Baba, Y. and Harada, M. Osaka J. Math. 24 (1987), 139–145

GENERALIZATIONS OF NAKAYAMA RING IV

(LEFT SERIAL RINGS WITH (*, I))

YOSHITOMO BABA AND MANABU HARADA

(Received January 16, 1986)

Let R be an algebra over an algebraically closed field K with finite dimension. Under an assumption $J^4=0$, we have studied a left serial algebra with (*, 1): the radical of any hollow right R-module is always a direct sum of hollow modules, in [3], where J is the Jacobson radical of R. In this case eJ/eJ^2 is square-free, i.e., a direct sum of simple modules, which are not isomorphic to one another. We shall give, in this note, a complete characterization of a left serial ring with (*, 1) under the assumption: eJ/eJ^2 square-free. In the forthcoming paper [5], we shall study a left serial ring with (*, 1) in general.

1. Definitions and preliminaries

In this note we only deal with a left and right artinian ring R with identity. We assume that every R-module M is a unitary right (or left) R-module and denote its Jacobson radical and socle by J(M) and Soc(M), respectively. |M|means the length of a composition series of M. If M has a unique composition series, we call M a *uniserial module*. If, for each primitive idempotent e, eR is uniserial as a right R-module, we call R a *right serial ring* (Nakayama ring).

We obtained a characterization of a right serial ring in terms of submodules in a direct sum of uniserial modules [1]. As a generalization of the above result, we studied the following property:

(*, n) Every maximal submodule of a direct sum of n hollow modules is also a direct sum of hollow modules [2].

In this note we shall study a ring with (*, 1), i.e., every factor module of eJ is a direct sum of hollow modules for each primitive idempotent e, where J=J(R). Concerning (*, 1) we got

Lemma A ([4], Theorem 4). Let R be a right artinian ring. Then R satisfies (*, 1) for any hollow right R-module if and only if the following two conditions are fulfiled:

1) $eJ = \sum_{i=1}^{m} \bigoplus A_i$, where e is any primitive idempotent in R and the A_i are hollow.

2) Let $C_i \supset D_i$ be two submodules of A_i such that C_i/D_i is simple. If $f: C_i/D_i \approx C_j/D_j$ for $i \neq j$, f or f^{-1} is extendible to an element in $\operatorname{Hom}_R(A_i/D_i, A_j/D_j)$ or $\operatorname{Hom}_R(A_j/D_j, A_i/D_i)$.

On the other hand T. Sumioka found the following remarkable result:

Lemma B ([6], Corollary 4.2). Let R be a left serial ring, then eJ^i is a direct sum of hollow modules as right R-modules for any *i*.

We shall study, in this paper, only left serial rings, and so we denote the content of Lemma B by the following diagram:

(1)
$$\begin{array}{c} A_{1} & A_{2} & \cdots & A_{n} & eJ \\ \hline A_{11} & A_{21} & \cdots & A_{2n_{2}} & \cdots & A_{nn_{n}} & eJ^{2} \\ \hline A_{11} & \cdots & A_{1n_{1}} & A_{21} & \cdots & A_{2n_{2}} & \cdots & A_{n1} & \cdots & A_{nn_{n}} & eJ^{2} \end{array}$$

The diagram means that $J(eR) = eJ = \sum_{i=1}^{n} \bigoplus A_i$, $J(A_k) = \sum_{i=1}^{n_k} \bigoplus A_{ki}$ $(k = 1, 2, \dots, n)$. (cf. [2], § 2).

Further we continue to observe (1).

$$(2) \qquad \begin{array}{c} A_{11} & A_{12} \\ \vdots & \vdots \\ A_{111}A_{112}\cdots A_{11t_1}\cdots J(A_{11}) & A_{121}A_{122}\cdots A_{12t_2}\cdots J(A_{12}) \\ \vdots & \vdots & \vdots \\ 0 & \vdots & 0 \\ 0 & \vdots & 0$$

and repeat this process. We sometime denote $A_{i_1i_2\cdots i_t}$ by A_{α} , and define $|\alpha|=t$. Let $\alpha=i_1i_2, \cdots, i_t$ and $\beta=j_1j_2\cdots j_t$. We define $\alpha>\beta$ if t< t' and $i_1=j_1\cdots, i_t=j_t$, which is nothing but $A_{\alpha} \supset A_{\beta}$. We note that $\alpha \not\geq \beta$ if and only if $A_{\alpha} \cap A_{\beta}=0$.

