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Introduction

Let I be a prime number, Z, the ring of the l-adic integers, and A=Z,[[T]]
the formal power series ring of indeterminate T over Z;. Let K be an algebraic
number field containing &, (and \/—1 if [=2) and k,=k({..)=k({,|n=1, 2, --*)
the cyclotomic Z;-extension over k; §,=exp (27i/l"). Given an abelian extension
M|k, which is Galois over k and restricted by some local conditions, we can regard
the Galois group Gal (M/k,) as a Noetherian A-module and develope the so-
called Iwasawa theory. In this paper we shall treat such Noetherian A-modules
comming from Galois groups and their (twisted) duals, which are regarded as
Artinian A-modules naturally. The main instrument for the study is a pairing
W on some two Artinian A-modules X and Y. In [4] a pairing works effectively
but our ¥ is different from this essentially, ¥ is actually defined on the whole
XX Y and non-degenerate except A-divisible parts and a finite factor. So we
shall know that X and Y have similar types of Artinian A-modules each other.
Specially if we take the maximal unramified abelian /-extension over k&, fully
decomposed at every prime spot over (/) on the one hand and an /-ramified abelian
l-extension which is maximal under a local condition such that any {,€k(C,) is
written as a local norm from this field to &({,) at every spot on the other hand, the
results will be most typical. Actually the arguments of this case will be used
effectively in the study of Leopoldt’s conjecture.

1. Noetherian A-modules

Throughout this paper we fix a prime number /. Let Z, be the ring of the
l-adic integers and A=Z, [[T]] be the ring of formal power series of indeterminate
T over Z;,. It is well known that A is a local ring of Krull dimension 2, with
the maximal ideal m=(J, T'). A proper prime ideal p of A is always principal
and written p=(I) or p=(P(T)) by a distinguished polynominal P(T)& Z,[T],
i.e. the one of the form P(T)=T"+4a,,T*'+--+a=T" mod (I) in ZJ[T].
The unit group A* of A has a subgroup (14 T')%: isomorphic to Z, in the evident
manner through multiplication-addition translation. Let T" be a topological
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group isomorphic to Z; with a generator v: P'={y>=v%. A Z;-T-module is
a A-module as it were, defining the action of ¢ on it to coincide with the mul-
tiplication map of 14+-7. Put T,=(14+T)"—1€ Z[T] a distinguished polyno-
mial, and Z[[T,]]=A,CA. Put Yu=7") Tp=<LywpC; m=0, 1, ---. A
A-module or a Z;-T'-module is a A,-module or a Z,-T',,-module in the same
time by the restrictions, making the correspondence 14 7, >, A characteres-
tic A,-submodule of a A-module is a characteristic A-submosule as it were.
From now on we treat only locally compact modules. For a A-module M, the
torsion, the A-torsion, the divisibility, and the A-divisibility are denoted by

(1.1) Tor M = {ceM|20 = 0 for some 3(+=0)=Z;}
(1.2) A-tor M = {oc€M | f(T)o = 0 for some f(T) (+0)EA}
(1.3) I"M = {oc€M |0 = zr by ar€M for any 2(F0)eZ}}

(14) A”M= {cEM|o = f(T)r by a r&M for any f(T)(£0)EA} .

We shall denote the direct sum of two modules M and N by M 4 N and that
of r copies of M by #rM. A A-homomorphism @: M—N with finite kernel
and finite cokernel is called a pseudo-A-isomorphism, and denoted by @: M= N.
Given M and N, when there is a ¢: MSN we denote M N and when MSN
and N3M, M EN . When a non-negative integer » and a set of prime power
ideals {p,, ---, p,} in A are given, we put

E(f, plelv B pses) = i‘A-i—A/plel-i- eet ‘i‘A/pse’ .

We shall call this typical Noetherian A-module an elementary Noetherian A-
module and {r: py, -+, p} its invariant. Two elementary Noetherian A-
modules are pseudo-A-isomorph (actually A-isomorph) only when their in-
variants coincide. Use an abbreviation E(0; p,, -, p,*)=E(p,", -+, p,*).

Theorem 1.1. (Iwasawa-Serre-Cohn and others [5]) For a Noetherian
A-module M there is an elementary Noetherian A-module

E(M) = E(T; pl.‘l’ tt0 pses)
such that
MZIEWM).
The invariant of E(M) is uniquely determined depending only on M, not on ¢p: M=

E(M). For any @: MXE(M), Ker @ coincides always with the characteristic A-
module ¥in M the maximal finite A-submodule of M. O

The pseudo-A-isomorphism M E(M)=E(r; p,", -, p,"*) does not mean
E(M)=M. But, if =0 we can compose E(M)M easily. For example, if
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@: M E(M) is injective with »=0 and /°Coker (p: M E(M))= {0}, c=>0, we
can form a A-homomorphism ¢': E(M)=3 M with trivial kernel and the cokernel
such that I°Coker ¢'= {0} also easily.

We call the invariant of E(M) the invariant of M and denote it by inv M and
define the characteristic polynomial of M by

fu(T)=TIP(T) (p; = (P(T)%)€inv M, p;=(l))
and the essential exponent of M by
e(M) = max ¢ (pSicinv M, p; = (1))
(= 0 if there is no p,=(/)).

When e(M)=0 namely | Tor M | < oo, M is said pseudo-torsion free. The mini-
mal number e(M) such that [*™ Tor M={0} is called exponent of M, e.g.
1*™ M is pseudo-torsion free and /*® M is torsion free.

