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1. Introduction

A pseudo-symmetric set is a pair (U, o) where U is a set and o is a mapping
of U into the group of permutations on U such that o () fixes u for every ele-
ment % in U and that it satisfies a fundamental identity: o(u"®)=0(v) 'o(¥)a(v)
foruand vin U.

In [1], a possibility of developing a structure theory of pseudo-symmetric
set is indicated. In this paper, we shall establish an analogue of Jordan-Holder
theorem in group theory for pseudo-symmetric sets.

Contrary to group theory, the concept of kernels of homomorphisms is not
available. Instead, a concept of a normal decomposition is introduced in [1].
It is a partition of U such that each class of the partition consists of elements
that are mapped to an element by a given homomorphism. When a partition 4
is a refinement of a partition B, we denote A<B. The partition of U which
has just one class U itself is denoted by U. The complete partition of U whose
classes are one-point sets is denoted by E. So, E<A<U for every partition
A. Suppose we have a sequence of normal decompositions P; such that

(1) U=P,>P,>P,>>P,=E

where there is no normal decomposition between P; and P;,;. Suppose we have
another sequence of normal decompositions Q; of the same properties:

(2) U=0>0>0,>>0,=E.

We say that P;/P;,, is non-trivial if H(P;/P;,,) =+ 1, where H(P;/P;,,) is the
group of displacements for P;/P;.,. (The definition will be given in 3.) The
main theorem we obtain is that between the set of non-trivial P;/P;,, and that
of non-trivial Q;/Q;,, there is a one to one correspondence such that if P;/P;,,

corresponds to Q;/Q;4, then H(P;/P;.,)=H(Q;/0;,).

2. Partitions of a set

Let U be a (universal) set, and U= U 4; a partition of U into non-empty
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disjoint classes 4;. We denote this partition simply by 4 and call 4; compo-
nents of the partition 4.

Let B be another partition. If every 4; is contained in a component B;, we
say that A<B. Aisa refinement of B. Let C be a partition. We define a
partition 4N C by taking all non-empty intersections 4; N C; as its components.
ANC is the cross partition of 4 and C. Clearly, ANC<A and ANC<C.
If B is a partition such that B<A4 and B<C, then B<ANC.

Next, we define a partition AB for partitions 4 and B. A component of
AB is a union of A4; as well as a union of B; and is minimal. Thus, a compo-
nent of AB is connected in a sense that if # and v are elements in it there exist
A4;, B;, 4, -+, B, in it such that u€4; and vEB,, and that adjacent sets in the
above have non-empty intersections. Clearly, A<AB and B<AB. If A<C
and B<C, then AB<C.

Proposition 1. If A>B, then ANBC>B(ANC) for every partition C.
Generally, the equality does not hold.

Proof. Almost clear.

For a partition 4, we define the quotient set U/4. U|A is the set of all
components 4; of 4. Let A<B. Then, B induces a partition on U/4 in a’
natural way; for B;, let (B/4);={A4;|A;<B;}. 'Then, U/A=U(BJA);is a par-
tition of U/A, which we denote by B/A. Since B/A is a partition of U/A4, we
can consider the quotient set (U/A4)/(B/A4). It follows from the definition that
(UJA)/(B/A) is bijective to U/B.

3. Normal decompositions

From now on, U stands for a pseudo-symmetric set (U, o) for a fixed o. Let
G(U) be the group generated by all o(«); G(U)=<o(%)|lucU). In the follow-
ing we denote G(U) by G. G is a group of automorphisms of the pseudo-
symmetric set U. Now, we define a normal decomposition of U. It is a
partition 4 of U such that (%) induces a permutation on U/A4 for every u in U
and that o(#) and o(v) induce the same permutation on U/4 if # and v belong
to the same component of 4. In this case, (U/4, o) is a pseudo-symmetric set,
where o(4;) is the permutation of U/4 induced by o(u) for uc4;. Clearly, the
mapping u—A4; gives a homomorphism of U onto U/A.

Proposition 2. If A and B are normal decompositions, then ANB and AB
are also normal decompositions.

Proof. It is clear that AN B is a normal decomposition. To show ABis a
normal decomposition, let pG. The image of a component (4B); by p is a
component of the partition AB, because it is a union of 4; as well as a union of
B, and it must be connected in the previously explained sense. We must show
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that if # and v bbelong to the same component of 4B, then o(«) and o(v) induce
the same permutation on U/4B. Due to the connectedness of a component of
AB, it is enough to show the above in case that # and v belong to either a com-
ponent A; or a component B;. If u and v are in 4;, then o(«) and o(v) induce
the same permutation on U/4 and hence on U/AB. Similarly, if » and v are
in Bj, then o(#) and ¢(v) induce the same permutation on U/4RB, which proves
Proposition 2.

