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1. Introduction

In this note, we study the propagation of singularities for hyperbolic pseudo-
differential operators with multiple characteristics. It is possible in general that
two principal symbols have the same multiple characteristic set but the bichar-
acteristics behave quite differently. Thus, it is natural to impose conditions not
only on the cahracteristic set but also on the behavior of bicharacteristics when
we study the propagation of singularities.

Given a multiple characteristic p, we can consider the localization of the
principal symbol at p, which is a hyperbolic polynomial defined via the Taylor
expansion. The propagation cone of the localization is a "minimal" cone in-
cluding the tangents of the bicharacteristics with the limit point p (see Subsec-
tion 2.1).

As mentioned above, we impose a condition on the bicharacteristics in terms
of the propagation cone of the localization: the propagation cone of the locali-
zation is transversal to the multiple characteristic set. This condition may
realize some typical situations. When p is a double characteristic, this condition
is valid if and only if the principal symbol is effectively hyperbolic at p, where
the smoothness of the multiple characteristics et is always assumed. In case
the multiplicity exceeds 2, we assume the Levi conditions on the lower order
terms.

Our first result is concerned with an operator such that the localization at
p (with multiplicity r) is strictly hyperbolic on the normal bundle of Σr—the
set of characteristics of order r. We prove that, if there are no singularities on
the backward bicharacteristics with the limit point p, then there is no singularity
at p (Theorem 2.1).

Our second result is concerned with an operator of which the characteri-
stic set is the union of r hypersurfaces through p with linearly independent nor-
mals. Hence the multiple characteristic set is the union of each intersection of
the hypersurfaces. We show that, if there are no singularities on the backward
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characteristic curves passing through p of these hypersurfaces, then there is none
at p (Theorem 2.2) assuming in addition that the rank of the symplectic form,
restricted to the symplectic dual of the tangent space of Σ r at p, does not
exceed 2. In this case, we can get a result asserting the propagation of the
singularities actually occurs through p (Corollary 2.1). Weaker results are found
in our previous works [17] and [18].

In Subsection 2.1, we recall the definition of the propagation cone of the
localization and the time function. The main results, Theorems 2.1 and 2.2,
are stated in Subsections 2.2 and 2.3, and proved in Sections 3 and 4, respec-
tively. Corollary 2.1 is stated and proved in Subsection 2.3.

For studies on the propagation of sungularities in the case the propagation
cone is not transversal to the tangent space of the multiple characterisitc set, we
refer, for example, to Lascar [11], Uhlmann [20], [21], Ivrii [10], Melrose-
Uhlmann [13], Sjϋstrand [19].

2. Statement of the results

2.1. Preliminaries
Let P{x, D) be a classical pseudo-differential operator of order m in an open

set Ω,dRd+1 with real principal symbol p(x, f)GC"(Γ*Ω\0) where T*Ω is the
contangent bundle over Ω.

Let pGΓ*Ω\0 be a characteristic of p(x, ξ) of order r:

0 for 0 ^ i ^ r - l ,

where djp is the j t h differential of p. We study the propagation of wave front
sets near p of solutions of the equation Pu=f when p does not belong to the
wave front set of /. For this purpose it is necessary to observe the Taylor ex-
pansion of p(x, ζ) at p. Let us define pP(X), which is a homogeneous poly-
nomial of degree r in JY"e ΓP(T*Ω) (the tangent space of Γ*Ω at p), by

Recall that pP(X) is called the localization of p at p (see Hόrmander [4], Atiyah-
Bott-Garding [2]). Throughout this note we assume that pP(X) is hyperbolic
with respect to some ίGΓ p (T*Ω). Note that this assumption is implied by
the hyperbolicity of p(x, ξ) (see Ivrii-Petkov [8], Hϋrmander [6] for details).
Naturally we are led to consider the hyperbolic cone Γ(pp, θ) of pp defined by
the connected component of the set {Xe Tp(T*Ω) pp(X)^0} containing θ and
the propagation cone C(pp, θ) of pp which is defined by

C(pPi θ) = { I G Γ P ( Γ * Ω ) ; σ{X, Y)^0 for any Y(=Γ(ppy θ)} ,

where σ is the symplectic 2 form given by
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with natural coordinates (x, ξ)=(x0, •• ,Xd>ξo> '"> f <*) o n T*CL. Note that if r= 1,
then the propagation cone C{ppy θ) is the half line spanned by the Hamilton
vector field Hp(p) of p at p since pp(X)=σ(X, Hp(p)). We say that t{x, ξ) is a
time function near p with respect to T(pp, θ) if

-Ht(p)€ΞΓ(pμ,θ)9 f ( p ) = O ,

that is, the tangent space at p of the surface ΐ(x, ξ)=0 is transversal to C(pp, θ).
We may assume that t(x, ξ) is homogeneous of degree 0 in ξ.

