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1. Introduction

Let G be a finite group and B be a p-block of G with an abelian defect
group D and with a root b in CD(D). Let Dl=CD(T(b)) and S1=lf^Dι\ where
T(V) is the inertial group of b in NG(D). In [9, Theorem 1] we showed that the

number k(B) (resp. l(B)) of ordinary (resp. modular) irreducible characters in
B is equal to that of ordinary (resp. modular) irreducible characters in Sλ. In
this paper we continue our study to show further properties on the p-block B^
Let K be the algebraic closure of the />-adic number field, o the ring of local

integres in K and F be the residue class field of o. For a subgroup H of G,
we denote by Tr# the relative trace map from (FG)H to the center Z(FG) of the
group ring FG, where (FG)H={x^FG\hx=xh for any h^H}. For a ^-sub-

group Q of G, we denote by SQ the Brauer homomorphism from (FG)Q to FCG(Q).
The following is the main result.

Theorem 2. Let E be the block ίdempotent of FG corresponding to B and
el be the block idempotent of FCG(D1) corresponding to Bλ. Then the following
hold.

(i) The F-linear map f from Z(FCG(Dl))el to Z(FG)E defined by f(y)=

TrcgfCpj) (y)E™ an isomorphism.
(ii) The algebra homomorphism g from Z(FG)E to Z(FCG(Dl))e1 defined by

g(z)=sDί(z)e1 is an isomorphism.

2. Lower defect groups

One of our results (Theorem 1) concerns the multiplicities of lower defect

groups. So we list some facts on lower defect groups that will be used in this

paper (see [1], [2], [3, chapter V], [5], [6] and [7]). Let B19 B29 -,5T, -be
the />-blocks of G £.nd Eτ be the block idempotent of FG corresponding to Br.

For a conjugacy class C of G, we also write C to denote the class sum in FG.

With each Br it is possible to associate k(Br) conjugacy classes Cy, l<j<
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k(BT) such that the following conditions are satisfied.
(i) Every conjugacy class of G is associated with exactly one p-block.

(ii) {€} Er} is an F-basis of Z(FG) Eτ.
Let B be an arbitrary ^-block of G and let B=Br. For a ^-subgroup Q we
set M(B, Q}={C}\C] has Q as a defect group, l<j<k(Br)} and M(B, Q)'=
{ C ] \ C r j is a ^-regular class and C} has Q as a defect group, l<j<k(Br)}9 and
we denote by m(B,Q) and m(B,Q)f the cardinal numbers of M(B,Q) and
M(B, Q)', respectively. When m(By Q)ΦO, Q is called a lower defect group of
B. Let ZQ(FG) be the F-subspace of Z(FG) spanned by the class sums C such
that Q is a defect group of C and let ZQ(FG)' be the F-subspace of Z(FG)
spanned by the class sums C such that C is a ^-regular class and Q is a defect
group of C.

(1) m(B,Q) = dim ZQ(FG)E and m(B, Q}' = dim ZQ(FG)Έ if Q is normal in
G,

where E= Eτ. Furthermore, {sQ(C} E) \Crj(ΞM(B, Q)} is an F-basis of ZQ

(FNG(Q)) sQ(E) and {sQ(C} E) \ CJeM(fi, Q)'} is an F-basis of ZQ(FNG(Q))' sQ(E).
From this we have

(2) m(B, Q) = Σ m(B, Q) and m(B, Q)' = Σ m(B, Q)' ,
β 3

where 5 ranges over the set Bl(NG(Q), B) of ^-blocks of NG(Q) associated with
B. On the other hand we have the following, which will be used to prove
Theorem 2.

Lemma 1. Let {Qt, Q2, •••, Qr} be a complete set of representatives for the
G conjugacy classes of lower defect groups of B. Then we have

Z(FG) E= Tr^β,, (Z^FN^Q,)) *Qi(E)) E.

