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1. Introduction

In this note, we study the propagation of singularities for hyperbolic pseudo-
differential operators with multiple characteristics. It is possible in general that
two principal symbols have the same multiple characteristic set but the bichar-
acteristics behave quite differently. Thus, it is natural to impose conditions not
only on the cahracteristic set but also on the behavior of bicharacteristics when
we study the propagation of singularities.

Given a multiple characteristic p, we can consider the localization of the
principal symbol at p, which is a hyperbolic polynomial defined via the Taylor
expansion. The propagation cone of the localization is a “minimal’” cone in-
cluding the tangents of the bicharacteristics with the limit point p (see Subsec-
tion 2.1).

As mentioned above, we impose a condition on the bicharacteristics in terms
of the propagation cone of the localization: the propagation cone of the locali-
zation is transversal to the multiple characteristic set. This condition may
realize some typical situations. When p is a double characteristic, this condition
is valid if and only if the principal symbol is effectively hyperbolic at p, where
the smoothness of the multiple characteristics et is always assumed. In case
the multiplicity exceeds 2, we assume the Levi conditions on the lower order
terms.

Our first result is concerned with an operator such that the localization at
p (with multiplicity 7) is strictly hyperbolic on the normal bundle of 3,—the
set of characteristics of order . We prove that, if there are no singularities on
the backward bicharacteristics with the limit point p, then there is no singularity
at p (Theorem 2.1).

Our second result is concerned with an operator of which the characteri-
stic set is the union of 7 hypersurfaces through p with linearly independent nor-
mals. Hence the multiple characteristic set is the union of each intersection of
the hypersurfaces. We show that, if there are no singularities on the backward
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characteristic curves passing through p of these hypersurfaces, then there is none
at p (Theorem 2.2) assuming in addition that the rank of the symplectic form,
restricted to the symplectic dual of the tangent space of =, at p, does not
exceed 2. In this case, we can get a result asserting the propagation of the
singularities actually occurs through p (Corollary 2.1). Weaker results are found
in our previous works [17] and [18].

In Subsection 2.1, we recall the definition of the propagation cone of the
localization and the time function. The main results, Theorems 2.1 and 2.2,
are stated in Subsections 2.2 and 2.3, and proved in Sections 3 and 4, respec-
tively. Corollary 2.1 is stated and proved in Subsection 2.3.

For studies on the propagation of sungularities in the case the propagation
cone is not transversal to the tangent space of the multiple characterisitc set, we
refer, for example, to Lascar [11], Uhlmann [20], [21], Ivrii [10], Melrose-
Uhlmann [13], Sjostrand [19].

2. Statement of the results

2.1. Preliminaries

Let P(x, D) be a classical pseudo-differential operator of order m in an open
set QC R**! with real principal symbol p(x, £)C=(T*Q\0) where T*Q is the
contangent bundle over Q.

Let p= T*Q\O be a characteristic of p(x, £) of order 7:

dip(p)=0 for 0<j=<r—1,

where d’p is the j** differential of p. We study the propagation of wave front
sets near p of solutions of the equation Pu=f when p does not belong to the
wave front set of f. For this purpose it is necessary to observe the Taylor ex-
pansion of p(x, £) at p. Let us define p,(X), which is a homogeneous poly-
nomial of degree r in X& T,(T*Q) (the tangent space of T*Q at p), by

2s(X) = dp(p; X, -, X)fr!, XET,(T*Q).

Recall that p,(X) is called the localization of p at p (see Hormander [4], Atiyah-
Bott-Garding [2]). Throughout this note we assume that p,(X) is hyperbolic
with respect to some & T,(T*Q). Note that this assumption is implied by
the hyperbolicity of p(x, &) (see Ivrii-Petkov [8], Hormander [6] for details).
Naturally we are led to consider the hyperbolic cone T'(p,, §) of p, defined by
the connected component of the set {X & T,(T*Q); p,(X)=+0} containing § and
the propagation cone C(p,, 0) of p, which is defined by

C(pp 0) = {XET,(T*Q); o(X,Y)<0 forany Ye&I'(p,, 0)},

where o is the symplectic 2 form given by
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with natural coordinates (x, £)=(xq, -+, x4, &, ***, £&;) on T*Q. Note that if r=1,
then the propagation cone C(p,, 6) is the half line spanned by the Hamilton
vector field H,(p) of p at p since p,(X)=0c (X, H,(p)). We say that #(x, £) is a
time function near p with respect to I'(p,, 0) if

—H(p)ET (ps, 0), t(p)=0,

that is, the tangent space at p of the surface #(x, £)=0 is transversal to C(p,, 6).
We may assume that ¢(x, £) is homogeneous of degree 0 in .

