LEFT SERIAL RINGS OVER WHICH EVERY RIGHT MODULE WITH HOMOGENEOUS TOP IS A DIRECT SUM OF HOLLOW MODULES

Anri TOZAKI
(Received March 20, 1986)

(Revised May 15, 1987)

Let R be a left and right artinian ring with identity, and J the Jacobson radical of R. In [4], M. Harada has considered a left serial ring R satisfying a condition $(*, 2)$ that every maximal submodule of a direct sum of any two hollow modules is also a direct sum of hollow modules, and characterized such a ring by the structure of $e R$ for each primitive idempotent e. Further it has been shown that the condition $\left({ }^{*}, 2\right)$ is equivalent to saying that every factor module of $e J \oplus e R$ is a direct sum of hollow modules for every primitive idempotent e. Modifying this, we here consider the following condition on a projective indecomposable right module $e R$ over a ring R.

(A): Every factor module of $e R \oplus e R$ is a direct sum of hollow modules.

Clearly if R is a ring of right local type, then all projective indecomposable right R-modules satisfy the condition (A), and as well known ([6]), R is left serial. The purpose of this paper is to characterize left serial rings over which every projective indecomposable right module $e R$ satisfies the condition (A) (i.e. rings R in the title (see Theorem 1 for the equivalence)) in terms of the structure of $e R$. Thus our result gives a generalization of rings of right local type.

In the first section we consider various conditions equivalent to (A) (Theorem 1). In particular, the condition 4) of Theorem 1 which is described in terms of homomorphisms between factor modules of $e R$ is frequently used later to check whether $e R$ satisfies (A) or not. We assume in the second and third section that R is a left serial ring. In the second section we shall give some properties induced from the condition (A) to prepare the proof of the main theorem. In the third section we give the main theorem (Theorem 2). In the last section we give some examples.

The author would like to thank Professor M. Harada for his suggestion
of the problem and helpful advice, and Doctor H. Asashiba for his advice and encouragement. She would also like to thank the referee for his useful comments.

Preliminaries

Throughout this paper, R is a left and right artinian ring with identity, and J is the Jacobson radical of R. Since the property of R that the condition (A) holds for all projective indecomposable right R-modules is Morita invariant, we may assume further that R is a basic ring. $\mathrm{pi}(R)$ denotes the set of all primitive idempotents of R. All modules are finitely generated unitary right R modules. A module X is said to be hollow if the sum of any two proper submodules of X is a proper submodule. By the assumption that R is an artinian ring, a hollow module is precisely a local module, i.e., is isomorphic to a factor module of $e R$ for some e in $\operatorname{pi}(R)$. For a module X, we put $\bar{X}:=X \mid X J, T(X):=$ $X \backslash X J$, and denote by $X^{(n)}$ a direct sum of n copies of X, and by $|X|$ the length of a composition series of X. For any f and g in $\operatorname{pi}(R)$, we put $T\left(f J^{k} g\right):=$ $f J^{k} g \backslash f J^{k+1} g$. For division rings Δ and Δ^{\prime} with $\Delta \geqq \Delta^{\prime}$, we use the symbol [Δ : $\left.\Delta^{\prime}\right]_{l}\left(\left[\Delta: \Delta^{\prime}\right]_{r}\right)$ to mean the dimension of Δ as a left (right) Δ^{\prime}-vector space. We say that R is a left serial ring if as a left R-module, R is a direct sum of uniserial submodules. In the second and the third sections we assume that R is a left serial ring. In this case the following hold, which we use without any references. The first one follows from [6, Corollary 4.2], and the second one is clear from the definition of left serial rings.

Lemma 1. If R is a left serial ring, then for every e in $\mathrm{pi}(R)$ and for every natural number $j, ~ e J^{j}$ is a direct sum of hollow modules, and $e R$ has a structure expressed by the following diagram:

where each $A_{i k}$ is a hollow module, $e J^{i}=\bigoplus_{k=1}^{n_{i}} A_{i k}$ and $\frac{\left.\right|_{\mid} ^{\mid}}{X_{1} \cdots X_{s}}$ means $X J=\oplus_{i=1}^{s} X_{i}$.
Lemma 2. Suppose that R is a left serial ring. Let e, f be in $\mathrm{pi}(R)$, and $a, b \in R$. If $a=e a f$ and $b=e a f$, then there exists either some $d \in e R e$ with $a=d b$
or else some $d^{\prime} \in e R e$ with $b=d^{\prime} a$.

1. The condition (A)

We use the following two lemmas from Sumioka [6] to prove Theorem 1.
Lemma 3 ([6], Lemma 1.3]). Let $M_{i}(i=1,2,3)$ and T be submodules of a module M such that $M=M_{1}+\left(M_{2} \oplus M_{3}\right)$ and $T=M_{1} \cap\left(M_{2} \oplus M_{3}\right)$, and $\pi_{3}: T \rightarrow M_{3}$ the restriction map of the projection $M_{2} \oplus M_{3} \rightarrow M_{3}$. Then π_{3} is extended to a homomorphism $M_{1} \rightarrow M_{3}$ if and only if $M=\left(M_{1}^{\prime}+M_{2}\right) \oplus M_{3}$ for some submodule M_{1}^{\prime} of M.

Lemma 4 ([6, Lemma 2.1]). Let S be a simple module and L_{1}, \cdots, L_{n} hollow modules of length $\geqq 2$ and $0 \rightarrow S \xrightarrow{\alpha} \sum_{i=1}^{n} L_{i} \xrightarrow{\beta} M \rightarrow 0$ an exact sequence with each α_{i} a monomorphism, where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)^{T}$, and $n \geqq 2$. Then M is decomposable if and only if the identity map $1_{s_{j}}$ of S_{j} is extended to a homomorphism: $\oplus_{i \neq j} L_{i} \rightarrow L_{j}$ for some $j, 1 \leqq j \leqq n$, where $S_{j}:=\left(\underset{i \neq j}{\oplus} L_{i}\right) \cap L_{j}$.