Given a linear subspace PF of TP(Γ*Ω), we denote by Wσ the annihilator
with respect to σ\

Wσ = { I G Γ P ( P Ω ) ; <Γ(-Y, y) = 0 for every y e P F } .

2.2. Operators with strictly hyperbolic localizations
Our first result is on operators with strictly hyperbolic localizations. Denot-

ing by Σ r the set of characteristics of p(x, ξ) of order r, we assume that

there is a conic neighborhood V of p such that

Γ Π Σ r is a C~ manifold.

It then follows that

pp(X+tY) = pp(X) for t<=Ry

so that we may regard pP(X) as a polynomial on the quotient space
Γp(Γ*Ω)/ΓpΣ r (see Hϋrmander [4], Atiyah-Bott-Garding [2]). Denoting by
[X] the equivalence class of X^ TP(Γ*Ω), we assume that

(2.2) ^p([X|) is strictly hyperbolic with respect to

and that C(ppy θ) is transversal to S r at ρ\

(2.3) C ( ί P > ί ) n Γ p Σ f = {0}.

Clearly, (2.2) implies the hyperbolicity of pP(X) with respect to θ. In case
r ^ 3 , we assume an additional hypothesis on lower order terms of P. Let
P(x, ξ) denote the total symbol of P(x, D) and hence to be asymptotic to the sum
P(χΛ)-\rpm-ι(x>ζ)Λ \-pi(x> ζ)~\— where p{(x9 ξ) is homogeneous of degree i
with respect to ξ. We assume

(2.4) pm-j{χ> ζ) vanishes of order r—2j on Σ r near p with r—2j>0 .

Let 7 denote the union of bicharacteristics of p{x, ξ) with the limit point p
along which t (x, ξ) is increasing. Then we have
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Theorem 2.1. Let p(x,D) be a classical pseudo-differential operator with
real principal symbol p(x,ξ) and let p be a characteristic of order r of p(x,ξ).
Assume that (2.1)~(2.4) are satisfied and that t(x,ξ) is a time function near p
with respect to Γ(pp, θ). Ifu<ΞW'(Ω) and

WF(u) n γ Π {t(x} ξ) = -4 = 0, pφ WF(Pu)

with a sufficiently small /c>0 then we have

p(£WF(u).

Note that under the hypothesis (2.1), the assumption (2.2) is always valid
when r=2 except for a special case dim ΛΓΣr(T*Ω)p=l, that is, pp([X]) is a poly-
nomial of one variable.

It is clear that (2.4) is invariant under conjugation by Fourier integral
operators. Furthermore, assuming (2.1), the condition (2.4) is actually a neces-
sary one for the Cauchy problem of P to be well posed in C°° (see Ivrii-Petkov
[8] for more details).

Here we note that, assuming (2.1), p(x,ξ) is effectively hyperbolic at p if
and only if r=2 and (2.2), (2.3) are satisfied (see Hϋrmander [6], Nishitani [15]).
Then in this case the result is contained in Melrose [12], Nishitani [14].

REMARK 2.1. As will be proved in the proof of Lemma 3.2 below, there are
at least r different bicharacteristics of p{x, ξ) having p as the limit point along
which a time function t(x, ξ) is increasing.

EXAMPLE 2.1. Let q(ζ) be a homogeneous polynomial of degree r in ζ—{ζ0)

•">ζk) which is strictly hyperbolic with respect to θG/2*+ 1. Let ψjix, ζ) ( j=0,
•••, k) be real valued, homogeneous of degree 1 in ξ and C°° in a conic neighbor-
hood of p. Assume that ^>y(p)=0 and dψj{p) are linearly independent. We set

p(xy ξ) = q(φo{x> ξ), •••, φk{xy ξ)) ,

then p(x, ξ) satisfies (2.1), (2.2) with [θ]=θ, where we identify JV2r(T*Ω)p with
Rk+1 by taking a basis [Xt] such that dφi(Xj)=Sij. Denoting by {φ»φj} the
Poisson bracket, we introduce a (k-\-ί)x(k+l) matrix A=({<piy φfr (p)). Then
(2.3) is satisfied if

In particular, if A is nonsingular, that is, if the tangent space of the surface
{ψj{χ> ζ)=0, y=0, •••,&} at p is symplectic, (2.3) is always satisfied.

2.3. Operators with normally intersecting characteristics
We next consider the case in which the characteristic set, Σ={(#, £ ) ^

Γ*Ω\0; p(x, ξ)=0} of p{x, £), is the union of r hypersurfaces S, normally inter-
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secting at p:

(2.5) Σ = U Siy St = {(x, ξ) e Γ*Ω\0 q{(x, ξ) = 0}.
ί = l

Here q{(x, ξ) are real valued, vanishing at p, homogeneous of degree 1 in ξ and
C°° in a conic neighborhood of p with linearly independent differentials at p.