Given a linear subspace W of T,(T*Q), we denote by W the annihilator
with respect to o:

W ={XeT(T*Q); o(X,Y)=0 forevery YeEeW}.
2.2. Operators with strictly hyperbolic localizations

Our first result is on operators with strictly hyperbolic localizations. Denot-
ing by =, the set of characteristics of p(x, £) of order », we assume that

there is a conic neighborhood V" of p such that

(2.1) : .
V' N%, is a C* manifold.
It then follows that

Po(XH1tY) = p(X) for teR, YT, 3, XeT,(T*Q)

so that we may regard p,(X) as a polynomial on the quotient space N5 (T*Q),=
T(T*Q)/T, =, (see Hormander [4], Atiyah-Bott-Garding [2]). Denoting by
[X] the equivalence class of X & T,(T*Q), we assume that

(2.2)  pu([X]) is strictly hyperbolic with respect to [0]EN; (T*Q),,
and that C(p,, 0) is transversal to 5, at p:
(2.3) C(p,)NT, =, = {0} .

Clearly, (2.2) implies the hyperbolicity of p,(X) with respect to §. In case
r=3, we assume an additional hypothesis on lower order terms of P. Let
P(x, £) denote the total symbol of P(x, D) and hence to be asymptotic to the sum

D%, E)+Pmr(x, E)+ -+ +pi(x, E)+ -+ where p,(x, £) is homogeneous of degree ¢
with respect to £. 'We assume

(24)  pu-j(%, &) vanishes of order r—2j on 3, near p with r—2j>0.

Let v denote the union of bicharacteristics of p(x, £) with the limit point p
along which #(x, £) is increasing. Then we have
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Theorem 2.1. Let p(x,D) be a classical pseudo-differential operator with
real principal symbol p(x, &) and let p be a characteristic of order r of p(x,E).
Assume that (2.1)~(2.4) are satisfied and that t(x,E) is a time function near p
with respect to T'(p,, 0). If uc D'(Q) and

WF(u) Ny 0 {t(x, £) = —} = 0, pe WF(Pu)
with a sufficiently small «>>0 then we have
pEWF(u).

Note that under the hypothesis (2.1), the assumption (2.2) is always valid
when 7=2 except for a special case dim N3 (7T*Q),=1, that is, p,([X]) is a poly-
nomial of one variable.

It is clear that (2.4) is invariant under conjugation by Fourier integral
operators. Furthermore, assuming (2.1), the condition (2.4) is actually a neces-
sary one for the Cauchy problem of P to be well posed in C* (see Ivrii-Petkov
[8] for more details).

Here we note that, assuming (2.1), p(x, &) is effectively hyperbolic at p if
and only if »=2 and (2.2), (2.3) are satisfied (see Hormander [6], Nishitani [15]).
Then in this case the result is contained in Melrose [12], Nishitani [14].

REMARK 2.1.  As will be proved in the proof of Lemma 3.2 below, there are
at least r different bicharacteristics of p(x, &) having p as the limit point along
which a time function #(x, £) is increasing.

ExampLE 2.1.  Let ¢(¢) be a homogeneous polynomial of degree 7 in {=({,,
+++, &) which is strictly hyperbolic with respect to @ = R**'. Let @;(x, £) (j=0,
+++, k) be real valued, homogeneous of degree 1 in & and C* in a conic neighbor-
hood of p. Assume that @;(p)=0 and dgp;(p) are linearly independent. We set

p(x: f) = q(¢0(x’ E)’ ) ?’k(x, E)) ’

then p(x, £) satisfies (2.1), (2.2) with [#]=8, where we identify N (T*Q), with
R**! by taking a basis [X;] such that dp,(X;)=3§,;. Denoting by {@;, @,} the
Poisson bracket, we introduce a (k-+1)x (k+1) matrix A=({p;, @} (p)). Then
(2.3) is satisfied if

A(R*)NT(3,0)=*0.

In particular, if 4 is nonsingular, that is, if the tangent space of the surface
{p;(x, £)=0, j=0, .-+, R} at p is symplectic, (2.3) is always satisfied.

