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1. Introduction

The Ott-Schaeffer planes (O-S) are translation planes of even order ¢
with kernel K=GF(q) which admit a collineation group & isomorphic to SL(2, q)
where the involutions are Baer. Furthermore, if S, is a Sylow 2-subgroup of
G then no two nontrivial elements of & fix the same Baer subplane pointwise.

The O-S planes are also derivable and a plane may be defined for each
automorphism « of GF(q), g=2**" which has fixed field equal to GF(2). Hence,
the number of such translation planes of each order is ®(2r4-1) (the number
of integers =1 relatively prime to 2r+-1).

Further, the O-S planes may be defined by the tensor product of SL(2, q)
by a twisted version of the same (by an automorphism a> Fix a=GF(2)).

Note that GL(2, g)=SL(2, g) X Z(GL(2, q)) (center) when ¢ is even so as the
kernel is GF(q), the O-S planes also admit GL(2, g).

Conversely, in [7], for arbitrary kernel we have

Theorem (Johnson [7]). Let = be a translation plane of even order ¢*>16
that admits GL(2, q) as a collineation group in the translation complement where
the 2-groups are Baer and no two nontrivial elements fix the same Baer subplane
pointwise. Then = is an Ott-Schaeffer plane.

DerinNiTION 1.1.  Tensor Product Plane.
A translation plane z of order ¢ g even or odd, kernel K=GF(q) that
admits the collineation group

T—{[l “}@[1 “c]i EK} eAut K
o 10 1 [T o=

where 7= {(xy, %, ¥, Vo) | %:;, ViEK, 1=1, 2}, x=(xy, %), yY=(,¥,) and x=0,
y=0, y=x are components in this representation is called a tensor product plane.

DEFINITION 1.2.  Generalized Ott-Schaeffer Plane.
A translation plane 7z of order ¢*, ¢ even or odd, g=p" for p a prime, kernel
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=GF(g), that admits a p-group B of order ¢ in the translation complement
such that each element of B is Baer and no two nontrivial subgroups of 3B
can fix the same Baer subplane pointwise is called a generalized Ott-Schaeffer plane.

In section 2, we consider the basic structure of tensor product planes and
of generalized Ott-Schaeffer planes. In section 3, we consider translation
planes (T-P and O-S) which admit groups of order g(g—1) in the translation
complement.

Our main results completely classify both tensor product planes of even
order ¢* admitting a tensor group of order g(¢—1) (see (3.4)) and generalized
Ott-Schaeffer planes admitting groups of order ¢(¢g—1) in the translation com-
plement with prescribed Sylow 2 subgroups (see (3.21)).

2. The fundamental structure

Notes 2.1. For ¢ odd g=p", p>3, there is no tensor product plane. If
p=5 there is no generalized Ott-Schaeffer plane of order ¢

Proof. Consider

1a° aat?
1a 1 a° 01 Oa
T“=[0J®[01J=00 14
00 O01

7(a=+0) fixes z,={(0, x,, —x, @', ¥,)| (%, ¥.) | ,, ¥, €K} pointwise. Further-
more, {r,|la€K=GF(q)} =S, is elementary abelian. By Foulser [4], &, must
fix some Baer subplane pointwise, which cannot be the case. Hence, there are
no tensor product planes of characteristic >5.
Now assume p=3. The components x=0, y=xM of =,, for M =|:m1 m’],
must satisfy (0, x,, x,mg, x,m,)=(0, x,, —x,a'°, ,) so that my=—a'"". s My
On the other hand, in order that y=xM is fixed by 7,, we must have

b 905§ T3 e =on
B2 -6 220

om—a = a+me —a = +a.

Hence, p=3. This argument, which is also valid for arbitrary odd order planes,
was pointed out to the author by Rolando Pomareda. Now assume that z is
a generalized Ott-Schaeffer plane of odd order ¢? g=p". Each element of B
is Baer and for p>3, Foulser [4] has shown that the Baer subplanes involved
must be disjoint. That is, since | B| =g, B must fix a 1-dimensional subspace
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pointwise, which cannot be the case.