Now we state the theorem in this section.
Theorem 1. For e in $\mathrm{pi}(R)$, the following four statements are equivalent.

1) (A): Every factor module of $e R \oplus e R$ is a direct sum of hollow modules.
2) Every factor module of $e R^{(n)}$ is a direct sum of hollow modules for each natural number n.
3) If M is an R-module such that $M / M J \simeq \overline{e R^{(n)}}$ for some n, then $M \simeq \underset{i=1}{*}$ $e R / X_{i}$, where each X_{i} is a submodule of $e R$.
4) Let C_{i} and $D_{i}(i=1,2)$ be submodules in $e R$ such that $e R \geqq C_{i}>D_{i}$. If $f: C_{1} / D_{1} \rightarrow C_{2} / D_{2}$ is an isomorphism, and C_{1} / D_{1} is simple, then f or f^{-1} is extended to some homomorphism from $e R / D_{1}$ to $e R / D_{2}$ or one from $e R / D_{2}$ to $e R / D_{1}$, respectively.

Proof. First, we introduce the following conditions 1^{\prime}) and 2^{\prime}) which are useful in proving the theorem:
$\left.1^{\prime}\right)$ Let S be simple, X, Y be submodules of $e R$, and assume that the following sequence is exact :

$$
0 \rightarrow S \rightarrow e R / X \oplus e R / Y \rightarrow M \rightarrow 0
$$

Then $M \simeq e R / X^{\prime} \oplus e R / Y^{\prime}$ for some submodules X^{\prime} and Y^{\prime} of $e R$.
2^{\prime}) Let n be any natural number, S a simple module, and X_{i} a submodule of eR for each $i(1 \leqq i \leqq n)$. Consider an exact sequence:

$$
0 \rightarrow S \rightarrow \bigoplus_{i=1}^{n} e R / X_{i} \rightarrow M \rightarrow 0
$$

Then $M \simeq \bigoplus_{i=1}^{n} e R / Y_{i}$ for some submodules $Y_{i}(1 \leqq i \leqq n)$ of $e R$.
The proof proceeds as follows: 2$) \Leftrightarrow 3$) and 1$\left.\left.) \Rightarrow 1^{\prime}\right) \Rightarrow 4\right) \Rightarrow 2^{\prime}(\Rightarrow 2) \Rightarrow 1$).
2) $\Rightarrow 3$): It follows from $M / M J \simeq \overline{e R^{(n)}}$ that M is isomorphic to a factor module of $e R^{(n)}$. So by 2$), M \simeq \bigoplus_{i=1}^{n} e R / X_{i}$ for some $X_{i}<e R(1 \leqq i \leqq n)$.
$3) \Rightarrow 2$): Let M be a factor module of $e R^{(n)}$. Then $M / M J \simeq \bar{R}^{(k)}$ for some $k \leqq n$, so by 3), M is a direct sum of hollow modules.
$1) \Rightarrow 1^{\prime}$): This is clear from the fact that the module M in 1^{\prime}) is an epimorphic image of $e R \oplus e R$.
$\left.\left.1^{\prime}\right) \Rightarrow 4\right)$: Let C_{i} and D_{i} be submodules with $e R \geqq C_{i} \geqq D_{i}(i=1,2)$. We assume that a homomorphism $f: C_{1} \mid D_{1} \rightarrow C_{2} / D_{2}$ is an isomorphism and C_{1} / D_{1} is simple. To show that the assertion 4) holds, we may assume that $C_{i}<e R(i=$ 1,2). We consider an exact sequence:

$$
0 \rightarrow C_{1} / D_{1} \xrightarrow{\left(i_{1}, i_{2} f\right)^{\mathrm{T}}} e R / D_{1} \oplus e R / D_{2} \rightarrow X \rightarrow 0,
$$

where $i_{j}(j=1,2)$ is the inclusion $C_{j} / D_{j} \rightarrow e R / D_{j}$, and X is the cokernel of the homomorphism $\left(i_{1}, i_{2} f\right)^{\mathrm{T}}$. Then i_{1} and $i_{2} f$ are monomorphisms and not epimorphisms since $C_{i}<e R(i=1,2)$. By 1^{\prime}), $X \simeq e R / X^{\prime} \oplus e R / Y^{\prime}$ for some $X^{\prime}, Y^{\prime}<e R$, so X is decomposable. Then by Lemma $4,\left(i_{2} f\right)\left(i_{1}^{-1}\right)=f\left(\right.$ or $\left.i_{1}\left(i_{2} f\right)^{-1}=f^{-1}\right)$ is extended to some homomorphism $e R / D_{1} \rightarrow e R / D_{2}$ (or $e R / D_{2} \rightarrow e R / D_{1}$).
$4) \Rightarrow 2^{\prime}$): We shall show the assertion by induction on n. When $n=1$, the assertion is trivial. In the case that $n=2$, consider an exact sequence:

$$
0 \rightarrow S \xrightarrow{\alpha} e R / X \oplus e R / Y \rightarrow M \rightarrow 0
$$

