}}$ or its subexten-
sion. If \mathfrak{F} is on (l), the maximal $\Omega^{\mathfrak{\beta}}$-orthogonal exinsion of $K_{\mathfrak{ß}}$ is $a\left(\left[K_{\mathfrak{B}}: \boldsymbol{Q}_{\boldsymbol{l}}\right]+2-\right.$ $\left.r_{\mathfrak{B}}\right)$ ple \boldsymbol{Z}_{l}-extension:

$$
\operatorname{Gal}\left(\max . \Omega^{\mathfrak{B}} \text {-orth. } / K_{\mathfrak{B}}\right) \cong\left(\left[K_{\mathfrak{B}}: \boldsymbol{Q}_{l}\right]+2-r_{\mathfrak{B}}\right)^{\cdot} \boldsymbol{Z}_{l}
$$

where $r_{\mathfrak{B}}=\operatorname{rank} \mathrm{Gal}\left(\Omega^{\mathfrak{B}} / K_{\mathfrak{B}}\right)$. In the case $k_{\mathfrak{p}} \subset K_{\mathfrak{B}} \subset k_{\mathfrak{p} \omega}=k_{\mathfrak{p}}\left(\zeta_{\infty}\right)$, an abelian extension $F / k_{\mathfrak{p}}$ is $\Omega^{\mathfrak{p}}$-orthogonal if and only if so is $K_{\mathfrak{B}} F / K_{\mathfrak{B}}$.

Anyway, any abelian extension in $\Omega^{\mathfrak{B}} / K_{\Re}$ is $\Omega^{\mathfrak{B}}$-orthogonal.
Proof. We may treat only the case $\mathfrak{P} \mid(l)$. By Artin-Waples theorem

$$
\overline{K_{\mathfrak{B}}^{\times}} /\left\langle\zeta_{\nu(\Re)}\right\rangle \cong\left(\left[K_{\mathfrak{B}}: \boldsymbol{Q}_{l}\right]+1\right)^{\bullet} \boldsymbol{Z}_{l}
$$

Using the local class field theory and Lemma 4.2 we can determine the type of Gal (max. $\Omega^{\mathfrak{B}_{-}}$-orth. $/ K_{\mathfrak{B}}$) as asserted. Since (after extension to $\overline{k_{\mathfrak{p}}}$) norm residue symbol $\left(\xi, F / k_{\mathfrak{p}}\right)=$ id. for any $\xi \in E_{\mathfrak{p}}$ if and only if $F / k_{\mathfrak{p}}$ is $\Omega^{\mathfrak{p}}$-orthogonal, we can conclude our proof because $\left(\xi^{\prime}, K_{\mathfrak{F}} F / K_{\mathfrak{B}}\right)=\left(N K_{\mathfrak{B}} / k_{\mathfrak{p}} \xi^{\prime}, F / k_{\mathfrak{p}}\right) ; \xi^{\prime} \in E_{\mathfrak{B}}$ and $N_{K_{\mathfrak{B}} / k_{\mathfrak{p}}}$ $E_{\mathfrak{B}}=E_{\mathfrak{p}}$ by Proposition 4.3.

Next we shall define global matters. From now on we fix k such that

$$
\nu(K) \geq 1 \quad(\geq 2 \quad \text { if } l=2)
$$

Let K / k be a finite l-extension, again. If L / K is an l-extension and every $K_{\Re} L$ is in $\Omega^{\mathfrak{B}}$, then we say L / K is an Ω-extension. If M / K is an abelian l extension and every $K_{\mathfrak{B}} M / K_{\mathfrak{B}}$ is an $\Omega^{\mathfrak{B}}$-orthogonal extension, we say M / K is an Ω^{\perp}-extension. An abelian Ω-extension is always Ω^{\perp}-extension by Proposition 4.3 and an Ω^{\perp}-extension is always l-ramified, i.e. unramified at every \mathfrak{B} not on (l). Noting that the compound of Ω-extensions is again an Ω-extension and samely for Ω^{\perp}-extensions, we can define
$\Omega^{a b}(K)=$ the maximal abelian Ω-extension of K
$\Omega^{\perp}(K)=$ the maximal Ω^{\perp}-extension of K.