Let x be an element in eJ. Then $x = x_1 + x_2 + \dots + x_n$; $x_i \in A_i$. If $x_1 \in J(A_1)$, $x_1 = x_{11} + x_{12} + \dots + x_{1n_1}$; $x_{1i} \in A_{1i}$. Repeating this process, we obtain finally (3) $x = z_1 + z_2 + \dots + z_i$, where $z_i \in A_{\alpha_i} - J(A_{\alpha_i})$, and $\alpha_i \not\geq \alpha_j$ if $i \neq j$, i.e., $\sum_{i=1}^{t} A_{\alpha_i} = \sum \bigoplus A_{\alpha_i}$.

Finally, let e and f be primitive idempotents. By $T(eJ^if)$ (resp. $T(J^if)$) we denote the set $eJ^if - eJ^{i+1}f$ (resp. $J^if - J^{i+1}f$). For a hollow module A, \overline{A} means A/J(A).

2. Main Theorem

We shall give a characterization of a left serial ring with (*, 1) as a right R-module.

Theorem. Let R be a left serial ring such that eJ/eJ^2 is square-free for each primitive idempotent e. Then

(*, 1) holds for any hollow right R-module if and only if we have the following condition: If $A_{\alpha}/J(A_{\alpha}) \approx A_{\beta}/J(A_{\beta})$ for $\alpha = i_1 i_2 \cdots i_k$, $\beta = j_1 j_2 \cdots j_s$ (1 < k < s and $i_1 \neq j_1$), $A_{\beta'}/J(A_{\beta})$ is uniterial, where $\beta' = j_1 j_2 \cdots j_{s-k+1}$ and A_{α} , A_{β} and $A_{\beta'}$ are hollow modules in (1). (See [5], for the general case.)

Corollary. Let R be a left serial algebra over an algebraically closed field of finite dimension. Then (*, 1) holds for any hollow right R-module if and only if the condition in Theorem is satisfied.

Proof. This is clear from Theorem and [3], Lemma 3.

We shall study some properties of a left serial ring. T. Sumioka has communicated us the following lemma.

Lemma 1 (T. Sumioka). Let R be left serial. Let x (resp. y) be in $T(eJ^if)$ (resp. $T(fJ^ig)$), where e, f and g are primitive idempotents. If $J^{i+j}g \neq 0$, $xy \in T(eJ^{i+j}g)$.

Proof. Assume that $xy \in eJ^{i+j+1}g$. Since R is left serial, $Rx = J^i f$ and $Ry = J^j g$. Hence $J^{i+j}g = J^i Ry = J^i fy = Rxy \subset ReJ^{i+j+1}g \subset J^{i+j+1}g$. Therefore $J(J^{i+j}g) = J^{i+j}g$, which is a contradiction to the assumption $J^{i+j}g \neq 0$.

From now on for a left serial ring $R A_{\alpha}$, A_{β} ... are hollow modules in the diagram (1) and $A_{\alpha(i)}$ means a submodule of A_i . When we need to specify $|\alpha(i)| = t$, we denote $A_{\alpha(i)}$ by $A_{\alpha(i,i)}$.

Lemma 2. Let R be a left serial ring and X, Y hollow right submodules in R. If $f: X/X_1 \approx Y/Y_1$ for some $X_1 \subset X$ and $Y_1 \subset Y$, there exists d in R such that dX = Y (or dY = X). If $X_1 = J(X)$ and $Y_1 = J(Y)$, d_1 , left-sided multiplication of d, induces f. In general, if d_1 induces f, $dX_1 \subset Y_1$. In particular, if $\overline{A}_{\sigma(i)} \approx \overline{A}_{\beta(j)}(|\alpha(i)| \leq |\beta(j)|)$, we can find such d in A_j .