For a subset / of {1, •••, r}, we denote by | / | the number of indices of /
and set

sr = n s{, s = n s , .

We then assume that

(2.6) rank(σ |Γ p

σ 5)^2, where Tσ

pS = (Γp Sy ,

(2.7) C(^p, 0) Π Γp 5, - {0} for every / with | /1 = 2 .

In case r ^ 3 , we again assume an additional hypothesis on lower order
terms of P:

Pm-j(x> ζ) vanishes of order \I\ —2/ on Sr near p
v for every /, j with | / | — 2j>0 .

Let jj denote the bicharacteristic for q^x, ζ) (that is, a characteristic curve
of Sj) through p and denote by γ their union. We choose and fix, near p, a
time function t(x> ξ) with respect to T(pp, θ). Then we have

Theorem 2.2. Let P(x, D) be a classical pseudo-differential operator with
real principal symbol p(x, ξ) and p be a characteristic of order r of p(xy ξ). Suppose
that (2.5)~(2.8) hold and that t(x, ξ), γ are as above. If u(=£)'(Ω) and

WF{u)ΠγΠ {t(x, ξ) = -K} - 0, p$WF(Pu)

with a sufficiently small κ>0 then it follows that

REMARK 2.2. This result is a conformally invariant version of Theorem
2.2 in [16] (see Lemma 4.1 below). When r—2 more precise results were ob-
tained, see Alinhac [1], Hanges [3], Ivrii [9] and the references given there.

Note that (2.8) is a necessary condition for the Cauchy problem of P to be
well posed in C°° under the assumption (2.5) (see Ivrii-Petkov [8] for more de-
tails) and that (2.8) is invariant under conjugation of Fourier integral operators.
In case r—2 or r = 3 the condition (2.6) is automatically satisfied since σ is skew
symmetric.



6 T. NlSHITANI

It is clear that near p

p{x, ξ) = q{x, ξ) Π qfa ξ), PP(X) = q(P) Π q,,(X),

where q(x, ξ) is homogeneous of degree m—r and ?(ρ)φθ. From this fact, it
is also clear that pP(X) is hyperbolic with respect to θ whenever ? ;P(0)Φθ,
j= 1, -.., r. In view of qjp(X)=σ{X, Hq.(p)), we see that

, θ) = {I6Γ P (Γ*Ω); qjp(θ) qj,(X)>0,j = 1, - , r} ,

C{p?, θ) = {IeΓp(T*Ω); X = ±af ?„(*) Hφ),

We remark that the condition (2.6) is independent of the choice of a hyperbolic
direction θ although (2.7) depends on θ.

Let θ be another hyperbolic direction of pp(X) and assume that

(2.9) C(pPi 3) ΠTpSj^ {0} for every / with | / | = 2 .

Corollary 2.1. Assume the same conditions as in Theorem 2.2 and (2.9).

WF{U) n y j + 7 y ) n {* (*, ?) = -*> = 0

0T(if)n(]u_τy)n {ί(^, ξ) = -44=0,

Λ sufficiently small κ>Q then we have

WF(U) n (. u_γy) n {* (*, f) = 4 Φ 0

REMARK 2.3. When r = 2 this corollary reduces to Theorem 1 in Hanges
[3]. See also Theorem 0.3 in Ivrϋ [9].

Proof. We take a time function ϊ(x,ξ) with respect to T(ppy θ) and hence
dϊ(qjp(d)Hqj(p))>0) l^j^r. Assume that the assertion was false: WF(u)Π
( U 7y) Π {i(x, ξ)=κ} = 0 Then it is clear that

with a small £>0 since dϊ(qjp(θ) Hqj(p))>0,jζΞl+ and dt(qjp(θ) Hυ(p))<0,
y e / " . Then Theorem 2.2 would give p φ WF(u). On the other hand the sec-
ond condition of the corollary shows ρ^WF(u) since WF(u) is closed. This
contradiction proves the assertion.

EXAMPLE 2.2. Let us consider the symbol

P(x, ξ) = Π ?,(*, ξ) , ?y(*, ξ) = e,-βy(*) δy(?') .
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where ξ'=(ξ19 •••, ξd), aj(x) are real valued, C°° near it vanish at it and bj(ξ') are
real valued homogeneous of degree 1 in ξ', C°° in a conic neighborhood of I ' .
We assume that

a,otf,.(i) *,(!')Φ 8 , Λ ( i ) i,(f') for any»,; with i Φ ; ,

where 9Xo«(^) is the derivative with respect to xQ. Then ^>(#, £) satisfies (2.5)~
(2.7) with p=(A, 0, | ' ) if we assume that dqj(p) are linearly independent.