For infinite extension k_{ω} / k we put

$$
\begin{aligned}
& \Omega^{a b}\left(k_{\omega}\right)=\cup_{n<\omega} \Omega^{a b}\left(k_{n}\right) \\
& \Omega^{\perp}\left(k_{\omega}\right)=\cup_{n<\omega} \Omega^{\perp}\left(k_{n}\right) .
\end{aligned}
$$

Since both $\Omega^{a b}\left(k_{\omega}\right)$ and $\Omega^{\perp}\left(k_{\omega}\right)$ are Galois over k and contained in the maximal abelian l-ramified l-extension $k^{(l)-r a m} / k$,

$$
\begin{aligned}
& M=\operatorname{Gal}\left(\Omega^{a b}\left(k_{\omega}\right) / k_{\omega}\right) \\
& N=\operatorname{Gal}\left(\Omega^{\perp}\left(k_{\omega}\right) / k_{\omega}\right)
\end{aligned}
$$

are Noetherian Λ-modules by Lemma 4.1. Further we put

$$
\begin{aligned}
& X=\hat{M} \\
& Y=\hat{N}
\end{aligned}
$$

which are Artinian Λ-modules. We can set

$$
\begin{aligned}
& \left.X(n)=\left(\Omega^{a b}\left(k_{\omega}\right)\right)^{n} \cap k_{\omega}^{\times}\right) /\left(k_{\omega}^{\times}\right)^{l^{n}} \\
& Y(n)=\left(\Omega^{\perp}\left(k_{\omega}\right)^{l^{n}} \cap k_{\omega}^{\times}\right) /\left(k_{\omega}^{\times}\right)^{l^{n}}
\end{aligned}
$$

by Kummer theory.

5. A pairing defined by the triple symbol

Here we shall define a pairing $\Psi: X \times Y \rightarrow W$ using the triple symbol ([1]). The symbol $(x, y, z \mid k)_{l^{n}}$ is defined when $\zeta_{n} \in k, x$ and y are strictly orthogonal, and three elements x, y, and z are orthogonal in some conditions. Specially if $l=2$, the definitions are complicated, but if $\zeta_{n+2} \in k$ they are a little simpler (cf. Introduction of [1]). We shall recall them here. Take

$$
\begin{aligned}
& \left.\bar{x}=\left(x \bmod \left(k_{\omega}^{\times}\right)^{l^{n}}\right) \in X(n), \quad x \in \Omega^{a b}\left(k_{\omega}\right)\right)^{n} \cap k_{\omega}^{\times} \\
& \bar{y}=\left(y \bmod \left(k_{\omega}^{\times}\right)^{l^{n}}\right) \in Y(n), \quad y \in \Omega^{\perp}\left(k_{\omega}\right)^{)^{n}} \cap k_{\omega}^{\times}
\end{aligned}
$$

and $m \gg 0$ so that $x, y, \zeta_{n} \in k_{m}$ (then $x \in \Omega^{a b}\left(k_{m}\right)^{l^{n}} \cap k_{m}^{\times}$and $y \in \Omega^{\perp}\left(k_{m^{\prime}}\right)^{l^{n}} \cap k_{m}^{\times}$for some $m^{\prime} \geq m$. From Proposition 4.4 we have also $\left.y \in \Omega^{\perp}\left(k_{m}\right)^{l^{m}} \cap k_{m}^{\times}\right)$. Then three elements $\left\{x, y, \zeta_{\nu+m}\right\} \subset k_{m}^{\times}$are orthogonal $\bmod \left(k_{m}^{\times}\right)^{n}$ i.e.

