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0. Introduction

The purpose of the present paper is to study the growth of certain harmonic
maps in relation with the geometry of the domains and ranges.

Let ¢: M— N be a harmonic map between complete noncompact Rieman-
nian manifolds M and N. We fix a point o of M (resp. a point o’ of N) and
denote by 7, (resp. 7y) the distance to o in N (resp. o’ in N). Set u(p; t):=
max {ry(¢(x)): xE M, ry(x)=1t}. We want to know the growth of ¢, or the
asymptotic behavior of u(¢; ) as ¢ goes to infinity. We first recall the following
result by Cheng [8] (cf. also [3] [31: Chap. 6]): Suppose that M has nonnegative
Ricci curvature and N is a Hadamard manifold, namely, N is a simply connected
and nonpositively curved manofod manifold. Then the energy density e(¢) of
the map ¢ satisfies: e(¢)(0) <c,u(¢p: t)*#, where c, is a constant depending only
on the dimension 7 of M. It follows that ¢ is a constant map if ¢ has sublinear
growth, that is, HI:E rinf wr(p; £)/t=0. We are interested in a (nonconstant)

harmonic map ¢: M— N which has linear growth, namely, which has the pro-
perty that lim sup u(¢; t)/t<+4oco. For instance, it turns out that a harmonic
t-»oo

map ¢: M —> N of linear growth must be totally geodesic if M has volume growth
of at most quadratic order (cf. [9]). It has been also proved in [24] that a
d-closed harmonic 1-form of bounded length on M must be parallel if the sec-
tional curvature of M is nonnegative and decays quadratically. Moreover Li
and Tam [26] have shown that the dimension on the space of linear growth
harmonic functions on M is less than or equal to 241 if the volume of the metric
ball of radius ¢ around o is bounded by c#* for some constant c.

On the other hand, we can construct a noncompact complete manifold M
of positive Ricci curvature and a harmonic map ¢: M— F of bounded energy
density from M onto a complete manifold F of nonnegative Ricci curvature
(cf. Example in Section 2). It turns out from the construction that ¢ is a
harmonic marphism from M onto F with totally geodesic fibers, namely, it is a
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map carrying the germs of harmonic functions to the germs of harmonic func-
tions such that the inverse image of ¢ for each p of F is a totally geodesic sub-
manifold. For example, in case F=R, ¢p: M—R is a harmonic function of
linear growth which is not totally geodesic, and in case F=S", ¢g: M— S? de-
fines a harmonic 1-form of bounded length which is not parallel. Moreover we
observe that if F' admits a harmonic function 4 of linear growth, then the com-
position hopp: M—> R is also a harmonic function of linear growth on M. It
is not clear whether there exist (nonconstant) harmonic maps with linear growth
between manifolds of nonnegative Ricci curvature and Hadamard manifods of
negative curvature.

We shall explain briefly the contents of this paper. In Section 1, we con-
struct equivariant harmonic maps by solving certain ordinary differential equa-
tions and discuss their growth in some cases (cf. Theorem 1.1). Section 2 is
devoted to the study of harmonic morphisms and their growth. For example,
we shall give a lower bound for the growth of harmonic morphisms under cer-
tain conditions (cf. Theorem 2.10). In Section 3, we consider harmonic maps
with linear growth between manifolds of nonnegative Ricci curvature and
Hadamard manifolds and get sufficient conditions for such maps to be totally
geodesic (cf. Theorem 3.2).

1. Examples of equivariant harmonic maps and their growth

In this section, we shall first show some examples of equivariant harmonic
maps and then discuss the asymptotic behavior of them at infinity. See e.g.,
[4: Chap. 6] for a general theory on equivariant harmonic maps.

1.1. Letusfirst consider simple equivariant harmonic maps between rotational-
ly symmetric spaces. To begin with, take a smooth function % on [0, o) such
that

(1.1) 7(0)=0, (0)=1 and 2>0 on (0, ),

and also a smooth function £ on [0, o) with the same property (1.1)as . We
denote by g, a Riemannian metric on R™ which can be expressed as g,=df*+
7(£)*d@* in the polar coordinates (¢, 8). Let us denote by R, (resp., Ry(T)) the
Riemannan manifold (R", g,) (resp., the metric ball of R", with radius 7" around
the origin) for simplicity. Let ¢: S™~'— S*"! be a harmonic map from the
unit sphere S™7! of R™ to the unit sphere S*~! of R” with constant energy e.
For a positive smooth function ,(¢) on (0, T') (0 < T <4 o0), define a map
Fi: R*(T\{9}—>R'; by

Fi(t, 0) = (au(t), $(9)) -

Then it turns out from direct computations that F, is harmonic if and only if @,
satisfies an ordinary differential equation:
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(& /() Py ()= 5 0t () = 0

on (0, T'), where P,(f)=(m—1)ty'(¢)n(¢) and Q,(2, s)=et5 (t)~2E(s)E'(s).

Let us next consider equivariant harmonic maps from the Riemannian 4-
manifold R, ... described below to R% or R't . Let Z,, Z, Z; be a left
invariant orthonormal frame field on the unit 3-sphere S° such that [Z}, Z,]=
2Z,, [Z,, Zy|=2Z,, [Z,, Z,)=2Z,. We denote by Q; (=1, 2, 3) the dual forms
of Z; and consider a Riemannian metric g,,,,,, on R* of the form:

Enyngmg = dtz+ ﬂl(t)zﬂlz—l" 7)2(t)2022 + ’73(t)2‘032 ’

where 7; (i=1, 2, 3) satisfy (1.1). As before, R*,,,,, (resp., R%,,.,(T)) stands
for the Riemannian manifold (R*, g, 4,»,) (resp., the metric ball around the origin
with radius T').

Let +r: S*— S? be the Hopf fibering and assume that Ker yry=2;. We
consider the case n=m,, and set y=7, and A=zx;. Given a smooth function
a,: (0, T)—(0, o) (0<T <+ o), define a map F,: R*,,\(T)/ {o} = R% by

Fyo2, 0) = (ai(t), ¥(9)) -

Then direct computations show that F, is harmonic if and only if «, satisfis the
following ordinary differential equation:

(&) (1) Pa(0)e (0= Qult, (1) = 0
on (0, T'), where P,(£)=2{2%'(t)5(2) +X'(#)M(#) "} and O,(2, s)=_8x(t)~2E(s)E"(s).
Let F3: RY, ;. (T)\{0} = R*,, be a map difined by
Fa(t7 0) = (as(t)’ 0) ’
where ay(2) is a positive smooth function on (0, T'). Then the equation for the
harmonicity of the map Fj is given by

(B o (t)+- Pt ()= O(t, (1) = 0

on (0, T'), where Py(t)=t 3.1 //(£)7,(2)™" and Qy(t, )= a5 7:(8) " £/ ()E:(s)-
Finally let us consider equivariant harmonic maps between R?-bundles
over 2-sphere S? with certain metrics. Take first a smooth function g on [0, o)

such that
(1.2) g(0)=1, g'(0)=0, and g>0 on [0, )

and also a smooth function 4 on [0, o) with the same property (1.2) as g. Let
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n be a function satisfying (1.1). Then define a Reimannian metric G'g,,,,,, on
S?x R? by