3. Proof of Theorem 2.1

For Z G Γ P ( Γ * Ω ) we denote by <X> the line spanned by X. To prove
Theorem 2.1 we first choose a homogeneous symplectic coordinates near p so
that p(x> ξ) takes a convenient form in order to apply our previous results in
[17].

L e m m a 3.1. Assume (2.1)~(2.3). Then we can choose a homogeneous sym-

plectic coordinates near p so that ρ=(0, ed), ed=(0, •••, 0, l)^Rd+1 and

p(x, ξ) = e{x, ξ) (ξr

0+a2(x, ζ*) ςr-*+...+af(χ, ξ')) = e(xs ξ) q(x, ξ)

with e(p)4=0. Here aj(x,ξ') are real valued, homogeneous of degree j in ξ'=

(fi> —> Ed)> c°° i n a c o n i c neighborhood of (0, ei), e'd=(09 •••, l)^Rd. Moreover

aj(x, ξr) vanish at (0, ed). Furthermore

(3.1) qμ([X]) is strictly hyperbolic with sespect to [HXo] in ΛΓ2r(Γ*Ω)p ,

(3.2) <HXQyzDTpτrnτiτr,

where Σ r is the set of characteristics of order r of q.

Proof. We repeat similar arguments to those in the proof of Theorem 1.3
in [17]. Under the notations in §2, let VΠ Σ r be given by the equations

where bj(x, ξ) are homogeneous of degree 1 in ξ, C°° in a conic neighborhood of
p with linearly independent differentials at p. Without loss of generality we may
assume that p=(0, ed). Note that (2.3) is equivalent to

hence we can take Z=f=O in Γ(pμ,θ)ΠTp

τJlr. Since Tζ Σ r is spanned by the
HbJ(p)y Z is a linear combination of Hb ,(ρ) with non negative coefficients α ; . Set

φ(x,ξ) = Σctjbj(x,ξ)
y=o

so that Z=Hφ(p). In view of Hφ(p)^Γ(pP)θ) we see that pp(Hφ(p))^0 and
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hence

(3.3) {H'9p)(j>)*0.

by the definition of localization. Set yo=φ(x,ξ) and note that Hφ(ρ) and the

radial vector field at p are linearly independent because the latter is in Tp Σ r and

pp(Tp Σ r )=0. Thus one can extend y0 to a full homogeneous symplectic coordi-

nates (yjy τ)j) near p so that (y, η) (0, ed)=(0y ed) (see, for example, Theorem

21.1.9 in Hϋrmander [7]). To simplify notation we write (x, ξ) instead of (y, η).

Taking into account that Hίop(p)=0 for O^j^r— 1 and (3.3), the Malgrange

preparation theorem gives a factorization of p asserted in the lemma apart from

the (possible) presence of a term aλ(x,ξ') ξo'1 in q(x, ξ). Clearly this term is

removed by taking a new homogeneous symplectic coordinates preserving the x0

coordinate and p. This gives a desired factorization of p.

Since HXQ belongs to the hyperbolic cone of pp (2.2) implies (3.1). Noticing

that 2 r is contained in the surface xo=O we see that <i/JCo>
<ΓZ)71p2r and hence

(3.2). This completes the proof.

From this lemma, a pseudo-differential analogue of Malgrange's division

theorem shows that

P{x} D) = E(x, D) {DΌ+Aάx, D') Dr

0'
ι+-'+Ar(x9 D')} = E(x, D) Q{x, D),

modulo a smoothing operator near p where E(x, D)> Q(x, D) have the principal

symbols e{x,ξ), q(x,ξ) respectively. We take an elliptic pseudo-differential

operator F(x,D) of order —tn+r so that p^WF(FE—I). Multiplication of

operator P by F reduces the proof of Thoerem 2.1 to the case of operator Q.

Denote by Q{x, ξ) the total symbol of Q which is asymptotic to the sum

?(** ?)+?r-i(#> £H l~?i(^ ? H — From the formula of asymptotic expansion

for a product of pseudo-differential operators it is easy to see that the condition

(2.4) for pj implies:

(3.4) qr-j{x, ζ) vanishes of order r—2j on Σ r near p with r—2j>0 .

With #'=(#!, —,xd) set

where b is a positive parameter. Denoting by π the projection: (x, ξ)-+(x\ ξ'),

we recall a result which follows easily from Proposition 6.2 in [17],

Proposition 3.1. Assume that (3.1), (3.2) and (3.4) hold. Then there is a

constant β>0 with the following property: let u^.Cr~\I, H\Rd)) with some

and an open interval I containing # 0 =0. If

u(-κ, ))f)π(Aβn{x0 =-«}) = 0 for O^j^r-l ,
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with a sufficiently small κ>0 and

(0, e'd)£WF(Qu(x0, .)), eί = (0, . - , 0, 1)GΞΛ' ,

uniformly in x0 near xQ=0, then it follows that

(0,e'd)φWF(u(x0, )),

uniformly in x0 near xo=O.