Proof. Since X is hollow, we can find a generator x of X with xe=x for some primitive idempotent e. Put $f(x+X_1)=y+Y_1(y\in Y)$. f being an isomorphism, y is a generator of Y and we may assume ye=y. Further we may assume $x\in T(J^i)$, $y\in T(J^i)$ and $i\leq j$ (if j>j, replace X by Y). Then, since Re is uniserial, there exists d in R such that dx=y. If $X_1=J(X)=xJ$, $dX_1=dxJ=yJ=Y_1$. Let x_1 be an element in X_1 and $x_1=xr$; $r\in R$. Then $dx_1=dxr=yr\in Y$ and $dx_1+Y_1=yr+Y_1=f(xr+X_1)=Y_1$, provided that d_i induces f. Hence $dX_1\subset$ Y_1 (see the proof of [3], Theorem 3), If $\bar{A}_{\alpha(i)}\approx \bar{A}_{\beta(j)}$, da=b, where $A_{\alpha(i)}=aR$, $A_{\beta(j)}=bR$ and $d\in eJe$. Let $d=\Sigma d_i$: $d_i\in A_i$. Since $b=da=\Sigma d_ia\in A_i$, $b=d_ia$.

Lemma 3. Let R be a left serial ring. Assume $\overline{A}_{\sigma(i,i)} \approx \overline{A}_{\beta(j,i)}$ for $A_{\sigma(i,i)} \subset A_i$ and $A_{\beta(j,i)} \subset A_j$. Then $A_{\sigma'(i,p)} \approx A_{\beta'(j,p)}$, provided $A_{\sigma'(i,p)} \supset A_{\sigma(i,i)}$ and $A_{\beta'(j,p)} \supset A_{\beta(j,i)}$.

Y. BABA AND M. HARADA

Proof. We show $\bar{A}_{\alpha'(i,p)} \approx \bar{A}_{\beta'(j,p)}$. From Lemma 2, there exists an element d in eRe such that $dA_{\alpha(i,t)} = A_{\beta(j,t)}$. Let $\pi_{\gamma(s)}$ be the projection of eJ^{p} to $A_{\gamma(s,p)}$. Then $d_{l} | A_{\alpha'(i,p)} = (\sum_{s} \pi_{\gamma(s)} d_{l}) | A_{\alpha'(i,p)}$, where d_{l} means the left-sided multiplication of d. If $\pi_{\beta'(j,p)} d_{l} | A_{\alpha'(i,p)}$ is an epimorphism, $\bar{A}_{\alpha'(i,p)} \approx \bar{A}_{\beta'(j,p)}$. Assume $\pi_{\beta'(j,p)} (dA_{\alpha'(i,p)}) \subset J(A_{\beta'(j,p)})$. Let $A_{\alpha(i,t)} = a_{t}R$ and $A_{\alpha'(i,p)} = a_{p}R$. Then $a_{t} = a_{p}x; x \in T(J^{t-p})$. $(\pi_{\beta'(i,p)}(eJ^{p}) \supset) A_{\beta(j,t)} = dA_{\alpha(i,t)} = da_{t}R = \Sigma(\pi_{\gamma(s)} da_{t})R = \pi_{\beta'(j,p)} (da_{p}xR) \subset J(A_{\beta'(j,p)}) xR \subset eJ^{t+1}$, a contradiction. Hence $\bar{A}_{\alpha'(i,p)} \approx \bar{A}_{\beta'(j,p)}$, and so $A_{\alpha'(i,p)} \approx A_{\beta'(j,p)}$ by Lemma 2 (note $A_{\alpha'(i,p)}, A_{\beta'(j,p)}$ are contained in eJ^{p} but not in eJ^{p+1}).

Lemma 4. Let R be a left serial ring. Assume that $eJ = \Sigma \oplus A_i$, where the A_i are hollow. Then there are no non-zero elements d_1 , d_2 in eJe such that $d_1 \in A_i$, $d_2 \in A_j$ $(i \neq j)$ provided $\bar{A}_i \approx \bar{A}_j$.