Gopn = EOHQP+Q2)+h(2) Q7+ (t)d6?,

where {Q,, Q,, Q;} are, as before, left invariant 1-forms over the unit 3-sphere
S%in R*=C? Given an integer k, we consider the quotient space L*, or the R?-
bundle over S? by the action of S* on S3®X R?: (p, ¢, 0)e™=(pe™®, t, 0—ko).
Then the metric GK,,,.,, descends to L* and define a Riemannin metric G,,;, on
L*, since the action preserves the metric. We denote by L*, , , and z,: (S*X R?,
GK,,,,,,)—>L"A,, ».n» Tespectively, the resulting Riemannian manifold (L*, G, ;) and
the Riemannian submersion. Moreover the radial function ¢ on S*x R?, which
is the distance function to S3x {0} with respect to G,;,,, descends also to the
quotient manifold L*, , , and defines the distance function to the zero section S%
of L* with respect to Gy, ». We put L*, , (T)={xe&L*, ,,: (x)<T}. Fora
pair (k, ) of integers such that & divides /, i.e., /=nk for some integer n, we take
two Riemannian manifolds L*, , , and L'z 7 5 described just above, and consider

amap F: L, (T)\S*—L'; 7 7 defined by
F(mi(p, t, 0)) = =i(f(P), a(t), ba(0))

where f: S®— S? is a symmetry of the Hopf fibration (i.e., a unitary transforma-
tion or the composition of a unitary transformation and the conjugation), o, is a
positive smooth function on (0, 7'), and ¢,: S'—>S* is the rotation given by
$u(e®)=e". Then direct computations show that F,: L*, , (T)\S%—L' ;.7
is harmonic if and only if «, satisfies

(E) //(0)+ PBt(0) = Qult et) = 0
on (0, T'), where

B o) — o 20 FoltPH@)LHP ()
)= (2 -+ s b))

ol BOF) | wE R )R 6) B () '()
01,9 = (25 g+ HE PP P+ ()Y )

We note here that Py(#) and Q.(t, s) (i=1, 2, 3,4) have the following pro-
perties:

1) lim Py(#) = pi+1,
where p,=m—2, p,=p;=2 and p,=0;

@ tim -0/, = g,

2,80
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where ¢,=e¢, ,=38, ¢,=3 and ¢,=n?;

(3) there exist positive numbers £, and s, such that
(1.3) 0t 0)=0, 040,5)>0 (0<s<sy),
0<Oit, )0, 82) (0<t<ty, 0<s5,<5,<<8,) -
In the last two inequalities for the case: i=4, it is assumed that
(1.4) Z)>0 and Z'(s)>0 on [0, s].
Let us now state some results on the existence of certain solutions a;(#) of
equation (E;) (i=1, 2, 3,4) and their asymptotic behavior as ¢ goes to zero and

also tends to infinity, under some conditions. The proofs will be found in the
next subsection.

We assume first that #40 for the case of :=4. Fix an 1€ {1, 2, 3,4}.
Then given two positive numbers %, and s, for which (1.3) and (1.4) hold, there
exists a monotonically increasing, positive solution a;: (0, #]—>(0, o) with
o(ty)=s, such that

lim sup log a,(?) <uw(pi )

log
>0 log t

(1.5) ,
lim sup log at/'(2) <u(p» ¢:)—1,
>0 log¢

where u(p, q)=%{—p+\/p’+4q} (cf. Lemmas 1.3 in 1.2). Hence the har-

monic map F; defined by «; as before turns out to be a continuous weakly
harmonic maps defined around the origin o for the cases: i=1,2,3 and the
zero-section s% for the case: 7=4. Thus the fundamental regularity theory (cf.
e.g., [11], [17]) shows that F; is actually smooth over the origin for the cases:
1=1, 2, 3 and the zero-section S?%, for the case: 1=4.

In what follows, we assume that the solution «; is defined maximally on
(0, T;) for some T;E (%, c0]. Then we have the following

Proposition 1.1. Let P;, Q; and c; be as above. ~Suppose that Q,(t, s) is non-
negative on (0, )X (0, ). Then a; is positive on (0, T;). In particular, o(t)
tends to infinity as t goes to T; if T; is finite. - Moreover suppose that for some con-
stants A;E[— oo, + o) and B;E[0, oo], P(t) converges to A; as t goes to infinity
and Qt, s)/s tends to B; as t and s go to infinity. Then the following assertions
hold :

(1) If —o0<A4;<+ 0 and 0<B;<H-o0, 0or if 0<A4;<1 and 0< B; <+ oo,
then T;=+oco and

lim 8% _ 4.1,B) (€0, =)).
t>=  logt
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(2) If B;=-+oo, then

t>r, logt

Moreover T;=+-o0 if Qi(t, )< B(£)s for some continuous function B,(t) on (0, o).
3) If1<4,<+ o0 and B;=0, then T;=-+ oo and

lim 10828 _ .
> logt

(cf. Lemmas 1.4 and 1.7 in 1.2).

Before concluding this subsection, let us consider the case: i=4 and deter-

mine the order ord (a,)=pu(4,—1, B,) of a, in some cases. For simplicity, we
assume that

g(t) = at+a’', h(t)=bt+d', 7(t)=ctt+c’,
for large £ and
£(s) = as+a', h(s) = bs+b’, #(s) =&+

for large s, where a, @, b, b, ¢, and € are nonnegative constants and the others are
arbitrary constants.

Case 1: a>0, @3>0, >0, 5>0, c<0, >0.

Case2: a=0,a>0, >0, 5>0, c>0, z>0.
ord(a) = +o0.
Case 3: a=a=0, >0, >0, c>0, z>0.
. be B\
ord(a,) = n E(W> .
Case 4: a>0,3>0, b=b=c=e=0.

otey =3[ 1+(15(2))].

Case 5: @>0, a=b=b=c=2=0.
ord(a,) = +oo.
Case 6: b=c=0, >0, &>0.
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ord(a,) = +oo.
Case 7: >0, ¢>0, b=&=0.

0 if a=ad=0,

ord (a,) = -1 +[1 + 2(%)1“2, otherwise .

1.2. In this subsection, we shall consider a nonlinear ordinary differential
equation which contains equations (E;) (i=1, 2, 3, 4) as special cases.

Given a smooth function P(£) on [0, o) and a smooth function Q(%, s) on
[0, 00)X [0, o0), we consider an equation as follows:

(E) a"(t)—l—%P(t)a’(t)—% Ot s) = 0.

In what follows, we assume that for some py >0, g4 >0, £,>0, and 5,>0,

m P@) = put1  if pu>0,

A3 1 p_1) ded on (0 if py =0
—t—l (t)—1]| is bounded on (0, ¢,) if pye=0,

O(t, 0) = 0 (0<t<t), O(0, $)>0 (0<<s<s;),
(14)  lim 10O, 5)=gy, and

$->0,5>0 §
0<0(2, 5,)<0(t, 5;) for t€(0, ), 5, and 5,E(0, s,) with 5,<s, .

We want a positive solution a(f) of equation (E,) which converges mono-
tonically to zero as ¢ goes to zero. To begin with, let us reparametrize equa-
tion (E,) with parameter u=log & (— oo, + 0) as follows:

(E3) B () +(P(e")—1)B"(u)—QO(e", Bu)) = 0.

Let us take two positive numbers £, and s, for which (1.3) and (1.4) hold, and set
uy=log t,. For any vE R, we denote by 8, a unique solution of (E£¢) subject to
the conditions: B,(u4,)=s, and B,'(#;)=v. Define a set A of R by A= {v: B,(x)
decreases monotonically to zero in finite time as u decreases from #%}, and put
vy=inf 4. Then v,>0and 1 is open (cf. [4: Chap.6]). Moreover we have

Lemma 1.1. For any u, and s,>0 as above, the solution B=8,, of equation
(E%) has the following properties:

(1) B>0, >0 on (— oo, u,),

(@) lim B(w) = Jim 8'(s) = lim £"(w)=0,

Proof. The first assertion (1) follows from the same arguments as in [4:
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Chap. 6, Lemma 6.1.4].  As for the second one, we first prove that lim 8(u)=0.