Now we discuss the singularities of u as a distribution in Rd+1 instead of

those of u for fixed x0.

Proposition 3.2. Assume that (3.1), (3.2) and (3.4) are satisfied. Then

there is a constant b>0 with the following property: if MGfl)'(Ω) and

WF(u) 0 ^ 0 ^ - 4 = 0 , p Φ Ŵ (βw)

wώλ tf sufficiently small κ>0 then we have

pGWF(u).

We postpone the proof of Proposition 3.2. Theorem 2.1 will be proved by

combining Proposition 3.2 and abstract results on generalized flow in [22]. We

prefer to give a rather straightforward proof togehter with that of Remark 2.1

applying this proposition.

We first make some observations on behaviors of bicharacteristics of p{x3 ξ)

following Melrose [12], Nishitani [14]. By Lemma 3.1 it can be assumed that

Σ r is given by fo(x, f ) = f o = O , /,•(*, £')=<>, j=l, - , k. Take I ; - E Γ P ( T * Ω ) ,

J = 1 , ...,ft and J5Γ 0=-HX 0 so that <*/,(*,) = δ,v and 7 ; G T P ( J Γ * Ω ) , J = 1 , ...,

2rf+l—ft so that y y form a basis for Γp Σ r . We define a polynomial s(z) by

9 p ( Σ * y JΓy + Σ «y Fy) = ?p(Σ ΛΓy Xy) = ί(«) .

Note that (3.1) means that s(z) is strictly hyperbolic with respect to (1, 0, •••, 0 ) e

Λ*+1. It is clear that qp(X)=s(df0(X), •••, dfk{X)) and hence we can write

q(x, ξ) = s{U,f{x, ξ'))+ Σ aiΛ{x} ξ') ξ*of(χ, ξ')«

with the notation /(*, f / )=(/i(^ f ')> - . / * ( ^ f'))• N o t e t h a t M°> rf)=0. We
define (̂.sr; x, ξ') by replacing (ξo,f(x, ξ')) by ̂ = ( ^ 0 > ^') in the above expression.
Since the zeros zQ of s(z) are real distinct and aiΛ(x, ξ') are real valued, it follows
from Rouchέ's theorem

(3.5) q(z; x, ξ') = Π (^-λ/^'; x, ξ')),

where λ ^ ' ; Λ:, f') are C°° in (/2*\0)xW/', homogeneous of degree 1 and 0 in

z\ ξ' respectively and Wis a conic neighborhood of (0, e'd). By the homogeneity



10 T. NISHITANI

with respect to z', ξ' shrinking W if necessary, that

(3.6) 18T/858£λy(*'; *, ξ')\ ̂ C β ( 5 V |*'r i β | If Ί " m

in (Rk\0)xW. Substituting (ξ0, f(x,ξ')) into «=(*„,*') in (3.5) we obtain
with %,(*, ζ')=\,tf(x, ξ');x, ξ') that

«(*,« = π u*. ξ) - u*. ?) = &>-**(*, n .

Note that this expression is valid if #oΦθ, (#, ξ')^W since we can assume that
{f(χ> ζ')=fy *s contained in the surface {xo=O} (see the proof of Lemma 3.1).
It follows from (3.6) that

(3.7) |9*Λ'(*'ΠI^C, \dSi\j(x,S')\£C\n (x,ξ')*ΞW,xo*O

for any i,j.
We shall now be working in a neighborhood of p which is not conic. Note

that near p with #oΦθ a bicharacteristic of q(x, ξ) is any one of qj(x, ξ) and hence
by (3.7) the tangent of such a curve is in the cone (J C1*, C + = {Cλ x^ \ (x'yξ) \},
C~=-C+.

Denote by Sz the hyperplane xo=— S and by BB a box in SB with sides
«, Bδ=i\ξ—ed\<a, \x'\<a9 xo= — δ}. We introduce a map from BB into *Sβ,
^iβ' (^'i ?7)"*(̂ /> *?) where (—δ, jy', 97) and (—£, ^', ̂ ) lie on the same integral
curve of Hqr Since near p with #oΦθ the tangent of such integral curve is con-
trolled by the cone U C*, taking a, δ sufficiently small, the map F)t is well de-
fined for any 0 < £ ( ^ δ ) . By (3.7) it is easy to see that

(3.8) in i (/. '?)-n 2 (:y ' , '?)I^.B|£ 1 -£ 2 l near (0,«,)

with a constant JS>0 independent of (y\ η) and £, . This allows us to define a
continuous map from BB into So; F*(y',η)=lim F%(y\η). Take δ > 0 suffi-

ciently small so that C" Π SB<^BB. Let i£y be the inverse image of the point p
by F) which is a compact set in SB and so is K, the union of Kjt Here we note
that the intersection of 7 and SB is just K.

