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Introduction

Let / be a prime number, Zt the ring of the /-adic integers, and A=Zj [[T]]
the formal power series ring of indeterminate T over Zlt Let K be an algebraic
number field containing ζx (and \Z—ί if 1=2) and kω—k(ζoo)=k(ζn\n=l, 2, •••)
the cyclotomic Z^-extension over k ζn=exρ (2τri/Γ). Given an abelian extension
M/kω which is Galois over k and restricted by some local conditions, we can regard
the Galois group Gal (M/kJ) as a Noetherian Λ-module and develope the so-
called Iwasawa theory. In this paper we shall treat such Noetherian Λ-modules
comming from Galois groups and their (twisted) duals, which are regarded as
Artinian Λ-modules naturally. The main instrument for the study is a pairing
Ψ on some two Artinian Λ-modules X and Y. In [4] a pairing works effectively
but our Ψ is different from this essentially, Ψ is actually defined on the whole
XxY and non-degenerate except Λ-divisible parts and a finite factor. So we
shall know that X and Y have similar types of Artinian Λ-modules each other.
Specially if we take the maximal unramified abelian /-extension over kω fully
decomposed at every prime spot over (/) on the one hand and an /-ramified abelian
/-extension which is maximal under a local condition such that any ζn&k(ζn) is
written as a local norm from this field to k(ζn) at every spot on the other hand, the
results will be most typical. Actually the arguments of this case will be used
effectively in the study of Leopoldt's conjecture.

1. Noetherian Λ-modules

Throughout this paper we fix a prime number /. Let Zt be the ring of the
/-adic integers and Λ = Z ; [[T]] be the ring of formal power series of indeterminate
T over Zι% It is well known that Λ is a local ring of Krull dimension 2, with
the maximal ideal m=(l, T). A proper prime ideal p of Λ is always principal
and written p=(l) or p=(P(T)) by a distinguished polynominal P(!Γ)eZ,|T],
i.e. the one of the form P(T)=Tn+an.ιT

n"1-\ [-ao=Tn mod (/) in Z7[Γ].
The unit group Λx of Λ has a subgroup (1 + T)zι isomorphic to Z, in the evident
manner through multiplication-addition translation. Let Γ be a topological
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group isomorphic to Z, with a generator 7: Γ = < γ > = γ z ' . A Z rΓ-module is
a Λ-module as it were, defining the action of γ on it to coincide with the mul-
tiplication map of 1 + Γ. Put Tm=(l + Tym-l^Zι[T] a distinguished polyno-
mial, and Z/[[ΓW]]=ΛIWCΛ. Put γ w = γ / W , ΓM=<γu>c:Γ; m=0, 1, •••. A
Λ-module or a Zj-Γ-module is a Λw-module or a Zj-Γ^-module in the same
time by the restrictions, making the correspondence 1 + T w ^ γ w . A characteres-
tic Λm-submodule of a Λ-module is a characteristic Λ-submosule as it were.
From now on we treat only locally compact modules. For a Λ-module M, the
torsion, the Λ-torsion, the divisibility, and the Λ-divisibility are denoted by

(1.1) Tor M = {σ*ΞM\zσ = 0 for some *(4=0)eZj}

(1.2) Λ-tor M= {σ<EΞM\f(T)σ = 0 for some f(T) (φO)eΛ}

(1.3) l°°M = {α e M | σ = ^ τ b y a τ G M for any ^(Φθ)eZ ; }

(1.4) A°°M= { σ G M | σ - / ( Γ ) τ b y a τ G M for any f(T) (ΦO)eΛ} .

We shall denote the direct sum of two modules M and N by M + N and that

of r copies of M by rM. A Λ-homomorphism φ\ M-+N with finite kernel

and finite cokernel is called a pseudo-Λ-isomorphism, and denoted by φ: M^N.

Given M and N> when there is a φ: M2^N we denote M~N and when M~N

and N~M, M<^N. When a non-negative integer r and a set of prime power

ideals {p/1, •••, />/*} in Λ are given, we put

E(r;Pl\ - , p / ) = fΛ + Λ/A'i-i- ... +Λ/p/ .

We shall call this typical Noetherian Λ-module an elementary Noetherian Λ-
module and {r: p/i, •••, p/5} its invariant. Two elementary Noetherian Λ-
modules are pseudo-Λ-isomorph (actually Λ-isomorph) only when their in-
variants coincide. Use an abbreviation E(0; p/i, •• ,p/ s )=£(p 1

β i , * ,p s ^).

Theorem 1.1. (Iwasawa-Serre-Cohn and others [5]) For a Noetherian
A-module M there is an elementary Noetherian A-module

such that

M~E(M).

The invariant of E(M) is uniquely determined depending only on M> not on φ: M^t
E(M). For any φ\ M^χE(M)y Ker φ coincides always with the characteristic Λ-
module Fin M the maximal finite K-submodule of M. •

The pseudo-Λ-isomorphism M~E(M)=E(r; p/i, •• ,p/ s ) does not mean
^.M. But, if r = 0 we can compose E(M)~M easily. For example, if
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φ: M~E(M) is injective with r=0 and ΓCoker (φ: M^E(M))={0}y c>0, we
can form a Λ-homomorphism φ': E(M)^χM with trivial kernel and the cokernel
such that ΐCoker φf— {0} also easily.