2.3. Operators with normally intersecting characteristics
We next consider the case in which the characteristic set, == {(x, £)&
T*Q\O; p(x, £)=0} of p(«, £), is the union of » hypersurfaces S; normally inter-
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secting at p:

(2.5) == US;, S = {(x§)eT*Q\0; g(x, ) = 0} .

=1

Here g;(x, £) are real valued, vanishing at p, homogeneous of degree 1 in & and
C= in a conic neighborhood of p with linearly independent differentials at p.
For a subset I of {1, ---, 7}, we denote by |I| the number of indices of 1
and set
S;=nS, S=nS§;.

iel

We then assume that

(2.6) rank(c|T; S)<2, where T8 =(T,S)",
(2.7) C(ppy NT,; Sy = {0} forevery Iwith |I|=2.
In case r=3, we again assume an additional hypothesis on lower order
terms of P:
2.8) Du-j(x, &) vanishes of order |I|—2j on S; near p

for every I, j with |1|—2j>0.

Let «; denote the bicharacteristic for g;(x, £) (that is, a characteristic curve
of S;) through p and denote by « their union. We choose and fix, near p, a
time function #(x, £) with respect to I'(p,, 8). Then we have

Theorem 2.2. Let P(x, D) be a classical pseudo-differential operator with
real principal symbol p(x, £) and p be a characteristic of order r of p(x, E). Suppose
that (2.5)~(2.8) hold and that t(x, £), v are as above. If uc9'(Q) and

WFuNyN{t(x, &) = —«r} = @, pe WF(Pu)
with a sufficiently small kx>0 then it follows that
pEWF (u) .

ReMARK 2.2. This result is a conformally invariant version of Theorem
2.2 in [16] (see Lemma 4.1 below). When r=2 more precise results were ob-
tained, see Alinhac [1], Hanges [3], Ivrii [9] and the references given there.

Note that (2.8) is a necessary condition for the Cauchy problem of P to be
well posed in C under the assumption (2.5) (see Ivrii-Petkov [8] for more de-
tails) and that (2.8) is invariant under conjugation of Fourier integral operators.
In case r=2 or r=3 the condition (2.6) is automatically satisfied since o is skew
symmetric.
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It is clear that near p
P B =9 B Mg 8, 2(X) = q(p) H 4:6X),

where ¢(x, £) is homogeneous of degree m—r and ¢(p)#+0. From this fact, it
is also clear that p,(X) is hyperbolic with respect to @ whenever g;,(6)=0,
j=1, -, r. Inview of g;,(X)=0(X, H,,j(p)), we see that

T(Pr, 0) = {XET,(T*Q); 4;o(8) Gio(X)>0,j = 1, -, 7},
C(pp 6) = IXET,(T*Q); X = 3 @, 4;4(6) Hy (p), 2,20} .

We remark that the condition (2.6) is independent of the choice of a hyperbolic
direction @ although (2.7) depends on 6.
Let 4 be another hyperbolic direction of p,(X) and assume that

(2.9) C(ps0)NT,S; = {0} forevery Iwith |I|=2.

Corollary 2.1. Assume the same conditions as in Theorem 2.2 and (2.9).
If u €9'(Q) and

WE@N( U v)0{t(x6) =~} =0,
WE@N( U )0 {t(xE) = —x}+0, p&WF(Pu)
with a sufficiently small x>0 then we have
WF@N( U 7))t 8) = c} +0
where I*={j€ {1, -+, 7}; ¢;(0) ;s(0)>0}, I"={1, -+, r}\I™.

REMARK 2.3. When r=2 this corollary reduces to Theorem 1 in Hanges
[3]. See also Theorem 0.3 in Ivrii [9].

Proof. We take a time function #(x, £) with respect to I'(p,,d) and hence
di(q;0(0) H,(p))>0,1=j=<r. Assume that the assertion was false: WF(u)N
( H-yi) N {t(x, E)=«}=@. Then it is clear that

WFEw)NyN{E(x, &) = —i} =0

with a small #>0 since dZ(g;,() H,(p))>0,j€I" and di(g;6(6) H,,(p))<0,
jelI~. Then Theorem 2.2 would give p& WF(u). On the other hand the sec-
ond condition of the corollary shows pe WF(u) since WF(u) is closed. This
contradiction proves the assertion.

ExampLE 2.2. Let us consider the symbol

P8 =a/(x8), 48 =E—ax)bE),
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where £'=(&,, :++, £;), a;(x) are real valued, C* near £ vanish at £ and b,(£’) are
real valued homogeneous of degree 1 in &', C* in a conic neighborhood of £
We assume that

0,,a:(%) b,~(f")=|= 0.,a;(%) b,(rf') for any 7,j with 77,

where 9, a(x) is the derivative with respect to x,. Then p(x, £) satisfies (2.5)~
(2.7) with p=(£,0, f') if we assume that dg;(p) are linearly independent.