Fix a positive constant 7y, and choose v,&(—o0, %)) so that py+74>0 and
P(e“)<py+1+4ry on (—oo, v,]. For any v,&(— oo, v,—1], let (%) be a unique
solution of equation:

v’ (@) +(ps+7s)y () = 0
subject to the conditions: «(v,)=B(v,) and '(v,)=pB'(v;). Then (u)=
B(v)+(ps+74)"'B'(v,) [1—exp {(px+74)(v,—u)}]. Define a function R by
R(u) = B'(w)y(u)—Bu)7'(x) -
Then we have
(1.5)  R'(u) = —(px+rs)Rw)+(Pst+ 1475 —P(e"))B' (w)v(w)+Q(e", Bu))v(w).

Hence R(v,)=0 and R’(v,)>0. Moreover R>0 on [v;, v,]. In fact, if R>0
on (v, v,) and R(7,)=0 for some v,E(v,, v,), then R'(v,)<0, which contradicts
(1.5). Since (B/v)'=R/¥*>0 on (v,, v,), we have 8>« on [, v,]. Thus we
get

(1.6) B(v;+1)—B(v)) = v(v,+1)—(2y)
—_ ﬂ’(vl) 1—e P+«
Pxtrs {i—e b

for any v,&(—o0, v,—1]. Suppose that lim sup B'(¥)>0. Then there exists

a positive constant § and a sequence {v;};.,,,.. such that 8'(v;)>8 and v;,,<
v;—1. It follows from (1.6) that for each j,

) g
4-1)— > 1—e~ 07} |
Bt =) T (l—ewy

This is absurd, because B is positive. Thus we have shown that lim B'(x)=0.
Set By=Ilim B(u). Then we have e

0 = lim 8"(u) = lim {—(P(e")—1)8'(w)+Q(e", Bu)}
= Q(O’ :8*) )

and hence B4=0 by (1.4). This proves the second assertion (2) of the
lemma. //

Lemma 1.2. Let u,, s, and B be as in Lemma 1.1. Given £>0, suppose
that |s71Q(e", s)—qx| <& and |P(e")—1—py| <€ on (—o0, uy] X(— o0, &)
Then B(u)<cexp d,u and B'(u)<c exp 8,u on (— oo, uy], for some positive cons-

tant c, where 8,=—;— {—(Px+E)+V (px+6)*+4(q+—E)} .
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Proof. For any ve(—oo, %], let v, () be a unique solution of equation:
Yo,e (#)=08¢,,(4), subject to the condition: 7, ,(v)=R(v). That is, ¥, (%)=
B(v) exp 8. (u—v). Then we claim that 8'(v)>9,. (v)=8.8(v). In fact, we
have

Voue (1) = 8¢ ve,e(1)
= —(P«+E)0: V,o(#) (24 —E) s, ()
= —(PxFE)70.e' (W) +(95—E)V0,e(4)
< —(P5+E)70, (W) +O(E"; 7,e(w))-
Suppose that B'(v)<7,,.'(v). Then by (1.7) we get

Yo (0)<—(px+€)B'(v)+Q(e’, B(©))
<—(PE)—1)B'(v)+9O(, B(v)) = B"(v) .

1.7)

Hence we have

(1'8) 'Yo,e<ﬁ ) 70,!'>B, ’ 'Yv,!”<B”

on [/, v) for some v’ &(—o0, v]. If (1.8) holds on (— oo, v), then (v,,.—B8)"’<0
on (—oo, v), so that (v,,.—RB) (u)>(v,,.—B) (v)>0 for any u&(—o0,v). This
yields a contradiction, because lim 8'(x)=lim v,,,/(4)=0. Therefore there exists

9, &(—o0, v) such that (1.8) ceases to hold at v;. Then it turns out that

Yo.e(V) < B(®y), Vo,e (v1)=B'(v) and v,.”(v)=B"(v). By (1.7) and (1.4), we
obtain

Vo (0) < —(Dx+E€)Vs,e (1) +O(€", Vs,e(v1))
<—(px+€)B'(2)+0(e, B(v)) = B'(v).

This yields a contradiction. Thus we have shown that 8'(v)>v, . (v)=28,8(?)
on (— oo, %], which implies that B(v)<c, exp 8,u on (— oo, u,] for some con-
stant ¢,>0. As for the estimate on B’, consider first the case p,>0 and then
assume that p,>&. Then, we have

B ()< —(px—€)B'(u)+(gx+E)B(u)
< —(Px—€)8. B(u)+(gx+€)B(u)
<o(—(psx—E)de+gx+E)e”

on (—oo, #,]. Integrating the both sides, we obtain

B'W)<a(—(px—€)3+gx+E)3, ™
on (—oo, #,]. As for the case py=0, we have by (1.3)
(1.9) B’ (w)<ce*B'+8)
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for some constant ¢,>0. Integrating the both sides, we get
(1.10) B'(u) < c e

on (— oo, %), for some constant ¢,>0, where §,(1)=min{l, §;}. If §,>8,(1),
then inserting (1.10) into (1.9) and integrating the resulting inequality, we obtain

OB

for some constant ¢,>0, where §,(2)=min {2, §;}. Thus repeating the same
argument, we have

B'(u)<csee"

on (—oo, uy] for some constant ¢;>0. This completes the proof of Lemma

12. //

Let us now return to equation (E,). Let 8 and #, be as in Lmema 1.2.
Define a solution a(t) of equation (E,) by a(t)=pB(log ). T'hen by Lemma 1.2,
we have

Lemma 1.3. Let a be as above. Then a satisfies
(1)  a(ty)=so (ty=¢€"), >0, a’>0 on (0, t,];

. log a(?) .
(2) hn'l_:up —l_cEt_S w(Dxs g%)3

(3) limsup MSM(P*’ 2+)—1,
ogt

>0

where u(px., q*)=% {—p++VpsZ+49:}  (=0).

In what follows, we shall study the asymptotic behavior at infinity of solu-
tions of equation (E,) under certain conditions. Let # and s, be positive num-
bers and o(f) a solution of equation (E,) with a(f)>s, and a'(f)>0. Here
aft) is assumed to be defined at least on [t,, T,), where T,=sup {T: a is
positive and bounded on [#, T]} (<+o0). In order to study the asymptotic
behavior at infinity of &, we employ elementary comparison arguments just used
in the proof for the preceding lemmas. Let 4 and B>0 be two numbers
chosen appropiately later and ¢ a unique solution of equation:

(L.11) YO+Ly 0—Saw =0,

subject to the condition: (¢)= a(?,) and ()= a’(t). Define a function
Rys: [ty Ts)— R by

Ry5(t) = a()y'(t)—a'(2)7(2) -
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Then obviously R 45(%,)=0 and
Ruu'(€) = — BOR 1ot)+--(P(0)—A)ale)y 0+ (Ba)— 00, a(t)v(s)

Lemma 14. Let a be as above. Suppose that Q(t, s) >0 on [t,, T,)X
[s0) ). Then a'>0 on [t,, T,). In particular, lim a(t)=-+oo if T <+ oo.
t->T ®

Proof. Suppose that a’(£)>0 on [z, t,) and a'(,)=0, for some ¢, E(t,, T.).
Take two numbers A and B as above so that P(#)<<4 on [#,, #,] and B=0. Then
R,(t)=0 and R,,'(t,)<<0. We claim that R,,(#)<<0 on (¢, #]. In fact if we
have 2,E(%, ¢,] such that R,,()<<0 on (2, ¢,) and R,o(¢,)=0, then

Ro'(t) = %;(P(tz)—A)a(tz)v'(t»—%Q(tz, a(t)¥(t)<0.