Let wGί)'(Ω) and suppose that

(3.9) WF(u)ΠK=0y

μv={(Λ?,f)eΓ*Ω\0;-i^gΛ0<0, K ^ f H O , ^ ) ^ ^ we have

Lemma 3.2. Le* £) δβ as above and assume (3.9).

sufficiently small μ, v.



HYPERBOLIC OPERATORS WITH TRANSVERSE PROPAGATION CONE 11

Proof. We fix a compact set K'(zSB so that B8Z)Kr^C~ Π Ss and take an
open set O in S8 with K'IDOZΪK, O Π WF(U) Π S8=0. Let Mj be the image of
K'\O by F) and M be the union of My. It is obvious that M is compact and

Then one can choose μ, v so that

(3.10) (Bμv+C+)ΠM=0f (B

where Bμv is the closure of J3μv. Suppose that Bμ v Γl iF.F(#) would contain
( ^ i7)=(—£,/, ^), 0 < £ < δ . From (3.9) we may assume(y, η)$WF(Qu) taking
μ, v small. In what follows we fix these μ, v. Then it follows from Theorem
2.2.2 in Hϋrmander [5] that q(yy η)=0 and hence qj(y, η)=0 with somej. With
(5, f})=F%(y, η), Theorem 3.2.1 in [5] shows that (y,η)<ΞWF(u) and hence
(5, fj)EzK'\O by the second condition of (3.10). This would give a contradic-
tion to the first condition of (3.10) since F)(y, η)^MjdM and F%y, η) =
F)*{y> v) <Ξ {(yy η)+C+} Π So. This proves the lemma.

A similar argument shows that F) is surjective. Thus there are at least r
different bicharacteristics of q having the limit point p along which x0 is increas-
ing and this shows Remark 2.2.

Proof of Proposition 3.2. Let V be a conic neighborhood of p which does
not contain the ξ0 axis. We choose a^S°(Rd+ιxRd+1) equal to 1 in a conic
neighborhood of p and supported in V. Set υ=a(x> D)u^6'{Ω),g=Q(x> D)v.
Since q(x,ξ)*0 when {x9ξ)GF={\ξ0\\ς'\-1£Cι\(x,ξ'\ξ'\-1)-p'\,ξ'φ0} by
(3.7), then it follows from Theorem 2.2.2 in [5] that WF(v)dFf)V. Thus,
noting that a=\ near />, we can easily examine that

uniformly in x0 near # 0 =0. For any given /3>0, one can take b>0 so that

where Fc is the complement of F in which £'=f=0. Since WF(v)aFf) V the
assumption of Proposition 3.1 means that

WF(V) n (Δ,+<fl,,» n {*„= -«> = 0

for a sufficiently small κ>0. Now Proposition 3.2 shows that (0, ef

d)^WF
(v(x0, •)) uniformly in x0 near # 0 =0. Hence (0, ed)φWF(v) which completes
the proof.

Proof of Theorem 2.1. We shall examine that the hypothesis of Theorem
2.1 implies that of Proposition 3.2. Let b>0 be a positive constant in Proposi-
tion 3,2. If we take #>0 sufficiently small, it is clear that the intersection of the
conic hull of Bμyt and {#0= —*} contains Δ4Π {xo= — κ}. Then from Lemma
3.2 it follows that WF(u) Γ\Abf] {xo= — tc}=0. This is the desired assertion.
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4. Proof of Theorem 2.2

First we rewrite the hypotheses (2.6), (2.7) in a more convenient form to

the proof. Under the notations of §1, we set

Note that both σ and ω, restricted to Tσ

p S/(Tp SΓϊTp 5), have the same rank.

Lemma 4.1. The conditions (2.6), (2.7) are equivalent to

(4.1) a{j Φ 0 for any pair i, j with iφj,

(4.2) there are positive constants c{ such that

Ci Cj aij+Cj ck ajk+ck c{ aki = 0 for any triplet i,j, k.

Proof. It is convenient first to show that (4.1), (4.2) are equivalent to

(2.7) and (4.3) below,

(2.7) C(pP) θ) Π ΓP S 7 = {0} for all / with | /1 = 2 ,

(4.3) ω = ωχΛω2 with some one forms ω,

and after that we prove the equivalence between (2.6) and (4.3) assuming (2.7).

Here note that (4.3) is equivalent to the Plϋker relations:

(4.4) au akι+ajk aa+aki ajt = 0 for all ij, k, I.