Proof. We may assume that $d_1 \in T(A_{\alpha(i)})$ and $d_2 \in T(A_{\alpha(j)})$. Put $t_1 = |\alpha(i)|$ and $t_2 = |\alpha(j)|$. Then $t_1 \neq t_2$ by assumption and Lemma 3, since $\overline{d_i R} \not\approx e\overline{R}$ for i=1, 2. We can choose a pair (d'_1, d'_2) such that $t'_1 + t'_2$ is minimal $(t'_1 < t'_2)$. Then there exists d_0 in $A_j \cap eJ^{t'_2 - t'_1}$ such that $d_0d'_1 = d'_2$ from Lemma 2, and so (d'_1, d_0) gives the contradiction to the minimality.

Lemma 5. Let A_i be as above. Assume that any pair of $\{A_1, A_2, A_3\}$ is not isomorphic to one another. Then, for any primitive idempotent g, there are no three elements $\{a_{ij_i}\}$ as follows: 1) $a_{1j_1} \in T(A_1J^{j_1})$, $a_{2j_2} \in T(A_1J^{j_2})$ and $a_{3j_3} \in$ $T(A_2J^{j_3})$ such that $a_{ij_i}g = a_{ij_i}$ and $j_1 < \min(j_2, j_3)$ or 2) $a_{ij_i} \in A_i$ and $a_{ij_i}g = a_{ij_i}$ for i=1, 2, 3.

Proof. Since $Ra_{ij_i} \subset Rg$ and $ea_{ij_i} = a_{ij_i}$, this is clear from Lemmas 2 and 4.

Now we study a right artinian ring with (*, 1). For the sake of simplicity, we change the expression of a direct decomosition of eJ^i .

The following lemma is the "only if" part of Theorem.

Lemma 6. Assume that R is a right artinian ring with (*, 1) as right Rmodules. Put $eJ = A_1 \oplus B_1 \oplus \cdots$, $eJ^i = \sum_{k=1}^{n_i} \oplus A_{ik} \oplus \sum_{k=1}^{n'_i} \oplus B_{ik} \oplus \cdots$, where the $A_1, B_1, A_{ik}, B_{ik} \cdots$ are hollow and $A_1 \supset A_{ik}, B_1 \supset B_{ik}, \cdots$. If $\bar{A}_{i1} \approx \bar{B}_{j1}$ for $1 < i < j, B_{j-i+11}/J(B_{j1})$ is uniserial.

Proof. Put $C_1 = \sum_{k=2}^{n_2} \bigoplus A_{2k} + \sum_{k=2}^{n_3} \bigoplus A_{3k} + \dots + \sum_{k=1}^{n_i} \bigoplus A_{ik}$ and $D_1 = \sum_{k=2}^{n_2} \bigoplus A_{2k} + \dots + \sum_{k=2}^{n_{i-1}} \bigoplus A_{i-1k} + J(A_{i1}) + \sum_{k=2}^{n_2} \bigoplus A_{ik}$. Then $f: C_1/D_1 \approx A_{i1}/J(A_{i1}) \approx B_{j1}/J(B_{j1})$. Assume that f^{-1} is extendible to a g' in $\operatorname{Hom}_R(B_1/J(B_{j1}), A_1/D_1)$. Since $B_1J^i \supset B_1J^{i-1} \supset B_{j1}, g'(B_1J^i/J(B_{j1})) \supset g'(B_{j1}/J(B_{j1})) = f^{-1}(B_{j1}/J(B_{j1})) \neq 0$. On the other

142

hand, $g'(B_1J^i/J(B_{j1})) \subset (A_1/D_1)J^i = 0$ for $A_1J^i \subset D_1$, which is a contradiction. Hence f is extendible to a g in $\operatorname{Hom}_R(A_1/D_1, B_1/J(B_{j1}))$ by Lemma A. Since A_1/D_1 is uniserial, $\operatorname{Soc}(A_1/D_1) = (A_{i1}+D_1)/D_1 \approx A_{i1}/(J(A_{i1}))$ and $g \mid A_{1i}/J(A_{i1}) = f$ is an isomorphism, g is a monomorphism. Consider a uniserial module $\tilde{B}_{i-1} = g((A_{i-11}+D_1)/D_1) \supset B_{j1}/J(B_{j1})$. Let $J(B_{j-11}) = B_{j1} \oplus B_{j2} \oplus \cdots \oplus B_{ji}$. Assume $B_{j2} \neq 0$.