$$
\left(\frac{x, y}{\mathfrak{p}}\right)_{l^{n}}=\left(\frac{y, \zeta_{v+m}}{\mathfrak{p}}\right)_{l^{n}}=\left(\frac{\zeta_{v+m}, x}{\mathfrak{p}}\right)_{l^{n}}=1
$$

at any \mathfrak{p} in k_{m} about Hilbert-Hasse symbol and specially $\left\{x, \zeta_{v+m}\right\}$ are strictly orthogonal $\bmod \left(k_{m}^{\times}\right)^{l^{n}}$, i.e. moreover

$$
k_{m I}\left(l^{n} \sqrt{x}, l^{n} \sqrt{\zeta_{v+m}}\right) \subset \Omega^{\mathfrak{l}}
$$

at any $l \mid(l)$ in k_{m}. (Samely as the case $l \neq 2$, in case $l=2$ and $\zeta_{n+2} \in k_{m}$, we say x and $\zeta_{\nu+m}$ are strictly orthogonal $\bmod \left(k_{m}^{\times}\right)^{n}$ if some one in $x\left(k_{m}^{\times}\right)^{n}$ and the other in $\zeta_{\nu+m}\left(k_{m}^{\times}\right)^{n}$ are strictly orthogonal. When $l=2$, some more conditions than the above inclusion are required outside l for the strict orthogonality, but in the present case where $\zeta_{n+2} \in k_{m}$, we may check further only that x and $\zeta_{\nu+m}$ are orthogonal $\bmod \left(k_{m}^{\times}\right)^{2^{n+1}}$. These will be known easily if we compair the original definition of strict orthogonality and the present modified one. Of course x and $\zeta_{\nu+m}$ are orthogonal $\bmod \left(k_{m}^{\times}\right)^{2^{n+1}}$.) Since $y \in \Omega^{\perp}\left(k_{m}\right)^{l^{n}} \cap k_{m}^{\times}$it follows that $\left(\xi, y \mid k_{m q}\right)_{l^{n}}=1$ for $\xi \in\left(\Omega_{q}\right)^{l^{n}} \cap k_{m q}{ }^{\times}$. So, using the statements at p169 [1], (the l-independence of $\left\{x, \zeta_{\nu+m}\right\}$ is not essential as seen in ii) 3 [1]) the symbol in extended sense

$$
\left(x, \zeta_{\nu+m}, y ; \zeta_{n} \mid k_{m}\right)_{l^{n}} \quad\left(=\left(x, \zeta_{\nu+m}, y\right)_{l^{n}} \text { by abbrev. }\right)
$$

can be defined. Fix an identification $W=\left\langle\zeta_{\infty}\right\rangle=\left\langle\zeta_{n} \mid n \geq 1\right\rangle$ correspomding w_{n} $=\left(1 \bmod \left(l^{n}, T-\kappa\right)\right) \in W$ to ζ_{n}. We put

$$
\begin{equation*}
\Psi_{n}(\bar{x}, \bar{y})=\left(x, \zeta_{v+m}, y\right)_{l^{n}} \tag{5.1}
\end{equation*}
$$

Denote the set of all the \mathfrak{l} in k_{m} over (l) by $S\left(k_{m}\right)$ or simply by S.
Proposition 5.1. By means of (5.1) $\Psi_{n}(\bar{x}, \bar{y})$ is well-defined, namely the value $\left(x, \zeta_{v+m}, y\right)_{l^{n}}$ in W does not depend on the choice of $m \geq 0$ and $x, y \in k_{m}$ such that $\zeta_{n}\left(\right.$ and ζ_{n+2} if $\left.l=2\right) \in k_{m}, \bar{x}=\left(x \bmod \left(k_{\omega}^{\times}\right)^{n}\right)$, and $\bar{y}=\left(y \bmod \left(k_{\omega}^{\times}\right)^{n^{n}}\right)$.