where S is simple, $\alpha(s):=\alpha_{1}(s)+\alpha_{2}(s)\left(\alpha_{1}(s) \in e R / X, \alpha_{2}(s) \in e R / Y\right)$ for any $s \in S$, and $X^{\prime}, Y^{\prime} \leqq e R$. Here we may assume that α_{1} and α_{2} are monomorphisms. If $\operatorname{im} \alpha \neq \operatorname{rad}(e R / X \oplus e R / Y)$, then $\operatorname{im} \alpha$ is a direct summand of $e R / X \oplus e R / Y$ since $\operatorname{im} \alpha$ is simple, thus the assertion holds. So we may assume that im $\alpha \leqq \mathrm{rad}$ $(e R / X \oplus e R / Y)$ and $|e R / X|,|e R / Y| \geqq 2$. Put $T_{1} / X:=\alpha_{1}(S)$ and $T_{2} / Y:=\alpha_{2}(S)$ for some T_{1} and $T_{2} \leqq e R$. Then T_{1} / X is simple and $\alpha_{2} \alpha_{1}^{-1}: T_{1} / X \rightarrow T_{2} / Y$ is an isomorphism. By 4), $\alpha_{2} \alpha_{1}^{-1}$ (or $\left.\left(\alpha_{2} \alpha_{1}^{-1}\right)^{-1}=\alpha_{1} \alpha_{2}^{-1}\right)$ is extended to a homomorphism: $e R / X \rightarrow e R / Y$ (or $e R / Y \rightarrow e R / X$). Hence by Lemma 4, M is decomposable and $M \simeq e R / X^{\prime} \oplus e R / Y^{\prime}$ for some $X^{\prime}, Y^{\prime} \leqq e R$. Finally we assume that the assertion holds for $n-1(\geqq 2)$. Suppose that the following sequence is exact:

$$
0 \rightarrow S \rightarrow \oplus_{i=1}^{n}\left(e R / X_{i}\right) \xrightarrow{\varphi} M \rightarrow 0
$$

where S is simple. Put $L_{i}:=\varphi\left(e R / X_{i}\right)$ for each $i(1 \leqq i \leqq n)$. Then by [6, Section
 canonical projection. Then $\left.p\right|_{T}$ (or $\left(\left.p\right|_{T}\right)^{-1}$) is extended to a homomorphism: $L_{1} \rightarrow L_{n}\left(\right.$ or $\left.L_{n} \rightarrow L_{1}\right)$. In the case that $\left.p\right|_{T}$ is extended to some $\Phi: L_{1} \rightarrow L_{n}$, we put $L_{1}^{\prime}:=\left\{x-\Phi(x) \mid x \in L_{1}\right\}$. Then by Lemma 3, we obtain $M=L_{1}+\left(\bigoplus_{i=2}^{n} L_{i}\right)=\left(L_{1}^{\prime}+\right.$ $\left.\oplus_{i=2}^{n-1} L_{i}\right) \oplus L_{n}$. Put $M^{\prime}:=L_{1}^{\prime}+\left(\oplus_{i=2}^{n-1} L_{i}\right)$ and $S^{\prime}:=L_{1}^{\prime} \cap\left(\oplus_{i=2}^{n-1} L_{i}\right)$, then S^{\prime} is simple. Noting that L_{1}^{\prime} and each $L_{i}(1 \leqq i \leqq n-1)$ are factor modules of $e R$, the following exact sequence implies that $M^{\prime} \simeq \bigoplus_{i=1}^{n-1}\left(e R / Y_{i}\right)$ for some $Y_{i} \leqq e R$ by induction hypothesis:

$$
0 \rightarrow S^{\prime} \xrightarrow{\alpha^{\prime}} L_{1}^{\prime} \oplus \oplus_{i=2}^{n-1} L_{i} \xrightarrow{\beta} M^{\prime} \rightarrow 0,
$$

where $\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \cdots, \alpha_{n-1}^{\prime}\right)^{\mathrm{T}}, \alpha_{1}^{\prime}$ is the inclusion map and $\alpha_{1}^{\prime}:=\left.p_{i}\right|_{s^{\prime}}\left(p_{i}\right.$ is the canonical projection) $(2 \leqq i \leqq n-1)$; and $\beta=\left(\beta_{1}, \cdots, \beta_{n-1}\right),-\beta_{1}$ and $\beta_{i}(2 \leqq i \leqq n-1)$ are the inclusion maps. Hence $M=M^{\prime} \oplus L_{n} \simeq \bigoplus_{i=1}^{n-1}\left(e R / Y_{i}\right) \oplus e R / X_{n}$. The remaining case is proved similarly.
$\left.2^{\prime}\right) \Rightarrow 2$): Put $D:=\left\{H \mid H \simeq \bigoplus_{i=1}^{n} e R / X_{i}\right.$ for some n and for some $\left.X_{i} \leqq e R\right\}$. Then we have only to show that D is closed under factor modules. Thus it suffices to verify the following for all $m \geqq 1$, by induction on m : For each $H \in D$ and for each $X \leqq H,|X|=m$ implies $H \mid X \in D$. When $m=1$, this follows from 2^{\prime}). Let $m \geqq 2$. Take $0 \neq Y<X$. Then $|Y|<m$ and $|X| Y \mid<m$, which imply $H / X \simeq(H / Y) /(X / Y) \in D$ by induction hypothesis.
$2) \Rightarrow 1$) is trivial.
Q.E.D.

We shall characterize later the structure of $e R$ satisfying the condition (A), i.e., the conditions of the above theorem, using mainly 4) of it.

2. Properties of $\mathbf{e R}$ with (A)

From now on we assume that R is a left serial ring. Further throughout this section, we assume that e is a fixed primitive idempotent, and $e R$ satisfies the condition (A). Then we have several properties similar to ones in [4] as follows, by using 4) of the theorem.

Proposition 1 ([4, Proposition 1]). If $e R / e J^{i}$ is uniserial and $e J^{i}=A_{i 1} \oplus A_{i 2}$ $\oplus \cdots \oplus A_{i p}$ for some i, where $p \geqq 3$ and each $A_{i k}(1 \leqq k \leqq p)$ is a hollow module, then we have $A_{i 1} \simeq A_{i 2} \simeq \cdots \simeq A_{i p}$, and each $A_{i k}$ is simple.

Proposition 2 ([4, Proposition 5]). If $e R / e J^{i}$ is uniserial and $e J^{i}=A_{i 1} \oplus$ $A_{i 2}$, where $A_{i 1}$ and $A_{i 2}$ are hollow modules, then each $A_{i k}$ is uniserial.