This yields a contradiction. Hence we have R 4,(£)<<0 on (%, ], that is,
a(?)y(@)<a'())v(?)
on (%, t,]. Putting t=¢,, we get
0<a(h)y't)<a'(t)v(t)=0.
This is absurd. Thus we have shown that ¢'>0 on [#, T,). //

Lemma 1.5. Let a be as above. Suppose that for some A and B>0,
P(t)<A on [t,, ) and Q(t, s)=Bs on [t,, o)X [s,, o), or for some A and B>0,
P(t)< A on [t,, o) and Q(t, s)>Bs on [t,, 00)X[s, ). Then:

lim inf °8%®)> (41, B),
log t

where p(A—1, B)=%{~(A—l)+\/(A—1)’+4B} :

Proof. Obviously R,5(%)=0 and R,;'(t,)<<0. The same arguments as in
the proof of Lemma 1.4 show that R,;<<0 on (2, T,), namely, a(t)y'(t)<
a’'()y(f) on (f, T,). Then it turns out that (¢)<a(t) on (%, 7,), which implies
that

lim inf 128 %) > lim infw — w(d—1, B).
0g

T, og t t>o0
This completes the poof of Lemma 1.5. //

Lemma 1.6. Let a be as above. Suppose that for some A and B>0,
P(£)>4 on [t,, o) and Bs=>Q(z, 5)=0 on [ty, o)X [s, o), or for some A and
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B>0, P(t)>A on [t, ) and Bs>Q(t, s)=>0 on [t, o) X [s, ). Then,
T,=+o and

t>00

lim sup L"lg@gp(A—l, B).
og

Proof. Obviously R,z(f,)=0 and R,;'(#,)>0. The same arguments as in
the proof of Lemma 1.4 again show that R, ;>0 on (%, T,), namely, a(£)y'(t)>
a'(t)y(t) on (&, T,). Hence y(t)>a(t)>a(t,) on (t, T,). This shows that
T,=-+o0 and

limsup 1282 <jjm 108Y(®) _ 41, B).
100 log ¢ = logt

This completes the proof of Lemma 6. //
By Lemmas 1.5 and 1.6, we have

Lemma 1.7. Let o and T, be as before. Suppose that Q(t, s)=>0 for any
t>0 and s>0, and suppose that for some AS[— oo, + o0) and BE[0, + o], P(t)
converges to A as t goes to infinity and Q(t, s)[s tends to B as t and s go to infinity.

(1) If —0<A<L+ o0 and 0<B<L+ oo, 0r if 0<A<] and 0<B<+ oo,
then T,— - oo and

lim 1820 _ ,4-1,B) ((0, ).
= logt

(2) If B=+co, then

> logt
Moreover T,=—+ oo if O(¢, s)<B(t)s for some continuous function B(t).
(3) If1<A<+ oo and B=0, then T,=+- oo and

t>=  logt

2. Growth of harmonic morphisms

In this section, we shall first show a generalization of the O’Neill’s curva-
ture formula for Riemannian submersions to horizontally conformal maps, and
then discuss the growth of harmonic morphisms (cf. e.g., [4] [11] for the general
theory on such maps).

2.1. Let ¢: M— N be a smooth map between Riemannian manifolds (M, g)
and (N, k). For a point x of M, we set ¢/, =ker(d¢,). The space €V, is called
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the vertical space at x. Let {, denote the orthogonal complement of €/, in the
tangent space 7, M. For a tangent vector E€ T, M, we denote by CVE and
YE, respectively, the vertical component and the horizontal component of E.
Let €V and 4, respectively, denote the corresponding vertical and horizontal
distributions in the tangent bundle 7M. We say that ¢ is horizontally con-
formal if, for each point x&M at which d¢,+0, the restriction d¢,, : I, —
Ts» N is conformal and surjective. Thus for some nonnegative function A4 on
M, ¢*hyxg=Ns*€1axs- The function A4 is called the dilation of ¢. Then A2
is smooth on M and actually equal to e(¢p)/n, where n=dim N. Fuglede [13]
and Ishihara [20] showed that a smooth map ¢: M —N is a harmonic morphism
if and only if ¢ is both harmonic and horizontally conformal. Here ¢ is called
a harmonic morphism if for every function f harmonic on an open subset U of N,
the composition fe¢ is harmonic on ¢~Y(U).

A horizontal conformal map is obviously a Riemannian submersion if (and
only if) the dilation is constantly equal to 1. For Riemannian submersions, we
have the O’Neill’s formula on curvature [28]. We will first state the correspond-
ing formula for horizontally conformal maps, after some definitions and auxial
results which follow from the same direct computations as in [28].

Let ¢: M—N be a horizontally conformal map betwen Riemannian mani-
folds (M, g) and (IV, h). We call the points x&M where d¢,=0 the critical
points of ¢ and denote by Cy (resp., M,) the critical points (resp., the com-
plement of Cy, namely My, = {x& M: 2,%(x)>0}, where 24 is the dilation of ¢).
After [28], we define two tensors T and 4 of type (1,2) over M, by

TgF = AV g VF+UV . HF
ApF = CUV g5 HF+ UV 45CVEF

for vector fields E and F on M,, where V denotes the Levi-Civita connection
of M. Then we have

Lemma 2.1 (cf. [28]). (1) Both T and A are skew-symmetric operators on
the tangent space of M reversing horizontal and vertical subspaces.

(2) Tg=Tcyg, and Ap=Ay4E.

(3) For wvertical vector fields V and W, T is symmetric, i.e., Ty W=TyV.
For horizontal vector fields X and Y,

AxY = ZCVIX, Y]+ (X, VIVAs,
where Ay denotes a vector field on M, defined by

Ay = grad log Ag%.

A basic vector field is by definition a horizontal vector field X on M, which
is ¢-related to a vector field Xy on N, namely d¢ (X)=Xyq, for all x&M,.
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Lemma 2.2 (cf. [28]). Suppose X and Y are, respectively, basic vector fields
on M, which are -related to X, and Y. Then:

(1) AE(X, V)=h(Xs, Ys)os.

(2) H[X, Y] is basic and p-related to [ Xy, V).

(3) The basic vector field which is ¢-related to V*x,Yy is given by

AV Y+ g(he X)Y+g(Ae, VIX—g(X, VIS,

where V* denotes the Levi-Civita connection of N.

For linearly independent vectors E and F, we denote by Py r the tangent
plane spanned by these two vectors. Moreover Ky, Ky, and K, respectively,
stand for the sectional curvature of M, N, aud the fibres (in M,). Then making
use of Lemmas 2.1 and 2.2, we can derive the curvature formula stated below
for horizontally conformal maps as in [28].

Theorem 2.3. Let ¢: M—N be a horizontally conformal map between
Riemannian manifolds M and N. Then for orthonormal horizontal vectors X, Y,
and orthonormal vertical vectors V, W on M,, one has the following relations:

(1) Ku(Prw)=K(Pyw)—&(TvV, Ty W)+e(TyW, Ty W).

(2) Ku(Pxy)=8(A4xV, AxV)—g(TyX, TyX)+g((VxT )V, X)

— L g8, VY + L gV VA, V).
() Kul(Px,r)=Ne’Ky(Px,r)—38(AxY, AxY)
— eV e, VA)—g(SDs, HDG)+8(Ber XD YV}

5 E(Vadlhe, X)+e(VrSlhe, T},
where Xy=dP(X) and Yy=d¢(Y).

2.2. Before showing a few applications of Theorem 2.3, let us first make some
observations. Let ¢: M— N be a horizontally conformal map and Vd¢ the
second fundamental form of ¢. Then the tension field 7(¢) of ¢, i.e., the
trace of Vd¢, is given by

7(9) = d¢( (12 )As—(m—n)n)

on M,, where n=dim N, m=dim M, and % is the mean curvature normal of
the fibres, namely, y=(m—n)~" trace T'|cy. Hence if n>3 then it follows that
any two of the conditions below imply the other one:
(1) ¢ is harmonic on M.
(ii) ¢ has minimal fibres on M,
(iif) grad A4’ is vertical



Harmonic Maprs AND HARMONIC MORPHISMS 913

(cf. [4: Chap. 7]). We mention here a theorem by Fuglede [14], which states
that a nonconstant harmonic morphism ¢: M— N is an open map and further-
more if grad A, is vertical, then the set of singular points of ¢ is empty, that
is, ¢: M— N is a submersion.