We call the invariant of E(M) the invariant of M and denote it by inv M and
define the characteristic polynomial of M by

fM{T) = Π i W (P.Λ = ( W O e i n v M, ΛΦ(/))

and the essential exponent of M by

ί?(M) = max βi (p/'Ginv M, p, = (/))

( = 0 if there is no /*,- = (/)).

When e(M)=0 namely | Tor M \ < oo, M is said pseudo-torsion free. The mini-
mal number e(M) such that /e(M)Tor M={0} is called exponent of M, e.g.
le(M)M is pseudo-torsion free and le(M)M is torsion free.

Theorem 1.2. (Iwasawa) For # Noetheήan A-module M, Λ-tor M'w
characterized as the maximal A-submodule (or Am-submodule, m>0) of M with
finite Zrrank therefore

Λw-tor M = Λ-tor M for any m>0 .

Put dtg fM(T)=\. Then

(1.5) Λ-tor M/Tor M^\Zι (as Zrmodules).

Specially when M is pseudo-torsion free,

(1.6) 7VΛ-tor M = /^'-^Γ^Λ-tor M

for every w>0 (every sufficiently large m>0) and m'>m and (1.5) can become
precisely

(1.7) Λ-tor M = (Λ-tor M) / r + Fin M (Am-direct)

for every m>0 where (Λ-tor M)fr is a Am-submodule of Λ-tor M (not unique)

ίsomorphic to \Zr

Proof. Only the last statement concerned to (1.7) will be required to prove.
Since |Fin M | < o o , there is an mQ>0 such that Γ^Λ-tor M)c/β(Λf)Λ-tor M.
When we take as (Λ-tor M)fq any indirect complement of Fin M in Λ-tor M
(2JλZ/4-Fin M) it is a Λ^-submodule for m>mQ therefore (1.7) will be ob-
tained. •

For a Noetherian Λ-module M, le(M)M is pseudo-torsion free. In the re-

mained part of this section we treat only pseudo-torsion free case.
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Theorem 1.3. For a pseudo-torsion free Noetherian A-module M

(1.8) M = MAtf + Λ-tor M (Am-direcί)

for every τ/z>0, where MAtf is a Am-torsion free Am-submodule of M (not neses-
sarily unique). So, combining this with (1.7),

(1.9) M = MAtf + (Λ-tor M)fr + Fin M (Am-direct)

for every w>0.

Proof. Let φ: Λf/Λ-tor M~r0A=rAm(tn>0, r=rm=r0Γ). Since | Coker^ |
<oo, ΓmCoker ^={0} for m>0. Then by the elementary divisor theory we
may put

(1.10) Im φ = (l\ Tm) + - 4-(/"', Tm)czrAm; m>0 .

Fix such an m and put max-fo}=£, m+c=m'. Take σl9 •••, σr and τx, •••, τ r G
M such that

^(α Λ) = /<*<=(/'*, Γ.) the jfe-th direct factor of (1.10)

9>(τΛ) = TmG the same.

Put Tmσk—lCk τk=pk which is in Λ-tor M, From (1.6) we may assume, renew-
ing m by a large one if necessary, Γβ(Λ-tor M)c2/(Λ-tor M) accordingly

iVw,w(Λ-tor M)c/ c(Λ-tor M)

where

(1.11) iVm/w = Γ./Γ; 1 = 1+(1 + :

So, we can take pi GΛ-tor M such that Nm'mρk=lci"pί. Then

(1.12) Tm,σk-lc>(Nm,mτk+p'k) = 0.

Put r'=rlc and determine σί, •••, σί/, τi, •••, / / G M SO that

, _ ^y+i if Λ = /cj>

* T if k = i

i f #2 ~"~ / ί

if k = ί

and then ί:ί, •••, ̂ / > 0 by

if k = rj,

if Λ = i
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From (1.12)

therefore

<σί, - , σ'r>, r[, - , r'r,~>^{l% TJ) + + (/*', Tm,)Cr'Km,

namely this can be adopted as M Δ ί / , then (1.8) is ΛΛ/-direct. Π

We define c=c(M)>0 by

f = exponent of Coker (φ: M/Λ-tor M^rmhm)\ m > 0 ,

which is used already in the above proof. Every sufficiently large m>0 will be
said steadily large, when it admits the Λw-direct decomposition (1.7), Tm Fin
M=0,ΓwCofcer(9>: M/Λ-tor M ^ f e A e ) = 0 > and ΪVΛ-tor M=lm'-mTmΛ-tor
Me2/Λ-tor M for any m">m.

Proposition 1.4. Let Mbea torsion free A-torήon A-tnodule.
as Zrmodule. Let E(M)=E(pι\ - , p / ί ) . Then there are A-submodules Ml9

such that £(M,)=£(pΛ), Mf n Σ ^ M/^ W (s0 2,-M^i M,.), and

Proof. The first assertion M^xZj is a direct consequence of Theorem 1.2.
Fix a <p:M^£(M) and decompose E(M)=E(pi

βi) + — +E(pa'ή. Put M,=
φ~\Im φ Γi E(Piei)). The three properties for Mt will be easily checked. •

When E(M)=E(pe) we say the Noetherian Λ-module M is pseudo-inde-
composable. From the above arguments, pseudo-indecomposable torsionfree
M is characterized as a Noetherian Λ-module such that | p'M \ < oo but | pe~ιM \
= oo for some prime p=(P(T)) (Φ/Λ) in Λ and e>0. This e is determined
by rankZ/M=έ?.degP(:Γ).