Then $\operatorname{Soc}(B_1/B_{j_1}) = \sum_{k=2}^{t} \bigoplus \operatorname{Soc}(B_{j_k}) \bigoplus \sum_{k=2}^{t'} \bigoplus \operatorname{Soc}(B_{j-1k}) \bigoplus \cdots$. Since $\operatorname{Soc}(\tilde{B}_{i-1}) = B_{j_1}/J(B_{j_1})$, \tilde{B}_{i-1} is not uniserial. Hence $B_{j_2} = B_{j_3} = \cdots = B_{j_l} = 0$. Considering the same situation for $g((A_{i-21}+D_1)/D_1)$, we obtain similarly $B_{j-12} = \cdots = B_{j-1t'} = 0$, where $J(B_{j-21}) = B_{j-11} \oplus \cdots \oplus B_{j-1t} \cdots$. Repeating this argument, we know $B_{j-i+11}/J(B_{j_1})$ is uniserial.

In Lemma 6, if i=j, $B_1/J(B_{i1})$ is not uniserial in general (see Example 1 in [5]).

Lemma 7. Let R be left serial and $A_{\alpha(i,t)}$, $A_{\beta(i,t)}$ hollow modules in (1). Assume $\alpha(i, t) \neq \beta(i, t)$. Then there are no d in J such that $dA_{\alpha(i,t)} = dA_{\beta(i,t)} \neq 0$.

Proof. Let $A_{a(i,t)} = aR$, $A_{\beta(i,t)} = bR$ and assume that there exists d such that daR = dbR. Then there exists r in R such that dar = db, and so d(ar-b) = 0. On the other hand, $ar-b \neq 0$ by assumption, and there exists a primitive idempotent g such that db = dbg. Further $d \in T(J^s)$ for some s and $0 \neq db \in T(J^{t+s}g)$ by Lemma 1. Hence $d(ar-b) \in T(J^{t+s}g)$, a contradiction to Lemma 1.

The following is the "if" part of Theorem.

Lemma 8. Let R be a left serial ring with eJ square-free. If R satisfies the result in Lemma 6, then (*, 1) holds for any hollow module.

Proof. First we shall show from the assumption that

(4) there are no three distinct hollow modules $A_{\sigma(i,s)}$, $A_{\beta(i,s)}$ and $A_{\gamma(j,t)}$ such that $\bar{A}_{\sigma(i,s)} \approx \bar{A}_{\beta(i,s)} \approx \bar{A}_{\gamma(j,t)}$ and $i \neq j$, s < t.

Contrarily we assume that there exist such modules. Put $A_{\sigma(i,s)} = aR$, $A_{\beta(i,s)} =$

Y. BABA AND M. HARADA

bR and $A_{\gamma(j,t)}=cR$. $A_{\gamma'(j,t-s+1)}/J(A_{\gamma(j,t)})$ is unisceial for some $\gamma'(j, t-s+1) > \gamma(j, t)$ by assumption. We may assume that ag=a, bg=b and cg=c for some primitive idempotent g. Then there exists d' in $T(eJ^{t-s}e)$ such that

$$(5) d'a = c$$

by Lemmas 1 and 2. Let $A_i = a_i R$ and $d'a_i = \sum_j v_j$ as in (3) $(a_i h = a_i, v_j h = v_j)$ for some primitive idempotent h. a being in A_i , $a = a_i r$ for some r in J. Then $c = d'a = d'a_i r = \sum_i v_j r$. Hence from the observation after (2)

(6)
$$c=v_k r$$
 for some k (say 1) and $v_{k'}r=0$ for $k' \neq 1$.