Theorem 1.2. (Iwasawa) For a Noetherian A-module M, A-tor M is
characterized as the maximal A-submodule (or A,-submodule, m>0) of M with
finite Z-rank therefore

Ap-tor M = A-tor M for any m>0.
Put deg fy(T)=n. Then
(1.5) A-tor M|Tor M=\Z, (as Z,-modules) .
Specially when M is pseudo-torsion free,
(1.6) T, A-tor M = I""-»T,A-tor M

for every m>>0 (every sufficiently large m>0) and m’ >m and (1.5) can become
precisely

(1.7) A-tor M = (A-tor M), +Fin M (A,-direct)

for every m>0 where (A-tor M), is a A,-submodule of A-tor M (not unique)
isomorphic to \Z,.

Proof. Only the last statement concerned to (1.7) will be required to prove.
Since |Fin M|<co, there is an m,>0 such that T, (A-tor M)C ‘™ A-tor M.
When we take as (A-tor M), any Z-direct complement of Fin M in A-tor M
(SAZ,+Fin M) it is a A,-submodule for m>m, therefore (1.7) will be ob-
tained. n

For a Noetherian A-module M, [*®}/ is pseudo-torsion free. In the re-
mained part of this section we treat only pseudo-torsion free case.
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Theorem 1.3. For a pseudo-torsion free Noetherian A-module M
(1.8) M=M,, iAtor M (Ap-direct)

for every m>0, where My,, is a A,-torsion free A,-submodule of M (not neses-
sarily unique). So, combining this with (1.7),

(1.9) M = My, + (A-tor M), 4+ Fin M (A-direct)
for every m>0.

Proof. Let @: M/A-tor MS#,A=7A,(m>0, r=r,=rl"). Since |Cokergp|
< oo, T,Coker @={0} for m>>»0. Then by the elementary divisor theory we
may put

(1.10) Im @ = (I, T) 4 -+ + (I, Ty)CiAp; m>0.

Fix such an m and put max{¢;} =¢, m+c=m’. Take ¢}, -:*, 0, and 7, -+, 7, E
M such that

@(o) = I're(l°, T,) the k-th direct factor of (1.10)
o(t) = T, € the same.

Put T,o,—I‘*+7,=p; which is in A-tor M. From (1.6) we may assume, renew-
ing m by a large one if necessary, T,(A-tor M)C2l(A-tor M) accordingly

Ny m(A-tor M)CI°(A-tor M)
where
(1.11) Nuyw =TT = 14+(A+T,)+ - +(1+T,) € Z|[T,] .
So, we can take p;EA-tor M such that N,,p,=0%pf. Then
(1.12) Twoy—IHNpwuri+pi) = 0.
Put »'=rl° and determine o4, -+, ojs, 7{, -+, TEM so that
, _ Join if k=10, 0<j<r
The1 = {T;’m if k=itlj, 1<i<l, 0<j<r
ot — {N,,z,,,r,-+l+p§+1 if k=0j, 0<j<r
Twohsr if k=i410°, 1<i<l;, 0L j<r
and then ¢}, -+, ¢;»>0 by
oy — {c,-+l if k=103, 0<j<r
0 if k=i4+10, 1<i<l, 0<j<r.
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From (1.12)

/
Tyoh = kel k=1, - 1’

therefore
Loty ooy aloy 7ly ooy > (19, Tor) 4 oo + (1%, Trt) C# Ay
namely this can be adopted as M, then (1.8) is A,/-direct. [J
We define ¢c=¢(M)>0 by
I’ = exponent of Coker (@p: M/A-tor M37,A,); m>0,

which is used already in the above proof. Every sufficiently large m>0 will be
said steadily large, when it admits the A,-direct decomposition (1.7), T, Fin
M=0, T,,Coker(p: M/A-tor M~#,A,)=0, and T, A-tor M=I""""T, A-tor
M c2lA-tor M for any m'>m.

Proposition 1.4. Let M be a torsion free A-torsion A-module. Then M=\2,
as Z,-module. Let E(M)=E(p,1, -+, p,*). Then there are A-submodules M,,

eeey M‘CM SuCh that E(M’.)zE(piei), M;nthMj: '{0}‘ (50 ziM.':iM;), aﬂd
l M: E;Mg l < oo,

Proof. The first assertion M =<\Z, is a direct consequence of Theorem 1.2.
Fix a ¢: M=E(M) and decompose E(M)=E(p,"1)+ -+ E(p,). Put M;=
@ Y(Im @ N E(p;%)). The three properties for M; will be easily checked. [

When E(M)=E(p°) we say the Noetherian A-module M is pseudo-inde-
composable. From the above arguments, pseudo-indecomposable torsionfree
M is characterized as a Noetherian A-module such that | p’M | <co but | p*~*M |
=oo for some prime p=(P(T)) (IA) in A and ¢>0. This e is determined
by rank,, M=e-deg P(T).

2. Artinian A-modules

Let R be the additive group of the real numbers, Z that of rational integers,
and T=R)|/Z be the 1-torus. Let T,=Q,/Z,, Q, being the l-adic rational num-
bers. From now on we fix a x€2lZ, and define an /-divisible group W by

(2.1) W =<lim, A/(I", T-«)
where the injective limit is given by the /-times map

2.2) A", T—r)—>AJ(I", T—r)
(F(T) mod (I", T— k) —~IF(T) mod (I"*!, T— )

namely, W=< T, abstructly and Tw=rw; weW. We denote for a A-module M



268 Y. Akacawa

M = Hom (M, W)
which is a Z;-T"-module, so a A-module by the usual right y-action

(2.3) (o) = (x(c?))'=2((1+T)o); x€M, €M
where T = (1+«) (14+T)'—1€A..