3. Proof of Theorem 2.1

For X T,(T*Q) we denote by <X) the line spanned by X. To prove
Theorem 2.1 we first choose a homogeneous symplectic coordinates near p so
that p(x, £) takes a convenient form in order to apply our previous results in

[17).

Lemma 3.1. Assume (2.1)~(2.3). Then we can choose a homogeneous sym-
plectic coordinates near p so that p=(0, ¢;), e,=(0, +++, 0, 1) R*** and

p(x, &) = e(x, &) (Eo+an(x, £') £+ +a,(x, ) = e(x, ) ¢(, £)

with e(p)+0. Here a;(x,E") are real valued, homogeneous of degree j in &'=
(€1 -+, E4), C= in a conic neighborhood of (0, e}), ei=(0, .-+, 1)ER?. Moreover
aj(x, ") vanish at (0, e}). Furthermore

(3.1) qu([X]) s strictly hyperbolic with sespect to [H,] in N3 (T*Q),,
(3:2) <H,»'>T,%NT73,,
where 3, is the set of characteristics of order r of q.

Proof. We repeat similar arguments to those in the proof of Theorem 1.3
in [17]. Under the notations in §2, let 'N X, be given by the equations

bo(x; E) = = bk(x) g) = O;

where b,(x, £) are homogeneous of degree 1 in £, C* in a conic neighborhood of
p with linearly independent differentials at p. Without loss of generality we may
assume that p=(0, ¢;). Note that (2.3) is equivalent to

T(re, ONT, 2, %0,

hence we can take Z=40 in I'(p,, )N T, =,. Since Tj 3, is spanned by the
H,(p), Z is a linear combination of H, (p) with non negative coefficients a;. Set

k
P(5,8) = 3 a8, 8)
so that Z=Hy(p). In view of Hy(p)ET (p,, 0) we see that p,(Hy(p))+0 and
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hence

(33) (Hjp) (p) #0.

by the definition of localization. Set y,=@(%, £) and note that Hy(p) and the
radial vector field at p are linearly independent because the latter is in T, =, and
po(Tp =,)=0. Thus one can extend y, to a full homogeneous symplectic coordi-
nates (y;, n;) near p so that (y, n) (0, e,)=(0, ¢;) (see, for example, Theorem
21.1.9 in Hormander [7]). To simplify notation we write (x, &) instead of (y, 7).
Taking into account that H} p(p)=0 for 0<j=<r—1 and (3.3), the Malgrange
preparation theorem gives a factorization of p asserted in the lemma apart from
the (possible) presence of a term ay(x, £') £57" in g(x, ). Clearly this term is
removed by taking 2 new homogeneous symplectic coordinates preserving the x,
coordinate and p. This gives a desired factorization of p.

Since H,, belongs to the hyperbolic cone of p, (2.2) implies (3.1). Noticing
that =, is contained in the surface x,=0 we see that <H, >*DT, =, and hence
(3.2). This completes the proof.

From this lemma, a pseudo-differential analogue of Malgrange’s division
theorem shows that

P(x, D)= E(x, D) {Dj+ A,(x, D) Dy~*++-+A,(x, D')} = E(x, D) Q(x, D),

modulo a smoothing operator near p where E(x, D), Q(», D) have the principal
symbols e(x, £), q(x, E) respectively. We take an elliptic pseudo-differential
operator F(x, D) of order —m—+r so that pWF(FE—I). Multiplication of
operator P by F reduces the proof of Thoerem 2.1 to the case of operator Q.
Denote by Q(x, £) the total symbol of Q which is asymptotic to the sum
q(x, &)+q, (%, &)+ - +gi(x, E)+---. From the formula of asymptotic expansion
for a product of pseudo-differential operators it is easy to see that the condition
(2.4) for p; implies:

(3.4) gq,_j(x,E) vanishes of order r—2j on 3, near p with »—2j>0.
With x'=(x,, -+, x;) set
8y = (%, )eT*Q\0; —bx>|(x", E[E'|7)—(0, €5)|, E'0},

where b is a positive parameter. Denoting by 7 the projection: (x, £)— (x, &'),
we recall a result which follows easily from Proposition 6.2 in [17],

Proposition 3.1. Assume that (3.1), (3.2) and (3.4) hold. Then there is a
constant 3>0 with the following property: let uc C™"(I, H°(R®)) with some s€ R
and an open interval I containing x,=0. If

WF(Diu(—r, ) Nw(AgN {to= —}) = 9 for 0<jsr—1,
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with a sufficiently small k>0 and
(0, e5) e WF(Qu(x,, *)), €5 = (0, -+, 0, 1)ER?,
uniformly in x, near x,=0, then it follows that

(0, e2) & WF (u(xo, +))

uniformly in x, near x,=0.