If p=3, it is possible that there are generalized Ott-Schaeffer planes of
order 3. However, hereafter, in this section, we shall consider only even
order planes.

Theorem 2.2. Any tensor product plane m of even order ¢ is derivable.
The derivable net is a regulus and the derived plane = is a tensor product plane
defined by the inverse o™ of the automorphism o used in the definition of =.
Moreover, Fix o=GF(2) and the spread may be represented by x=0,

y= x[g O], ackK
a

yzx[ :‘_; m_(:’a):l,m:KxK-»K, u,a€K, a+0.
a %, uta

Proof. Consider the notation of (2.1) with

<=3 lel3 )

Ta 1a” 7+ 0 0
Then y=0—— y=« [0 ‘f j”:g Z }=[y=x[g a:']' But, y=0, y=x I:g a]

for ac K==GF(qg) is the vector form of a regulus in PG(3, K).
Now derive 7 using this “regulus” partial spread. Recall, if

Ta
(%1, %ay Y15 Vo) — (21, 2,07 20, Mm@+, 1,8 +-2,0-+y10"+9,)
represents 7, in z by the standard representation of coordinates in 7 by (x,, y,, %,

¥,), we obtain:

?ﬂ o a. a
(%2, Y1, %5, yz) — (%, xa+y,, x,0° +x,, x,0 +1+xza+yla +32)

7, representing 7, in 7 (see, e.g., Jha-Johnson [6]). Hence,

-1 1=l 7]
~[i11ef]]

o o=
for b=a°. Hence, {7,, = [(1) ﬂ ® [(1) ‘11 ]} in 7 is {[(1) ﬂ ® l:(l) I{ :l} in 7.

. m, m -
We now consider the components y=xM, M= l:ml m::l of z,= {(0, x,, x,a'~°,
3
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¥2) | %,, v, €K}, a0 (Baer subplane of z). 7, fixes

1 a":l l:a a"“] |:1 a’
y=xMe [0 1 0a 1701 ]
- [‘H‘mv a"+m ac'i'mz:] — [m1+m3a", mﬁ—a’m{l
my , atma’+my my o, my
o my=a"",
and a”*'+m,a”=a"m, or rather that a+m,=m,.

Hence, M :l: :‘ ’ m(:’ a)} for all # where m is a function from Kx K to K.
a=% uta

Note that if [a'~", u+a] does not take on all ¢* values then 7, and 7, for a#b
(a, b=0) fix the same component y=xM=0 and hence {7, 7,> must fix a 1-space
pointwise on both y=xM and x=0. Hence, 7,=7,. Thus, [a'~, u]=[c""", u]=
a=coa""=c""e(ac")=(ac™")" ® Fix c=GF(2).

Now we consider the general structure of a generalized Ott-Schaeffer plane
7w. Let @ be a collineation group of # of order ¢ in the linear translation
complement and such that each involution in = is Baer. By Johnson and
Ostrom [8], & is elementary abelian. Further, assume no two involutions in
G fix the same Baer subplane pointwise. Then

Lemma 2.3. The q—1 Baer subplanes corresponding to the involutions of
G lie across (q—1) q+1 components. The remaining q components are in an orbit
under G.

Proof. & fixes a component which we call x=0, x=(x,, x,). If g, h&e G—
<1> and Fix g and Fix % share a component L= (x=0) then {g, &> has fixed
points on both £ and (¥=0). Since & is linear, it follows that <{g, %> is Baer—a
contradiction. Hence, Fix g and Fix % cannot share a component =(x=0).
Thus, this accounts for g(g—1)+1 components. As the Baer subplanes corre-
sponding to the involutions in & do not intersect the remaining set T" of ¢ com-
ponents, I' must be a G-orbit.