For F(T)e A we denote F(T)=F(T). Then F(T)—F(T) defines an involutive
automorphism (i.e. F(T)=F(T)) of A. Since A is a pro-/ group, the Pon-
trijagin dual M*=Hom (M, T) of a A-module M with left y-action (i.e. x'(c)=
(%(c”))"'=x(c")) can be identified to Hom (M, T,) which is, regardless the T'-
action, equal to M. When a Z,-T-module M is given, we made it a A-module
identifying the action of ¢ to that of (14 7')-multiplication, conserving the same
notation M. If we identify the action of v to (14T )-multiplication on the other
hand, we obtain a new A-module which we shall denote by M. From (2.3)

(2.4) M = M* (= (M*)~ = (M)* being the same) .
As we are treating always locally compact modules the following facts are held
iy M=M
i) M iAs Artinian if and only if M is Noetherian
iii) I*M=M if and only if Tor M= {0}
iv) A~M={0} if and only if A-tor M=M.
When M is Noetherian A-module we denote
M(n) = M|I"M; n>0
and when X is Artinian

X(n) = {xeX |t = 0} ; n>0

(so M(n)=(M(n))"). E.g. Z(n)= T(n)=Z|I"Z. When F is Noetherian and
Artinian in other words |F'|<<co, we use only n>¢(F), so there will come out
no confusion. We call the typical Artinian A-module

E(r; plely Yy p,") = (E(r; pltl’ B p‘es))/\
— PR 4 (AlB) e+ (A5

an elementary Artinian A-module. We have streightfoward versions of
Theorems 1.1~1.4 as follows.

Theorem 2.1. For an Artinian A-module X there is an elementary Artinian
A-module E(X)=E(r; p.", -+, p*) such that E(X)~X. The invariant of (E
(X)W {r; Py, -+, B} is uniquely determined dependig only on X but not on the
choice of ¢: E(X)3X. For any ¢: E(X)3 X, Im ¢ is always coincided with
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Cofin X the minimal A-submodule of X with finite index. O

We call the invariant of (E(X))" the invariant of X and denote it by inv X
namely under the notations of Theorem 2.1 inv X={r; p,", -+, p,*}. The char-
acteristic polynomial of X, the essential coexponent of X, and the coexponent
of X are given by fy(T)=f2(T)=IPy(T)" (pi=(P«(T))), e(X)=max; p,- &
1{®)=(the exponent of X/IX). When ¢(X)=0, X is called pseudo-I/-divisible.

Theorem 2.2. For an Artinian A-module X, A=X is characterized as the
minimal A-submodule (or A,-submodule, m>0) of 1>X with the factor module of
finite T)-rank so uniquely determined for any m>0 by

AgX =A"X;m>0.
Put deg fx(T)=n. Then
(2.6) I"X|A~X=A\T, (as Z,-module).
Specially if X is pseudo-I-divisible,
I"Ker T,y = Ker T,,; T, T,&Endomorphlsm (I*X/A>X)
for any m>>0 and m'=m+-n>m, and
(2.7) XIAX = (X|A"X), +FinX  (A,-direct)

where (X|A=X),, is the A,-submodule of X|A~X isomorphic to AT, and FinX is a
maximal Z,-direct factor with finite order (not unique), so (X/A"X) ,,=1"(X|A"X).
(]
Theorem 2.3. For a pseudo-I-divisible Artinian A-module X
(2.8) X=A"X +Xpsy  (Ap-direct)

for every m>0 where X,,, is a A,-divisibility-free submodule of X (not unique)
so, combining with (2.7)

(2.9) X = A"X +1°(Xp45) + FinX; m>0. O
Corollary 2.4. When X is Artinian in general,
(2.10) X=(A"X 1 I"(X4s))+(bounded exponent) O

Theorem 2.5. Let X be a A-divisibility-free and I-divisible Artinian A-
module. Then X =A\T;; A=deg fx(T). Fix a ¢: E(X)XX and let E(X)=E(p,",
v, DEY=B(pS)+-, +E(p). When we put o(E(p;")=X;, we obtain three
facts: i) E(X;)=E(pS), ii) X=X,+-+X,, and iii) | X;NZ;5X;|<oo; i=1,
T ’ 0
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As we have seen in Section 1, E(X) X does not mean X~ E(X). Butif
A~X= {0}, after easy discussion we can form the inverse.

When E(X)=E(p‘) we say the Artinian A-module X is pseudo-indecompo-
sable, similarly as Noetherian case. The pseudo-indecomposable I-divisible
A-module is characterized as an Artinean A-module such that | p’X|<<co but
| p* 7' X | =00 for some prime p=(P(T)) (*(!)) in A and e>0. Then E(X)=

" B(p°) and X = T"98 P@ ahstractly.