2. Artinian Λ-modules

Let R be the additive group of the real numbers, Z that of rational integers,
and T=RjZht the 1-torus. Let Tι=QιIZh Qt being the /-adic rational num-
bers. From now on we fix a κ^2lZι a n d define an /-divisible group W by

(2.1) PFαlim. Λ/(Γ, Γ-*)

where the injective limit is given by the /-times map

(2.2) Λ/(Γ, T-K)^AI(l"+\ T-K)

(F(T) mod (Γ, T-κ)^lF(T) mod

namely, P F ^ Γ/ abstructly and Tw=κw\ w e PF. We denote for a Λ-module M
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, W)

which is a ZrΓ-module, so a Λ-module by the usual right γ-action

(2.3) x\σ) = (x(σt'l)γf U

where f = (1+κ)

For jP(Γ)GΛ we denote F{T)=F(T). Then F(T)\^F(T) defines an involutive
automorphism (i.e. F(T)=F(T)) of Λ. Since Λ is a pro-/ group, the Pon-
trijagin dual M*=Hom (M, T) of a Λ-module M with left γ-action (i.e. x*{σ)=
{x{σi))'ί"'l=x{σi)) can be identified to Horn (M, I7,) which is, regardless the Γ-
action, equal to M. When a ^-Γ-module M is given, we made it a Λ-module
identifying the action of γ to that of (l + Γ)-multiplication, conserving the same
notation M. If we identify the action of γ to (l+T)-multiplication on the other
hand, we obtain a new Λ-module which we shall denote by M. From (2.3)

(2.4) JUT = M* ( = (Λf*)- = (Aϊ)* being the same).

As we are treating always locally compact modules the following facts are held

i) M=M
ii) M is Artinian if and only if M is Noetherian
iii) /~il2r=il!Sr if and only if Tor M= {0}
iv) K°°U= {0} if and only if Λ-tor M=M.
When M is Noetherian Λ-module we denote

and when X is Artinian

X(n) = {xeX\Γx = 0} n>0

(so M(n)=(ildΓ(w))Λ). £ .^. Z , ( Λ ) « Γ ^ α Z / Γ Z . When ί1 is Noetherian and
Artinian in other words | F | <oo, we use only n>e(F), so there will come out
no confusion. We call the typical Artinian Λ-module

ή(r; P l \ " . , p/ή = (£(r; A Ί , - , Λ«»))Λ

an elementary Artinian Λ-module. We have streightfoward versions of
Theorems 1.1 ~1.4 as follows.

Theorem 2.1. For an Artinian A-module X there is an elementary Artinian
K-module E(X)=έ(r; px\ -•, p / ) such that E(X)~X. The invariant of (E
(X))A {r; p/i, ••-, ps

e*} is uniquely determined dependig only on X but not on the
choice of φ: E(X)~X. For any φ: E(X)2tXf Im φ is always coincided with
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Cofin X the minimal A-submodule of X with finite index. •

We call the invariant of (E(X))Λ the invariant of X and denote it by inv X
namely under the notations of Theorem 2.1 inv X= {r pλ\ , p/*}. The char-
acteristic polynomial of Xy the essential coexponent of X, and the coexponent
of X are given by / j f ( Γ ) = / i ( Γ ) = Π P ί ( ^ (A =(Λ<^))), c(X)=mzxiPi_ωeh

/'(*>=(the exponent of Xfi-X). When c(X)=0, X is called pseudo-/-divisible.

Theorem 2.2. For an Artinian A-module X, A°°X is characterized as the
minimal A-submodule (or Am-submodule, m^>0) of l°°X with the factor module of
finite Trrank so uniquely determined for any m>0 by

Put deg fx(T)=\. Then

(2.6) FXjA-X^XTt (as Zrmodule).

Specially if X is pseudo-l-divisible,

Γ Ker TV = Ker Tm\ TV, T^eEndomorphlsm (

for any f/ι>0 and m'=m+n>m, and

(2.7) X/A-X = (XIA°°X)fr + Fin X (Am-direct)

where (XjA°°X)fr is the Am-submodule of XjA°°X isomorphic to \Tt and YvaX is a
maximal Zrdirect factor with finite order (not unique)y so (XIA00X)fr—l00(XlA00X).

D

Theorem 2.3. For a pseudo-l-divisible Artinian A-module X

(2.8) X=A"X + XMf (Am-direct)

for every w>0 where X&df *s a Am-divisϊbility-free submodule of X (not unique)
so, combining with (2.7)

(2.9) X = A"X + l°°(XAdf) 4-FinZ; m>0 . Q

Corollary 2.4. When X is Artinian in general,

(2.10) X=(A°°X + /~(XΔ(ί/))+(bounded exponent) •

Theorem 2.5. Let X be a A-divisibility-free and l-divisible Artinian Λ-
module. Γteι-Y«λΓ,;λ=deg/ x ( :Γ). Fix a φ\ E(X^X and let E(X)=έ(p1\
..., ps

eή=ή(Pιή + -' , +ή(ps

eή. When we put φ(ή(pi'ή=Xh we obtain three
facts: i) E(Xi)=έ(pi

eή9 ii) X=Xι+-+X,, and in) |J5Γ#ΠΣyΦι-X'i|<oo; i=\,

D
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As we have seen in Section 1, E(X)~X does not mean X~E(X). But if
A°°X= {0}, after easy discussion we can form the inverse.