We put $\Delta:=e R e / e J e$ and $\Delta(A):=\left\{x \in \Delta \mid x^{\prime} A \leqq A, x^{\prime}=\bar{x}\right.$ for some x^{\prime} in $\left.e R e\right\}$, where A is a hollow submodule of $e R$ and \bar{x} is the coset of x in Δ. Then Δ is a division ring and $\Delta(A)$ is a division subring of Δ (see [4]). In the case that $e J^{i}=A_{i 1} \oplus A_{i 2} \oplus \cdots \oplus A_{i p}(p \geqq 2)$, we put $\Delta\left(A_{i 1}\right)=\Delta_{i}$. Now we consider the case $p \geqq 3$ in more detail. Since $e J e\left(e J^{i}\right)=e J^{i+1}=0$, we have $x c=\bar{x}$ for any $c \in e J^{i}$ and any $x \in e R e$. Proposition 1 shows that each $A_{i k}(1 \leqq k \leqq p)$ is simple, so we may put $A_{i 1}=a R$ and $a=e a f$ for some f in $\mathrm{pi}(R)$. Then for any $b(\neq 0)$ in $A_{i 1}$, $b=e b f$ since $A_{i 1}$ is simple and R is basic. Noting here that R is left serial, there exists some $x \in e R e \backslash e J e$ with $b=x a=\bar{x} a$. Here \bar{x} is in Δ_{i} since $x A_{i 1}=x a R=b R$ $=A_{i 1}$, whence b is in $\Delta_{i} a$. Thus $A_{i 1}=\Delta_{i} a$. For each $k(1 \leqq k \leqq p)$, put $A_{i k}=$ $a_{k} R$. Similarly taking a_{k} instead of b, we have $a_{k}=e a_{k} f, a_{k}=x_{k} a=x_{k} a$ for some $x_{k} \in e R e \backslash e J e$ and $A_{i k}=\bar{x}_{k} a R=\bar{x}_{k} \Delta_{i} a$. Using this fact, we obtain

Lemma 5. Suppose ej ${ }^{i}=A_{i 1} \oplus \cdots \oplus A_{i p}(p \geqq 3)$, and let $A_{i 1}=a R$. Put \mathcal{L} $\left(e J^{i}\right):=$ the lattice of submodules of $e J^{i}$ and $\mathcal{L}(\Delta):=$ the lattice of subspaces of $\Delta_{\Delta_{i}}$. Then we have a bijection $\alpha: \mathcal{L}(\Delta) \rightarrow \mathcal{L}\left(e J^{i}\right)$ defined by $\alpha(V):=V$ for every $V \in$ $\mathcal{L}(\Delta)$. Further α preserves and reflects the linear independence, i.e., for any $\left\{V_{i}\right\} \subseteq$ $\mathcal{L}(\Delta),\left\{V_{i}\right\}$ is independent if and only if so is $\left\{V_{i} a\right\}$.

Proof. Since $V a R=V \Delta_{i} a=V a$ for any $V \in \mathcal{L}(\Delta), \alpha$ is well defined. It is easy to show that α preserves and reflects the linear independence. To show that α is a surjection, let T be any submodule ($\neq 0$) of $e J^{i}$. Then T is expressed as $T=X_{1} \oplus \cdots \oplus X_{t}$ with $X_{k} \simeq A_{i 1}(1 \leqq k \leqq t)$. So we have $X_{k}=\delta_{k} A_{i 1}=$ $\delta_{k} \Delta_{i} a$ for some δ_{k} in Δ by the consideration above. Hence $T=\left(\bigoplus_{k=1}^{n} \delta_{k} \Delta_{i}\right) a$ since α reflects the independence. Thus α is a surjection. α being an injection is immediate from the fact that $y a=0(y \in \Delta)$ implies $y=0$.
Q.E.D.

Lemma 5 implies the following (see [4] for $p=2$).
Proposition 3 ([4, Proposition 2]). It holds $\left[\Delta_{:} \Delta_{i}\right]_{r}=\left|\overline{e J^{i}}\right|$ except for the case that eJ ${ }^{i}=A_{i} \oplus B_{i}$ and $A_{i} \not \not B_{i}$, where A_{i} and B_{i} are hollow modules (in this exceptional case, we have $\Delta=\Delta_{i}$).

We consider the following condition (\#) on Δ as a right Δ_{i}-vector space.
(\#) Let V_{1} and V_{2} be subspaces of $\Delta_{\Delta^{i}}$ and v_{1} and v_{2} be elements of Δ satisfying $\left|V_{1}\right| \leqq\left|V_{2}\right|$ and $v_{1} \Delta_{i} \cap V_{1}=0=v_{2} \Delta_{i} \cap V_{2}$. Then there exists x in Δ such that $x V_{1} \leqq V_{2}$ and $x v_{1} \equiv v_{2}\left(\bmod V_{2}\right)$.

The following is immediate from Lemma 5.
Proposition 4. If $\left|\overline{e J^{i}}\right| \geqq 3$, then the following are equivalent.
(1) Let eJ ${ }^{i} \geqq T_{1}>T_{2}, e J^{i} \geqq S_{1}>S_{2}$, and T_{1} / T_{3} be simple, and f: $T_{1} / T_{2} \rightarrow S_{1} / S_{2}$ be an isomorphism. Then f is extended to a homomorphism: eR/T $\rightarrow e R / S_{2}$.
(2) Δ and Δ_{i} satisfy the condition (\#).

Hence in particular, if eR satisfies the condition (A), then Δ and Δ_{i} satisfy the condition (\#).