Proof. Let {w{} \ j=\, 2, — , m(B, Q, )} be an F-basis of ZQ. (FNG(Qi)) sQ.(E).
r

Since dim Z(FG)E— Σ m(B9 <?,-), to prove the lemma it suffices to show that
ί = l

Wij) E>j—ly 2, •••, m(B, Qf)y i=lj 2, •••, r are linearly independent. Sup-
pose that

Σ Σ
1=1 j = l

where a^F and mi=m(B,Qi). We assume that |QJ > \Q2\ >•••> |Qr | .
Then we obtain by [1, (B3.1)]

sQl(Σ Σ β/y Tr (̂(?ι.)(^,y) F) = sQl(Σ % Tr^(<?l)(«;iy) £) = Σ «ιy wιy = 0 ,
1=1 y=ι

because 20j(FΛΓG(Q1))=Tr^f(<?')(JFCG(Q1)). Hence αιy=0 for any;. For i(2<
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i<r), let akj~Q for any k<i— 1 andj. Then we have

- Σ % «;„- - 0 .

So we have Λf y=0 for any^. This completes the proof.

Let C5 be the Cartan matrix of B. We have

(3) k(B)^Σm(B,Q)J(B) = Σm(B,QY and |C*| = ΠIQI"1^' ,
<? <2 β

where Q ranges over a complete set of representatives for the G-conjugacy
classes of lower defect groups of B. In fact, the multiplicity of pm as an ele-
mentary divisor of CB is given by Σ m(B, Q)', where Q ranges over a complete

Q

set of representatives for the G-conjugacy classes of lower defect groups of B
of order pm.

We denote by [Q, B] the pair of a ^-subgroup Q and a ^>-block S of NG(Q)
such that 5 belongs to Bl(NG(Q), B). Let ςS be a complete set of representatives
for the G-conjugacy classes of such pairs [Q, S]. From (2), (3) and Lemma 1,
the following (4), (5) and (6) hold.

(4) m(B, Q) = Σ w(b, P) and m(B, Q)' - Σ w(b, P)'
[P,b] [p,q

where [P, b] ranges over all the elements of <S such that P is G-conjugate to Q.

(5)

(6) k(B)= Σ w(b,P),/(β)= Σ m(b,Py and
[P,B] [P,b] [P,B]

where ̂  is the block idempotent of FNG(P) corresponding to b and [P, b] ranges
over <S. It is also clear that the multiplicity of pm as an elementary divisor of CB

is given by Σ m(β> P)'> where [P, b] ranges over the elements of <5 such that
DP,*]

\P\=pm.

3. Z(FG) E and Z(FCG(Dl)) e,

In this section we prove our main result. First we prepare a lemma.

Lemma 2 (see [2, Proposition (1.5)]). Let B be a p-block of G, b be a
p-block of a normal subgroup N of G and T be a subgroup of G which contains
the inertίal group Γ(b). Then there exists a unique p-block β of T such that S
covers b and B is associated with B. Let E be the block idempotent of FG cor-
responding to B and E be the block idempotent of FT corresponding to B.

(i) The F-linear map f from Z(FT)£to Z(FG)E defined by f(y)=Ύr?(y)
is an isomorphism.
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(ii) The F-linear map g from Z(FG)E to Z(FT)E defined by g(z)=zE is
the inverse map of f.

Proof. The existence and the uniqueness of B follow from [3, chapter V,
Theorem 2.5]. Furthermore k(B)=k(B), therefore dimZ(FG)E=dimZ(FT)
E. Let {xl9 #2, •••, xk} be a set of representatives for the cosets of T in G. Since

T^>T(b), £xiExJ=Q for any i,j(i*j) and E= Σ £*' (see [2, chapter V, §3]).

Hence we have Ύr$(y)E=(Σy** E*')E=Ύτ?(y) and Ύr?(y)E=(Σy*' ExήE=y
i=l »=1

for any y €Ξ Z(FT) E. This implies that / is well defined and / is an isomorphism,
and g is well defined and g is the inverse map of /.

