JORDAN-HÖLDER THEOREM FOR PSEUDO-SYMMETRIC SETS

Nobuo NOBUSAWA

(Received September 11, 1985)

1. Introduction

A pseudo-symmetric set is a pair (U, σ) where U is a set and σ is a mapping of U into the group of permutations on U such that $\sigma(u)$ fixes u for every element u in U and that it satisfies a fundamental identity: $\sigma\left(u^{\sigma(v)}\right)=\sigma(v)^{-1} \sigma(u) \sigma(v)$ for u and v in U.

In [1], a possibility of developing a structure theory of pseudo-symmetric set is indicated. In this paper, we shall establish an analogue of Jordan-Hölder theorem in group theory for pseudo-symmetric sets.

Contrary to group theory, the concept of kernels of homomorphisms is not available. Instead, a concept of a normal decomposition is introduced in [1]. It is a partition of U such that each class of the partition consists of elements that are mapped to an element by a given homomorphism. When a partition A is a refinement of a partition B, we denote $A \leq B$. The partition of U which has just one class U itself is denoted by U. The complete partition of U whose classes are one-point sets is denoted by E. So, $E \leq A \leq U$ for every partition A. Suppose we have a sequence of normal decompositions P_{i} such that

$$
\begin{equation*}
U=P_{0}>P_{1}>P_{2}>\cdots>P_{n}=E \tag{1}
\end{equation*}
$$

where there is no normal decomposition between P_{i} and P_{i+1}. Suppose we have another sequence of normal decompositions Q_{j} of the same properties:

$$
\begin{equation*}
U=Q_{0}>Q_{1}>Q_{2}>\cdots>Q_{m}=E . \tag{2}
\end{equation*}
$$

We say that P_{i} / P_{i+1} is non-trivial if $H\left(P_{i} / P_{i+1}\right) \neq 1$, where $H\left(P_{i} / P_{i+1}\right)$ is the group of displacements for P_{i} / P_{i+1}. (The definition will be given in 3.) The main theorem we obtain is that between the set of non-trivial P_{i} / P_{i+1} and that of non-trivial Q_{j} / Q_{j+1} there is a one to one correspondence such that if P_{i} / P_{i+1} corresponds to Q_{j} / Q_{j+1} then $H\left(P_{i} / P_{i+1}\right) \cong H\left(Q_{j} / Q_{j+1}\right)$.

2. Partitions of a set

Let U be a (universal) set, and $U=\bigcup A_{i}$ a partition of U into non-empty
disjoint classes A_{i}. We denote this partition simply by A and call A_{i} components of the partition A.

Let B be another partition. If every A_{i} is contained in a component B_{j}, we say that $A \leq B$. A is a refinement of B. Let C be a partition. We define a partition $A \cap C$ by taking all non-empty intersections $A_{i} \cap C_{j}$ as its components. $A \cap C$ is the cross partition of A and C. Clearly, $A \cap C \leq A$ and $A \cap C \leq C$. If B is a partition such that $B \leq A$ and $B \leq C$, then $B \leq A \cap C$.

Next, we define a partition $A B$ for partitions A and B. A component of $A B$ is a union of A_{i} as well as a union of B_{j} and is minimal. Thus, a component of $A B$ is connected in a sense that if u and v are elements in it there exist $A_{i}, B_{j}, A_{k}, \cdots, B_{m}$ in it such that $u \in A_{i}$ and $v \in B_{m}$ and that adjacent sets in the above have non-empty intersections. Clearly, $A \leq A B$ and $B \leq A B$. If $A \leq C$ and $B \leq C$, then $A B \leq C$.

Proposition 1. If $A \geq B$, then $A \cap B C \geq B(A \cap C)$ for every partition C. Generally, the equality does not hold.

Proof. Almost clear.

For a partition A, we define the quotient set $U / A . \quad U / A$ is the set of all components A_{i} of A. Let $A \leq B$. Then, B induces a partition on U / A in a natural way; for B_{j}, let $(B / A)_{j}=\left\{A_{i} \mid A_{i} \subseteq B_{j}\right\}$. Then, $U \mid A=U(B / A)_{j}$ is a partition of U / A, which we denote by B / A. Since B / A is a partition of U / A, we can consider the quotient set $(U / A) /(B / A)$. It follows from the definition that $(U \mid A) /(B / A)$ is bijective to U / B.