We first show that (4.1), (4.2) imply (2.7), (4.3). Set bu=Ci c$ au then bu verify

the conditions of cocycles by (4.2). Then there are constants 5, such that

b-.^bi—bj. With bi=c71bi it follows that

(4.5) at^tfbt-cT1^.

This proves (4.3) with ωi= Σ bj dqj9 ω2= Σ cj1 dqs. Let X(=C(pp, θ\ which

is a linear combination of qkf>(θ) Hq (p) with non negative coefficients ak. From

(4.5) it follows immediately that (c{ qiP(θ) dq{—Cj qjP(θ) djj) (X) is equal to

^ Cj au Σ cck cj1. Since ck>0 one has ak=0 if dqi(X)=dqj(X)=0. Thus (2.7)

is obtained. Now we prove that (2.7), (4.3) imply (4.1), (4.2). If a{j=0 then

Hq{p)+Hq.(p) belongs to C(ppy θ) Π Tp Sj with / = {i,j} which would contradict

to (2.7) and thus (4.1) follows obviously. Next note that for /== {ij, k}, Γp ιS7 Π

TtS, is spanned by Z^a^q.^H.^+a^q^β) HQi{p)+akiqjp{θ) Hq.(p) and

that for any 7 , / c / , | / | = 2 one has Tp 5 7Π Tp 5 7 = Tp Sf Π Tσ

p Sj. This

implies in virtue of (2.7) that Zj$.C(pp, θ). Using this fact, renumbering q{ if

necessary, we may assume that a12>0, aim<0 for ί = l , 2, •••, m—\. Once more

renumbering qt one can suppose that # 1 2>0, a2j>0 for any j,j^3. Define c{ by
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c{ = — a12 a23 a3ι(a12 a3i+Sa31 ai2)'1 f o r i = 1, 2 , •••, m ,

where 6 is taken sufficiently small so that ct > 0 for /=4, 5, •••, m, which is pos-

sible since <z12 Λ23 <Z3 1<0, an a3i>0. By (4.4) it is easy to examine that c{ satisfy

(4.2) and this proves the assertion.

We next prove the equivalence between (4.3) and (2.6) assuming (2.7). As

noted above ω, restricted to Tp S/(TPSΠ TμS), is non degenerate. Then it fol-

lows from (4.3) that dim (ΓJ S/(T; S Π Tp S))=2 hence dim (Tσ

p Sf}Tp S)=r-

2. This implies (2.6). Conversely (2.6) implies that dim (Tp Sj Π Tσ

p Sj)=4-

rank(β t V ) t V e / =2 for any / with | / | = 4 since α ; .φ0 ( Ϊ Φ J ) . Recalling that

Tp Sτ Π T; S, is spanned by Z 7 for | /1 = 3 we see that Tp S7 Π Tσ

p 5 7 C Γp Sy Π

Γ £ S 7 for any 7 ( 3 / ) with | / | = 4 . Since /(=)/) is arbitraly we get Γ P 5 7 Π

Γp S CΓp 5. This implies that ^ ( Z 7 ) = - 0 for all / and hence (4.4).

Before reducing the proof of Theorem 2.2 to the case of a second order sys-

tem we make similar observations to those in §3. Under the notations in § 1 we

recall thatp(x, ξ)=q(x, ξ) Π qj(x, ξ). Since g(p)φθ and ? ; P(0)Φθ, by a similar

argument after the proof of Lemma 3.1, we may suppose that P(xy D) is of order

r with principal symbol p(x, ξ) which is the product of q^x, ξ) with ίyp(0)=l.

Moreover the hypothesis (2.8) can be verified with m=r. The conditions (4.1)

and (4.2) are invariant by multiplication of q{ by positive constants c{ then we

may assume that £ t = l in (4.2). Also we may assume that ρ=(0>ed),ed=

(0, •••, 0, l)(ΞRd+1 as in §3. Then (4.2) means that

(4.6) {?*-?,-, ?*-?/} (p) = 0 for any /,;, k, I.

Set JΌ=(?I~qz) if {<7i> #2} (p)<0 and ^ 0 = — (?i—#2) if ί?i> 2̂} (p)>0 From
(4.6) it follows, in both cases, that

(4.7) dqi(Hyo) = ... = dqr(Hyo) = ±a12<0 .

Since HyQ and the radial vector field at p are linearly independent we can extend

y0 to a full homogeneous symplectic coordinates (yjy rjj) near p so that (jy, 77)

(0, ed)=(0, ed). For the sake of simplicity we write (x, ξ) instead of (j>, 77). Then

by (4.7) one can write q^x, £)=£•(#, ξ) (ξo—ai(x, ξ')) with β ί(p)>0 where α( (#, ξ')

are real valued homogeneous of degree 1 in ξ', C°° in a conic neighborhood of p .