From now on, 4, B, C,-:+ stand for normal decompositions of U. For A4,
the group of displacements is defined by H(A4)=<e () 'a(v)|u and v belong to
the same component). H(A) is shown to be a normal subgroup of G due to
the fundamental identity. If A<B, then H(A)SH(B). Note also that H(A4)
acts trivially on U/A4.

Proposition 3. H(ANB)CH(A)NH(B) and H(AB)=H(A)H(B).

Proof. The first is trivial. Just note that the equality does not generally
hold. For the second, it is clear that H(AB)2H(A)H(B). Letu and ve(4B);.
We show that o(x)'o(v) € H(A)H(B). Due to the connectedness of a compo-
nent of 4B, there exist u=u,y, u,, -*+, u,—v where #; and u;,, are either in a
component of 4 or of B. In both cases, o(u;) o (u;s,)EH(A)H(B). Since
o(u)'a(v) generate H(AB), this proves that H(AB)S H(A)H(B). So, H(AB)=
H(A)H(B).

For a normal subgroup N of G, we define a partition D of U by letting
D;={u|o(u)=0(u;) mod N for a fixed element u;}. D is seen to be a normal
decomposition, which we denote by D(N). If N, and N, are normal subgroups
of G such that N,CN,, then D(N,)< D(N,). Note also that DINNM)=
D(N)N D(M) for normal subgroups N and M. The following is given in [1].

Proposition 4. D(H(A))>A, and the equality holds if and only if A=
D(N) for some N. H(D(N))S N for any normal subgroup N, and the equality holds
if and only if N=H(A) for some A.

4. Isomorphism theorems

The restriction of G(=G(U)) on U/A4 induces a homomorphsim of G onto
G(U/4). Denote its kernel by K(A4). So, K(A)={p|p induces the identity
permutation on U/A}. Clearly, H(A)=K(4). If A<B, then K(4)SK(B).
For any 4 and C, K(AN C)=K(A4)NK(C).

Let A<B. B/A is a normal decomposition of U/A4, and hence H(B/A4) is
defined and is a normal subgroup of G(U/A4).

Theorem 1. H(B/A)=H(B)/(K(4)N H(B)).
Proof. Consider the homomorphism G—G(U/4). H(B) is mapped onto
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H(B|A) as we can see easily. The kernel is clearly K(4)N H(B).

When H(B/A)=1, we say that B is trivial over 4, or B/A4 is trivial (more
precisely, H-trivial). This implies that H(B)S K(4) or H(B) acts trivially on
U/A.

Proposition 5. Let A>B. Then, AN BC is trivial over B(ANC) for any
C.

Proof. First note that ANBC>B(ANC) by Proposition 1. Now,
H(ANBC)CH(A)NH(BC)=H(A)N H(B)H(C)=H(B)[H(A)NH(C)], as H(B)
is a normal subgroup of H(A4). Clearly, HB)SK(B(ANC)). Also, H(A)N
H(C)SK(A)NK(C)=K(ANC)SK(B(ANC)). Therefore, H(ANBC)<
H(B)[H(A)NH(C)]<K(B(ANC)), which proves that ANBC is trivial over
B(ANC).

Theorem 2. H(AB/B)=~H(A|(ANB)).

Proof. H(AB/B)=~H(AB)/(K(B) N H(AB)) by Theorem 1. But, H(AB)=
H(A)H(B)=H(A)[K(B)NH(AB)], as HB)SK(B)NH(AB)< H(AB). 'There-
fore, H(AB|B)=H(A)[K(B) N H(AB)]/(K(B) N H(AB))=H (A)/(E(A) N K(B) N
H(AB))=H(A)|(H(A)N K(B)). Itis easy to see that H(A)N K(B)=K(ANB)N
H(A). Thus, H(A)/(H(A) N K(B))=H(A)/(K(ANB)N H(A)), which is isomor-
phic with H(4/(4A N B)) by Theorem 1. So, H(AB|B)=H(A|(AN B)).

Proposition 6. Let D C. Then, H(ANC)/(AND)) is isomorphic to a
subgroup of H(C|D).

Proof. Restrict the homomorphism H(C)— H(C/D) to H(AN C) which is
a subgroup of H(C), and we have a homomorphism H(ANC)—H(C/D). Its
kernel is K(D)NH(ANC). But, K(D)NHANC)=KAND)NHANC), as
HANC)=HANC)NK(A) and K(D)NK(A)=K(AND). So, HANC)/
(K(AND)NH(ANC)) is isomorphic to a subgroup of H(C/D). Lastly note
that H(AN C)/(K(AND)NH(ANC)) is isomorphic with H((4 N C)/(AN D)) by
Theorem 1, which proves Proposition 6.

Proposition 7. Let D<C. Then, H(C|D) is homomorphic onto H(CB/DB)
for any B.