By [4, Lemma 5], the following holds.
Proposition 5. Let $\Delta \geqq \Delta_{i}$ be division rings. If Δ and Δ_{i} satisfy the condition (\#), then $\left[\Delta: \Delta_{i}\right]_{l} \leqq 2$. In particular, if eR satisfies the condition (A), then $\left[\Delta: \Delta_{i}\right]_{l} \leqq 2$.

3. The structure of $\boldsymbol{e} \boldsymbol{R}$ with (A)

Also in this section, we assume that R is left serial. Using Propositions 1 and $2, e R$ with the condition (A) has one of the following structures.
(a) eR is a uniserial module.
$\left(\mathrm{b}_{1}\right)$ For some natural number i, $e R / e J^{i}$ is uniserial and $e J^{i}=A_{i 1} \oplus A_{i 2}$, where $A_{i 1}$ and $A_{i 2}$ are uniserial modules which are not isomorphic to each other.
$\left(\mathrm{b}_{2}\right) \quad$ For some natural number $i, e R / e J^{i}$ is uniserial and $e J^{i}=A_{i 1} \oplus A_{i 2}$, where $A_{i 1} \simeq A_{i 2}$ are uniserial modules.
(c) For some natural number i, $e R / e J^{i}$ is uniserial and $e J^{i}=A_{i 1} \oplus \cdots \oplus A_{i p}$ ($p \geqq 3$), where $A_{i 1} \simeq A_{i 2} \simeq \cdots \simeq A_{i p}$ are simple modules.

Thus we can illustrate the structures $\left(b_{1}\right),\left(b_{2}\right)$ and (c) as follows.
(b)

$\left(b_{2}\right)$

(c)

Now we state the main theorem.
Theorem 2. Let R be a left serial ring. The follozoing are equivalent for each $e \in \operatorname{pi}(R)$.

1) $e R$ satisfies the condition (A).
2) $e R$ has one of the structures (a); $\left(\mathrm{b}_{1}\right) ;\left(\mathrm{b}_{2}\right)$ with $\left[\Delta: \Delta_{i}\right]_{l}=2$; and (c) with the condition (\#) for Δ and Δ_{i}.

The proof of 1$) \Rightarrow 2$) is already done. So we show that each of the conditions in 2) implies the condition 1). This is immediate from Proposition 4 in the case of the structure (c), and in the case of (a) this follows from Lemma

2 and Theorem 1 (see case (i) in Lemma 8). For the proof of the other cases, we divide the argument to some lemmas.

Lemma 6. In the diagram $\left(\mathrm{b}_{1}\right)$, the following statements hold.

1) For any j and k with $i \leqq j \leqq k$ and $k-j<i$, we have $\bar{A}_{j} \neq \bar{B}_{k}$.
2) For any j and k with $i \leqq j<k$ and $k-j<i$, we have $\bar{A}_{j} \neq \bar{A}_{k}$.

Proof. 1) For $j(i \leqq j)$, we have $\bar{A}_{j} \neq \bar{B}_{j}$ from [3, Lemma 3]. Next suppose that $\bar{A}_{j} \simeq \bar{B}_{k}$ for some j, k with $i \leqq j<k$ and $k-j<i$. Put $A_{j}=a_{j} R, B_{k}=b_{k} R$ and $a_{j}=e a_{j} f, b_{k}=e b_{k} f$ for some f in $\operatorname{pi}(R)$. Then there exists d in $T\left(e J^{k-j}\right)$ such that $d a_{j}=b_{k}$. So $e J^{k-j} e \neq 0$, and there exists an epimorphism: $e R \rightarrow e J^{k-j}$. This epimorphism induces an epimorphism: $e J^{i-(k-j)} \rightarrow e J^{i}$. Thus we have $\overline{e J^{i-(k-j)}} \simeq$ $\overline{e J^{i}}$. But this is a contradiction since $i>i-(k-j)$. We conclude that $\bar{A}_{j} \neq \bar{B}_{k}$.
2) Suppose that $\bar{A}_{j} \simeq \bar{A}_{k}$ for some j, k with $i \leqq j<k$ and $0<k-j<i$. Then we may put $A_{j}=a_{j} R$ and $A_{k}=a_{k} R$. So there exists d in $e J^{k-j} e$ such that $d a_{j}=$ a_{k}, thus $e J^{k-j} e \neq 0$ and this yields the similar contradiction as in 1). Q.E.D.

Lemma 7. In the diagram $\left(\mathrm{b}_{2}\right)$, we have that $\bar{A}_{j} \neq \bar{B}_{k}$ for each j, k with $i \leqq j<k$.

Proof. Suppose that $\bar{A}_{j} \simeq \bar{B}_{k}$ in the case $k-j<i$. Put $A_{j}=a_{j} R$ and $B_{k}=$ $b_{k} R$, and $a_{j}=a_{j} g, b_{k}=b_{k} g$ for some g in $\mathrm{pi}(R)$. Then there exists d in $T\left(e J^{k-j} e\right)$ such that $d a_{j}=b_{k}$, and this yields the contradiction similar to that in the proof of Lemma 6. Next suppose that $\bar{A}_{j} \simeq \bar{B}_{k}$ in the case $k-j \geqq i$. Then there exists a_{j}, b_{k} and d as above. It follows from $k-j \geqq i$ that $d=d_{1}+d_{2}$ for some d_{1} in A_{i} and d_{2} in B_{i}. So $b_{k}=d a_{j}=d_{1} a_{j}+d_{2} a_{j}$ and b_{k} is in B_{i}, thus $b_{k}=d_{2} a_{j}$, where d_{2} in $T\left(B^{k-j}\right)$. Then for b_{j} with $B_{j}=b_{j} R$, we have that $b_{j}=b_{j} g$ and $d_{2} b_{j} \neq 0$ is in $T\left(B_{k}\right)$ by $\bar{A}_{j} \simeq \bar{B}_{k}$. There exists r in $T(g R g)$ such that $d_{2} b_{j} r=b_{k}$, and hence $T\left(e J^{j} g\right) \ni d_{2}\left(a_{j}-b_{j} r\right)=b_{k}-b_{k}=0$, a contradiction.
Q.E.D.