Now choose (y=0)eT. Then

Lemma 2.4. We may choose a basis so that

1 a|f(a) g(a)
PO N LR 1 PN

1

0 1
[, & functions K—K, where f is a 1—1 additive and g(a+b)=g(a)-+g(b)-+af(b)-+
bf(a) for all a, beK.
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Proof. Let G fix x=0. Choose a basis so one of the involutions fixes
{(0, x,, 0, y,) | x,, y,E€ K} =m, pointwise and 7z, shares the components x=0, y=

1400
. ) 01 0 0
0,y=x. Then one of the involutions has the form 7=|— Now peg&
a, a, b, b, 00 1 d|’
00/{01
0 a0 5 .. .
fixes 7y and x=0, so p= . Since |p| =2, we must have a}=ai=ci=
00 ¢ c
000 ¢

ci=1s0 ay=a,=c,=c,=1. Now pr=1p so

o110 2115 51l 7]

and hence b,=b, (d#+0). We assert that a,=c,,
1a,[b & b b1 ¢
o 2l s nllo
p”:{ 011L0 54 LO b 01]
LO I

so a, b;="b, c,.
If 5,=0 then p fixes 7, pointwise. Hence, if p==7, a,=c¢,. Now there exists

a component y=x7" in the orbit of length ¢ for T=I:;l :’] Change bases by
3 “4

[I T]. Then x=0—>x=0,
01

y=0oy=xT
y=x—->y=xI+T).

(That is, after the basis change, y=x may not be an equation of a line.) Then

1ab b,
for p= g (1) (1) z‘ we obtain
0001
1 a (b,+aty), by+a(ty+1,)
[I T:\ I:I T]= 01 0 (by+at,)
or1Plord™ oo 1 a
00 O 1
Letting

f (a) = b,+at,
g(a) = b,+-a(t,+1,)
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lace lacgec

g (1) (1) Z‘ and g (1) (1) “leg implies ¢,=¢;, ¢,=¢, since there are no ela-

0001 0001
tions in &) where f, g: K—K, we have the proof to (2.4) since & is elementary

abelian. Note
—0-Ly =4[} 4] [fg“) jﬁ:ﬂ

y—x [f(a), g(a)+af(a)J
0, f@ '

(note

If f(a)=0 for a=0, then

y=2 [g g((‘)’)]= (% % 0, %,2(a) | % 2, € K} N {(my %, 0, 0) |, 1, K} is

{(0, x,, 0, 0)| x,€ K} and since both equations represent components, we have a
contradiction. .. fis 1-1. And, we have:

Lemma 2.5. The G-orbit of length q may be represented by y=x [féa)

g(a)+af(a) where ac K.
f(a)
At this point, let the components be ¥=0, y=0, y=xM, M M but I may
1 a f(a) g(a)

not be in M. Let 7,= 01 (1) f(a) for a=0.
a
0 1

(2.6). 7, fixes y:xM@M—l:'mnl :’niz , my=a"" f(a), m=m,+a"" g(a).

Proof. (x, xM) % [x [I:féa) 'Jg‘Ea;:l [0 ljm Ey=xMe [(1) '11]
w3 fol o ]
Hence we have the following set of components

u , m(ua)
y=% -1
a”' f(a), u+ta'g(a)
for all a0, ueK, m: Kx K—K,
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where h(u)=g(f'(u))+uf *(u) for all ucK. So, we obtain the following theo-
rem,

Theorem 2.7. Let = be a generalized Ott-Schaeffer plane of even order ¢,
kernel K=GF(q). Let G be a collineation group of order q in the linear transla-
tion complement such that each involution of G is Baer and no two involutions fix
the same Baer subplane pointwise. Then = and G may be represented in the follow-

ing form:
1 a f(a), g(a)

G={r,= 3(1) 2 f@ || aeK, f 1—1 and additive
a
000 1

g(a+b)=g(a)+g(b)+bf (a)+af (B) -

The components for = are x=0, y=0, y=x [16 hglu):l V ueK, h(u)=uf ~(u)+g(f*

(1)), h(0)=0, and y=x [a_l’}(a)» u:’é’_‘; ;2@] for some function m: K x K—K.