Let ¢: M—N be a nonconstant harmonic morphism with grad A4 vertical.
Let %: [a, 5] >N be a regular curve lying in the image of ¢. For any point
xE¢~Y(y(a)), take the horizontal lift 5,: [a, b]—M of 5 with 5 (a)=x, and then
define a map Pp: 7 (2(a) > ¢ (2(8)) by Pus(x)=7,(8). Since grad ag? is
vertical, dAg2(7,(t))/dt=0, and hence AP0 P, =g Moreover it is easy to see
that if M is complete, then so is N and ¢ is surjective. Now suppose that the
fibres are totally geodesic. Then &, induces an isometry between two fibers
¢~ (n(a)) and ¢~'(5(b)), and hence |grad Ag?|oP,=|grad Ag?|. In fact, let
a: (¢, d)— ¢~Y(n(a)) be a regular curve in ¢~}(x(a)), and define a map F: [a, b] X
(¢, d)— M by F(t, s)=n44(t). Set V=0F[ds and X=0F/dt. Then obviously
V is vertical and X is horizontal. Since ¢ has totally geodesic fibres, we have

L5V, V)= 24(VxV, V)

=25(Vy X, V)
= 2¢(Ty X, V)= 0.

This proves that 2,, is an isometry from ¢~Y(5(a)) onto ¢~} (5(d)). Thus we
have shown

Lemma 24. Let ¢: M— N be a nonconstant harmonic morphism with
grad n\g? vertical.

(1) If M is complete, then so is N and ¢ is surjective.

(2) If the fibres of ¢ are totally geodesic, then the map P, ¢~*(n(a))—
&Y (5(b)) defined as above induces an isometry and furthermore one has

7\'¢2° ab = xd’z ’ lgrad 7\‘4’2' OLgp = |grad A@zl .

2.3. We are now in a position to show an example of a harmonic morphism
of a complete noncompact manifold of positive Ricci curvature, and then give
a few applications of Theorem 2.3 (3), in connection with the example.

ExampLE. Let us denote by R*, the Riemannian manifold R* equipped
with a rotationally symmetric metric g,=dr*+5(r)?d6?. Assume that % is greater
than or equal to 3 and take a smooth function &,(¢) on [0, o) such that &,(f)=¢
on [0, 1], £,(#)>0 on [1, 2] and &(£)=t"'"* on [2, o), where (0, 1) is a
constant. Then define a smooth function &,(f) on [0, o) by Ez(t)=rfl(s)ds,

t
and set
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1,1
7(r) = 7r—i—z—a Soﬁz(t)dt,

where a=£2(0)=sm £(t)dt. We choose two constants «, & (0, 1) so that
0
k—B>2+a, and define a smooth function f(r) on R* by

f(r) = (b+r*)®r2 b4,

where b and ¢ are positive constants sufficiently large. Given a complete mani-
fold F of nonnegative Ricci curvature, we consider the warped product M=
R, X ,F of R*, and F with a warping function f(r). We denote by ¢ the
projection of M onto F. Then M has positive Ricci curvature and ¢ defines
a harmonic morphism from M onto F with bounded energy density and totally
geodesic fibers. We note that if F is flat and compact, then the sectional curva-
ture of M decays quadratically in the absolute values.

The first application of Theorem 2.3 is an immediate consequence from the
assertion (3):

Proposition 2.5. Let ¢: M— N be a (nonconstant) harmonic morphism with
grad A\g® vertical, where A4 denotes the dilation of ¢. Suppose that the sectional
curvature K, is nonnegative. Then the sectional curvature Ky is also nonnegative
on the image $(M). Moreover if Ky(n)=0 for a plane n tangent to N at a
point of the image ¢(M), then Ny is constant, i.e., ¢ is a Riemannian submersion
up to homothety.

We shall state further results.

Proposition 2.6. Let ¢. M—N be as in Proposition 2.5. Suppose that
the following conditions hold :

(1) M is complete and N is noncompact.

(2) The Ricci curvature Ricciy of M is nonnegative.

(3) The scalar curvature Scaly of N is nonpositive.

(4) The sectional curvature Ky, of M satisfies

c
KMZ—"—He ’
"M

where ¢ and € are positive constants, and 1y stands for the distance on M to a fixed
point o of M. Then ¢ is totally geodesic and N is Ricci-flat.

See [30] for totally geodesic maps.

Proposition 2.7. Let ¢: M— N be as in Proposition 2.5. Suppose that
M is complete and N is noncompact, and suppose that M has nonnegative sectional
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curvature and the fibres of ¢ are totally geodesic. Then the dilation Ny of ¢ is
constant, i.e., ¢ is a Reimannian submersion up to homothety.

Proposition 2.8. Let ¢: R"— N be a harmonic morphism of Euclidean
space R™ onto a Riemannian manifold N of dimension n>3. Suppose the fibers
are totally geodesic, i.e., affine subspaces of codimension n. Then N is an affine
subspace and ¢ is the orthogonal projection.

Proof of Proposition 2.6. To bigin with, we state the Weitzenbock formula
for harmonic morphisms, which reads

@.1) ZLAMV — | Vd |40 trace Riccipg g— gt Scalyosp ,
n

where trace Riccipg g denotes the trace of the Ricci tensor of M on the hori-
zontal distribution 4 and Scal, stands for the scalar curvature of N. On the
other hand, in the case of grad A,? vertical, as we noted in 2.2, d¢ has maximal
rank #=dim N everywhere. Moreover by T'’heorem 2.3 (3), we have

X 2
22) 3 _KulPrpx)=22-Scalyod—3 3 g(Ax,X;, Ay, X))

n(n l)g(AM A'#) )

where {X], :--, X,} is an orthonormal basis of the horizontal subspace.

Now it turns out from the completeness of M and the assumption (4) on
the sectional curvature of M that for large R, the outside of the metric ball
By (R) around o with radius R is homeomorphic to [R, o) X 0By (R) and
furthermore any pair of points belonging to the same connected component of
M\By(R) can be joined by a smooth curve which lies in M\By(R) and the
length of which is bounded by ¢y R, where ¢, is a positive constant depending
only on M (cf. [23]). Based on this observation, we shall show that A4 must
be constant. In fact, take two points x, y in a connected component, say &,
of M\By(R) and assume that 7y (x)>74(y) (=R). Let v:[0,a]—M be a
distance minimizing geodesic joining o to x (a=ry(x)). Since we have by the
assumptions (3), (4) and (2.2)

51

(2.3) | Al SW

on M, for some positive constants ¢, and 9§, we get

4 Jog agi(y ()<

d (1 _|_t)l+8
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and hence integrating the both sides, we obtain
Ae'(7(2) 1 1
2.4 Ao W) < exp &1
&9 = 3 (@)
(0<s<t<a). This shows that
Agl(%) <6, M4%(0)

for some positive constant ¢,. Let us take a smooth arclength-parametrized
curve o: [0, 5]— M which lies in M /By(d) (d=ryu(y)) and joins y to «(d).
Then it follows from (2.3) again that

o A(v(@) b ccpd
(2.5) ) <exp (H_d)HsSexp Atdy
Hence by (2.4) and (2.5) ,we have
Ae'(%) af 1 1 ¢ cud
o= (o ma) o)