Proof. At first we fix an $m \geq 0$ as above and assume \bar{x} is of order l^{n}, i.e.

$$
\begin{equation*}
x \notin\left(k_{m}^{\times}\right)^{l}\left\langle\zeta_{v+m}\right\rangle . \tag{5.2}
\end{equation*}
$$

Put $k_{m+n}=K$. As it is shown in Proposition 1 [1] we can find $a \in K^{\times}$satisfying

$$
\begin{equation*}
a^{1-\sigma} \equiv x \bmod \left(K^{\times}\right)^{k^{n}} \tag{5.3}
\end{equation*}
$$

for $\sigma \in \mathrm{Gal}\left(K\left(l^{n} \sqrt{x}\right) / k_{m}\left(l^{n} \sqrt{x}\right)\right)$ such that $\zeta_{\nu+m+n}{ }^{\sigma}=\zeta_{n} \zeta_{\nu+m+n}$

$$
\begin{align*}
& \operatorname{Gal}\left(K\left(l^{n} \sqrt{x}, l^{n} \sqrt{a}\right) / K\right) \cong \operatorname{Gal}\left(K\left(l^{n} \sqrt{x}, l^{n} \sqrt{a}\right) / k_{m}\left(l^{n} \sqrt{x}\right)\right) \tag{5.4}\\
& \cong Z_{l}(n) \times Z_{l}(n) \\
& k_{m l}\left(\zeta_{\nu+m+n}, l^{n} \sqrt{x}, l^{n} \sqrt{a}\right) \subset \Omega^{\mathfrak{l}} \text { at any } \mathfrak{l} \in S . \tag{5.5}
\end{align*}
$$

Then the principal ideal (a) in K can be written as

$$
(a) \equiv \mathfrak{a}\left(\bmod l^{n} \text {-power, } \bmod S\right) \quad \text { in } K
$$

where \mathfrak{a} is an ideal in k_{m}, having no- S-factor, namely $(a)=\mathfrak{a}$ except l^{n}-th power ideal and S-factor in K. After these preliminary, the triple symbol is welldefined by

$$
\left(x, \zeta_{v+m}, y\right)_{l^{n}}=\left(\frac{y \mid k_{m}}{\mathfrak{a}}\right)_{l^{n}}
$$

using the Hilbert symbol on the right hand side. Here we remark that the condition (5.4) is equivalent (under (5.3)) to the splitting of the canonical exact sequence

$$
\begin{aligned}
& 1 \rightarrow \operatorname{Gal}\left(K \left(l^{n} \sqrt{x},\right.\right.\left.\left.l^{n} \sqrt{a}\right) / K\right) \rightarrow \operatorname{Gal}\left(K\left(l^{n} \sqrt{x},{ }^{l^{n}} \sqrt{a}\right) / k_{m}\right) \\
& \rightarrow \operatorname{Gal}\left(K / k_{m}\right) \rightarrow 1
\end{aligned}
$$

in other words

$$
\begin{equation*}
l^{n} \sqrt{a^{\sigma^{r^{n}}-1}}=1 \tag{5.6}
\end{equation*}
$$

As far as we use (5.6) instead of (5.4), the first assumption (5.2) is of no use for the definition of triple symbol ($[1], \mathrm{p} 175 \mathrm{ii}) \S 3$) so (5.6) is more useful than (5.4). After m is fixed the choices of $x, y \in k_{m}$ are free by the multiplying of elements of $k_{\infty}^{l^{n}} \cap k_{m}^{\times}=\left(k_{m}^{\times}\right)^{n}\left\langle\zeta_{\nu+m}\right\rangle$ therefore x and y may be replaced by $x \zeta$ and $y \zeta^{\prime} ; \zeta, \zeta^{\prime}$ $\in\left(k_{m}^{\times}\right)^{n}\left\langle\zeta_{\nu+m}\right\rangle$. But, even this replacement we can use the same a because $x \zeta$ $\equiv x \bmod \left(K^{\times}\right)^{l^{n}}$, therefore \mathfrak{a} is reserved and

$$
\left(\frac{\zeta^{\prime}}{\mathfrak{a}}\right)_{l^{n}}=\left(\frac{\zeta^{\prime \prime} \mid K}{\mathfrak{a}}\right)_{l^{n}}
$$

using $\zeta^{\prime \prime} \in\left(K^{\times}\right)^{l^{n}}\left\langle\zeta_{\nu+m+n}\right\rangle$ such that $N_{K / k_{m}} \zeta^{\prime \prime} \equiv \zeta^{\prime} \bmod \left(k_{m}^{\times}\right)^{n^{n}}$ and continuing the calculation