Proof. Note y=x may not represent a component.

3. Groups of order g(g—1)
We first assume that z is a tensor product plane of even order ¢* that admits

a group G4 of order g(g—1). Further, we assume g:{ [(1) ﬂ@[(l) ‘f

GF (q)} as in section 2 and J{= {[a a 1@[“ a—u‘]

Recall from (2.2) that a spread for  may be represented in the form x=0,

yzx[ ?_c’ m(:_, a):l for all 4, ac= K, m a function from K x K—K.
a ", uta

aeK=

aEK} for some o€ Aut K.

1a° aat a0 0 0
01 Oa a 0 a® 0 0 &°0 0
e85 e 2l 2]
=00 14 | P o o U®lo o~lT]0 0 a0
00 01 0 0 0 gt

Consider the images of

_ l: u , m(u, b):l
y=x b°, u-tb

LA ]
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- [1 a :] a+tu, a”'+ua’+m(u, b):'
=x
Y=*01 = a+b""a"+u+b

. ': B I:(a—i—u—l-a"b“"), m(u, b)—}—a"(b“"a"-}—b)jl:|
R b ,  (a+u+a"d"")+b '

So,

Lemma 3.1.
m(a-+u+a° b*=7, b)=m(u, b)+a"(b'" a”-+b) for all a,u, b, b=+0 of K.

Applying p, we obtain

Lemma 3.2.

_ u , m(u, b):l
Y x[b‘“’, u+tb

Pa x[a'("“) ][ u , m(u,b) l:a"" 0 ]
7 a-0-o) Ly, utp L0 o
(ba™®)'"",  ua~*4-ba”* '

So, m(ua™?, ba™*)=m(u, b)a™*"*V for all u, a, b in K, a0, b=+0.

Hence,
Lemma 3.3.
y=x ) m(g b)] has 222 _~J q(q DF images under G9 and this orbit includes all

components wzth a zero in the (2, 2)-entry of the image matrix.

In particular, we have the orbits of length q( ) defined by the images of
y=x [} m(ls 1)] and y—sx [0 m(0, 1)] (by analogy). By (3.1) and (3.2), the
orbit of y=x B’ m(1, (1))"'”1] is

y= 1 ml] _ [a-}-l—l—a", ml—f—a"l(a"-i—l):'
10 y=7 1, a+a”
Ps (a+1+4a°) b7% (my+a°(a”+1)) 72D
T [ )7, (at14aT)bb J
_ (a+1+4a%) ¢, (m+a°(a”+1)) 7
=[y= [ =’ , (a+a”)c J:l
for all @, c=0in K.
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Similarly, the orbit of [(1)’ m(0, i)=mo:| is

)

b= [0 ) )

Therefore, we obtain the following theorem:

Theorem 3.4. A translation plane = of even order ¢¢ and kernel k==GF(q)
admits the group H— {[5 ﬂ@[(l) tlf] aeK}. {[a a_1]®|:a" a—o‘] ae K— {0} }

with components x=0, y=0, y=x there exists constants my, m;EK such that the
spread for m may be represented by the matrix spread set :

x:O,y:x[u 0i|

0 ul’
e )
y=x [(a";l:f) c: (mo—(l;zi (Z:j__ 11)))c ccr+1]

for all u,a,ce K, c£0. Also, the fixed field of o=GF(2), g=2', and r is odd.