When E(X)=ή(pe) we say the Artinian Λ-module X is pseudo-indecompo-
sable, similarly as Noetherian case. The pseudo-indecomposable /-divisible
Λ-module is characterized as an Artinean Λ-module such that \peX\<oo but
|p«-iχ| = oo for some prime p=(P(T)) (Φ(/)) in Λ and e>0. Then E(X)=
έ(pe) and χ~τrde*p™ abstractly.

3. Pairing

We denoted the ZΛ-torsion of an Artinian Λ-module X by

In this section X and Y are Artinian Λ-modules. Assume that there are pairing
maps

ψn: X(n)xY(n)-*W(n)

at all n>\ satisfying

(3.1) Ψn(χ+χ', y) = Ψ,(χ, y)+Ψn(*', y)

Ψn(χ, y+y') = Ψn(χy y)+ψn(χ> y')

(3.2) Ψn(iχ",y) = ψn+I(χ",y)

for any x, « 'Gl(n), y, y'<Ξ Y(n), xf'eX(n+l), y"<Ξ Y(n+1). Then we call the
set ψ—{ψn}

 a pairing of Xx Y. When a topological group Δ acts on X, Y>
and W and ψ satisfies further

(3.3) Ψn(χ*,y*) = Ψn(χ,yY; δ e Δ

for « £ ! ( « ) and y^Y(ή), we call ψ a Δ-pairing of Z x 7. A Γ-pairing is
specially called Λ-pairing, for which (3.3) is equivalent to

(3.4) ^n{F{T)x,y) = ψu{x,F{T)y); F(T)<=A

because, if (3.3)^ ψu{Tx, y ) = ψ . ( ( l + 2 > , y)-ψa(x, y)=Ψ,{x,
ψu(x, y)=ψn{x> Ty) and vise versa. Let X'cX and F ' c Y be Λ-submodules.
We put

*"•(*.) = ύ ' e Y(n) I ψn{x, y) = 0 for any x(=X'(ή)}

Y'^iΨn) = {xeX(n) I ψn(x, y) = 0 for any y e F'(»)}.

Since

(ψβ+1) andsamely y ' ^ , ) c y ' ^ r t )
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because of (3.2), we can define

limnX'^(φn)(ZY and Y^(ψ) = limΛ y/J-(ψΛ

which are Λ-submodules respectively if ψ is Λ-pairing. In general

and the equality is held if X' is divisible, because of (3.2). Similar facts will
be held for T. When ld( YJ"(ψ))= {0} for some d >0, ψ is said left pseudo-non-
degenerate and the minimal dι of such d is called the left degeneracy of ψ. When
dι=0> ψ is said left nondegenerate. The terminologies about right hand side
will be used similarly. We put max {dl9 dr} =d(ψ) and call it merely degeneracy
of

Proposition 3.1. i) Let X, X\ F, and Y' be Artinian A-modules. As-
sume there are A-homomorphisms

<px i X—>X , <pγ \ Y—> Y'.

If a A-pairing ψf: X'x Y'->Wisgweny we can define a A-pairing ψ: Xx Y->W
by

Ψ«(χ, y) = Ψ'»(<pχ(χ), ψγ{y))

ii) Assume both φx and φγ are surjective and there are c]>0 and c '^0 such that

/c(Ker φx) = {0} and /c'(Ker φY) = {0}.

If there exists a A-pairing ψ: Xx Y^-W, we define ψ'n: X'(n)X Y\n)-*W(ri) by

= Ψn(icχ, ϊy)

Then ψ'n is well-defined and ψ'= {ψ'n} is a A-pairing on X'xY\ The succession
of this map ψ-*>ψ' after the one ψ'-*ψ given in i) coincides with lc+c'-times map

When specially X and Y are divisible (accordingly so are X1 and Y'), ψ'=0
will follow only ifψ=0.

Proof. Only the last assetion will be required to prove. From the di-
visibilities of X and Y any x^X(ή) and y e Y(n) have l~c~c'x&X(n+c+c') and

c>y if ,ψ/=o,

Our interests are on the pseudo-nondegeneracy of ψ, so the discussion will
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be limitted in the case where X and Y are divisible.

Theorem 3.2. Let X and Y be divisible Artinian A-modules andfx(T) and
fγ(T) have no common prime factor. Then any A-pairing ψ: XxY-*W is trivial.

Proof. Case 1. One of X and Y is Λ-free, say X=rλ. Take x(=X(n)
and y& Y(n). Since both X and Y are injective limits of finite /-groups, there
is m>0 such that

0, 7 > = 0, and TmW(n) = 0.

Since Λ=limnι>n (Λ/(Γ, Γw)), we have Λ=limWfn(Λ/(Γ, Tm))A so

Here (Λ/(Γ, 7V))Λ^(Λ/(f, Tm,))* as Λw-modules if m'>w because of TmW(n)
= 0 and Λ/(Γ, Tm>)^Zι(n) [Γ(m')] a self-dual Λw-module. Put Γ(w, m')=Γι j
Γ / m /cΓ(m')=Γ/Γ / W /. Since Z MpXw')] 1 ^*^ (the submodule of Γ(m,m')-
invariant elements) coincides with the norm group NΓ(m m^ Zι(n)\Γ(fnf)] we can
write with x' ^X{tί) and m'=m-\-ny

x =

So

x', y) = ψn(x', Nn>my)

Case 2. One of X and Y is Λ-divisible, say rk~X surjective. Think of this
id.

rA-*X and Y—*• Y. From the results of Case 1 and Proposition 3.1, fψ = 0 if

/'(Ker (rλ-^X))=0. So, from (3.2) and the divisibilities of X and Y, ψ=0.
Case 3. Λ~X= {0} and Λ~ Y= {0}. Since E{X)~X and £( Y)~ Y are both
surjective from the divisivilities of X and Y, we have

From GCM {fx{T), fγ{T)} = \ we can find A(T), S ( Γ ) e Λ and >n>:0 such that

A{T)fx{T)+B{T)fγ{T) = r.