This implies that A4*(x) goes to a constant e, as x€E& tends to infinity. More-
over for any point x&M, there is a smooth curve 7,: [0, co)—>M which is the
horizontal lift of a ray ¢ in IV starting at ¢(x), since N is complete and non-
compact. Then

— Mz('?,(t)) = 2V 9,(8) = 0,

so that we have
Nei(x) = }im A’ (T:(2)) = eg

if 7,(f) goes to infinity through &. This proves that A\ is constant. Now it
turns out from the assumption (2) and the Weitzenbtck formula (2.1) that ¢ is
totally geodesic. [/

Proof of Proposition 2.7. By Theorem 2.3 (3) and Lemma 2.4 (1), N is a
complete manifold of nonnegative curvature Ky. Since N is assumed to be
noncompact, there exists a sequence of points {p;} of N and tangent planes P;
at p; such that Ky(P;) goes to zero as ¢ tends to infinity. Let p be any fixed
point of N and take smooth paths #;: [0, b;]— N joining p with p,. Then it
follows from Theorem 2.3 (3) and Lemma 2.4 (2) that for any x=¢™(p),

|grad A 2| %(x) = | grad A?|?e P, ;(x)
<MNSE(x)Ky(P)),

where Py;,: ¢7'(p)—>d7Y(p;) is the isometry as in Lemma 2.4. Thus grad A4
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vanishes everywhere on M. This completes the proof of Proposition 2.7. //

Proof of Proposition 2.8. Since the fibres are affine subspaces, it is easy
to see that N is diffeomorphic to R". Thus it turns out from Proposition 2.7
that the fibres are pallarel, and hence ¢ is totally goedesic. This completes
the proof of Proposition 2.8. //

- REMARK. In Propositions 2.7 and 2.8, if we assume, instead of the fibres
being totally geodesic, that the second fundamental form « of the fibres satisfies

c
EN
1g)l al< YT (pEN)
for some constants ¢>0 and £>0, then the same assertions hold. See [5] for
related results to Proposition 2.8.

24. As an application of the Weitzenbock formula (2.1) and a generalized
maximum principle, we can derive Schwarz lemma for harmonic morphisms.
To be precise, let ¢: M—N be a harmonic morphism. Suppose M is complete,
the Ricci curvature of M is bounded from below by a nonpositive constant —&;
and the scalar curvature of N is bounded from above by a negative constant
—k,. Then the dilation A4 of ¢ satisfies:

sup Ag’< n%‘

where n=dim N (cf. [32]).

We are also able to give an upper bound of the growth of a harmonic
morphism, comparing the decay order of the Green functions of the domain
and the target.

Proposition 2.9. Let ¢: M—N be a (nonconstant) harmonic morphism
between complete noncompact Riemannian manofolds M and N. Suppose that
the conditions below hold :

(1) The Ricci curvature Ricciy, of M satisfies :

(2.6) Riccing > ———,
1873
where ¢ and € are positive constants.

(2) The dimension n of N is greater than or equal to 3, N is simply connected,
and the sectional curvature of N is nonpositive.

Then one has

log (¢, t) ~m—2
lmtl_’s“up fog £ < —»
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where m=dim M, p(¢, t)=max {ry(P(x)): xEM, ry(x)=t}, and ry stands for
the distance in N to a fixed point o’ of N.

Proof. Let us consider the Dirichlet problem outside the metric ball By(a)
of N around o’ with radius a: Ayu=0 on N\By(a), u=1 on 0By(a). Then
there exists a unique solution # of the problem which satisfies:

. <4

@) s

for some positive constant ¢;. In fact, the Rauch comparison theorem says that
the Laplaaian Ayry of the distance function 7y is bounded from below by
(n—1)ry™", so that 742" is superharmonic (i.e., Ay7ry* *<0) (cf. e.g. [16]).
Hence by the maximum principle, the solution %, of the Dirichlet problem:
Ayu,=0 on By(s)\By(a), u,=1 on 8By(a) and u,=0 on 9By(s), is bounded
from above by a*27,%"*. Thus u=Ilim u, satisfies inequality (2.7). By setting

#(y)=1 on By(a), we assume that u is defined on N. Then the composition
uo¢ is a positive superharmonic function on M. Let us now consider the same
Dirichlet problem outside the metric ball By(b) around o & M with radius
b: Ayv=0 on M\By(b), v=1 on 0B,(b). Taking the radius a sufficiently
large, we may assume that B, (b)C¢~!(By(a)). Then there exists a unique
solution v of the problem such that

(2.8) v<uod on M\By(b) .

On the other hand, by the assumption (2.6), we have

(2.9) “ <y on M\By(b)

rMm-Z

for some positive constant ¢, (cf. [22, 24]). Thus we have by (2.7) and (2.8)

m—2 log t+¢,
n—2

log p(¢9, 1)<

for some positive constant ¢; and large ¢. 'This proves Proposition 2.9. //

ReMARKs. (1) In case Ricciy >0, estimate (2.9) is due to Calabi [7]. Our
condition (2.6) is rather technical, but from the view point of the problem dis-
cussed here, it seems to be natural (cf. [16, 22, 23, 24]). (2) Proposition 2.9
is a generalization of Proposition 8.1.1 in [4] where harmonic morphisms of
homogenuous polynomials between Euclidean spaces are discussed. In particu-
lar, the upper bound in Proposition 2.9 is sharp as noted in [4].

2.5. Finally we shall show a lower bound for the growth of a harmonic mor-
phism under certain conditions.
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Let M be a complete noncompact Riemannian manifold. We assume that
M is connected at infinity, namely, for any compact set K, there is a compact
set K such that KCcK and M\K is connected. Since M is complete, M is
connected at infinity if and only if for any metric ball B (¢) centered at a point
o€ M of radius ¢, M\B,(t) has only one noncompact component, say >)(¢).
We fix a point 0 of M as a base point and denote by diam (031 (¢), 33(#)) the
diameter of 833(f) measured with respect to the intrinsic distance of the open
manifold 33(#). Set

8. = lim sup %diam(az‘,(t), ) 0, o] .

We shall now prove the following

Theorem 2.10 Let ¢: M—N be a (nonconstant) harmonic morphism bet-
ween complete noncompact Riemannian manifolds M and N both of which are con-
nected at infinity. Suppose that the conditions below hold : (1) The Ricci curvature
Ricciy of M satisfies :

4
rMu-e

Ricci,, > —

for some positive constants ¢ and &,
(2) The dimension of N is equal to 2 and N has finite total curvature

S KydA<+oo.
Then if 8.>0 or ZnX(N)—S Ky dA>0, one has
e logt exp (6 5.)—1
where w(p, t) is as in Proposition 2.9, X(N) denotes the Euler characteristic of N

and §.. is defined as above.

RemaRrks. (1) The classical Cohn-Vossen inequality says that 2zX(N)>
S KydA. Finn [12] and Huber [18, 19] studied the difference: X(/V )—SK vdA|2z

from the view point of conformal geometry. On the other hand, Shiohama
[29] discussed the same problem in a different way and showed that

Length (0B y(2))?
N)—— | KydA = lim =28 005x{0)
X(N) - | Kdd = lim 2RO
_ Jim Area(By ()
tyoo it
_ lim Length (8B (7))
tyoo 2nt
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(2) If we replace the Ricci curvature of M with the sectional curvature in the
condition (1) of Theorem 2.10, then the scaled metric spheres {0By(z), 271d;}
(where &, is the intrinsic distance of 0B,(#) induced from that of M) converge
to a compact metric space M(co) with respect to the Gromov-Hausdorff dis-
tance, and 8, is equal to the diameter of M(co) (cf. [23]). (3) When M has
nonnegative Ricci curvature and M\ By (t) is homeomorphic to (0, 00) X 8B(f)
for large ¢, 8., is finite (cf. [1]).