Proof. It remains to prove that 7 is odd. We see that [O m"] and 1 ml]

11 11
are in distinct H-orbits. Hence |:O ml] 3 [a+a“, my+a”(a°+1) , so that a--
11 1, ata+1

a”#1. Suppose b*>=b+1 for some b& K. Then if g=2', assume r even, and
o=2° for s odd. Then (b*)*=b""*+1=b+1b"*=beb’=bF b *=1o(for

b=*1), |:i2—_2’ 27— 1]4: 1. Since 0-2—2-:23“—1 and (s—1, r)=2-t, we have that

GF(4) cannot be a subfield of GF(q). That is, 7 is odd.

Notes 3.5. In the Ott-Schaeffer planes m,=m,=1. Here, at least it is
possible that there are other translation planes distinct from the O-S planes
and admitting the same group of order g(¢—1) that the O-S planes admit.

We now further consider generalized Ott-Schaeffer planes = of order ¢*
and kernel K=GF(q). We may use the representation given in (2.7). As-
sume there is a linear collineation group H such that HK*/K¥=~H(K* = K—
{0}) and |H|=gq(¢g—1). Note that we use the notation HK* to refer to the
product of H by the kernel homology group of order g—1.

Lemma 3.6. A Sylow 2-subgroup S,<\H or = is Ott-Schaeffer.
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Proof. Let &, fix the component L. Since the involutions of H (see
(2.7)) are all Baer, it follows from Johnson-Ostrom [8] (3.27) that if = is not
Ott-Schaeffer then the group R generated by the Sylow 2-subgroups of H is
reducible and solvable and by the argument to [8] (3.27), R must be a 2-group.
That is, S,<H.

Lemma 3.7. H=GS,-C where C is a 2-complement of S,. Then C fixes

two components.

Proof. Clearly, &, is a Hall normal subgroup so let C be a 2-complement
of order ¢g—1.

C fixes L and by Maschke’s Theorem, decompose #=_LPTW where 9 is a
C-invariant 2-space. Either 9/ is a component and (3.7) is finished or 9 is a
C-invariant Baer subplane. Further, 9 is Desarguesian and C| 9% < GL(2, q)
acting on 9. Hence, C must fix two components of 9 which are 1-spaces of
n. Hence, C fixes the components of z which contain the C-invariant com-
ponents of 9.

Lemma 3.8. H acts faithfully on L.

Proof. If h&H fixes L pointwise then % is a homology and by the orbit
structure of z (see section 2), it must be that the coaxis of % is moved by &,.
That is, there must be elations in H by André [1]. Hence, we have the proof
to (3.8).

Lemma 3.9. C acts regularly on S,—<1)> by conjugation.

Proof. Represent &, as in (2.7), then let

-[4f2]ec

So 4, CENg1.p [{li(l) (ll] ’ aeK}] so that

a3 e-[5]

0 a, 0 ¢

Let B=[Ib’l Z{‘ If vt=, for some a=0 (see (2.7)) then clearly a,=a,, c;=c¢,
3 Vs

and so 7j=7, V b=+0. This implies

[4+C] {f ) fgﬂ =B[g *+[6 1]

for all 50.

&

B [bbs, b(bl+b4)J
L0, bb
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Hence

0" e U0 Sl = 15 ]

So (a,+c,) f(b)+(a+c,) g(b)=b(b,+b,). That is, if a,4¢, then g(b)=bK,+
f(B)K, for

b,-+b a,+c
K, — | %1% d = |%TC |
! [al—l-cl:l and K, |:a1—}—clj|
Thus, if a,%¢, then g is additive.
However, g(b+t)=g(b)-+g(2)+-bf (t)+1f(b) so that bf(t)=tf(b) for all b, t K.
Hence f(t)=tf(1).

But the components include the g(g—1) elements

_ w , mu,a) i] £ K
y xl:a“f(a), uta- g(a) or u,a€K, a0
(see (2.7)) so that the (2, 1)-entries are always a™' af(1)=f(1). That is,

v =Ly o)

for f(1) a constant, represents g(g—1) components which clearly is a contradic-
tion
Hence, a,+¢,=0 so that ¢;=a,=c¢,;=c, and we have
(@4, f(B)) = b(by+by) -
If a,+¢,%0 then f(b)=b-a for a some constant. Then we still have

[ u , mu,a) ] . .