From the same arguments as in § 3 one can assume that

r
T) I V >• 1 I I /j [ y Cl / 7 1 V >"1 >• /7 I V ί" I

jPW bj — 11 ίryv ĵ ? j » ίfy\*> ^/ — ^0 a y^> b J

Note that (2.8) with m=r implies that near p, pr-j(x, ξ) is a linear combina-

tion of qf(x, ξ)9 \I\=r—2j, with coefficients which are homogeneous of degree

j in ξ, C°° in a conic neighborhood of p, where qτ(xy ξ) stands for the product

of qj{Xfξ) over / e / . This enables us to transform the equation Pu~f to a
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second order system. Indeed, taking {ζpy~ι qr(x, D')uy 0< | J | = m—2j
<my ζJ)'y-m/2Ί~ι u) as new unknowns, the equation is reduced to a second order
NxN system

(4.8) LU = F

with a diagonal principal symbol whose entries consist of q{{xy ξ) Qj(x, ξ) with
iΦj apart from repetition. Here <f '> 2 =1+ \ξ'|2 and [m/2] denotes the integer
part of m/2. Since the components of F consist of / and 0 it is obvious that
p$WF{F) (resp. p$WF{U)) implies pφWF(f) (resp. p$WF(u)) and vice
versa. For / = {ij} we set ΛΓ7= {(*, f) e Γ*Ω\0 ^(Λ:, f)-?y(«, f)=0>. Obvi-
ously Kj contains the ξ0 axis and then

(4.9) Γp ^ 7 3 Γp Sj+ζH^ for any / with |/1 = 2 .

Note that (4.6) implies that

(4.10) cr(Tσ

pKnT
σ

pKj) = 0 forany/,/with | / | = | / | = 2 .

Also from (4.6) we have

(4.11) C(ppy θ) Π ΓP K, = {0} for any / with | /1 = 2 .

In fact (4.6) shows that {ft, ?,—?>} (p)= {?/, ?,—ίy}(p)=«y, Φθ for any i,j,k,l
and thus (dqi—dqj) (X)=0y X(=C(pp, θ) imply X = 0 since

(4.12) MΛ?ι-^)(-X) = β5ιΣα* for JΓ =

Setting C ;=—C(pp, θ)+<HXQ>+p, we recall a result which follows easily
from Proposition 8.1 in [18],

Proposition 4.1. Assume that (4.9)^(4.11) are satisfied and let
)^) with some s^R and an open interval I containing xo=O. If

iχo=-«}) = 0 for o^y

with a sufficiently small κ>0 and

uniformly in x0 near xo=O, then it follows that

(0ye'd)$WF(U(x0y )),

uniformly in x0 near # 0 =0.

The same argument as in the proof of Proposition 3.2 proves with C'b=
C Π Ab that

Proposition 4.2. Assume that (4.9)~(4.11) hold. Then there is a con-
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stant b>0 with the following property: if [/^(.©'(fl))* and

WF{U)f)Clnixo= -«} = 0,

with a sufficiently small κ>0 then we have

Proof of Theorem 2.2. Assume that

(4.13) WF(u) Π Ύ Π it (*, f ) = - * } = 0 , p

with a small * > 0 . Set Λ = Π {(*, ? ) G Γ * Ω \ 0 ; *y, (?,—?;)>0} where the inter-
section is taken over all pairs i,j with i + j . We show that there is a £>0 such
that

(4.14) WF(u) Π Λ, Π {*0 = -£} = 0 where Λ, = Λ |Ί Ab.

Suppose for a moment that (4.14) is proved. It then follows from ΛDΛ+<ίί X o )
and (4.12) that Λ^Π (xo=—S}ZDCίf] {xo=—6}. Then Proposition 4.2 shows
p^WF(U) and hence p<£WF(u).

Assume that (4.14) were not true. Then there are pz e WF{u) Π Ab Π {xo=
~S} for any £>0. From (4.13) one may assume that p 8 φ WF(Pu) for sufficiently
small 6. Then Theorem 2.2.2 in Hόrmander [5] shows that p(ρζ)=0, that is,
^.(pg)=0 for some j=j(ε). From this it is clear that pt-*ρ when £-»0. On the
other hand by the definition of Λ, Λ is contained in the set of simple characteris-
tics of p(x, ξ) then the part of a bicharacteristic in Λ of qj(xy ξ) (j=j(ε)) through
pz is in WF(u) by Theorem 3.2.1 in [5]. Letting pt tend to p such a bicharac-
teristic is as close to 7j(j=j(ε)) as we please but this would contradict to the first
hypothesis in (4.13). This proves (4.14). Then the proof is complete.
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