Proof. H(C/D)=H(C)/(K(D)NH(C)), and the latter is homomorphic onto
H(C)H(B)/[K(D)N H(C))H(B) as we can see easily. But, [K(D)NH(C)|H(B)
CK(DB)NH(CB). Thus, H(C/D) is homomorphic onto H(CB)/(K(DB)N
H(CB))=H(CB/DB).

Theorem 3. Let DC. Then, H(C|D) contains a subgroup N such that
N is homomorphic onto H((C N A)B/(D N A)B).
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Proof. Simply apply Propositions 6 & 7.

The following is a basic theorem, which is a generalization of the “simpli-
city’” theorem. ([1], Corollary 2) When A>B, H(A/B) is a normal subgroup
of G(U/B) and hence a G(U/B)-group. As there is the homomorphism from
G onto G(U|/B), we can consider H(A/B) as a G-group.

Theorem 4. Let A>B. If there is no normal decomposition between A and
B, then H(A|B) is G-simple.

Proof. H(A/B)=~H(A)/(K(B)NH(A)). So, itis enough to show that if N
is a normal subgroup of G such that K(B)N H(A)S N c H(A4), then N=K(B)N
H(A). Let D=D(N) for such normal subgroup N. Then, A<D. For, if
A<D, then H(A)S H(D)S N by Proposition 4, which is a contradiction. Next,
we show AND=B. For, BKD(H(B))<D(N)=D and hence BKAND<A,
So, AND=B by the assumption in Theorem 4. Since N acts trivially on
D(N)=D as is seen from the definition of D(N), N €K(D). Clearly, N CH(A)
CK(A). Therefore, NCK(AND). As we have shown AND=B in the
above, we have N CK(B). Thus, NCK(B)NH(A), which implies that N=
K(B)NH(A). This proves Theorem 4. Note that in the above, “G-simple”
means either H(A/B)=1 or else H(A/B) does not contain a proper G-subgroup.

5. Jordan-Holder Theorem

Proposition 8. Let A>B and C>D. Suppose that H(A|B)=*1 and that
there is no normal decomposition between C and D. If A=(C NA)B and B=
(DNA)B, then C=(ANC)D and D=(BN C)D.

Proof. Clearly, C>(ANC)D>(BNC)D>D. If we show that (AN C)D
£ (BN C)D, then Proposition 8 follows due to the assumption on C and D. So,
assume that (ANC)D=(BNC)D, and we are going to derive a contradiction.
ANC=AnC)NANC)D=ANC)N(BNC)D. Apply Proposition 5 for
ANC and BN C in place of 4 and B, and we obtain that (ANC)N(BNC)D is
trivial over (BNC)(ANC ND)=(BNC)AND), or that ANC is trivial over
(BNCYAND). Hence, HANC)SK[(BNC)AND)]. Next, we show that
BNC=(BNC)(AND). Since C>(BNC)AND)and B=(DNA)B=(AND)-
(BN C), we have BNC>(BNC)AND), or BNC=(BNC)(AND). We have
obtained that H(ANC)<S K(BNC). Now, H(A/B)=H([(C NA4)B]/B)=
H(CNnA)/(CnANB)) (by Theorem 2)=H((C N A)/(CNB)). Since HCNA)
CK(BNC), we have that H((CNA4)/(C NB))=1, or H(A/B)=1, which con-
tradicts the assumption that H(4/B)=1.

Now we prove the Jordan-Holder Theorem for pseudo-symmetric sets.

Theorem 5. Let U=P,>P,>P,>+->P,=E and U=0Q,>0,>0,> -
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>0, =E be sequences of normal decompositions such that between P; and P;,, and
between Q; and Q;,, there is no normal decomposition. Let X be the set of all
non-trivial P;|P;., and Y that of all non-trivial Q;/Q;,. Then, there is a bijec-
tion between X and Y such that if P;|P;,, corresponds to Q;/Q 41, then H(P;/P;,,)

=H(Q;/Q;+1)-

Proof. Let P;/P;,,€X. Let A=P; and B=P,,,. Put R,=(Q,NA)B
for 0<k<m. Then, R,>=R,,;,, Ry=A4 and R,=B. So, there is j such that
R;=A and R;,,=B. Let C=0Q; and D=0Q;,;. We show that C/D€Y and
that H(A/B)=H(C/D). By Theorem 3, H(C/D) contains a subgroup which is
homomorphic onto H(A4/B). Since H(A/B)=1, this implies thav H(C|D)=1.
So, C/DeY. Clearly, H(C/|D)=H(A|B), as H(C|D) is G-simple by Theorem
4. We have established a mapping from X to Y. To show that it isa bijec-
tion, construct a mapping from Y to X in a similar manner. By Proposition 8§,
these mappings are inverse each other.
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