=x to represent ¢(¢g—1) components—a contradiction.
Thus, a,=c, and b,=b,. So the element in C has the form

a, a, b, b, 1 a,ar* bar! bai!

0 a 0 b - - . 0 1 0 bar!
0 01 o a: . Multiplying by ai' I, we obtain p= 00 1 a:a;‘l . Let
000 g 1 e f(e) g(e) 00 0 1
aar'=e. We have 7,€S,, 7,= 8 (1) ? fle) . Since §,<IHK* we must have
e
00 0 1

that p=7,. In other words, the element is in S,K*. However, we assumed
that HK*|K*=H. This proves (3.9).
Thus, C must fix one of the components in the orbit of &, of length g. That

is, C must fix a component of the form y=x l:g h(u)] for some v K.
u
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So, we may choose a 2-complement C for &, so that C fixes y=0.

(3.10). Thus, the elements of C have the form
I:al a,:|f 0
0 a
0 [51 cz]
0 ¢
u h(u)] ] ]| PR l:u h(u)] GG
[x,x[ou x()a"xou 0 ¢

so that

[ar‘, azar‘a:‘} [u h(u)] [cl Cz:l

0, ai! 0 « J|lo o
B uar’, aiv'h(u)+aai'ar'u P
[O ‘54]

L0, uay’

uai'c,, uai'c,+(ar'h(u)+aartar') c, u flu
:l: E{[Ofst)]’uEK}

0 , uay’'c,
(3.11). So ai'c=ai'c,.

Since HK*|K*=H, then CK*/K*=CsCNK*={1}. So multiplying a

ar’
typical element by a ol then in CK *, there are ¢—1 elements of the
1
ai!
1 a,
general form 0 a, coe | Assume two such elements have equal (2,2)-entries.
2
0 ac
Consider
1 a, 1 a,
{0 a, {0 a,
p= zg | and X= ¢ ¢
0 ac 0 ac
when @,=a,. Then the product
1 d:l
01

P = | A

where d=a,a7'+a,a;" and (pX™')* must fix x=0 pointwise. By (3.8), (pX~')*=
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1. However, |CK*||(g—1)% so pX™'=1ep=X. Thus, there must exist a col-
1 aq,

lineation p= {O ¢ c :l where |a|=¢—1.
2

0 ac

Hence, since S,<IHK *, we obtain

15 £(b) £(b)
A7 01 0 £()
[ c-lj[ 1 b

[

| ——
b

aQ

|

0 1
S CHER M
B 0 c-l[}) ﬂc Jesz
where Azl:(l) Z’:', C=[g f:c ] so that

a1 Vaa™r1 o[ @] _ 11, ba] _ a1 B
4 1]A=[O a-lJ[o 1][()“}:[0,1]'0 [0 l]c

an [P e e - [1 aJ I &0 [C c,}

and

0 7) 0 o L0 7®)J|0 ac
_ |:vf (®), £(b) (c+ax)+g(b) ac]
0, @) :

Since |a|=g—1,3j3a’=c, so that we obtain the elements

1, ab & f), f()(cita)+g(®) @™
01 0, aif(b)
1 ab
0 1
in &,. Hence,

(3.12) f(ab) = a’f(b) forall bin K* and
(3.13) g(ab) = f(B) (c,+-asa’)+g(b) @** for all b in K*.

Also,
i1
la 5]
% a—1

P. = i 1 ¢
ai cza(i—l)i [a - ]
a—1

ai(i-l—l)
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The previous argument applied to p implies

(3.14) f(a'b) = @i f(b) forall bin K* and
(3:15) g(a) = 18) (a2 [+ =1 g a0
forall 7>1,bin K.