3. Pairing
We denoted the ["-torsion of an Artinian A-module X by
X(n) = {x€X|I"x = 0}.

In this section X and Y are Artinian A-modules. Assume that there are pairing
maps
Yt X(m) X Y(n)—>W(n)

at all n>1 satisfying

(3°1) ‘l"n(x+x,’ y) = ‘I"n(x’ y)+‘l"u(x’r y)
'\l"n(x) .’V‘l‘y') = "I’n(x) y)_,_‘!"n(x’ y’)
(3.2) Yull”, ¥) = Yruns(*”, 3)

"l"n(x' ly”) = ‘I"n+1(x: y”)
for any x, x'€X(n), y, y'€Y(n), ¥’ €X(n+1), y’€Y(n+1). Then we call the
set Y= {4r,} a pairing of XX Y. When a topological group A acts on X, Y,
and W and ) satisfies further
(3.3) Yra(x2, ¥°) = P, (x, y)?; SEA
for x€X(n) and yeY(n), we call 4 a A-pairing of XX Y. A T'-pairing is
specially called A-pairing, for which (3.3) is equivalent to
(34) VuF(T)x, y) = Yra(x, F(T)y); F(T)EA

because, if (3.3), Va(T%, y)=1,(1+T)x, Y)—vra(%, ¥)="ra(®, (14+T)'y)'—
Yru(®, ¥)=4rn(%, Ty) and vise versa. Let X'CX and Y'CY be A-submodules.

We put
X" (Ya) ={y€Y(®) [4(x, y) = 0 for any x& X' (n)}
Y™ (Y) = {x€X(@) [4ra(x, y) = 0 for any yeY'(n)}.
Since
X)) C X" (Yrper) and samely Y (4r,) C V" (Yr0r)
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because of (3.2), we can define
X"*(¢) = lim, X"*(4,)CY and Y'*(¢)=lim, Y'*(¢,)CX
which are A-submodules respectively if » is A-pairing. In general

X)) DX (¥)

and the equality is held if X' is divisible, because of (3.2). Similar facts will
be held for Y’. When (Y *(«4r))={0} for some d >0, » is said left pseudo-non-
degenerate and the minimal d; of such d is called the left degeneracy of 4». When
d;=0,  is said left nondegenerate. The terminologies about right hand side
will be used similarly. We put max {d,, 4,} =d(«) and call it merely degeneracy

of 4.

Proposition 3.1. i) Let X, X', Y, and Y’ be Artinian A-modules. As-
sume there are A-homomorphisms

px: X=X, @y YY",
If a A-pairing " : X' X Y'—>W is given, we can define a A-pairing \p: XX Y —>W
by
Yal, ¥) = Vi(@x(x), r(y)) -

il) Assume both @y and @y are surjective and there are ¢>0 and ¢’ >0 such that
I(Ker @x) = {0} and I(Ker @y) = {0}.
If there exists a A-pairing p: XX Y —>W, we define ry: X'(n) X Y'(n)—W(n) by

Vilpx(%), Pr(3)) = Vall'x, I'y) .

Then )}, is well-defined and '={yri} is a A-pairing on X' X Y'. The succession
of this map \p—>r' after the one '—r given in i) coincides with 1°* -times map
‘I’, — l‘+cl'\ll"

When specially X and Y are divisible (accordingly so are X' and Y'), »'=0
will follow only if 4r=0.

Proof. Only the last assetion will be required to prove. From the di-
visibilities of X and Y any x& X(n) and y& Y(n) have I="~“x& X(n+c+c’) and
l""'y eY(mn+ctc). If =0,

‘I"u(x7 .’}’) = Ypietc! (l-c-c, %, y)
= "l"n+c+c' (lc(l-‘_c,x)i l"(l-c-CIy))
= Yriero (@x(177%), @y (I77)) = 0. O

Our interests are on the pseudo-nondegeneracy of +Jr, so the discussion will
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be limitted in the case where X and Y are divisible.

Theorem 3.2. Let X and Y be divisible Artinian A-modules and fy(T) and
Fy(T) have no common prime factor. Then any A-pairing \p: X X Y —W is trivial.

Proof. Case 1. One of X and Y is A-free, say X=#A. Take rE X(n)
and ye Y(n). Since both X and Y are injective limits of finite /-groups, there
is m>>0 such that

Tyx=0, T,y=0, and T,W(n)=0.
Since A=lim,, , (A/(I", T.)), we have A=l£n,,,(A/(l”, T,))" so
X(n) = #(limy, (A/(, Ta))") -

Here (A/(I", T\w)) =(A/(I", Ty))* as A,-modules if m'>m because of T, W(n)
=0 and A/(I", T,)=Z,(n) [['(m')] a self-dual A,-module. Put I'(m, m')=T""/
"™ CT(m')=T/T"". Since Z(n)[T'(m')]°™»" (the submodule of T'(m,m’)-
invariant elements) coincides with the norm group Ny, w) Z;(#)[T'(m')] we can
write with ' € X(n) and m'=m-n,

¥ =Nyt =[1+1A+T,)++(1+T,)" x".

So
Yra(, y) = “I"n(Nm’mx,) ¥) = Yra(x, my)
=, (x', I"y) = 0.

Case 2. One of X and Y is A-divisible, say FASX surjective. Think of this

id.
#A—X and YL—> Y. From the results of Case 1 and Proposition 3.1, I4p=0 if
I*(Ker (fA—X))=0. So, from (3.2) and the divisibilities of X and Y, +»=0.
Case 3. A*X={0} and A*Y={0}. Since E(X)3X and E(Y)3Y are both
surjective from the divisivilities of X and Y, we have

Fo(T)X = {0}, fo(T)Y ={0}.
From GCM {fx(T), fy(T)} =1 we can find A(T), B(T)EA and m>0 such that
A (T)+B(T)f(T) = I".
Here, for any x€ X(n) and y& Y(n) we take [""x X(m+n) and [""ye Y(m--
n) then
Yra(, y) = Ymsal® I="y)
= Ymia B(D)f(T)""x. 17" y)

= Vusnl B(T) ™", 17" f(T)y)
=0.
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General case. Using Theorem 2.3 we decompose
X= XAdf-i'AmX, Y= YMf'i'A“Y.