Using Lemmas 6 and 7, we show the implication 2) $\Rightarrow 1$) of Theorem 2 as the following two lemmas.

Lemma 8. Let the diagram $\left(b_{1}\right)$ be the structure of $e R$. Then $e R$ satisfies the condition (A).

Proof. Let C_{j} and D_{j} be submodules of $e R$ such that $e R \geqq C_{j}>D_{j}$ and C_{j} / D_{j} is simple for $j=1,2$, and $f: C_{1} / D_{1} \rightarrow C_{2} / D_{2}$ be an isomorphism. We may assume that $C_{j}=c_{j} R+D_{j}$ for some c_{j} in $C_{j}(j=1,2)$ satisfying $f\left(c_{1}+D_{1}\right)=c_{2}+D_{2}$, and $c_{1} g=c_{2} g$ for some $g \in \mathrm{pi}(R)$.
(i) In the case where both c_{1} and c_{2} are in $T\left(e J^{t}\right)$ for some $t<i$, there exists a unit x in $e R e$ such that $x c_{1}=c_{2}$. Then x_{l} (the left side multiplication of x) induces f.
(ii) Suppose that c_{1} is in $T\left(e J^{t}\right)$ for some $t<i$ and $e J^{i} \geqq C_{2}>D_{2}$ Then
there exists some x in $e J e$ such that $x c_{1}=c_{2}$. So $x D_{1}=x C_{1} J=x c_{1} J<C_{2} J<D_{2}$, whence x_{l} induces f
iii) In the case that $e J^{i} \geqq C_{j}>D_{j}$ for each $j=1,2$.

First, we show that for any C, D such that $D<C \leqq e J^{i}$ and C / D is simple, there exists a unit x in $e R e$ satisfying

$$
\begin{array}{ll}
x C=A_{t-1} \oplus B_{s} & \left(\text { or } x C=A_{t} \oplus B_{s-1}\right) \tag{P}\\
x D=A_{t} \oplus B_{s} & \text { where } \quad t, s \geqq i .
\end{array}
$$

For a module $X \leqq e J^{i}$, put $X^{(1)}=\pi_{A_{i}}(X), X^{(2)}=\pi_{B_{i}}(X), X_{(1)}=X \cap A_{i}$ and $X_{(2)}=X \cap B_{i}$, where $\pi_{A_{i}}: e J^{i} \rightarrow A_{i}$ and $\pi_{B_{i}}: e J^{i} \rightarrow B_{i}$ are the canonical projections. Then it is easy to see that $X_{(j)} \leqq X^{(j)}(j=1,2)$ and $X^{(1)} / X_{(1)} \simeq X^{(2)} / X_{(2)}$. Now, if $D^{(1)}=D_{(1)}$, then $D^{(2)}=D_{(2)}$, and we can take $x=e$ for x in (P). Thus we may assume $D_{(1)}<D^{(1)}$. Then by the above, $D_{(2)}<D^{(2)}$ and $D^{(1)} / D_{(1)} \simeq D^{(2)} / D_{(2)}$. Since R is left serial, there exists some $\delta \in e J e$ (by Lemma 6) such that either $\delta D^{(1)}=D^{(2)}$ and $\delta D_{(1)}=D_{(2)}$; or $\delta D^{(2)}=D^{(1)}$ and $\delta D_{(2)}=D_{(1)}$. We may assume that the former holds. There exists a unique s such that $D_{(2)} \leqq e J^{s} \leqq D$. Then $D=(e+\delta) D^{(1)} \oplus D_{(2)}=(e+\delta) D^{(1)}+e J^{s}$. Noting that $u:=e+\delta$ is a unit in $e R e$ and $u^{-1} e J^{s}=e J^{s}$, we have $u^{-1} D=D^{(1)}+u^{-1} e J^{s}=D^{(1)}+e J^{s}=D^{(1)} \oplus D_{(2)}$. Put C^{\prime} : $=u^{-1} C, D^{\prime}:=u^{-1} D$. When $C_{(1)}^{\prime}=C^{\prime(1)}$, we can take $x=u^{-1}$. So suppose that $C_{(1)}^{\prime}<C^{\prime(1)}$. Then $C_{(1)}^{\prime}=D^{(1)}, C_{(2)}^{\prime}=D_{(2)}$ and $C^{\prime(1)} / C_{(1)}^{\prime} \simeq C^{\prime(2)} / C_{(2)}^{\prime}$ is simple because so is $C^{\prime} / D^{\prime} \simeq C / D$. By an argument similar to one for D, we can take some $\omega \in e J e$ such that $\omega C^{\prime(1)}=C^{\prime(2)}$ and $\omega C_{(1)}^{\prime}=C_{(2)}^{\prime}$. Hence putting $y:=e+\omega$, we have $C^{\prime}=y C^{\prime(1)} \oplus C_{(2)}^{\prime}$ and $y^{-1} C^{\prime}=C^{\prime(1)} \oplus C_{(2)}^{\prime}$. It follows from $C_{(1)}^{\prime}=D^{(1)}$ and $C_{(2)}^{\prime}=D_{(2)}$ that $\omega D^{(1)}=D_{(2)}$. Then $D^{\prime}=D^{(1)} \oplus D_{(2)}=y D^{(1)} \oplus D_{(2)}$, whence $y^{-1} D^{\prime}=$ $D^{(1)} \oplus D_{(2)}$. Consequently, we can take $x=y^{-1} u^{-1}$.