3. Normal decompositions

From now on, U stands for a pseudo-symmetric set (U, σ) for a fixed σ. Let $G(U)$ be the group generated by all $\sigma(u) ; G(U)=\langle\sigma(u) \mid u \in U\rangle$. In the following we denote $G(U)$ by $G . \quad G$ is a group of automorphisms of the pseudosymmetric set U. Now, we define a normal decomposition of U. It is a partition A of U such that $\sigma(u)$ induces a permutation on U / A for every u in U and that $\sigma(u)$ and $\sigma(v)$ induce the same permutation on U / A if u and v belong to the same component of A. In this case, $(U / A, \sigma)$ is a pseudo-symmetric set, where $\sigma\left(A_{i}\right)$ is the permutation of U / A induced by $\sigma(u)$ for $u \in A_{i}$. Clearly, the mapping $u \rightarrow A_{i}$ gives a homomorphism of U onto U / A.

Proposition 2. If A and B are normal decompositions, then $A \cap B$ and $A B$ are also normal decompositions.

Proof. It is clear that $A \cap B$ is a normal decomposition. To show $A B$ is a normal decomposition, let $\rho \in G$. The image of a component $(A B)_{i}$ by ρ is a component of the partition $A B$, because it is a union of A_{j} as well as a union of B_{k} and it must be connected in the previously explained sense. We must show
that if u and v bbelong to the same component of $A B$, then $\sigma(u)$ and $\sigma(v)$ induce the same permutation on $U / A B$. Due to the connectedness of a component of $A B$, it is enough to show the above in case that u and v belong to either a component A_{i} or a component B_{j}. If u and v are in A_{i}, then $\sigma(u)$ and $\sigma(v)$ induce the same permutation on U / A and hence on $U / A B$. Similarly, if u and v are in B_{j}, then $\sigma(u)$ and $\sigma(v)$ induce the same permutation on $U / A B$, which proves Proposition 2.

From now on, A, B, C, \cdots stand for normal decompositions of U. For A, the group of displacements is defined by $H(A)=\left\langle\sigma(u)^{-1} \sigma(v)\right| u$ and v belong to the same component $\rangle. H(A)$ is shown to be a normal subgroup of G due to the fundamental identity. If $A \leq B$, then $H(A) \subseteq H(B)$. Note also that $H(A)$ acts trivially on U / A.

Proposition 3. $H(A \cap B) \subseteq H(A) \cap H(B)$ and $H(A B)=H(A) H(B)$.
Proof. The first is trivial. Just note that the equality does not generally hold. For the second, it is clear that $H(A B) \supseteq H(A) H(B)$. Let u and $v \in(A B)_{i}$. We show that $\sigma(u)^{-1} \sigma(v) \in H(A) H(B)$. Due to the connectedness of a component of $A B$, there exist $u=u_{0}, u_{1}, \cdots, u_{n}=v$ where u_{j} and u_{j+1} are either in a component of A or of B. In both cases, $\sigma\left(u_{j}\right)^{-1} \sigma\left(u_{j+1}\right) \in H(A) H(B)$. Since $\sigma(u)^{-1} \sigma(v)$ generate $H(A B)$, this proves that $H(A B) \subseteq H(A) H(B)$. So, $H(A B)=$ $H(A) H(B)$.

For a normal subgroup N of G, we define a partition D of U by letting $D_{i}=\left\{u \mid \sigma(u) \equiv \sigma\left(u_{i}\right) \bmod N\right.$ for a fixed element $\left.u_{i}\right\} . \quad D$ is seen to be a normal decomposition, which we denote by $D(N)$. If N_{1} and N_{2} are normal subgroups of G such that $N_{1} \subseteq N_{2}$, then $D\left(N_{1}\right) \leq D\left(N_{2}\right)$. Note also that $D(N \cap M)=$ $D(N) \cap D(M)$ for normal subgroups N and M. The following is given in [1].

Proposition 4. $D(H(A)) \geq A$, and the equality holds if and only if $A=$ $D(N)$ for some $N . \quad H(D(N)) \subseteq N$ for any normal subgroup N, and the equality holds if and only if $N=H(A)$ for some A.

4. Isomorphism theorems

The restriction of $G(=G(U))$ on U / A induces a homomorphsim of G onto $G(U / A)$. Denote its kernel by $K(A)$. So, $K(A)=\{\rho \mid \rho$ induces the identity permutation on $U / A\}$. Clearly, $H(A) \subseteq K(A)$. If $A \leq B$, then $K(A) \subseteq K(B)$. For any A and $C, K(A \cap C)=K(A) \cap K(C)$.

Let $A \leq B . \quad B / A$ is a normal decomposition of U / A, and hence $H(B / A)$ is defined and is a normal subgroup of $G(U / A)$.

Theorem 1. $H(B / A) \cong H(B) /(K(A) \cap H(B))$.
Proof. Consider the homomorphism $G \rightarrow G(U / A) . \quad H(B)$ is mapped onto
$H(B \mid A)$ as we can see easily. The kernel is clearly $K(A) \cap H(B)$.
When $H(B / A)=1$, we say that B is trivial over A, or B / A is trivial (more precisely, H-trivial). This implies that $H(B) \subseteq K(A)$ or $H(B)$ acts trivially on $U \mid A$.