From the above results, the four restrictions Y| xpasxyaas -+ €tc. are all naught
pairings. (]
Corollary 3.3. When X and Y are divisible and +p: XX Y —->W isa A-

pairing,
Y () DA”X, X*()DA"Y. O

By the similar calculations used in the above proof Case 3, the next theorem
is easy therefore the proof is omitted.

Theorem 3.4. Let X and Y be divisible Artinian pseudo-indecomposable
A-modules such that E(X)=E‘(p’), E( Y)=E(1_Jf ) with e, f >1 where p is a prime
in A. Then, for any A-pairing : XX Y —>W,

Y*()Op’X and X*(4)Dp°Y.

Therefore if e>f (or e<f) +r is left (or right resp.) degenerate, accordingly if e+
fs A is degenerate. O

Let
X = A" X4(I"X)pas+(bounded exponent)

Y = A*Y+4(I"Y)pss+(bounded exponent)
as in Corollary 2.4. From Corollary 3.3
Yl a=gxx = 0 and Yr|gxp~x = 0.
Of course
V| (bounded expxk  ANd Y| sex (bounded exp)

have both bounded exponents. So, about the pseudo-nondegeneracy of v only
to investigate

¥l U7X 74U gy,

is interseting. When the last is pseudo-nondegenerate, we say 4 is essentially
pseudo-nondegerate.

Theorem 3.5. Let X and Y be divisible A-divisibility-free Artinian A-
modules and p: XX Y —>W be a pseudo-nondegenerate A-pairing. When E(X)=
E(p", -+, p), E(Y) is of the form

E(Y) = E®, -, D) -
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Put
X=X++X,, |[XiNZX;|<oco
where E(X,)=E(p") the i-th direct factor of E(X) (cf. Theoren 2.5). Then we
can put
Y=Y ++Y, |YiNZuY;|<co
where E(Y;)=E(p,") the i-th direct factor of E(Y) and
pseudo-nondegenerate if i=j
0 if i+j.
Proof. Let E(X)=E(p, -, p") and E(Y)=B(&/, -, 9/). Put X+
<+ X,=X{(=0if s=1). Then

"I"IX;XY} is{

X=X+X{ and I'(X;NnX{))=0 for some e>0.

Put Y,=I"(X{*(4)) and Y{=I"(Xi(¥)). Since I‘(X;(n) N X{(n))=0, it follows
that
LY@ CXE (W) (n2e)
CXT () + X1 (Yrn)
and consequently
Y=I'Y=Y,+Y].

From this we know that s>2 means t>2. Interchanging X and Y, s=1if and
only if #=1. The proof will be done by the induction about s easily from
here. O

4. A-modules comming from Galois theory of the cyclotomic
Z-extension

We fix an algebraic number field %2 having a finite degree over the rational
numer field @ and its algebraic closure k*4/k. The algebraic closure of the
local field k,, the completion of & at a prime spot P, is obtained by the composite
of k, and k¢ ki'*=Fk k5. An algerbraic extension of % is always taken in k*/¢/k
and the local one in k3'¢/k,. We put

$n = exp 2ri[l")Ek¢; n=0,1,-.
For a local or global field F the rational integer »>0 such that {,&F but {,, & F
will be denoted by »(F). When a Galois extension of a field has a pro-/ group
as its Galois group, we call this extension a Galois /-extension and a subfield of

a Galois l-extension merely l-extension. Let co>p(F)=v>1 (>2 if I=2). We
put F,=F({,.,); n=>0, the cyclotomic cyclic extension of degtee /" and F,=F({..)
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=F(,|n=1, 2,...) the cyclotomic Z,-extension. Let Gal (F,/F)=T=<y>
and y:§,—0%, k€21Z,, n=1, 2, ---. We define an involutive automorphism
F(T)—F(T) in A as in Section 3. Assume we are given a Galois /-extension
Q/F containing F,. Put

M = Gal (Q/F,)/Gal (Q/F,)

where Gal (Q/F,)° denotes the commutator subgroup of Gal (Q/F,). After any

extending of ¢ in Gal (Q/F), via the inner automorphism ¢ ¢ ~'oy, M becomes

a Z;-T'-module, accordingly a A-module. By Kummer theory we can identify
M(n) = Q" NFX)/(F2)"

Therefore, noting that ((Q" NFZ)/(FX)")=(Q" N F*)[(F*)"<Cyxy where (¥)°

means the subgroup of the I'-invariant elements, we know

Lemma 4.1. (4.1) (M/TM)"n)=(Q" NF*)[(F*)"{ym-.
Therefore

(4.2) (M|TM)" = lim, (Q"NF)F*)"Eor
being defined by the l-times map (Q" N F*)[(F*)"ym>—(Q" NFX)[(F*)y"
vy such that x mod (F¥)"C iy et mod(F*)"'(Eyepy. (]

When Gal (Q/F) is a free pro-I group with r free generators we call Q/F a
free pro-/ extension of rank 7.