Next, we consider the case that C_{j} and $D_{j}(j=1,2)$ have the following forms: $C_{j}=A_{t_{j}-1} \oplus B_{s_{j}}$ (or $C_{j}=A_{t_{j}} \oplus B_{s_{j}-1}$) and $D_{j}=A_{t_{j}} \oplus B_{s_{j}}$. Considering the structure of $\left(\mathrm{b}_{1}\right)$ and $C_{1} / D_{1} \simeq C_{2} / D_{2}$, we see that the possible cases are the following.
(α) $\quad C_{1}=A_{t_{1}-1} \oplus B_{s_{1}}, \quad D_{1}=A_{t_{1}} \oplus B_{s_{1}}$

$$
C_{2}=A_{s_{2}} \oplus B_{t_{2}-1}, \quad D_{2}=A_{s 2} \oplus B_{t_{2}} \quad\left(t_{2}-t_{1} \geqq i\right)
$$

$C_{1}=A_{t-1} \oplus B_{s_{1}}, \quad D_{1}=A_{t} \oplus B_{s_{1}}$ $C_{2}=A_{t-1} \oplus B_{s_{2}}, \quad D_{2}=A_{t} \oplus B_{s_{2}}$
(γ) $\quad C_{1}=A_{t_{1}-1} \oplus B_{s_{1}}, \quad D_{1}=A_{t_{1}} \oplus B_{s_{1}}$ $C_{2}=A_{t_{2}-1} \oplus B_{s_{2}}, \quad D_{2}=A_{t_{2}} \oplus B_{s_{2}} \quad\left(t_{2}-t_{1} \geqq i\right)$

In the case (α), we put $f\left(a_{1}+D_{1}\right)=b_{2}+D_{2}, A_{t_{1}-1}=a_{1} R$ and $B_{t_{2}-1}=b_{2} R$. There exists some d in $e J^{t_{2}-t_{1}} e$ such that $d a_{1}=b_{2}$. Since $t_{2}-t_{1} \geqq i$, we have $d=d_{1}+d_{2}$ for some d_{1} in A_{i} and d_{2} in B_{i}, and $b_{2}=d a_{1}=d_{1} a_{1}+d_{2} a_{1}$. Then $b_{2}=d_{2} a_{1}$. Hence $d_{2} B_{i}=0$. Indeed if not, for some $x \in T\left(A_{i}\right)$ and some $y \in T\left(B_{i}\right)$, both $d_{2} x$ and $d_{2} y$ are in $T\left(B_{i+t_{2}-t_{1}}\right)$ and non-zero. Thus, $\bar{A}_{i} \simeq \bar{B}_{i}$, a contradiction. Thus $\left(\mathrm{d}_{2}\right)_{t}$
induces f. The similar argument works for the cases (β) and (γ).
Finally in the general case, there exist units x and y in $e R e$ for C_{j} and D_{j} $(j=1,2)$ as in (P). Using the isomorphism f, we put

$$
f^{\prime}:\left(A_{t_{1}-1} \oplus B_{s_{1}}\right) /\left(A_{t_{1}} \oplus B_{s_{1}}\right) \xrightarrow{x_{l}^{-1}} C_{1} / D_{1} \xrightarrow{f} C_{2} / D_{2} \xrightarrow{y_{l}}\left(A_{t_{2}-1} \oplus B_{s_{2}}\right) /\left(A_{t_{2}} \oplus B_{s_{2}}\right)
$$

and apply the argument above.
Q.E.D.

Lemma 9. Let the diagram $\left(\mathrm{b}_{2}\right)$ be the structure of $e R$, and assume $\left[\Delta: \Delta_{i}\right]_{l}$ $=2$. Then $e R$ satisfies the condition (A).

Proof. Let C_{j} and D_{j} be submodules of $e R$ such that $e R \geqq C_{j}>D_{j}$ and C_{j} / D_{j} are simple for $j=1,2$, and $f: C_{1} / D_{1} \rightarrow C_{2} / D_{2}$ be an isomorphism. Then $C_{j}=c_{j} R+D_{j}$ for some c_{j} in $C_{j}(j=1,2)$, where we may assume that $f\left(c_{1}+D_{1}\right)=$ $c_{2}+D_{2}$ and $c_{1}=c_{1} g, c_{2}=c_{2} g$ for some $g \in \operatorname{pi}(R)$.

The proof similar to that of Lemma 8 works in the following two cases:
(i) both c_{1} and c_{2} are in $T\left(e J^{t}\right)(t<i)$.
(ii) c_{1} is in $T\left(e J^{t}\right)(t \leqq i)$ and $e J^{i} \geqq C_{2}>D_{2}$.

So we show only the following case:
(iii) $e J^{i} \geqq C_{j}>D_{j}$ for both $j=1,2$.

We have that for any C and D with $e J^{i} \geqq C>D$, there exists a unit x in $e R e$ such that $x C=A_{t-1} \oplus B_{s}>x D=A_{t} \oplus B_{s}$ (or $x C=A_{t} \oplus B_{s-1}>x D=A_{t} \oplus B_{s}$) for some $t, s \geqq i$ (the proof is in Lemma 8). Further we have that for $C=A_{k} \oplus B_{r}$ $(k, r \geqq i)$, there exists a unit y in $e R e$ such that $y C=A_{r} \oplus B_{k}$. So we may assume that $C_{j}>D_{j}$ are of the following form:

$$
\begin{array}{ll}
C_{1}=A_{t_{1}-1} \oplus B_{s_{1}}, & D_{1}=A_{t_{1}} \oplus B_{s_{1}} \\
C_{2}=A_{t_{2}-1} \oplus B_{s_{2}}, & D_{2}=A_{t_{2}} \oplus B_{s_{2}}
\end{array}
$$