Now we discuss the singularities of # as a distribution in R?*! instead of
those of u for fixed x,.

Proposition 3.2. Assume that (3.1), (3.2) and (3.4) are satisfied. Then
there is a constant b>0 with the following property: if uc Q'(Q) and

WFu)N AN {xe=—r} =0, pEWF(Qu)
with a sufficiently small £>>0 then we have
pEWF (u).

We postpone the proof of Proposition 3.2. Theorem 2.1 will be proved by
combining Proposition 3.2 and abstract results on generalized flow in [22]. We
prefer to give a rather straightforward proof togehter with that of Remark 2.1
applying this proposition.

We first make some observations on behaviors of bicharacteristics of p(x, &)
following Melrose [12], Nishitani [14]. By Lemma 3.1 it can be assumed that
5, is given by fo(x, £)=E,=0, f;(x, £")=0, j=1, -, k. Take X,eT,(T*Q),
j=1, -, k and X;=—H, so that df;(X;)=9§;; and Y,eT,(T*Q), j=1, -,
2d+1—Fk so that Y, form a basis for 7, %,. We define a polynomial s(2) by

W22 Xi+3w; V) = q(3 2; X)) = s(2) .
Note that (3.1) means that s(2) is strictly hyperbolic with respect to (1, 0, -+, 0)
R Tt is clear that g,(X)=s(dfy(X), -+, dfi(X)) and hence we can write
g(x, &) = sEo f(x EN+ _ 3 aia(x, E) & f(%, &)

i<r-2,i+|®|=
with the notation  f(x, £)=(fi(x, £’), -+, f(x, E")). Note that a,,(0, e;)=0. We
define g(z; x, £') by replacing (&, f(x, £")) by 2=(2,, 2’) in the above expression.
Since the zeros 2, of s(2) are real distinct and a,,(x, £') are real valued, it follows
from Rouché’s theorem

(3.5) 3(z; %, E) = 11 (B—2y(2"; %, £'))

where A ;(2'; x, £’) are C* in (R¥\0) X W, homogeneous of degree 1 and 0 in
2', &' respectively and W is a conic neighborhood of (0, ¢7). By the homogeneity
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with respect to 2’, £’ shrinking W if necessary, that
(3.6) |02:0500 (=5 %, E')| < Copy| 2" |71 |E"| T

in (RN\0)X W. Substituting (&, f(x,£’)) into 2=(2,, 2’) in (3.5) we obtain
with X;(x, £)=X;(f(x, &'); x, £') that

95 =2, 8), x5 =E—NE).

Note that this expression is valid if x,=+0, (x, £")E W since we can assume that
{f(x, £')=0} is contained in the surface {x,=0} (see the proof of Lemma 3.1).
It follows from (3.6) that

(3.7) 10g2i(x, £V =C,  10,0(x,E)|=CIE'| (x,E)EW, %%0

for any 1, j.

We shall now be working in a neighborhood of p which is not conic. Note
that near p with x,3=0 a bicharacteristic of g(x, £) is any one of §,(x, £) and hence
by (3.7) the tangent of such a curve is in the cone UC*, C*={C, x,= |(x",£)[},
C=—C*

Denote by S, the hyperplane xy=—& and by B; a box in S; with sides
a, By={|E—e;| <a, |%'|<a, x,=—38}. We introduce a map from Bj; into S,,
Fi: (y',7)—>(¥', %) where (—38, ¥', ) and (—§&, ¥, #) lie on the same integral
curve of Hy;. Since near p with x,5-0 the tangent of such integral curve is con-
trolled by the cone U C*%, taking a, § sufficiently small, the map F?, is well de-
fined for any 0<<€(=§6). By (3.7) it is easy to see that

(3-8) | Fie(y's )—F}e (¥, n) | <Bl&,—6&| near (0, e,)

with a constant B>0 independent of (y’, ) and &;. This allows us to define a
continuous map from B, into Sy; Fi(y’, n)=lim F(y’,5). Take §>0 suffi-
230

ciently small so that C~ N S;&B;. Let K; be the inverse image of the point p
by F} which is a compact set in S; and so is K, the union of K;. Here we note
that the intersection of ¢ and S; is just K.