Lemma 4.2. Assume Q/F is a free pro-l extension of rank r. Fix an m>0
and put Gal (F,|F)=T(m)=T|T"". Then

(4.3) M = (r—1)'A

(44) lim, (" N F3)/(F5)") 2 Gumremy X (r—1) Z,[T(m)]

being defined by the canonical map ("' N F3)[(F )™ '—(Q" N F3)/(F%)" (x mod
(F%)"—x mod (F3)™.

Proof. Take {y, oy, :**, o,_;} a free generator system of Gal (/F) so that
7 is as above and oy|p, =id.,i=1, .-, 7—1. We know for the free pro-/ group
Gal (Q/F) and its normal subgroup Gal (Q/F,) with finite cyclic factor group
T'(n)=TT",

Gal (Q/F,)=<¥", v oy |1<i<r—1, 0<j <I"—-1)>

a free pro-I group of rank (r—1)I"4+1. (Schreier’s Theorem, regardless pro-I
topology. To modify it in the case of pro-I group is an elememtary work.)
Therefore

Gal (Q/F.)/Gal (Q/F,) =(r—1)"Z,[T(n)] .
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Taking l;_uf_l,,, we have
M= (r—1)A.
The next (4.4) is a direct consequence of (4.1) and (4.3). O
Now, at each p in k we shall fix a free pro-I extension .Qp/k,p satisfying
(4.5) Q° Dky, -

When b is not on (), QF is necessarily the unramified Z,-extension. For any
finite J-extension K|k and a prolongation P |p, we put

Q% = O°K/Kg
which is also a free pro-/ extension, because we can regard Gal (Q®/Kgp)C Gal
(ﬂ”/kp) with finite index. Let Kj=lim, K§/K3%" the pro-l-closure of K.
Any element £ K5 is written as
g = lim (&,mod (K%)"); £,€K%, £,=E,, mod (K3)".
We call £ an O®-element if
K, ("VE)COB®; n=1,2,....

The group of the Q®-elements will be denoted by Eg, which is nothing but the
left hand side of (4.4). Therefore

Proposition 4.3. Let rank Gal (Q.*’/kp)=rp. Let ky,,=Kg. We have Ki>

EgD<8ymy; v(B)=v(Ks), and
Egp = X (ry—1)'Z)[T(m)]  (direct).

Regard 75;,? C Ky canonically, the former being composed of all the Gal (Ksp/ky)-
invariant elements. Then Ey=Eg N\ ky=Nggu,Es. O

A local abelian /-extension F/Ksgp will be called an Q®-orthogonal extension
if

EaC NpjxgF ™ (= NKgcF'CF, [F : Kgl<oNF/KaF™*CK§

a compact subset)

For example, if P is not on (/), then OB =Kg,. When Q¥=Kg,, Eg=<E\w)>
and an OQ%-orthogonal extension is the compound of all the Z,-extensions or one
of its subextensions.

Proposition 4.4. If ®B is not on (), an Q®-orthogonal extension of Kg is no-
thing but the cyclotomic (or samely, unramified) Z,-extension Q®|Kg or its subexten-
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ston. If B is on (1), the maximal Q®-orthogonal exension of Ky is a ([Kg: Q]+2—
rp)ple Z-extension:

Gal (max. Q®-orth./Kg) == ([Kg: @,]+2—rg)"Z,

where rg=rank Gal (O%/Kgy). In the case k,C KgCk,,=k,(L.), an abelian ex-
tension F[k, is QP-orthogonal if and only if so is KaF|Ks.
Anyway, any abelian extension in QO®|Kg is Q®-orthogonal.

Proof. We may treat only the case B|(/). By Artin-Waples theorem
Kg/<Eva> = ([Kn: Q]+1)'Z,.

Using the local class field theory and Lemma 4.2 we can determine the type of

Gal (max. Q®-orth./Kg) as asserted. Since (after extension to lg ) norm residue
symbol (&, F/k,)=id. for any £EE, if and only if F/k, is QP-orthogonal, we can
conclude our proof because (¢', KgF, /K%)Z(NKm/kp &', F|ky); '€ Eg and NKg/k,
Eg=E, by Proposition 4.3. O

Next we shall define global matters. From now on we fix k such that
y(K)>1 (=2 if [=2).

Let K/k be a finite l-extension, again. If L/K is an /-extension and every
KgL is in Q%, then we say L/K is an Q-extension. If M/K is an abelian [-
extension and every KgM/Kg is an Q®-orthogonal extension, we say M/K is an
Q*-extension. An abelian Q-extension is always Q*-extension by Proposition
4.3 and an Q'-extension is always /-ramified, i.e. unramified at every P not on
(/). Noting that the compound of Q-extensions is again an Q-extension and
samely for Q*-extensions, we can define

Q%(K) = the maximal abelian Q-extension of K
0*(K) = the maximal Q*-extension of K .
For infinite extension k,/k we put
Q%(k,) = U n<a (k)
Q4 (k) = U ¥*(k,) -

Since both Q(k,) and Q*(k,) are Galois over k& and contained in the maximal
abelian /-ramified /-extension k" ~7*" |k,

M = Gal (Q%(k,)/k.)
N = Gal (Q*(k,)/k.)

are Noetherian A-modules by Lemma 4.1. Further we put
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X=M

Y=N

which are Artinian A-modules. We can set
X(m) = (Q"(k.)" NED)(RD)"
Y(m) = (k)" N E)/(RE)"

by Kummer theory.