$$
\begin{aligned}
& =\Pi_{\mathfrak{P} \text { in } \mathfrak{a}, \text { in } K\left(\frac{a, \zeta^{\prime \prime} \mid K}{\mathfrak{P}}\right)_{l^{n}}}^{=\Pi_{\mathfrak{F} \mid(l)}\left(\frac{\zeta^{\prime \prime}, a \mid K}{\mathfrak{F}}\right)_{l^{n}}} \\
& =1
\end{aligned}
$$

by (5.5). Accordingly

$$
\left(\frac{y \zeta^{\prime}}{\mathfrak{a}}\right)_{l^{n}}=\left(\frac{y}{\mathfrak{a}}\right)_{l^{n}}
$$

Thus, we may show the independence of our symbol about the choice of m. Let $m^{\prime}>m$. The remained task is to show

$$
\begin{equation*}
\left(x, \zeta_{\nu+m^{\prime}}, y ; \zeta_{n} \mid k_{m^{\prime}}\right)_{l^{n}}=\left(x, \zeta_{\nu+m}, y ; \zeta_{n} \mid k_{m}\right)_{l^{n}} \tag{5.7}
\end{equation*}
$$

Assume in a time being

$$
\begin{equation*}
y \in \Omega^{a b}\left(k_{m}\right)^{l^{n}} \cap k_{m}^{\times} \tag{5.8}
\end{equation*}
$$

samely as x. Since $\zeta_{\nu+m}=N_{k_{m} / k_{m}} \zeta_{\nu+m^{\prime}}$, from the transgression theorem of triple symbols ([1], Theorem 1 IV)) we have (5.7). When not necessarily (5.8) is held, let $a^{\prime} \in K^{\prime}=k_{m^{\prime}+n}$ satisfy the equivalents of (5.3), (5.6), and (5.5), over $k_{m^{\prime}}$. Put $L=k_{m}\left(\zeta_{\nu+m^{\prime}+n}, l^{l^{n}} \sqrt{x}, l^{n} \sqrt{a}, l^{n} \sqrt{a^{\prime}}\right)\left(\operatorname{or}=k_{m}\left(\zeta_{\nu+m^{\prime}+n+1}, l^{n+1} \sqrt{x}, l^{l^{n}} \sqrt{a}, l^{l^{n}} \sqrt{a^{\prime}}\right)\right.$ if $l=2$). Since

$$
k_{m} L L \subset \Omega^{\mathfrak{l}} \text { at each } \mathfrak{l} \in S
$$

we have

$$
y \in N_{k_{m I} L / k_{m I}}\left(k_{m I} L\right)^{\times} \text {at each } \mathfrak{l} \in S
$$

(c.f. Lemma 1 [1]) so, using the density theorem in the class field theory we can find $z \in L^{\times}$such that

$$
\begin{equation*}
N_{L / k_{m}} z \equiv y \bmod \left(\left(k_{m} L L\right)^{\times}\right)^{n} \text { at each } \mathfrak{l} \in S \tag{5.9}
\end{equation*}
$$

$$
\begin{equation*}
(z)=3(\bmod S(L)), \tag{5.10}
\end{equation*}
$$

3 being a prime in L fully decomposed in L / k_{m}.
Put

$$
N_{L / k_{m}} z=y^{\prime} \in k_{m}
$$

Then from the definition we have easily

$$
\begin{aligned}
& \left(x, \zeta_{\nu+m}, y^{\prime} ; \zeta_{n} \mid k_{m}\right)_{l^{n}}=\left(\frac{y^{\prime} \mid k_{m}}{\mathfrak{a}}\right)_{l^{n}}=1 \\
& \left(x, \zeta_{\nu+m^{\prime}}, y^{\prime} ; \zeta_{n} \mid k_{m^{\prime}}\right)_{l^{n}}=\left(\frac{y^{\prime} \mid k_{m^{\prime}}}{\mathfrak{a}^{\prime}}\right)_{l^{n}}=1
\end{aligned}
$$

of course after the checking of the posibility of definition. So, for (5.7) we may prove

$$
\begin{equation*}
\left(x, \zeta_{\nu+m}, y y^{\prime-1} ; \zeta_{n} \mid k_{m}\right)_{l^{n}}=\left(x, \zeta_{\nu+m^{\prime}}, y y^{\prime-1} ; \zeta_{n} \mid k_{m^{\prime}}\right)_{l^{n}} \tag{5.11}
\end{equation*}
$$