Let u€ 9'(22) and suppose that

(3.9) WFu)NK = @, p&c WF(Qu) .
With By,={(x, £) € T*Q\0;—v =<x,<0, |(x", £)—(0, ;)| =} we have
Lemma 3.2. Let Q be as above and assume (3.9). Then
Bu, NWF(u) = ¢

Sor sufficiently small u, v.
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Proof. We fix a compact set K’'C.S; so that B;DK'>C~N.S; and take an
open set O in Sy with K'DO0DK, ONWF(u)NS;=@. Let M; be the image of
K'\O by F?% and M be the union of M;. It is obvious that M is compact and
psEM. Then one can choose g, v so that

(3.10) Buw+CHNM=¢, (Bun+C)NS,cK’,

where By, is the closure of By, Suppose that By,NWF (#) would contain
(9, 1)=(—& 7", 1), 0<é<8. From (3.9) we may assume (y, n) & WF(Qu) taking
u, v small. In what follows we fix these p, ». Then it follows from Theorem
2.2.2 in Hormander [5] that g(y, )=0 and hence §;(y, )=0 with some j. With
(3, M=F%(y, 1), Theorem 3.2.1 in [5] shows that (¥, 7)€ WF(u) and hence
(3, 7)€ K'\O by the second condition of (3.10). This would give a contradic-
tion to the first condition of (3.10) since F¥¥, 5)€M;CM and F¥3, 7)=
Fi.(y,7)€{(3, 7)+C*} NS, This proves the lemma.

A similar argument shows that F? is surjective. Thus there are at least r
different bicharacteristics of ¢ having the limit point p along which x, is increas-
ing and this shows Remark 2.2.

Proof of Proposition 3.2. Let V' be a conic neighborhood of p which does
not contain the &, axis. We choose a& S (R X R’*") equal to 1 in a conic
neighborhood of p and supported in V. Set v=a(x, D)ucf'(Q), g=0(», D).
Since g(x, £)#0 when (v, £) & F—{|&| |E'| 'S C,| (%, E'|£'| ") —p'|, £'+0} by
(3.7), then it follows from Theorem 2.2.2 in [5] that WF(v)CFNV. Thus,
noting that =1 near p, we can easily examine that

(0, ed) & WF (g(%05 +)) »
uniformly in x, near x,=0. For any given 8>0, one can take >0 so that
VN(AUF)DV N(As+<H, D),

where F° is the complement of F in which £'40. Since WF(v)CFNV the
assumption of Proposition 3.1 means that

WF(2) N (Ap+<H ) N {xe=—1} = 0

for a sufficiently small x>0. Now Proposition 3.2 shows that (0, e})& WF
(v(%p, *)) uniformly in x, near x,=0. Hence (0, ¢;)& WF(v) which completes
the proof.

Proof of Theorem 2.1. We shall examine that the hypothesis of Theorem
2.1 implies that of Proposition 3.2. Let >0 be a positive constant in Proposi-
tion 3.2. If we take x>0 sufficiently small, it is clear that the intersection of the
conic hull of By, and {xy=—«} contains A; N {x,=—«}. Then from Lemma
3.2 it follows that WF(u) N A, N {x,=—=«}=@. This is the desired assertion.
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4. Proof of Theorem 2.2

First we rewrite the hypotheses (2.6), (2.7) in a more convenient form to
the proof. Under the notations of §1, we set

a;; = ¢is(0) 4;6(0){q:5 4} (p) »
o=2>la;;dg;\dg; .

Note that both o and w, restricted to T, S/(T; SN T, S), have the same rank.
Lemma 4.1. The conditions (2.6), (2.7) are equivalent to
“.1) a;; %0 for any pair i,j with i+j,

(4.2) there are positive constants c; such that
cicja;;t+cicpaptc,c;a; =0 for any triplet i, j, k.

Proof. It is convenient first to show that (4.1), (4.2) are equivalent to
(2.7) and (4.3) below,

(2.7 C(pn,)NT, S; = {0} forall I with |I|=2,
(4.3) ® = w; Aw, Wwith some one forms w;

and after that we prove the equivalence between (2.6) and (4.3) assuming (2.7).
Here note that (4.3) is equivalent to the Pluker relations:

(4.4) a.j ak,—{—aj,, a“—!—a,“- aﬂ - O fOl‘ all i,j, k, l .