Here, for any x<=X(n) and j e Y(n) we take /"MΛ;eZ(wί+M) and l~mye. Y(m+
n) then

Ψ.(* y) = Ψ.+.(* '""y)
= ψm+n(B(T)MT)Γ»>x. l-'y)

= 0.
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General case. Using Theorem 2.3 we decompose

X=XAdf + A~X, Y=YAdf + A~Y.

From the above results, the four restrictions ψ\χAd/χYΛdf> ••• etc. are all naught

pairings. •

Corollary 3.3. When X and Y ate divisible and ψ: Xx Y->W is a Λ-
pairing,

y ^ ) D Λ ° ° Z , X^ψ^A-Y. •

By the similar calculations used in the above proof Case 3, the next theorem
is easy therefore the proof is omitted.

Theorem 3.4. Let X and Y be divisible Artinian pseudo-indecomposable
A-modules such that E(X)=ή(pe), E(Y)=ή(pf) with ej>\ where p is a prime
in A. Then, for any A-pairing ψ: Xx Y-*W,

Y ^ ψ j D ^ I and X^ψ^pΎ.

Therefore if e>f (or e<f) ψ is left (or right resp.) degenerate, accordingly if e^
/, ψ is degenerate. •

Let

X = Λ ^ X + t / ^ Λ ^ + φ o u n d e d exponent)

Y = Λ0OY+(Z~y)Λ(//+(bounded exponent)

as in Corollary 2.4. From Corollary 3.3

^IA°°^X* = Oandψ| ί l c x Λ - j s : = 0.

Of course

ψ I (bounded exp-) x * a n d ψ \ * x (bounded exp )

have both bounded exponents. So, about the pseudo-nondegeneracy of ψ only
to investigate

is interseting. When the last is pseudo-nondegenerate, we say ψ is essentially

pseudo-nondegerate.

Theorem 3.5. Let X and Y be divisible A-divisibϊlity-free Artinian A-

modules and ψ : Xx Y-+W be a pseudo-nondegenerate A-pairing. When E(X)=

Mpi\ -> Pss), E(Y) is of the form
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Put

x=x1+...+xs, |

where E(Xi)=E(pr) the i-th direct factor of E(X) (cf. Theoren 2.5). Then we
can put

γ=γι+...+γt, |F,nΣwy,ι<oo

where E(Y,)=έ(p;<) the i-th direct factor ofE(Y) and

{ pseudo-nondegenerate if i = j

0 if iΦj.

Proof. Let E{X)=&(pι\ -,p'>) and £(Y)=.£(«/i, -,«/')•
- + Z J = Z ( ( = 0 i f ί = l ) . Then

X=X1+X[ and le(XiΠXί) = 0 for some

Put y i=/~(XίJ-(ψ)) and Y[=l"(Xt(ψ)). Since f (^(w) Π Xί(n))=0, it follows
that

l'Y(n)c:X(er(ψH)

and consequently

From this we know that s>2 means t>2. Interchanging X and Y, ί = l if and
only if ί = l . The proof will be done by the induction about s easily from
here. D

4. Λ-modules comming from Galois theory of the cyclotomic
^/-extension

We fix an algebraic number field k having a finite degree over the rational
numer field Q and its algebraic closure kalg/k. The algebraic closure of the
local field k^ the completion of k at a prime spot £, is obtained by the composite
of kς and ka!g: k^lg=kpk

aίg. An algerbraic extension of k is always taken in kalgjk
and the local one in k^fky We put

rn = exp(2τr//Γ)eΞ£"*; n = 0, 1 , - .

For a local or global field F the rational integer v>0 such that ζ^F but £ V + 1 $ F
will be denoted by v(F). When a Galois extension of a field has a pro-/ group
as its Galois group, we call this extension a Galois /-extension and a subfield of
a Galois /-extension merely /-extension. Let oo>v(F)=v>l ( > 2 if 1=2). We
put F Λ =F(ζ' v + ί l ); n>0, the cyclotomic cyclic extension of degree Γ and Fω=F(ζoo)
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=F(ξn\n=l, 2,...) the cyclotomic Zrextension. Let Gal (JPω/F) = Γ =
and y: ζn*->ζl+*y κ^2lZh n = l , 2, •••. We define an involutive automorphism
F(T)-*F(T) in Λ as in Section 3. Assume we are given a Galois /-extension
ΩjF containing Fω. Put

M = Gal (Ω/jFJ/Gal (Ω/JP.y

where Gal (Ω/FJf denotes the commutator subgroup of Gal (Ω/.Fω). After any
extending of 7 in Gal (Ω/F), via the inner automorphism σ ^ γ ^ σ γ , Λf becomes
a iΓΓΓ-module, accordingly a Λ-module. By Kummer theory we can identify

Therefore, noting that ((Ω/Λn^^)/(Fί)OΓ-(Ω/nnF><)/(Fx)/Λ<rv(F)> where (*)Γ

means the subgroup of the Γ-invariant elements, we know

Lemma 4.1. (4.1) (M/ΓM)Λ(»)=(Ω'"ni ; '> <)/(Fx)/"<rv ( Λ>.