The proof of Theorem 2.10 is carried out by the same idea as in [24]. To
begin with, we shall show

Lemma 2.11. Let M be as in Theorem 2.10 and let h be a harmonic
Sunction defined outside a compact set K of M such that his not bounded from
below nor above. For large t, set m(h, t)=max {h(x): x€0By ()}, m(h, t)=
min {h(x): x€0B,(2)}, and u(h, t)=m(h, t)—m(h, t). Then,

i log p(h, 2) [ exp (¢n ) +1 ]
1 S AT D> log | S mm el T L
Tae P logz ? exp (€ 8w)—1

where c,, is a positive constant depending only on the dimension m of M.

Proof. It suffices to show the lemma in case §.,<<-+oo. For large ¢, we
take two points p,, g, of dB,(¢) such that k(p,)=(h, t) and h(q,)=m(h, t). By
the maximum principle, both p, and g, belong to 333(¢). Join ¢, to p, by an
arclength-parametrized smooth curve 7,: [0, @,] — 33(f) whose length a, satisfies:
a, <diam (833 (z), 33())+&, (¢), where &,(£) goes to zero as ¢ tends to infinity. Let
us fix here a posotive integer & which is greater than 8. and set p, ;=7,(ia;/3k)
(=0, 1, «++, 3k). Observe that

lim sup % <§.,
tro t

(2.10) 1

lirgiup ‘% disy Py, pt.i+1)s'§i<'§' .
By the assumption on 4, #(h, ) is monotone increasing and hence #i(h, (8.1
3/2)t)—Fk is a positive harmonic function on the metric ball By (p,; t/2)
around p, ; with radius ¢/2. By applying the Harnack inequality due to Cheng
and Yau [9] to #(h, (8.+-3)t)—h, and by the assumption on the Ricci curvature,
we have

Al (Ot-3))—h(Prmn) Sexp (cal+8, (1) 22 ) (h, (5-+3))—h(p1)}

where &(t) goes to zero as ¢ tends to infinity. This implies that
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2.11) ik, (8u+3)t)—m(h, £)<exp (c,,.(l—i—é‘z @) l%){m(h, (5.-+3)8)—m(h, )}

Moreover by the assumption on %, m(k, t) is monotone decreasing and
h—m(h, (8.-+3)t) is a positive harmonic function on By(p,;, t/2). Hence the
same reasoning as above shows that

(2.12) ik, t)—m(h, (8..+3)t)<exp (c,,,(l—l-ez(t))%) {m(h, t)—m(h, (8.-+3)0)}.
Now it follows from (2.11) and (2.12) that
sty (w+3)0)+ 1) Sexp (e (14+6(0) 2 [y (B+33)—(0)} -

This implies that

h, 1)< exp (cu(1+&())a,/t)—1 h, (8.4-3)1).

w0 e et ey s 17 G-t

Thus it turns out from the above inequality, (2.10) and the standard iteration
argument that

lim sup lOg p(h, t) >log [ €xp (€ 8)+1 ] .
tro log ¢ eXP (Cp0w)—1

This completes the proof of Lemma 2.11. ///

Proof. of Theorem 2.10. Since N has finite total curvature sKNdA, it

follows from [18] that the end of N is conformally equivalent to that of C, to be
precise, there is a conformal diffeomrophism ¥: N\K— C\D; from the com-
plement of a compact set K in N onto that of a disk D= {2&C: |2|<R}.
Then applying the argument in Theorems 11 and 13 of [12] and Théorém 1 of
[19] to N\K, we have

. log 7y(x) 1
2.13 lim N2 = X(N)—— \ KydA4,
(13) I e~ g [ K

where 7y denotes the distance to a fixed point in N. Moreover there exist
harmonic functions f and g on N such that both | f—Re(¥)| and |g—Im(¥)|
are bounded on N\K (cf. [3: Chap.III)]). Define a harmonic map ¥: N—C
by ¥=f++/—1g. Then by Lemma 2.11, we get

.. ¢ log p(Ye, t) [exp (Cm8w)+1 ]
. f OB~ >1 m X
(219 lntl-l»in log ¢ = exXp(Cpmda)—1

Thus Theorem 2.10 follows from (2.13) and (2.14). This completes the proof
of the theorem. //
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The same argument as in the proof of Theorem 2.10 will yield the follow-
ing

Proposition 2.12. Let ¢: M— N be a (nonconsiant) harmonic morphism
between complete noncompact Riemannian manifolds M and N both of which are
connected at infinity. Suppose the following conditions hold :

(1) ¢ has at most linear growth.

(2) M has nonnegative Ricci curvature.

(3) The dimension of N is equal to 2, the Gaussian curvature Ky of N is non-

positive and the total curvature SK ~ndA is finite.
Then N must be flat.

Proof. We observe first that NV is conformally equivalent to C, because M
admits no nonconstant harmonic functions. Hence there exists a conformal
diffeomrophism ¥: N—C such that

lim 198 1¥()] _ (1—% [ Kuaa)™.

TEN>o log rN(x)

Therefore by the condition (1), we have

lim inf 108 #(¥ed, &) _ i i log u(¥oo, #) log u(d, 7)
e log ¢ > log u(e, t) log ¢
<(1—5 [ Kyaa) "
-\ 2 Sl

T

The right side of the above inequality is greater than or equal to 1, because of
the Cheng’s theorem [8] mentioned in the introduction. Thus we see that the
total curvature of N vanishes, which implies that N must be flat. This com-
pletes the proof of Proposition 2.12.. //

Corollary. Let ¢: M— N be as in Proposition 2.12.  Suppose the conditions
(1) and (3) of the proposition hold, and suppose that

(2)"  the sectional curvature K of M is nonnegative and decays quadratically
(e, 0S<Ky<c/r)f).

Then ¢ is totally geodesic.

Proof. This follows from Proposition 2.12 and Theorem B in [24] quoted
in the introduction. [/

3. Harmonic maps of linear growth

Let M be a complete noncompact Riemannian manifold of njnnegative
Ricci curvature, and let N be a Hadamard manifold. In Theorem 3.2 below,
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we shall give sufficient conditions for a nonconstant harmonic map ¢: M—N
to be totally geodesic. The main ingrudients in the proof of Theorem 3.2 are
a scaling argument and harmonic coordinates with specific properties (cf. e.g.,
[2,6,21,24,25]). Especially we make use of the following recent result due to
Anderson [2]:

Fact 3.1 ([2: Main Lemma 2.1]). Let X=(X, G) be a Riemannian mani-
fold (not necessarily complete) of dimension d such that

| Riccig| <A, injx>ip>0.

Then given any C>1 and o< (0, 1), there is an E,=E&, (N, 1y, d, o) with the follow-
ing property: given any xE X, there is a harmonic coordinate system U=(u,, ++*, %;)
defined on the metric ball By(E(x)) of X around x with radius &(x) such that
U(x)=0 and if G;;=G(Vu;, Vu;), then G;;(x)=39,; and
CISG(y)<CI  (as bilinear forms)
E®)*NGi(llere<C

for all ye By(&(x)), where

fix)—zep 0.
dis (x, 0.X)

We shall now prove the following

Theorem 3.2. Let M be a complete noncompact manifold of nonnegative
Ricci curvature and N a Hadamard manifold. Let ¢: M—N be a nonconstant
harmonic map between M and N. Suppose the conditions below hold:

(1) The Ricci curvature Ricciy of M satisfies

3.1) (0<) Riceiy<-1

M
for some constant ¢,>0, and moreover M has maximal volume growth, i.e.,
(3.2) Vol (By(t))=c,t"
for some constant ¢,>>0, where m=dim M.