We first show that (4.1), (4.2) imply (2.7), (4.3). Set b;;=c; ¢; a;; then b;; verify
the conditions of cocycles by (4.2). Then there are constants b; such that
b,‘jzb,‘_zj. Wlth bi:C;‘-l 5,' it fOllOWS that

(4.5) a,'j == C;l b,-—c,-_l b] .

This proves (4.3) with w,= 31 b, dg;, w,= 21 ¢;'dg;. Let X&C(p,, §), which
is a linear combination of g,,(6) H, (p) with non negative coefficients ;. From
(4.5) it follows immediately that (c;q:x(6) dg;i—c; q;0(0) d7;) (X) is equal to
c;cja;; 2 a, ¢t Since ¢,>0 one has a;,=0 if dg;(X)=dg;(X)=0. Thus (2.7)
is obtained. Now we prove that (2.7), (4.3) imply (4.1), (4.2). If a,;=0 then
H,(p)+H,p) belongs to C(p,, ) N T, S, with I={s, j} which would contradict
to (2.7) and thus (4.1) follows obviously. Next note that for I={i,j, k}, T, S; N
T; Sy is spanned by Z;=a;; 4:s(0) H, (p)+a;s 4:0(0) H, (p)+as: ;6(0) H, (p) and
that for any J, JCI,|J|=2 one has T,S,NT, S;=T,S;NT;S,;. This
implies in virtue of (2.7) that Z,& C(p,, §). Using this fact, renumbering g; if
necessary, we may assume that a,,>0, a;,<<0 for i=1,2, --.;m—1. Once more
renumbering ¢; one can suppose that a,,>>0, a;;>0 for any j, j%3. Define ¢; by
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_ -1 <
C; = — @y, Ay a3(ay, azi+Eay a;y) for 1=1,2,-,m,

where & is taken sufficiently small so that ¢;>0 for i=4, 5, --+, m, which is pos-
sible since ay, ay3 a5 <0, ay, a;>0. By (4.4) it is easy to examine that ¢; satisfy
(4.2) and this proves the assertion.

We next prove the equivalence between (4.3) and (2.6) assuming (2.7). As
noted above w, restricted to T S/(T3 S NT,S), is non degenerate. Then it fol-
lows from (4.3) that dim (T S/(T; SN T, S))=2 hence dim (T3 SNT, S)=r—
2. This implies (2.6). Conversely (2.6) implies that dim (T, S;N T, S;)=4—
rank (a;;);je;=2 for any J with |J|=4 since a;;#0(i%j). Recalling that
T,S,NT; S,is spanned by Z, for |I|=3 we see that T, S,NT; S;cT, S;N
T; S; for any J(DI) with | J|=4. Since J(DI) is arbitraly we get T, S;N
T, S;cT,S. This implies that dq,(Z;)=0 for all [ and hence (4.4).

Before reducing the proof of Theorem 2.2 to the case of a second order sys-
tem we make similar observations to those in §3. Under the notations in §1 we

recall that p(x, £)=¢(x, £) ]_I g;(x, &). Since ¢(p)=0 and g,,(8)=%0, by a similar

argument after the proof of Lemma 3.1, we may suppose that P(x, D) is of order
r with principal symbol p(x, ) which is the product of g,(x, &) with g;,(8)=1.
Moreover the hypothesis (2.8) can be verified with m=r. The conditions (4.1)
and (4.2) are invariant by multiplication of ¢; by positive constants ¢; then we
may assume that ¢;=1 in (4.2). Also we may assume that p=(0, ¢,), &;=
0, -+, 0, 1)eR**' as in §3. Then (4.2) means that

(4.6) {9—4;»%.—4} (p) =0 foranyi,j, k1.

Set yo=(q:—¢) if {g,, ¢} (p)<O and y,=—(q,—¢,) if {q, ¢} (p)>0. From
(4.6) it follows, in both cases, that

4.7) dg¢|(H,,)) = - = dg,(H,)) = £a,,<0.

Since H, and the radial vector field at p are linearly independent we can extend
¥ to a full homogeneous symplectic coordinates (y;, ;) near p so that (y,7)
(0, e,)=(0, e;). For the sake of simplicity we write (x, £) instead of (y, ). Then
by (4.7) one can write ¢,(x, £)=e,(x, £) (E,—ai(x, E')) with e;(p)>0 where a;(x, £’)
are real valued homogeneous of degree 1 in £’, C* in a conic neighborhood of p’.
From the same arguments as in §3 one can assume that

P B =T x5, 48 =E—axE).