 $c=v_1r$ implies that $v_1 \in A_{\delta(j)}$ and $\delta(j) > \beta(j, t)$. Further $a=a_ir$ implies $r \in T(hJ^{s-1}g)$, and so $v_1 \in T(J^{t-s+1}h)$ by Lemma 1. Hence $v_1 \in A_{\gamma'(j,t-s+1)}$ (note $A_{\gamma(j,t)} \subset A_{\gamma'(j,t-s+1)}$). Now there exists d in $T(eJ^{t-s}e) \cap A_j$ with $v_1=da_i$, and so

(7)
$$da = da_i r = v_1 r = c$$
 and $da_i = v_1$

by (6). Let $b=a_ir'$ for some r' in R. Then $r' \in T(J^{s-1})$ and $db=da_ir'=v_1r' \in A_{\gamma'(j,t-s+1)} \cap T(J^t)=A_{\gamma(j,t)}$, since $A_{\gamma'(j,t-s+1)}/J(A_{\gamma(j,t)})$ is uniserial. Hence $dA_{\alpha(i,s)}=dA_{\beta(i,s)} \neq 0$, which is a contradiction to Lemma 7. Thus we have shown (4). Now let $A_1 \supset C_1 \supset D_1$ and $A_2 \supset C_2 \supset D_2$ be submodules such that $f\colon C_1/D_1\approx C_2/D_2$ and C_1/D_1 is simple. Let $c_i=\sum_k z_{ik}$ be a generator of C_i for i=1, 2, where $z_{ik}\in T(A_{\alpha i_k})$ from (3) and $z_{ik}g=z_{ik}$ for some primitive idempotent g. We choose a generator $c_i \in C_i$ with $\min_{i=1,2} \sum_k c_{11}$ (=x) from (4) and Lemmas 3 and 5. We shall take the following D_1^* similarly to D_1 in the proof of Lemma 6: $D_1^*=A_{12}\oplus A_{13}\oplus\cdots\oplus A_{112}\oplus A_{113}\oplus\cdots\oplus A_{11\cdots\oplus 2}\oplus\cdots(11\cdots 1=\alpha_{11})$. We shall show

$$(8) D_1 \subset J(A_{\alpha_{11}}) \oplus D_1^*.$$

Let y be an element in D_1 and $y = \sum y_i$; $y_i \in A_{\alpha i}$ as in (3). Assume $\alpha_1 \ge \alpha_{11} = 11 \cdots 1$. Then there exists r in Rg such that $y_1 r = x$. $x - yr = \sum_{i \ge 2} -y_i r$ is also a generator of C_1 and contained in D_1^* . Since $A_{\alpha_{11}} \cap D_1^* = 0$, we obtain a contradiction from (4) and Lemma 5. Hence $\alpha_1 < \alpha_{11}$, and so (8) is true. We choose a representative w in C_2 of f(x) such that wg = w. Let $w = \sum_{i=1}^r w_i (w_i g = w_i)$ as in (3); $w_i \in A_{\beta(2)}$. Since $w_1 g = w_1$ and $|\alpha_{11}|$ is minimal, there exists d_1' in A_2 with $d_1'x = w_1$. Now we have the same situation as (5). Hence from the argument after (5), similarly to (7) there exists d_1 in $T(eJ^{t-s}e) \cap A_2$ such that $d_1a_1 \in T(A_{\beta'(t,t-s+1)})$ and $d_1x = w_1$, where $t = |\beta_1(2)|, s = |\alpha_{11}|$ and $\beta'(2, t-s+1) > \beta_1(2)$. Let $\gamma(1, q) = 11 \cdots 1$ and $\gamma'(1, q)$ be two distinct indices with $1 < q \le s$. Let