(2) The sectional curvature Ky of N satisfies

(3.3) —%SKN (<0)

N

for some constant ¢, 0.

(3) The map ¢ satisfies
(34) c(ru—1)<ryop<cs(ry+1)
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for some constants ¢,>0 and ¢;>0, and moreover ¢ has maximal rank n (=dim N)
outside a compact set K, i.e.,

(3.5) the rank of dp, = n (xeM\K) .

Then both M and N are isometric to Euclidean m-space R™ aid ¢ is an affine map.
We make here some remarks before the proof of Theorem 3.2.

ReEMARKs. (1) As mentioned in the introduction, the second inequality in
(3.4) is equivalent to the condition that the energy density e(¢) of ¢ is bounded
on M. Moreover e(¢) is subharmonic on M, because of the Weitzenbock
formura which reads:

(6) S Aueld) = | VdP|"+ S pxRicciy e, Pae>
—2-".";-1<RN(¢*'€.'» s ej)¢’* €jy dxe
where {e,, -+, e,} is an orthonormal basis at the point under consideration on M.

(2) By a theorem due to Croke [10] and by the nonnegativity of the Ricci
curvature of M and the condition (3.2) on the volume growth of M, the injec-
tivity radious inj,(x) of M at a point x& M satisfies

(3.7) injay (%) =7 m(%)
for some constant ¢;>0.

Proof of Theorem 3.2. We shall divide the proof into three steps.

Step 1. Given a positive number #, consider the scaled metric g,=t"%g,,
of the metric g, of M. Denote by B}(x, a) (resp., A¥(b, ¢)) the metric ball
around a point x of radius a with respect to g, (resp., the annular domain
B¥(o, b)\B¥(o, ¢) (b<<c)). Given a number k>1, by (3.7), we can apply Fact
3.1 to A¥(k, k™) and find constants a and b independent of ¢ such that for any
x€ A¥(k, k1), there is a harmonic coordinate system U=(y,, **-, #,) on B¥(x, a)
which has the property described in Fact 3.1 and the image of which contains
the Euclidean m-ball B™(b) of radius b, i.e. U(BY(x, a)) D B"(b)= {w s R™:
|w| <b}. Moreover since M has nonnegative Ricci curvature and maximal
volume growth (3.2), we can employ the simple covering argument based on the
Bishop comparison theorem (cf. [15]) and obtain a finite collection of balls
{B}(x;, a)}1<i<i the union of which covers A¥(k, k') and the number I of
which is bounded by a constant independent of t. Therefore it turns out from
a version of the Gromov’s Lipschitz convergence theorem and the stzandard
diagonal argument that arbitrary divergent sequences {f;} and {k;} respec-
tively contain some subsequences, denoted by the same letters, for which

t1(k;, k;~") converges to an m-manifold C*(M(0)) of a C’-metric g.. in the
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C'"-topology (0<o<<r<1) as j goes to infinity (cf. e.g., [6, 25]). As for N, the
same observations are valid. To be precise, if we take two (large) numers ¢ and
£, and consider the scaled metric #,=t2h, of the metric %y of N, then we can
find positive constants 4 and b independent of ¢ such that for any ye 4¥(k, ™),
there is a harmonic coordinate system V=(v,, -+, v,) on B}(y, 4) which has the
property descnbed in Fact 3.1 and the image of which contains the Euclidean
n-ball B"(b) of radius b. Moreover by (3.4) and (3.5), we will assume that

(3.8) AY(ck, (ck) )T Pp(AY(k, k™Y C AV (ek, (ck) ) AV(E, £

for some constants ¢ and ¢é independent of t. Therefore it turns out again that
arbitrary divergent sequences {#;} and {]3,} respectively contain some sub-
sequences, denoted by the same letters, for which A4}, (k,, £;™") converges to an

n-manifold C*(N(c0)) of a C"“-metric A, in the C”-topology as j goes to
infinity. (In this case, it is easy to see that the limit Riemannian manifold
C(N(c0)) is a unique tangent cone at infinity of IV (cf. [23]).)

Step 2. Set e.=sup e(¢) and take a family of points {x,} in M such that
ryu(x,)=t and e(¢$)(x,) goes to e. as ¢ tends to infinity. In what follows, we will
assume that e,a<d and BY(¢(x), &) AY(E, ) for any xe A¥(k, k™Y), where
a, &, k, and f are as in Step 1. Let U,=(u,, +*+, 4,) be a harmonic coordinate
system on B¥(x,, a) with the property described in Fact 3.1 and let V,=
(vy +**, v,) be such a system on B”(¢(x,) 4). Set ¢,=V,0poU,™" and assume
that ¢,(B”'(b))CB"(b) where b and b are asin Step 1. Then the components

{P%} a=1,..n Of P, satisfy

m i 00~ » 6¢> s 00 64”)
- ij t m MF !, t _ t 9%t )= ,
D h18 (au,.au,. DI +231 t.ﬂ‘Y ou; ou,

where {¥I'y };} (resp., {"T';5}) are the Cristoffel symbols of g, (resp. 4,) with
respect to the harmonic coordinates U, (resp., V). It follows from the standard
elliptic regularity theory that the C**-norms of ¢,* are bounded uniformly in z.
Thus for any divergent sequence {t;}, there exist a subsequence, denoted
by the same letters {¢;}, a C»” metric g.. on B"(b), a C* metric k., on B,(b)
and a C*” map ¢..: B”'(b)—>B”(b) such that Uy 4 g,; (resp., V,;4hy;) converges to
&= (resp., k) in the C*" topology and so does {¢;;} to ¢.. in the C*" topology.
Moreover if we use the apriori estimates in the Sobolev space, then we may
assume that the limit metrics g.. and A.. have, respectively, the curvature tensors
R and R in L?-sense, to which the curvature tensors of g, and A, respec-
tively, converge weakly in L?-sense. Thus it follows that the limit map ¢.,
defines a harmonic map with respect to the limit metrics and the energy density
&($..) of ¢., satisfies weakly the Weitzenbsck formula (3.6) in L?-sense. Applying
the maximum principle to e(¢.), we see that e(¢..) must be constant, because
é(¢-)(0)=max &(¢)=¢e.. This implies that ¢. is totally geodesic, i.e., the
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second fundamental form of ¢., with respect to the limit metrics vanishes identi-
cally. Thus in particular, it turns out that e(¢)(x) converges to the constant e,
as xM tends to infinity and the second fundamental form Vd¢ of satisfies:
lim 7,(x) | Vg | (x)=0.

Step 3. Let {t}, {k,} and {£;} be divergent sequences as in Step 1 such
that (3.8) is kept for any j, and 4}(k;, k;™*) and A/ (k,, £;™") converge respec-
tively to the Riemannian manifolds C*(M(o0)) and C*(IN(o0)) as j goes to infinity.
As observed in Step 2, we may assume that as j goes to infinity, the restriction
¢y, of ¢ to Afj(k;, k;") converges to a totally geodesic map, say again ¢.., from
C*(M(0)) to C*(N(OO)). Moreover it follows from (3.8) that ¢., is a diffeo-
mrophism. Hence by the Weitzenbock formula (3.6), we see that both
C*(M(o0)) and C*(N(oo)) are isometric to R™\{o}. This shows in particular
that m=n and

m Vol(Bu(®) _ i) Vol(Bw(2)) _

t—)“ a)mt t-ro Dy t

where , denotes the volume of the unit sphere in R™ (cf. [24,25]). Thus
it turns out from the equality discussion of Bishop and Rauch comparisom
theorems that both M and N are isometric to R”. Hence it is obvious that ¢
is an affine map. This completes the proof of Theorem 3.2. [/
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