Note that (2.8) with m=r7 implies that near p, p,_;(x, £) is a linear combina-
tion of gq,(x, £), |I|=r—2j, with coefficients which are homogeneous of degree
jin & C= in a conic neighborhood of p, where g,(x, £) stands for the product
of ¢;(x, &) over j&l. This enables us to transform the equation Pu=f to a
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second order system. Indeed, taking {<D'>™*gq,(x, D")u, 0<|I|=m—2j
<m, {D'D""1-1y} as new unknowns, the equation is reduced to a second order
N XN system

(4.8) LU=F

with a diagonal principal symbol whose entries consist of ¢;(x, £) ¢,(x, £) with
i == j apart from repetition. Here <¢')*=1-|£’|? and [m/2] denotes the integer
part of m/2. Since the components of F consist of f and 0 it is obvious that
p&EWF(F) (resp. p&E WF(U)) implies pe& WF(f) (resp. p& WF(u)) and wvice
versa. For I={i,j} we set K,={(x, &) T*Q\0; gi(x, &)—q;(x, £)=0}. Obvi-
ously K, contains the &; axis and then

4.9) T,K,DoT,S;+<H,> foranylwith [I|=2.
Note that (4.6) implies that

(4.10) o(T;K;, To K;) =0 forany I, Jwith |I|=]|]J|=2.
Also from (4.6) we have

(4.11) C(ps 0)NT, K, = {0} foranylwith [I|=2.

In fact (4.6) shows that {g;, ¢;—¢;} (0)=14), ¢:—4;} (p)=a;;=0 for any ¢, j,k,!
and thus (dg;—dg;) (X)=0, X =C(p,, 0) imply X=0 since

(412) a;i(dg;i—dg;) (X) = aji S, for X = o Hy(p) -

Setting C'=—C(p,, 0)+<H,>+p, we recall a result which follows easily
from Proposition 8.1 in [18],

Proposition 4.1. Assume that (4.9)~(4.11) are satisfied and let U
C'(I1,(H'(R%)") with some s€ R and an open interval I containing x)=0. If

WF(D{U(—«, )Nz(C'N{xy=—=x}) =0 for 0=<j=1
with a sufficiently small k>0 and
(0, el)ee WF (LU (%, *)) »
uniformly in x, near x,=0, then it follows that
(0, e§) e WF(U(xo, -)).
uniformly in x, near x,=0.

The same argument as in the proof of Proposition 3.2 proves with Cj=
C'N A, that

Proposition 4.2. Assume that (4.9)~(4.11) hold. Then there is a con-
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stant b>0 with the following property : if U(D'(Q))Y and
WFU)NCiN{xy= —x} =0, pe& WF(LU)
with a sufficiently small «>0 then we have
p& WF(U).
Proof of Theorem 2.2. Assume that
(4.13) WFEFw)NyN{t(x, &)= —«} =0, pe& WF(Pu)

with a small «>0. Set A= N {(x, £)eT*Q\0; a,,(g,—¢,;)>0} where the inter-
section is taken over all pairs 7, j with /%= j. We show that there is a £>0 such
that

(4.14) WF@) N AN {xo= —&} =@ where A, = ANA,.

Suppose for a moment that (4.14) is proved. It then follows from ADA+<H, >
and (4.12) that A, N {x,=—E} DCjN {x;=—E}. Then Proposition 4.2 shows
peE WF(U) and hence pe&: WF (u).

Assume that (4.14) were not true. Then there are p,€ WF () N A; N {x=
—&} for any §>0. From (4.13) one may assume that p, &5 WF(Pu) for sufficiently
small &. Then Theorem 2.2.2 in Hormander [5] shows that p(p,)=0, that is,
¢,(p.)=0 for some j=j(€). From this it is clear that p,—>p when €é—-0. On the
other hand by the definition of A, A is contained in the set of simple characteris-
tics of p(x, £) then the part of a bicharacteristic in A of ¢;(x, £) (j=j(€)) through
p. is in WF(u) by Theorem 3.2.1 in [5]. Letting p, tend to p such a bicharac-
teristic is as close to v;(j=j(€)) as we please but this would contradict to the first
hypothesis in (4.13). This proves (4.14). Then the proof is complete.
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