Proposition 5. Let $A \geq B$. Then, $A \cap B C$ is trivial over $B(A \cap C)$ for any C.

Proof. First note that $A \cap B C \geq B(A \cap C)$ by Proposition 1. Now, $H(A \cap B C) \subseteq H(A) \cap H(B C)=H(A) \cap H(B) H(C)=H(B)[H(A) \cap H(C)]$, as $H(B)$ is a normal subgroup of $H(A)$. Clearly, $H(B) \subseteq K(B(A \cap C))$. Also, $H(A) \cap$ $H(C) \subseteq K(A) \cap K(C)=K(A \cap C) \subseteq K(B(A \cap C))$. Therefore, $H(A \cap B C) \subseteq$ $H(B)[H(A) \cap H(C)] \subseteq K(B(A \cap C))$, which proves that $A \cap B C$ is trivial over $B(A \cap C)$.

Theorem 2. $H(A B / B) \cong H(A /(A \cap B))$.
Proof. $\quad H(A B \mid B) \cong H(A B) /(K(B) \cap H(A B))$ by Theorem 1. But, $H(A B)=$ $H(A) H(B)=H(A)[K(B) \cap H(A B)]$, as $H(B) \subseteq K(B) \cap H(A B) \subseteq H(A B)$. Therefore, $H(A B \mid B) \cong H(A)[K(B) \cap H(A B)] /(K(B) \cap H(A B)) \cong H(A) /(H(A) \cap K(B) \cap$ $H(A B))=H(A) /(H(A) \cap K(B))$. It is easy to see that $H(A) \cap K(B)=K(A \cap B) \cap$ $H(A)$. Thus, $H(A) /(H(A) \cap K(B))=H(A) /(K(A \cap B) \cap H(A))$, which is isomorphic with $H(A /(A \cap B))$ by Theorem 1. So, $H(A B / B) \cong H(A /(A \cap B))$.

Proposition 6. Let $D \leq C$. Then, $H((A \cap C) /(A \cap D))$ is isomorphic to a subgroup of $H(C / D)$.

Proof. Restrict the homomorphism $H(C) \rightarrow H(C / D)$ to $H(A \cap C)$ which is a subgroup of $H(C)$, and we have a homomorphism $H(A \cap C) \rightarrow H(C / D)$. Its kernel is $K(D) \cap H(A \cap C)$. But, $K(D) \cap H(A \cap C)=K(A \cap D) \cap H(A \cap C)$, as $H(A \cap C)=H(A \cap C) \cap K(A)$ and $K(D) \cap K(A)=K(A \cap D)$. So, $H(A \cap C) /$ $(K(A \cap D) \cap H(A \cap C))$ is isomorphic to a subgroup of $H(C / D)$. Lastly note that $H(A \cap C) /(K(A \cap D) \cap H(A \cap C))$ is isomorphic with $H((A \cap C) /(A \cap D))$ by Theorem 1, which proves Proposition 6.

Proposition 7. Let $D \leq C$. Then, $H(C / D)$ is homomorphic onto $H(C B / D B)$ for any B.

Proof. $H(C / D) \cong H(C) /(K(D) \cap H(C))$, and the latter is homomorphic onto $H(C) H(B) /[K(D) \cap H(C)] H(B)$ as we can see easily. But, $[K(D) \cap H(C)] H(B)$ $\subseteq K(D B) \cap H(C B)$. Thus, $H(C / D)$ is homomorphic onto $H(C B) /(K(D B) \cap$ $H(C B)) \cong H(C B / D B)$.

Theorem 3. Let $D \leq C$. Then, $H(C \mid D)$ contains a subgroup N such that N is homomorphic onto $H((C \cap A) B /(D \cap A) B)$.

Proof. Simply apply Propositions $6 \& 7$.
The following is a basic theorem, which is a generalization of the "simplicity" theorem. ([1], Corollary 2) When $A \geq B, H(A / B)$ is a normal subgroup of $G(U / B)$ and hence a $G(U / B)$-group. As there is the homomorphism from G onto $G(U / B)$, we can consider $H(A / B)$ as a G-group.

Theorem 4. Let $A>B$. If there is no normal decomposition between A and B, then $H(A / B)$ is G-simple.