Therefore

(4.2) (M/f M) Λ = Urn,, (Ω ί "πF x )/(ί l χ ) '"<i:, ω >

Aeήg άβierf by the l-times map (Ω'" niJ l χ)/(i? x)'"<C( f )>-*(Ω'"+ 1 f]Fx)l{Fx)ι"+1

* mod (F X ) ' "<£V<F)>^* ' mod(ί l χ) l"+ I<r, ( Λ>. D

When Gal (Ω/F) is a free pro-/ group with r free generators we call ίl/F a
free pro-/ extension of rank r.

Lemma 4.2. Assume Cl/F is a free pro-l extension of rank r. Fix an m>.Q

and put Gal (FmIF)=Γ(m)=ΓIT'1". Then

(4.3) Mαt(r-1)Ά

(4.4) Urn,((Ω'-ni^/ra'") « ^(m^xir-lJ'^iPXw)]

being defined by the canonical map (Ω'"+ι Π i?ί)/(i ;'x)'"+1-*(Ω'" Π Fi)l(Fi)f' (x mod

(ί'ϊ) l"+V**mod(J?5)J')

Proof. Take {γ, σ u •••, σr_j} a free generator system of Gal (Ω/F) so that

γ is as above and <rt\Ft>=id., i=l, •••, r—1. We know for the free pro-/ group

Gal (Ω/F) and its normal subgroup Gal (Ω/FΛ) with finite cyclic factor group

Γ(«)=Γ/Γ'",

a free pro-/ group of rank (r— 1)Γ+1. (Schreier's Theorem, regardless pro-/

topology. To modify it in the case of pro-/ group is an elememtary work.)

Therefore

Gal (Ω/F
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Taking limn, we have

M ^ ( r - 1 ) * A .

The next (4.4) is a direct consequence of (4.1) and (4.3). •

Now, at each p in k we shall fix a free pro-/ extension Ωpjkp satisfying

(4.5) Ωp3fcp ω.

When p is not on (/), Ωp is necessarily the unramified Zrextension. For any
finite /-extension K/k and a prolongation Sβ\p, we put

which is also a free pro-/ extension, because we can regard Gal (ΩP/K%) C Gal

(Ωp/£p) with finite index. Let Kl=limn K^jK?/ the pro-/-closure of K%.

Any element f e i ^ ^ is written as

ξ = lim (f.mod (K^f); £»*=£$ , £,=£.+, mod (K&f .

We call ξ an Ωφ-element if

The group of the Ωφ-elements will be denoted by 2?$, which is nothing but the
left hand side of (4.4). Therefore

Proposition 4.3. Let rank Gal (ΩPlkp)=rp. Let kpm=K%. WehaveK^'D

— lyZj [T{m)] {direct).

Regard kpdK% canonically, the former being composed of all the Gal{K$/kp)-

invariant elements. Then Ep=E%Πk£=NK^/kpE$. •

A local abelian /-extension FjK% will be called an Ω^-orthogonal extension
if

a compact subset)

For example, if β̂ is not on (/), then ΩP=K%ω. When Ω$=J
and an Ω^-orthogonal extension is the compound of all the Zrextensions or one
of its subextensions.

Proposition 4.4. If $8 is not on (/), an ΩP-orthogonal extension of K% is no-

thing but the cyclotomic {or samely, unramified) Zrextension ΩPjK.% or its subexten-
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sion. If?β is on (/), the maximal ΩP-orthogonal extension ofK% is a {[K%\
r%)ph Zrextension:

Gal (max. Ω^-orth./i^) « ([K*: Q,]+2-r*yZ,

where r$=rank Gal (ΩP/K%). In the case kpdK^c:kpω=kp(ζ0O), an abelian ex-
tension F\kp is ti?-orthogonal if and only if so is KQFJKQ.

Anyway, any abelian extension in ΩP]K$ is ^-orthogonal.

Proof. We may treat only the case Sβ|(/). By Artin-Waples theorem

Using the local class field theory and Lemma 4.2 we can determine the type of

Gal (max. D^-orUi./K^) as asserted. Since (after extension to kp) norm residue

symbol (ξ, jF/&p)=id. for any ξ^Ep if and only if F/kp is Ωp-orthogonal, we can

conclude our proof because (ξ', K%F/K%)=(Nκ%/kp ξ', Fjkp)\ξ'^E^ and Nκ^/kp

E%=Ep by Proposition 4.3. Π

Next we shall define global matters. From now on we fix k such that

v{K)>\ (>2 if 1=2).

Let Kjk be a finite /-extension, again. If LjK is an /-extension and every
K$L is in Ωφ, then we say L\K is an Ω-extension. If MjK is an abelian /-
extension and every K%MjK% is an Ω^-orthogonal extension, we say MjK is an
Ω^-extension. An abelian Ω-extension is always Ω^-extension by Proposition
4.3 and an Ω-' -extension is always /-ramified, i.e. unramified at every $β not on
(/). Noting that the compound of Ω-extensions is again an Ω-extension and
samely for Ω^-extensions, we can define

Ωab(K) = the maximal abelian Ω-extension of K

^(K) = the maximal Ω^-extension of K.