144

 $p \in D_1^* \cap A_{\mathbf{r}'(1,q)}$ and a_q a generator of $A_{\mathbf{r}(1,q)}$. Then $x = a_q \mathbf{r}'$ for some \mathbf{r}' in R. $d_1a_q\mathbf{r}' = d_1x = w_1 \neq 0$, and so d_1a_q ($\neq 0$) $\in T(eJ^{t-s+q})$. If $d_1p \neq 0$, $d_1p \in T(eJ^{t-s+q})$ by Lemma 1 and d_1p and d_1a_q generate a same submodule between $A_{\beta'(2,t-s+1)} = d_1A_1$ and $A_{\beta_1(2)}$, since $A_{\beta'(2,t-s+1)}/J(A_{\beta_1(2)})$ is uniserial, which is a contradiction to Lemma 7. Therefore $d_1p=0$ and so $d_1(D_1^*)=0$. Similarly we can find $d_i \in A_2$ such that $d_ix = w_i$ for each w_i and $d_i(D_1^*)=0$. Put $d^* = \sum_{i=1}^r d_i$. Then $d^*x = \sum d_ix = \sum w_i = w$. Let u be any element in D_1 , then from (8) $u = u_1 + u_2$, where $u_1 \in J(A_{\sigma_{11}}), u_2 \in D_1^*$. We denote $u_1 = xj; j \in J$. $d^*u = d^*u_1 + d^*u_2 = d^*u_1 = d^*xj$ $= wj \in C_2 J \subset D_2$. Therefore d_i^* , left-sided multiplication of d^* , is the desired extension of f.

Proposition. Let R be a left serial ring with (*, 1). Let $\alpha(1, s) = 11\cdots 1$, $\beta(2, t) = 211\cdots 1$ (s < t) and $|A_{\beta(2,t)}| = k$. If $\overline{A}_{\alpha(1,s)} \approx \overline{A}_{\beta(2,t)}$, then $A_{\beta'(t-s+1)} \approx A_1/D$, where $\beta'(2, t-s+1) = 21\cdots 1$ and after renumbering $A_{\alpha(1,p)}$ for all $p, D = A_{12} \oplus A_{13} \oplus \cdots \oplus A_{112} \oplus A_{113} \oplus \cdots \oplus J(A_{\gamma(1,s+k-1)}); \gamma(1, s+k-1) = 11\cdots 1$. Hence $A_{\beta'(2,t-s+1)}$ is uniserial.

Proof. Since $\bar{A}_{\omega(1,s)} \approx \bar{A}_{\beta(2,t)}$, there exists d in A_2 such that $dA_{\omega(1,s)} = A_{\beta(2,t)}$ by Lemma 2, and so $dJ(A_{\omega(1,s)}) = J(A_{\beta(2,t)})$. Let $J(A_{\omega(1,s)}) = A_{11\cdots 1} \oplus A_{11\cdots 12} \oplus \cdots$ and $J(A_{\beta(2,t)}) = A_{21\cdots 1} \oplus A_{21\cdots 12} \oplus \cdots$. Since $dJ(A_{\omega(1,s)}) = J(A_{\beta(2,t)})$ and $A_{211\cdots 1}$ is hollow, $\bar{A}_{21\cdots 1} \approx \bar{A}_{11\cdots 1k}$ for some k. Then $A_{21\cdots 1k'} = 0$ for $k' \neq 1$ by Theorem. Repeating this argument, we know that $A_{\beta(2,t)}$ is uniserial and $A_{\beta''(2,t+k-1)}$ is the socle of $A_{\beta(2,t)}$ and is isomorphic to $A_{\omega'(1,s+k-1)}$. There exists d' in J from (7) such that $d'A_1 = A_{\beta'(2,t-s+1)}$ and $d'A_{\omega'(1,s+k-1)} = A_{\beta''(2,t+k-1)}$. Therefore we obtain the proposition from the last part of proof of Theorem.

References

- [1] M. Harada: Serial rings and direct decompositions, J. Pure Appl. Algebra, 31 (1984), 55-61.
- [3] ------: Note on left serial algebras, Tsukuba J. Math. 10 (1986), 193-197.

- [6] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 22 (1984), 629-648.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyoshi-ku Osaka 558, Japan