It follows from $C_{1} / D_{1} \simeq C_{2} / D_{2}$ that $t_{1}=t_{2}=t$.
(α) In the case that $t \leqq \max \left(s_{1}, s_{2}\right)$. We may assume $s_{1} \geqq s_{2}$. Let $C_{1}=c_{1} R+$ D_{1} and $c_{1} R=A_{t-1}$. Then there exists a unit z in $e R e$ such that $f\left(c_{1}+D_{1}\right)=z c_{1}+$ D_{2}. It follows from $z D_{1} \leqq A_{t} \oplus B_{s_{1}} \leqq D_{2}$ that z_{l} induces f.
(β) In the case that $t>\max \left(s_{1}, s_{2}\right)$. We may assume $s_{1} \geqq s_{2}$. Let $B_{t-1}=b R$ and $\delta B_{i}=A_{i}$. Then $A_{t-1}=\delta b R$ and $f\left(\delta b+D_{1}\right)=\delta w b+D_{2}$ for some w in $e R e$ with $w B_{t-1}=B_{t-1}$, i.e. \bar{w} is in Δ_{i}. Since $\left[\Delta: \Delta_{i}\right]_{l}=2$, there exist \bar{y}_{1} and \bar{y}_{2} in Δ_{i} such that $\bar{\delta} \bar{w}=\bar{y}_{1}+\bar{y}_{2} \bar{\delta}$. So we have $\delta w=y_{1}+y_{2} \delta+j$ for some j in $e J e$, whence $y_{2} \delta b=\left(\delta w-y_{1}-j\right) b \equiv \delta w b\left(\bmod D_{2}\right)$, since $y_{1} b$ is in $B_{t-1} \leqq D_{2}$ and $j b$ is in $A_{t} \oplus B_{t} \leqq$ D_{2}. Then $f\left(\delta b+D_{1}\right)=y_{2}(\delta b)+D_{2}$ and $y_{2} D_{1} \leqq A_{t} \oplus B_{s_{1}} \leqq D_{2}$. So we have that $\left(y_{2}\right)_{l}$ induces f.
Q.E.D.

Remark. If R is a finite dimensional algebra over a field, then $\left[\Delta: \Delta_{i}\right]_{r}=$ $\left[\Delta: \Delta_{i}\right]_{l}$ holds. So for a primitive idempotent e, if $e R$ satisfies the condition
(A), it follows from $\left[\Delta: \Delta_{i}\right]_{l} \leqq 2$ (by Proposition 5) that $\left[\Delta: \Delta_{i}\right]_{r} \leqq 2$. Hence $e R$ never has the structure (c). Further suppose that R is a finite dimensional algebra over an algebraically closed field. Then we have $\left[\Delta: \Delta_{i}\right]_{r}=\left[\Delta: \Delta_{i}\right]_{l}=1$. Hence $e R$ has the structure (a) or (b_{1}).

4. Examples

Here we give some examples of left serial rings having projective indecomposable modules with structures $\left(b_{1}\right),\left(b_{2}\right)$, and (c) which satisfy the condition (A).

Example 1. Let k be a field and put

$$
R:=\left(\begin{array}{cccc}
k & k & k & k \\
0 & k & k & k \\
0 & 0 & k & 0 \\
0 & 0 & 0 & k
\end{array}\right), \quad e:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Then every projective indecomposable R-module satisfies the condition (A) and $e R$ has the structure (b_{1}). Note that R is not of right local type (Cf. [6]).

Example 2. Let $K \leqq L$ be fields with $[L: K]=2$. Put

$$
R:=\left[\begin{array}{lll}
L & L & L \\
0 & L & L \\
0 & 0 & K
\end{array}\right] \quad \text { and } \quad e:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Then $e R$ has the structure $\left(\mathrm{b}_{2}\right)$ and satisfies the condition on the left dimension in Theorem 2. Also in this case every projective indecomposable module satisfies the condition (A) but R is not of right local type (Cf. [6]).

Example 3 (Asashiba [1]). Let F and G be division rings and M an (F, G)-bimodule having the dimension sequence ($3,1,2,2,1$) (see Dowbor, Ringel and Simson [2]). The existence of such an M follows from Schofield [5, section 13] and [2, Proposition 1]. Then $R:=\left[\begin{array}{cc}F & M \\ 0 & G\end{array}\right]$ has exactly 5 nonisomorphic indecomposable modules and $[M: G]_{r}=3$, say $M_{G}=A_{1} \oplus A_{2} \oplus A_{3}$ with each $A_{i} \simeq G_{G}$. Put $e_{1}:=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $e_{2}:=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then we can identify $e_{1} J_{R}=$ M_{G}. Since the set $S:=\left\{e_{2} R, e_{1} R, e_{1} R / A_{1}, e_{1} R /\left(A_{1} \oplus A_{2}\right), e_{1} R / e_{1} J\right\}$ consists of 5 non-isomorphic local modules, S is a complete set of representatives of isomorphism classes of indecomposable R-modules. Thus R is of right local type. Hence every projective indecomposable R-module satisfies the condition (A). In particular so does $e_{1} R$. Further since $e_{1} J$ is isomorphic to a direct sum of
three copies of a simple module, $e_{1} R$ has the structure (c) and satisfies the condition (\#).

References

[1] H. Asashiba: Constructions of skew fields and applications to representations of artinian rings, Proc. of the Symposium on representation theory of algebras held at Nara, Japan (1986), 210-235 (in Japanese).
[2] P. Dowbor, C.M. Ringel and D. Simson: Hereditary artinian rings of finite representation type, Springer Lect. Notes 832, 232-241.
[3] M. Harada and Y. Baba: Generalizations of Nakayama ring IV, Osaka J. Math. 24 (1987), 139-145.
[4] M. Harada: Generalizations of Nakayama ring V, Osaka J. Math. 24 (1987), 373-389.
[5] A.H. Schofield: Representations of rings over skew fields, London Math. Soc. Lect. Note Series 92.
[6] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 22 (1984), 629-648.

Department of Mathematics Osaka City University
Sumiyoshi-ku, Osaka 558, Japan