For infinite extension kjk we put

Ωab(kω)=; Όn<ωΩab(h)

Since both Ωfl*(^ω) and Ω~L(̂ ω) are Galois over k and contained in the maximal
abelian /-ramified /-extension Uι)"ram\k,

are Noetherian Λ-modules by Lemma 4.1. Further we put
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which are Artinian Λ-modules. We can set

by Kummer theory.

5. A pairing defined by the triple symbol

Here we shall define a pairing Ψ:Xχ Y-+W using the triple symbol ([1]).
The symbol (x9 y, z\k)tn is defined when ζn&k, x and y are strictly orthogonal,
and three elements x, y, and z are orthogonal in some conditions. Specially if
/=2, the definitions are complicated, but if ζn+2^k they are a little simpler (cf.
Introduction of [1]). We shall recall them here. Take

y=(y mod (**)'> Y(n), y^^(kωf n K

and m>0 so that x9 y, ζn^km (then x<ΞΩ,ab(km)ιn Γlk* and y^a^k^)1" ΠK for
some m">m. From Proposition 4.4 we have also y^Cί^k^ Π&«). Then
three elements {x> y, ζv+m}akm are orthogonal mod (km)1" i.e.

at any p in &w about Hilbert-Hasse symbol and specially {#, Γv+m} are strictly
orthogonal mod (&«)/Λ, i.e. moreover

at any I|(/) in ^w. (Samely as the case /4=2, in case 1=2 and £Λ + 2e&w, we say
x and ? v + w are strictly orthogonal mod (k^)1" if some one in x(k%yn and the other
in ζ'v+mί̂ ϋίy'1 are strictly orthogonal. When /=2, some more conditions than
the above inclusion are required outside / for the strict orthogonality, but in the
present case where ζn+2^kmf we may check further only that x and ζv+m are
orthogonal mod (&i£)2*+\ These will be known easily if we compair the original
definition of strict orthogonality and the present modified one. Of course x
and ζy,+m are orthogonal mod (&£)2"+\) Since y&Ω^kn)1" f)km it follows that
(ξy y\kmq)ι»=l for £e(Ω<ϊ)/nn£mqx. So, using the statements at ρl69 [1], (the
/-independence of {x> ζv+m} is not essential as seen in ii) 3 [1]) the symbol in ex-
tended sense
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(*> ?v+«,y;ζ»\km)t» (=(xy ζv+my y)tn by abbrev.)

can be defined. Fix an identification W=ζζooy=ζζn\n>iy correspomding zon

=(1 mod (Γ, T-κ))^Wto ζn. We put

(5.1) V.(*,Λ = (*ιfv+«y)i .

Denote the set of all the I in km over (/) by S(km) or simply by S.

Proposition 5.1. By means of (5.1) Ψn(ff, y) is well-defined, namely the
value (x, ζy,+my)tn in W does not depend on the choice of m>0 and x9y^km such
that ζn {and ζn+2 if l=2)Gkm X=(x mod (^) / Λ), and ?=(y mod ( ^ ) O

Proof. At first we fix an m>0 as above and assume X is of order I", i.e.

(5.2) * $ ( « ) ' < ? v + w > .

Put km+n=K. As it is shown in Proposition 1 [1] we can find a&K* satisfying

(5.3) J-=xmod(K*)*

for σGΞGal (^('V*)/**('V*)) such that

(5.4) Gal {Kfy/x,

(5.5) M?v+«+., 'V^, V 5 ) c r f at any

Then the principal ideal (a) in K can be written as

(a) = α (mod Γ-power, mod S) in K

where α is an ideal in kmy having no-S-factor, namely (a) = a except /Λ-th power
ideal and 5-factor in K. After these preliminary, the triple symbol is well-
defined by

using the Hubert symbol on the right hand side. Here we remark that the
condition (5.4) is equivalent (under (5.3)) to the splitting of the canonical exact
sequence

in other words

(5.6) 'V^'""1 = 1.
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As far as we use (5.6) instead of (5.4), the first assumption (5.2) is of no use for the
definition of triple symbol ([1], pl75 ii) § 3) so (5.6) is more useful than (5.4).
After m is fixed the choices of xyy^km are free by the multiplying of elements of
kιS Γikm=(kmYnζζv+my therefore x and y may be replaced by xζ and yζ'\ ζ, ζ'
^(kmy"ζζv+my. But, even this replacement we can use the same a because xζ
=#mod (-Kx)/Λ, therefore α is reserved and

α //• V a hn

using ζ"ςΞ(Kx)ιXζ^m+n> such that Nκ/kmζ"=ζ' mod (£*)'* and continuing the
calculation

1

by (5.5). Accordingly

)

Thus, we may show the independence of our symbol about the choice of m.
Let m'>m. The remained task is to show

(5.7) (x, ζv+m',y; ζn\kmi)tn = (x, ζv+m9y;ζH\km)ιn.