In the remainder of this paper we assume that B is a p-block. of G with an
abelian defect group D and b is a root of B in CG(D). If Q is a ^-subgroup
of G and S is a ^-block of NG(Q) associated with 5, then as is well known, a
defect group of B is G-conjugate to D. Hence there is a subgroup P of D such
that [Q, .5] and [P, bNβ(p>] are G-conjugate. Furthermore for subgroups Ply P2

of D, [P!, WV] and [P2, ̂
(F2>] are G-conjugate if and only if P1 and P2 are

T(i)-conjugate. Here we choose a complete set $β of representatives for the
T(&)-conjugacy classes of subgroups of D and we fix it. Then {[P, bNβ(p)]\P^
^β} is a complete set of representatives for the G-conjugacy classes of the pairs
[Q, B] such that B is a p-block of NG(Q) associated with B.

Theorem 1. Under the above notations let D1=CD(T(b)). For any
we have

(7) m(bN^p\ P) = ro(ftc<W "**(«, P) ,

m(bN^\ pγ = m(lf*W*p\ P)' .

In particular, if P^Dλ then m(bNβ(p\ P)=0.

Proof. Let P e Sβ. First we assume that P 3 A Then *c^(z?l) n ̂ fiί(P) covers
ic6r(p) and the inertial group T(bc^) of ic^(p) in NG(P) is contained in(Γ(έ)Π

^(J0)) CG(P), and hence Γ(δ^(p)) c CG( A) Π JVG(P). Therefore if 8P is the block
idempotent of FNG(P) corresponding to bN&(p) and 8P is the block idempotent of
F(CG(Dl)Γ\NG(P)) corresponding to tP*W*v\ Tr^^n^p) induces an iso-

morphism from Z(F(CG(Dl)Γ(NG(P)))^P to Z(FNG(P))6P and Tr?g
(a>) δp=w for ^eZ(F(CG(D1) Π NG(P))) 8P by Lemma 2. Further we have

ZP(FNG(P))6

Hence from (1) we obtain (7) for P with P^DV

Since CG(D^)^T(b)^ we have the following from (6).

), P) ,
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Note that if Pe*β and P$ D19 then τw(icΛ>n^>, P)=0 and m(bcG(W*(p\ P)'
= 0. On the other hand, we have

) and /(£) = Σ

But since k(B)=k(bc*(DJ) and l(B) = l(lfe(DJ) by [9, Theorem 1], we conclude

from the aboves that if P3>A> then m (&"*<«, P)=0 and m(bN^p\ P)'=0.
This completes the proof of the theorem.

We set S1=bc&(D^). From Theorem 1 and (6), we obtain the following.

Corollary. The elementary divisors of CB are the same as those of CBI (count-

ing multiplicities). In particular \CB\ = \ CBί \ -

Proof of Theorem 2. Let {P1? P2, •••, P,} be the set of elements P of 5β such

that P2A and m(!f*(DJnN*<p\ P)ΦO and we denote by Si96{ the block idem-
potents 8 p., £P. in the proof of Theorem 1. Let {wily wi2, •••, wim.} be an jP-basis
of ZPi(F(CG(bl)ΠNG(Pi)))Sh where m^m(bc^^^^pi\p:). From the proof

of Lemma 1 and (5), Ύτ^%^^N&{pi)(wij)elyj=lJ2y —,mi9i=l,2, — ,ί form an
F-basis of Z(FCG(Dl))el. We set *„= /(Trgg^π^^ί^) ̂ ) (l<;<m,., \<i
<s). Since dim Z(FG)£=dimZ(ί1CG(D1))^1, to prove (i) it suffices to show
that # fy,y=:l, 2, •••, mt , i=l, 2, •••, s are linearly independent. We show this by

the same way as in the proof of Lemma 1.
First we calculate sP.(Zfj). We can set

) , uίieFCG(Pi) .

By [1, (3B)], we have

In particular sP.(%ij)^Z(FNG(Pi)) 8{ and Sp.faj) δt =^, y by Lemma 2. Further-
more if P, and PA are G-conjugate and ΛΦ/, then sp.(zkj) δ, =0. In fact, let
Pf=Px

k for some x^G. Since we have

and since £, φ£ί, ίp,.(2*y) 8,= .̂ (#»,-) £| δ, =0.
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Suppose that \Pλ\ > |P2| >:•••> \PS\. We assume

Σ3 Σ
»=ι y = ι

sPl(Σ Σ <*ij Zij) δi = Σ % wιy - 0 .
»=ι y=ι y=ι

Then we have

So #i,— 0 for anyj. For ί(2</<$), let akj=0 for any £<z — 1 and anyj. Then
we obtain

m ι».