But in this time $\left\{x, \zeta_{\nu+m}, y y^{\prime-1}\right\}$ in k_{m} are strictly orthogonal $\bmod \left(k_{m}\right)^{l^{n}}$ by (5.9) and (5.10) accordingly so are $\left\{x, \zeta_{v+m^{\prime}}, y y^{\prime-1}\right\}$ in $k_{m^{\prime}}$. By the same reason as the case of (5.8) we can obtain (5.11).

Now, our $\Psi_{n}: X(n) \times Y(n) \rightarrow W(n)$ satisfy (3.1) because of Theorem 1 [1]. When $\bar{x}=\left(x \bmod \left(k_{\infty}\right)^{)^{n+1}}\right) \in X(n+1)$ and $\bar{y}=\left(y \bmod \left(k_{\infty}\right)^{t^{n}}\right) \in Y(n), l \bar{x}=(x \bmod$ $\left.\left(k_{\omega}\right)^{n}\right) \in X(n)$ and $\bar{y}=\left(y^{l} \bmod \left(k_{\omega}\right)^{n^{n+1}}\right) \in Y(n+1)$ therefore

$$
\begin{aligned}
\Psi_{n}(l \bar{x}, \bar{y}) & =\left(x, \zeta_{v+m}, y\right)_{l^{n}} \quad\left(x, y \in k_{m}\right) \\
& =\left(x, \zeta_{v+m}, y^{l}\right)_{l^{n+1}} \\
& =\Psi_{n+1}(x, \bar{y})
\end{aligned}
$$

which means the former of (3.2). The latter will be obtained by the alternative arguments samely. As (3.3) follows from Theorem 1 III [1] we can conclude

Theorem 5.2. Our $\Psi=\left\{\Psi_{n}\right\}$ is a Λ-pairing $X \times Y \rightarrow W$.

6. Quasi-nondegeneracy of Ψ

Lemma 6.1. Let $\zeta_{n} \in k$ and an ideal \mathfrak{a} in k have no S-factor. Assume

$$
\begin{equation*}
\left(\frac{y \mid k}{\mathfrak{a}}\right)_{l^{n}}=1 \quad \text { for any } \quad y \in \Omega^{\perp}(k)^{l^{n}} \cap k^{\times} \tag{6.1}
\end{equation*}
$$

Then there is an element $c \in k^{\times}$such that

$$
\begin{equation*}
(c) \equiv \mathfrak{a}\left(\bmod l^{n}-\text { th power }, \bmod S\right) \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
k_{\mathrm{f}}\left({ }^{n} \sqrt{\bar{c}}\right) \subset \Omega^{\mathfrak{r}} \text { at every } \mathfrak{l} \mid(l) . \tag{6.3}
\end{equation*}
$$

Proof. Let the idele group of k be J_{k}, the principal idele group P_{k}, and the idele class group C_{k}. From the class field theory we can set

$$
J_{k}^{l^{n}} \cap P_{k}=P_{k}^{l^{n}}
$$

so the canonical sequence

$$
1 \rightarrow P_{k} \mid P_{k}^{l^{n}} \rightarrow J_{k} / J_{k}^{l^{n}} \rightarrow C_{k} / C_{k}^{l^{n}} \rightarrow 1
$$

is exact. Any element $y \in \Omega^{\perp}(k)^{l^{n}} \cap k^{\times}$defines an idele class character $\chi_{y} \in \hat{C}_{k}$ $\subset \int_{k}$ by