Let =1 in (3.14) and a‘=c to obtain f(c)=c’ f(1) and further
(3.16) f(c)=c"f where ¢=¢ and 7€ AutK, f=f(1).

Pf. fis additive and ¢ is arbitrary as |a|=¢—1.
From (3.10),

y—x [f (0), bf(b)+g(b)]

0, f0)
By o[ JOF O et ad) H0) b1 0)
o f®a .

Using (3.16), f(b)a"=f(ab) so that the (2,2) entry of the preceding matrix is
df (d)+g(d) for d=ab since (ab) f(ab)=f(b)ba™", we obtain

(3.17) g(ab) = g(b) a™* 48" f(1) (c,+a,a") for all b in K*.
Let b=1 in (3.15) to obtain:

(3.18) g(a)) = g(1) @If(1) (c--and’) I:a"'"” [“_;11] ] alli>1in Z.

a.—_

Since |a|=¢—1, we obtain

=g /(1) G0 (e 1)

for all c#0. Let s=f(1) (“%ﬂi‘)l“) ™", g(1)=g, f(1)=f to obtain
a—
(3.19) g(e) = N s+g)+c" s
for all ¢==0 in K.
Recall f(d)=d" f for all d and g(e+d)=g(e)+g(d)+ef(d)+df(e) for all e,d
in K. Thus,
8(etd) = (e+a) ™ (s+g)+(e+d) s
= (€ Hs+)+0 ) H(d N s+g)+d" 5)+ed” f+de" f

so that
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(3.20) (ed"+ed") (s+g+f) =0

so that either 7=1 or s+g+f=0. If 7=1 then from (2.7), the components
have the form

[y = [ﬁ hiu)] ] ’ [y = l:d‘lz}(d): uﬁ'.’f?-’fi,)(d)]

= [y - ”[ﬂ} u—:zc(iu‘,l‘;)(d) ’

But, the latter set for all u, d+0 represents ¢(¢—1) components. For d,%d,

(7 il f o)

is singular so 7= 1.

Change bases by
1t
Lo’
01
where t=_%
14a
Recall
1 d f(d) g(d)
01 0 f(d)
Tqg =
0 1 d
0 1

(from section 2) and X commutes with 7,. Recall

1 a,
01
p=|—""=
a
0 &
so that
10
0a
p=XpX 1=
F P » d'(a+1)s
f
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ER|IE i] - [é “‘i:““}

=0 and

when tzlji—ia so that z‘-I—az—l—ta—H_

1¢7[e &1 ¢ _[@ dttetta™
Lo 1[0 o )l0 J— 0 e
where

@ thetta™ = a0 (af+1)s+aza+ [ = ’(a;rl)s

as

P

_ ¢ (ctaa)a”
A

We originally had the components in the form
y = [ 10 €O )]
0 f0)

and

_ w , muc) .
7 x[f"f(c), utcg(e)

Apply X, the forms become:

_ .| F(b) g(b)+bf(b)
Y= [ 0 f ]

and

[y l:” +ft}f t, u+c*‘1}-—t—-i~ c! g(c)]

SERE P RN

for v=u-c""'f-¢. In other words the form is invariant under X.
Now g(B)-+bf (b)—(+(s-+g)+b's+5™ ) by (3.19). By (3.20) s-+g-+f=0

so that g(b)+bf(b)="b"s.
Change bases by

=opy ]
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so that
=l 1= 8]
l:y - x[ ’vlf: v+t g(c) ] |:y - x':c'?lf: v+4-c"(s+g)+c s:|:|

ly =% [c’f‘-llf: 'vf‘l—{-c’:'

since s+g+f=0.
Furthermore,

O -
O

I P et N

0, at
10
0a
=" ?
and 0a L
¥y lr iy = (1’ ‘11’[ éd)%ﬂ [ 0 ’ ]Srf—l]
d ’ =
and - - 01 | N
[f %d) }{EZ;] [fo ;{(1] =[ 0f d (sjl—:g}—i—d s:l |:f0 ;f-l]
{dr d'r+1 (_Si—g)} [d'r d—,_‘_l}
= f o= '
0 & 04
Thus 1d d™ d™
-1 010 d
Y OTY = 1 d
0 1

Now let =0"t. Then
b b H !