SPt (Σ Λ, y #ί/) δί = Σ 0,v Ofy = 0 .

Therefore αo =0.
(ii) By the above argument, sp.(g(zij)) S^Spfafaj) e,) δf =ίp. (*,,-) δ,=«;f y.

Furthermore, if Pt and P* are G-conjugate and z'ΦA, then sPi(g(zkj)) δi=Sp.(zkj)
δf.=0. From these facts, we can show Ker£={0} by the same way as in the
proof of (i). This completes the proof of the theorem.

4. Indecomposable modules belonging to B and to ί$l

Let R be o or F. In this section we show that there is a vertex-preserving
bijection between the set ot isomorphism classes of indecomposable RCG(D1)-
modules belonging to Bλ with vertex containing D1 and a set of isomorphism clas-
ses of indecomposable jRG-modules belonging to B. Let M be an indecompos-
able ΛG-module belonging to B with vertex Q. Since D is abelian, by [4,
Theorem 2] and [8, Corollary 1 and Theorem 3] there exists a unique (up to
T(δ)-conjugacy) subgroup P of D such that P is G-conjugate to Q and that
the Green correspondent of M with respect to (G, P, NG(P)) belongs to bNθ(p).

Proposition. Let P be a subgroup of D, H be a subgroup of G containing

C^D^ and CG(P) and let B2=bH , Then the following hold.
(i) Let N be an indecomposable RH-module belonging to S2 with vertex P

such that the Green correspondent of N with respect to (H, P, NH(P)) belongs to
bNa(p\ Then there exists a unique (up to isomorphism) indecomposable component
M of N° such that M has P as a vertex. Further M belongs to B and the Green
correspondent of M with respect to (G, P, NG(P)) belongs to bN<?(p\ Set M=ψ(N).

(ii) ι|r defines a one to one correspondence between the set of isomorphism
classes of indecomposable RH-modules belonging to B2 with vertex P whose Green
correspondents with respect to (H, P, NH(P)) belong to bN3^ and tlie set of isomor-
phism classes of indecomposable RG-modules belonging to B with vertex P whose
Green correspondents with respect to (G, P, NG(P)) belong to bN#(p\

Proof. By the assumption that CG(P)^H and CG(D1)cJΪ, the inertial
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group T(bCG (p^} is contained in NH(P). Therefore "induction'' gives a one to

one correspondence between the set of isomorphism classes of indecomposable
RNff(P)-modules belonging to bNs^ and the set of isomorphism classes of in-
decomposable jRΛΓG(P)-modules belonging to δ^(p).

(i) Let Nλ be the Green correspondent of N with respect to (if, P, NH(P)).

Then Ni &(P) is an indecomposable Λ/VG(P)-module belonging to bN<*(p) and P

is a vertex of N*&(P\ By [4, Theorem 2], there exists a unique indecomposable
component M of NI such that M has P as a vertex. From [8, Corollary 1
and Theorem 3], M belongs to B and Nιfir(p) is the Green correspondent of M.
On the other hand, N is a component of N?, and so NG is a component of N?.
Since P is a vertex of N, an indecomposable component of NG has P as a vertex.
Therefore M is a component of NG. This establishes (i).

(ii) Let M be an indecomposable ΛG-module belonging to B with vertex P.
We asume that the Green correspondent Ml of M with respect to (G, P, NG(P))
belongs to bNβ(p\ Then there is an indecomposable RNH(P)-module Nλ be-
longing to bNa(p) such that M1=Nι^(p\ Let N be an indecomposable RH-
module with vertex P and with the Green correspondent Λ^. Then N belongs
to S2 and M is a component of NG from the argument of (i). Let N' be an
indecomposable Λff-module belonging to S2 with vertex P and with the Green

correspondent Nί belonging to bNs(p\ If M is a comopnent of 7V/G, then N{N^P^

is the Green correspondent of M. Hence N{ and Nλ are isomorphic, and so
N' and N are isomorphic. This completes the proof of the proposition.
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