$$
\chi_{y}(\boldsymbol{x})=\Pi_{\mathrm{all}_{\mathfrak{p}}}\left(x_{\mathfrak{p}}, y \mid k_{\mathfrak{p}}\right)_{l^{n}} ; \boldsymbol{x}=\left(\cdots, x_{\mathfrak{p}}, \cdots\right) \in J_{k}
$$

using local Hilbert-Hasse symbol $\left(x_{\mathfrak{p}}, y \mid k_{\mathfrak{p}}\right)_{n}$. Define a character group $\overline{\mathscr{X}}$ by

$$
\overline{\mathscr{X}}=\left\{\chi_{y} \in \hat{J}_{k} \mid y \in \Omega^{\perp}(k)^{l^{n}} \cap k^{\times}\right\} \subset \hat{C}_{k} \subset \hat{J}_{k}
$$

The class field theory again says the kernel of \bar{X} in $C_{k} / C_{k}^{l^{n}}$ is $\left(\Pi_{\text {allp }} E_{\mathfrak{p}}\right) C_{k}^{l^{n}} / C_{k}^{l^{n}}$. If $\boldsymbol{c}=\left(\cdots, c_{\mathfrak{p}}, \cdots\right) \in J_{k}$ is such one that $(\boldsymbol{c})=\mathfrak{a}$ and $c_{\mathfrak{r}}=1$ at every $\mathfrak{l} \in S$, then (6.1) says $c \in\left(\Pi E_{\mathfrak{p}}\right) P_{k} J_{k}^{l^{n}}$ so there is $c \in P_{k} \cap c\left(\Pi E_{\mathfrak{p}}\right) J_{k}^{l^{n}}$ which will satisfy (6.2) and (6.3) by itself.

Proposition 6.2. Take $\mathscr{X}=\left(x \bmod \left(k_{\omega}^{\times}\right)^{l^{n}}\right) \in X(n)$. Fix $m \geq 0$ such that $x \in k_{m}$ and an $e \geq 0$. If

$$
\begin{equation*}
l^{e} \psi_{n}(\bar{x}, \bar{y})=0 \tag{6.4}
\end{equation*}
$$

far any $\bar{y}=\left(y \bmod \left(k_{\omega}^{\times}\right)^{l^{n}}\right) \in Y(n)$ defined in k_{m} (i.e. $\left.y \in k_{m}\right)$ then we can find $b \in K$ $=k_{m+n}$ such that

$$
\begin{equation*}
b^{1-\sigma} \equiv x^{l^{\bullet}} \bmod \left(K^{\times}\right)^{l^{n}} \tag{6.5}
\end{equation*}
$$

for $\sigma \in \operatorname{Gal}\left(K / k_{m}\right), \sigma: \zeta_{\nu+m+n} \mapsto \zeta_{n} \xi_{\nu+m+n}$, and

$$
\begin{equation*}
K\left({ }^{n} \sqrt{x}, l^{l^{n}} \sqrt{b}\right) \subset \Omega^{a b}(K) \tag{6.6}
\end{equation*}
$$

(Note that, in (6.4), m is fixed previousely and then \bar{y} runs in $Y(n)$.)
Proof of Proposition 6.2. Take $a \in K$ and determine \mathfrak{a} in k_{m} as in Proposition 5.1. From (6.4)

$$
\left(\frac{y \mid k_{m}}{\mathfrak{a}}\right)_{l^{n}}^{l^{\bullet}}=1 \quad \text { for } \quad y \in \Omega^{\perp}\left(k_{m}\right)^{n} \cap k_{m} \times
$$

namely

$$
\left(\frac{y \mid k_{m}}{\mathfrak{a}^{l^{l^{\prime}}}}\right)_{l^{n}}=1
$$

From Lemma 6.1 there is $c \in k_{m}$ such that

$$
\begin{gathered}
(c) \equiv \mathfrak{a}^{l^{\bullet}}\left(\bmod l^{n} \text {-th power }\right) \\
k_{m_{\mathfrak{l}}} K\left(l^{n} \sqrt{ } \bar{c}\right) \subset \Omega^{\mathfrak{d}} \quad \text { at every } \quad \mathfrak{l} \in S\left(k_{m}\right)
\end{gathered}
$$