5. A pairing defined by the triple symbol

Here we shall define a pairing ¥: X X Y —W using the triple symbol ([1]).
The symbol (x, y, 2|k);» is defined when {,Ek, x and y are strictly orthogonal,
and three elements ¥, y, and 2z are orthogonal in some conditions. Specially if
I=2, the definitions are complicated, but if {,,,Ek they are a little simpler (cf.
Introduction of [1]). We shall recall them here. Take

% = (xmod (BX)"YE X(n), »€Q(k,)" Nk
¥ = (y mod (&))"Y€ Y(n), yeQ(k.)" Nk

and m>»0 so that x, y, {,ERk, (then x&€Q%*(k,)" Nk} and yEQ*(k, )" Nk for
some m’'>m. From Proposition 4.4 we have also yeQi(k,)" Nk%). Then
three elements {x, y, £y} Ck are orthogonal mod (k3)" i.e.

Xy — (2 €v+m — §v+m —
(%)x” - (l—j)—>1” o (Tx)t" o

at any p in k, about Hilbert-Hasse symbol and specially {x, {\,,} are strictly
orthogonal mod (k%)", i.e. moreover

k(" %, " Erim) Q!

at any [|(/) in k,,. (Samely as the case /32, in case /=2 and {,,,Ek,,, We say
x and {4, are strictly orthogonal mod (k)" if some one in x(k})" and the other
in &, .(k%)" are strictly orthogonal. When /=2, some more conditions than
the above inclusion are required outside / for the strict orthogonality, but in the
present case where {,.,Ek,, we may check further only that x and ¢,.,,, are
orthogonal mod (k3)?""". These will be known easily if we compair the original
definition of strict orthogonality and the present modified one. Of course x
and {4, are orthogonal mod (k%)*"".) Since y€Q* (k)" Nk} it follows that
(&, | kma)n=1 for E€(Q9)" Nkmg*. So, using the statements at p169 [1], (the
l-independence of {x, {,.,} is not essential as seen in ii) 3 [1]) the symbol in ex-
tended sense
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(x’ §v+u, Y g,,lk.),n (=(x, Cy.,.,,,, J’)z" by abbrev.)

can be defined. Fix an identification W=<{.>=<¢,|n>1) correspomding w,
=(1 mod (", T—«k))eW to {,. We put

(5°1) ‘I’,,(ﬂ, 5’) = (xa Evtm y)l” .
Denote the set of all the [ in &,, over (/) by S(k,,) or simply by S.

Proposition 5.1. By means of (5.1) W,(®, ¥) is well-defined, namely the
value (%, §yim ¥)in tn W does not depend on the choice of m>0 and x, yEk,, such
that £, (and ¢,., if 1=2)Ek,,, 2=(x mod (kX)"), and y=(y mod (kX)").

Proof. At first we fix an m>0 as above and assume & is of order I*, i.e.

(5.2) x & (kn) <Eyim -
Put &,,,,=K. As it is shown in Proposition 1 [1] we can find a€ K* satisfying
(5.3) a""=xmod (K*)¥'

for o= Gal (K("\/%)[ka(""/%)) such that &,y min"=Eulvimsn

(5.4) Gal (K("V/'%, "'\/a)|K)=Gal (K("\/%, "'/ @) ka("\/ %))
=Z(n)X Z(n)

(5.5) Ent(Cyimen " V%, "a)CQ at any IES .
Then the principal ideal (a) in K can be written as
(@) = a (mod I"-power, mod S) in K

where a is an ideal in k&, having no-S-factor, namely (a)=a except /"-th power
ideal and S-factor in K. After these preliminary, the triple symbol is well-
defined by

(%, Evimr Pin = (%)

I’l

using the Hilbert symbol on the right hand side. Here we remark that the
condition (5.4) is equivalent (under (5.3)) to the splitting of the canonical exact
sequence

1->Gal (K("\/%, "\/a)|K)—Gal (K("\/%, ""\/@)/ks)
—Gal (K/ky)—>1

in other words

(5.6) =1,
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As far as we use (5.6) instead of (5.4), the first assumption (5.2) is of no use for the
definition of triple symbol ([1], p175 ii) § 3) so (5.6) is more useful than (5.4).
After m is fixed the choices of x, yEk,, are free by the multiplying of elements of
RN R=(k%)"<C\rmp therefore x and y may be replaced by ¢ and y¢'; &, &’
€(k%)"<Cysmy. But, even this replacement we can use the same a because x&
=x mod (K *)", therefore a is reserved and

()= (55,

using £” & (K *)"{,ysminp such that Ny, £”=¢’ mod (k)" and continuing the
calculation

4
= H‘B in a, in K(a’ Cqle)’n

t”,alK)n

= Hm(l)( T

=1

by (5.5). Accordingly

)= ()

Thus, we may show the independence of our symbol about the choice of m.
Let m’>m. The remained task is to show

(57) (x, §v+m’) Y gn l km')l" = (x, §v+m1 Y Cﬁ | km)l" .
Assume in a time being
(5.8) yEQ(k,)" Nk

samely as x. Since {yym=N, s, Ev+m’» from the transgression theorem of triple
symbols ([1], Theorem 1 IV)) we have (5.7). When not necessarily (5.8) is
held, let ¢’ K'=k,, ., satisfy the equivalents of (5.3), (5.6), and (5.5), over k.
Put L=km(¢v+m’+m l”\/&) ’”\/‘_lr ’"\/?) (Or:km(§v+m’+n+1a I”H\/&) 1"\/;1, ’”\/E)
if I=2). Since

kmLcC Q! at each leS
we have

YE Nk Lk (kL) at each €S

(c.f. Lemma 1 [1]) so, using the density theorem in the class field theory we can
find z&L* such that
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(5.9) Ny, 2=y mod ((kmiL)*)" at each € S
(5.10) (2)=38 (mod S(L)),
B being a prime in L fully decomposed in L/, .
Put
Nip, 2=y Eky .