1 1a" aa
0108 | |01 Oa _[1 a]®[1 a‘]
00186 | 1« | LO1 01
00 01

1
01
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for b=a" and

10

0a _loa

I a0

0 a 0 d=*

for a=d~*°. Multiplying by

4o+

dﬂ‘+1
dﬂ'+1

d o+1
of the kernel homology group, we obtain
dd' +1

S I~ L)

a1t

Hence, we may apply the results on tensor product planes with groups of order

q(g—1).
Thus we obtain:

Theorem 3.21. Let = be a translation plane of order q* and kernel K=<
GF(q), q even. Let H be a group in the linear translation complement of order
g(g—1) and HK*|K*=<H. Further, if S, is a Sylow 2-subgroup of H, assume
the involutions are Baer and no two involutions fix the same subplane pointwise.

Then 7 is a tensor product plane and the spread is completely determined.
A matrix spread set may be represented as follows :

x:O,y:x[u 0],

0u
_ [ @+at1)e, (m+a(a®+1))
y== \: &, (a+a’)c :| ’
_ [ @+a)c, (my+a(a”+1)) ™+
y=2 \: &, (a+a°+1)c ]

for all u,a,c+0 of K, my, m constants in K and o & Aut K such that the fixed
field of o is GF(2) and q=2*"*".

Notes 3.22. Several authors, [2], [3], [5], have recently studied transla-
tion planes of order ¢* that admit H groups of order g(¢—1) where H is an au-
totopism group. In this situation, there are many different classes of noniso-
morphic translation planes. So, we see that the assumption on the nature of
the Sylow p-subgroups for p"=gq is crucial in (3.21).



TENSOR ProDUCT AND OTT-SCHAEFFER PLANES 459

(3.23) Open Problems and Related Questions.

1) (a) What are the Tensor Product Planes?
(b) Are there nontrivial generalized Ott-Schaeffer Planes?

2) Study translation planes of order ¢*, p’=gq kernel GF(g) that admit
linear collineation groups of order g(¢g—1): The Sylow p-subgroups

are
(a) planar.
(b) quartic.

(a) 1) if planar the group is an autotropism group.
(a) 2) no two p-elements fix the same Baer subplane pointwise.

Acknowledgement
The author would like to thank the referee for helpful suggestions as to

the preparation of this article.

(]
(2
B3]
(4]
(5]
(6]
(7]

(8]

References

T. André: Uber Perspektivititen in endlichen projectiven Ebenen, Arch. Math. 6
(1954), 29-32.

O.E. Barriga: On the planes of Narayana Rao and Satyanarayana, J. Combin.
Theory (to appear).

S.E. Cohen and M.]. Ganley: Some classes of translation planes, Oxford Quar-
terly (13) 35 (1984), 101-133.

D. Foulser: Baer p-elements in translation planes, J. Algebra 31 (1974), 354-366.
Y. Hiramine: A generalization of Hall quasifield, Osaka J. Math. 22 (1985), 61-69.
V. Jha and N.L. Johnson: Derivable nets defined by central collineations, Informa-
tion and Systems Sci. (to appear).

N.L. Johnson: The translation planes of Ott-Schaeffer, Arch. Math. 36 (1980),
183-192.

N.L. Johnson and T.G. Ostrom: Translation planes of characteristic two in which
all involutions are Baer, J. Algebra 54 (1978), 291-315.

Department of Mathematics
The University of Iowa
Iowa City, IA 52240