So, we may put

$$
\mathrm{b}=a^{l^{\circ}} c^{-1}
$$

Proposition 6.3. Assume $\lambda(X) \neq 0$ and fix two numbers $n>e \geq \mathbf{e}(X)$. Take an $\bar{X} \in\left(l^{\infty} X\right)_{\wedge_{d f} f}(n)$ such that $l^{e} X \neq 0$. Then

$$
\begin{equation*}
\Psi_{n}(\bar{x}, \bar{y}) \neq 0 \text { for some } \bar{y} \in Y(n) \tag{6.7}
\end{equation*}
$$

Proof. Let $m_{0} \geq 0$ be the number such that any $m \geq m_{0}$ is steadily large. Since $\left(l^{\infty} X\right)_{\Lambda d f} \simeq \dot{\lambda} T_{l}$, we know for the given n and $e,\left|\left(l^{\infty} X\right)_{\Lambda d f}(n-e)\right|<\infty$, so there is an $m \gg m_{0}$ such that

$$
\begin{equation*}
T_{m}\left(l^{\infty} X\right)_{\Lambda d f}(n-e)=0 \tag{6.8}
\end{equation*}
$$

and \bar{x} is defined in k_{m} i.e.

$$
\bar{x}=\left(x \bmod \left(k_{\omega}^{\times}\right)^{l^{n}}\right) ; x \in k_{m} .
$$

Assume on the contrary of (6.7)

$$
\Psi_{n}(\bar{x}, \bar{y})=0 \quad \text { for every } \quad \bar{y} \in Y(n)
$$

From Proposition 6.2 we can find a $b \in K=k_{m+n} \mathrm{~s}$ atisfying conditions (6.6) and (6.5) in other words, we can set $\bar{b}=\left(b \bmod \left(k_{\omega}^{\times}\right)^{n}\right) \in X(n)$ such that

$$
-T_{m} \bar{b}=\bar{x}
$$

These imply

$$
\begin{equation*}
l^{e} \bar{x}=-T_{m} l^{l} \bar{b} \in T_{m}\left(l^{e} \cdot X(n)\right) . \tag{6.9}
\end{equation*}
$$

On the other hand, from (6.8) and the Λ_{m}-direct decomposition

$$
l^{e} X=\left(l^{\infty} X\right)_{\Lambda d f} \dot{+} \Lambda^{\infty} X \dot{+}(\text { finite }) \quad \text { (cf. Theorem 2.3) }
$$

we know

$$
l^{e}\left(l^{\infty} X\right)_{\Lambda d f}(n) \cap T_{m}\left(l^{e} \cdot X(n)\right) \subset\left(l^{\infty} X\right)_{\Delta d f}(n-e) \cap T_{m}\left(\left(l^{e} X\right)(n-e)\right)=0
$$

Since $l^{e} x \neq 0$, this contradicts to (6.9).
With the alternative assertion to Proposition 6.3 interchanging X and Y, we obtain the next theorem.

Theorem 6.4. Let $\Psi: X \times Y \rightarrow W$ be the Λ-pairing defined in Section 5. This Ψ has the left degeneracy $d_{X} \leq e(X)$ and the right $d_{Y} \leq e(Y)$, and consequently Ψ is essentially pseudo-nondegenerate.

References

[1] Y. Akagawa: A tripling on the algebraic number field, Osaka J. Math. 23 (1986), 151-179.
[2] -: The pro-periodic completion of class formatians and the locally restricted norm theorem, (to appear)
[3] K. Iwasawa: On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82.
[4] -: On \boldsymbol{Z}_{l}-extensions of algebraic number fields, Ann. of Math. (2), 98 (1973), 246-326.
[5] L-C. Washington: Introduction to Cyclotomic Fields, 1983.

Department of Mathematics Nara Women's University Nara, 630 Japan