Then from the definition we have easily

 Evam V'3 Eulk)in = (—Jiii@)lu =1,

oy bk = (2R}
(x,Cv+m,ya§n,km)l "‘( a’ )I”—l,

of course after the checking of the posibility of definition. So, for (5.7) we may
prove

(5.11) (®, Cyim YY" Calbu)in = (% Cotmty V' ™%; Col b )in «

But in this time {x, £, ¥y’ "'} in k, are strictly orthogonal mod(k.)" by (5.9)
and (5.10) accordingly so are {*, {y,,, ¥y’ "'} in k,s. By the same reason as the
case of (5.8) we can obtain (5.11). O

Now, our ¥,: X(n)X Y (n)—W(n) satisfy (3.1) because of Theorem 1 [1].
When 2=(x mod(k,)"")eX(n+1) and y=(y mod (k,)")€ Y(n), I2=(x mod
(k.)")E X(n) and y=(¥' mod (k,)" )€ Y(n+1) therefore

‘Pn(lx: 5’) = (x’ §v+m y)l" (x! yEkm)
= (x: Cvim y’)l"ﬂ
= \I’nﬂ(x: 5’)

which means the former of (3.2). The latter will be obtained by the alternative
arguments samely. As (3.3) follows from Theorem 1 III [1] we can conclude

Theorem 5.2. Our ¥={W¥,} is a A-pairing XX Y >W. O

6. Quasi-nondegeneracy of ¥

Lemma 6.1. Let §,Ek and an ideal a in k have no S-factor. Assume

(6.1) (lellﬁ) =1 forany ye*(R)"nk*.

Then there is an element cSk>* such that

(6.2) (c)=a (mod I"-th power, mod S)
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(6.3) k(") at every 1|()).

Proof. Let the idele group of & be J;, the principal idele group P, and the
idele class group C,. From the class field theory we can set

jl:l"nPk = Pk‘”
so the canonical sequence
1-P,/P, k’”—’] W] =Gy Cf' 1

is exact. Any element y&Q*(k)" Nk* defines an idele class character X,Eé,,
cJiby
xy(x) = Haﬂp (xwy!kp)l"; x=(-, Xps “)EJ

using local Hilbert-Hasse symbol (,, y|k,);». Define a character group X by
X = {x,elyea k) nk}cCcf,.

The class field theory again says the kernel of 2 in C/C;" is (I, E,)C,"[CV".
If e=(-+, ¢y, ---)E Ji is such one that (¢)=a and ¢;=1 at every &S, then (6.1)
says e€(I1 E,)P, ], W so there is c€ PN e(I1 E,) J" which will satisfy (6.2) and
(6.3) by itself. O

Proposition 6.2. Take ®=(x mod(kX)")€X(n). Fix m>0 such that x<k,,
and an e>0. If

far any $=(y mod (kX)")E Y(n) defined in k,, (i.e. yER,,) then we can find be K
=R,1, Such that

(6.5) b7 =« mod (K*)"

for c€Gal(K|k,), o Lyimint Eubrimin, and

(6.6) K("Vx, "Vb)cQ®¥K).

(Note that, in (6.4), m is fixed previousely and then ¥ runs in ¥Y(n).)

Proof of Proposition 6.2. Take a=K and determine a in &, as in Pro-
position 5.1. From (6.4)

ylkm I.__ -+ i x
(_a )ﬂ_l for yEQ* (k)" Nk,

namely
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From Lemma 6.1 there is cEk,, such that
(¢) = a* (mod I"-th power)
EmK("Ve)c Q! atevery 1€S(k,,)
So, we may put
b = a'c!. O

Proposition 6.3. Assume M(X)=%=0 and fix two numbers n>e>e(X). Take
an R (I X) paf(n) such that 1°®=0. Then

(6.7) W,(%, ¥)=%0 for some y= Y(n).

Proof. Let my,>0 be the number such that any m>m, is steadily large.
Since (I*X) 472\ T, we know for the given # and e, |(I"X),,,(n—e)| <oo, so
there is an m>m, such that

(6.8) Th(I"X)pas(n—e) =0
and & is defined in &,, i.e.
% = (x mod (kX)"); xEk, .
Assume on the contrary of (6.7)
v, (%, ¥)=0 forevery ye¥(n).

From Proposition 6.2 we can find a b€ K=k, s atisfying conditions (6.6) and
(6.5) in other words, we can set b=(b mod (kX)")€ X(n) such that

—T,b==%.
These imply
(6.9) I'2 = —TIbeT,(I° X(n)).
On the other hand, from (6.8) and the A,-direct decomposition
X = (I"X)pay+ A~X +(finite)  (cf. Theorem 2.3)
we know
(1" X ) pg 1) O Tl X(0) € (1 X ) paf(1—) O Tu( (X ) (n—£)) = 0.
Since /20, this contradicts to (6.9). O

With the alternative assertion to Proposition 6.3 interchanging X and Y,
we obtain the next theorem.
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Theorem 6.4. Let V: XX Y—>W be the A-pairing defined in Section 5.
This U has the left degeneracy dy<e(X) and the right dy<e(Y), and consequently
W is essentially pseudo-nondegenerate. O
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