Assume in a time being

(5.8) f

samely as x. Since ζv+m~Nkm//kmζv+m^ from the transgression theorem of triple
symbols ([1], Theorem 1 IV)) we have (5.7). When not necessarily (5.8) is
held, let a'^K'=km'+n satisfy the equivalents of (5.3), (5.6), and (5.5), over km*.
Put L=km(ζv+n,+ny 'V*, +1

if 1=2). Since

at each

we have

y e NkmlL/kml(kmϊL)x at each IG S

(£./. Lemma 1 [1]) so, using the density theorem in the class field theory we can
find z£zLx such that
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(5.9) NLlkm z=y mod ((kmiL)x)1" at each Ϊ6ΞS

(5.10) (*)=3 (mod S(L)),

B being a prime in L fully decomposed in Ljkm .

Put

NL/kmz=y'<=km.

Then from the definition we have easily

(*, rw, y' , UkΛ-

of course after the checking of the posibility of definition. So, for (5.7) we may
prove

(5.11) (*, ζy+nyy'-1; ζn\K)ι» = (*, fv+^jy'" 1 ; ?JM/«

But in this time {#, Γv+m^j'"1} m ^« a r e strictly orthogonal moά{km)ιH by (5.9)
and (5.10) accordingly so are {x9 ζ^+m^yy''1} in km'. By the same reason as the
case of (5.8) we can obtain (5.11). •

Now, our Ψ Λ : X(n)x Y(ή)->W(ή) satisfy (3.1) because of Theorem 1 [1].
When %=(xmod(kωyn+1)eϊX(n+l) and y=(y mod(kωyn)<=Y(n),lx=(x mod
(kωyn)eίX(n) and y=(yι mod (kω)ιn+1)eΞ Y{n+ί) therefore

which means the former of (3.2). The latter will be obtained by the alternative
arguments samely. As (3.3) follows from Theorem 1 III [1] we can conclude

Theorem 5.2. Our Ψ= {Ψn} is a A-pairitίg Xx Y->W. •

6. Quasi-noπdegeneracy of Ψ

Lemma 6.1. Let ζn^k and an ideal a in k have no S-factor. Assume

(6.1) ( Z ! * . ) β = l for any

Then there is an element cG^ x such that

(6.2) (c)=a ( m o d ^ " t n power, mod S)
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(6.3) ^ v / c j c r f at every I|(Z).

Proof. Let the idele group of k be Jky the principal idele group Pky and the

idele class group Ck. From the class field theory we can set

so the canonical sequence

is exact. Any element y^Ω,J~(kyn Γ\kx defines an idele class character Xy

Xy(x) = Π.up (*p p p

using local Hilbert-Hasse symbol (#p, y\k^t*. Define a character group 3£ by

The class field theory again says the kernel of T in Ck\Cf is (Π a l l p E^CflCf.
If c = ( , rp, "*)^Jk is such one that (c)=α and r r = l at every I G 5 , then (6.1)
says c e ( Π Ep)PkJk'

H so there is ceP f tΓlc(Π £p)Λ/Λ which will satisfy (6.2) and
(6.3) by itself. •

Proposition 6.2. Take %=(x mod(k^)ιn)^X(ή). Fix m>0 such that x^km

andane>:0. If

(6.4) 2ty.(*f y) = 0

/αr any ,y=(y mod (^)/ W)G Y(n) defined in km {i.e. y^km) then we can find b^K
=km+n such that

(6.5) bι'σ = x1' mod (i^ x) / n

for σ(ΞGά(Klkm), σl ξ'v+m+n^ξ'nfv+^+n, ΛΛέ/

(6.6) K(ιWx, ιWb) cΩ,ab(K).

(Note that, in (6.4), m is fixed previousely and then y runs in Y(n).)

Proof of Proposition 6.2. Take a&K and determine α in Λw as in Pro-
position 5.1. From (6.4)

=1 for
l n

namely
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From Lemma 6.1 there is c^km such that

(c) = a1' (mod Γ-th power)

kmxK(iny/c)c:Cll at every

So, we may put

b = aι'c~ι. •

Proposition 6.3. Assume λ(X)=f=0 and fix two numbers n>e>e(X). Take
(l°°X)Adf(n) such that / Λ Φ 0. Then

(6.7) ΦΛ(x, y)ΦO for some y <Ξ Y(n).

Proof. Let mo>O be the number such that any m>m0 is steadily large.
Since {l°oX)JSίdf^XTh we know for the given n and e> \{l°°X)Δdf(n—e)\<°°, so
there is an m>m0 such that

(6.8) Tm(l~X)Adf(n-e) = 0

and X is defined in km i.e.

% = (x mod (&*)'"); x^K .

Assume on the contrary of (6.7)

ψM(χ9 y) = 0 for every j e Y(ή).

From Proposition 6.2 we can find a b^K=km+n s atisfying conditions (6.6) and
(6.5) in other words, we can set b=(b mod (k£)ιn)&X(n) such that

These imply

(6.9) Γx=-Tmn<=Tm{l'.X{ή)).

On the other hand, from (6.8) and the Λw-direct decomposition

VX = (ΓX)Ai/ + Λ°°Z + (finite) (cf. Theorem 2.3)

we know

le(l~X)Ad/(n) Π Tm(le-X(n))c:(l~X)Adf(n-e) f] Tm{{ΓX){n-e)) = 0 .

Since Γ#4=0, this contradicts to (6.9). •

With the alternative assertion to Proposition 6.3 interchanging X and Y,
we obtain the next theorem.
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Theorem 6.4. Let Ψ: XxY->W be the A-pairing defined in Section 5.
This Ψ has the left degeneracy dx<te(X) and the right dy^eζY), and consequently
Ψ is essentially pseudo-nondegenerate. •
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