Proof. $\quad H(A / B) \cong H(A) /(K(B) \cap H(A))$. So, it is enough to show that if N is a normal subgroup of G such that $K(B) \cap H(A) \subseteq N \subset H(A)$, then $N=K(B) \cap$ $H(A)$. Let $D=D(N)$ for such normal subgroup N. Then, $A \nsubseteq D$. For, if $A \leq D$, then $H(A) \subseteq H(D) \subseteq N$ by Proposition 4, which is a contradiction. Next, we show $A \cap D=B$. For, $B \leq D(H(B)) \leq D(N)=D$ and hence $B \leq A \cap D<A$, So, $A \cap D=B$ by the assumption in Theorem 4. Since N acts trivially on $D(N)=D$ as is seen from the definition of $D(N), N \subseteq K(D)$. Clearly, $N \subset H(A)$ $\subseteq K(A)$. Therefore, $N \subseteq K(A \cap D)$. As we have shown $A \cap D=B$ in the above, we have $N \subseteq K(B)$. Thus, $N \subseteq K(B) \cap H(A)$, which implies that $N=$ $K(B) \cap H(A)$. This proves Theorem 4. Note that in the above, " G-simple" means either $H(A \mid B)=1$ or else $H(A \mid B)$ does not contain a proper G-subgroup.

5. Jordan-Hölder Theorem

Proposition 8. Let $A>B$ and $C>D$. Suppose that $H(A / B) \neq 1$ and that there is no normal decomposition between C and D. If $A=(C \cap A) B$ and $B=$ $(D \cap A) B$, then $C=(A \cap C) D$ and $D=(B \cap C) D$.

Proof. Clearly, $C \geq(A \cap C) D \geq(B \cap C) D \geq D$. If we show that $(A \cap C) D$ $\neq(B \cap C) D$, then Proposition 8 follows due to the assumption on C and D. So, assume that $(A \cap C) D=(B \cap C) D$, and we are going to derive a contradiction. $A \cap C=(A \cap C) \cap(A \cap C) D=(A \cap C) \cap(B \cap C) D$. Apply Proposition 5 for $A \cap C$ and $B \cap C$ in place of A and B, and we obtain that $(A \cap C) \cap(B \cap C) D$ is trivial over $(B \cap C)(A \cap C \cap D)=(B \cap C)(A \cap D)$, or that $A \cap C$ is trivial over $(B \cap C)(A \cap D)$. Hence, $H(A \cap C) \subseteq K[(B \cap C)(A \cap D)]$. Next, we show that $B \cap C=(B \cap C)(A \cap D)$. Since $C \geq(B \cap C)(A \cap D)$ and $B=(D \cap A) B \geq(A \cap D)$. $(B \cap C)$, we have $B \cap C \geq(B \cap C)(A \cap D)$, or $B \cap C=(B \cap C)(A \cap D)$. We have obtained that $H(A \cap C) \subseteq K(B \cap C)$. Now, $H(A / B)=H([(C \cap A) B] / B) \cong$ $H((C \cap A) /(C \cap A \cap B))$ (by Theorem 2$)=H((C \cap A) /(C \cap B))$. Since $H(C \cap A)$ $\subseteq K(B \cap C)$, we have that $H((C \cap A) /(C \cap B))=1$, or $H(A / B)=1$, which contradicts the assumption that $H(A / B) \neq 1$.

Now we prove the Jordan-Hölder Theorem for pseudo-symmetric sets.
Theorem 5. Let $U=P_{0}>P_{1}>P_{2}>\cdots>P_{n}=E$ and $U=Q_{0}>Q_{1}>Q_{2}>\cdots$
$>Q_{m}=E$ be sequences of normal decompositions such that between P_{i} and P_{i+1} and between Q_{j} and Q_{j+1} there is no normal decomposition. Let X be the set of all non-trivial P_{i} / P_{i+1} and Y that of all non-trivial Q_{j} / Q_{j+1}. Then, there is a bijection between X and Y such that if $P_{i} \mid P_{i+1}$ corresponds to Q_{j} / Q_{j+1}, then $H\left(P_{i} / P_{i+1}\right)$ $\cong H\left(Q_{j} / Q_{j+1}\right)$.

Proof. Let $P_{i} / P_{i+1} \in X$. Let $A=P_{i}$ and $B=P_{i+1}$. Put $R_{k}=\left(Q_{k} \cap A\right) B$ for $0 \leq k \leq m$. Then, $R_{k} \geq R_{k+1}, R_{0}=A$ and $R_{m}=B$. So, there is j such that $R_{j}=A$ and $R_{j+1}=B$. Let $C=Q_{j}$ and $D=Q_{j+1}$. We show that $C / D \in Y$ and that $H(A / B) \cong H(C / D)$. By Theorem 3, $H(C / D)$ contains a subgroup which is homomorphic onto $H(A \mid B)$. Since $H(A \mid B) \neq 1$, this implies that $H(C / D) \neq 1$. So, $C / D \in Y$. Clearly, $H(C / D) \cong H(A / B)$, as $H(C / D)$ is G-simple by Theorem 4. We have established a mapping from X to Y. To show that it is a bijection, construct a mapping from Y to X in a similar manner. By Proposition 8, these mappings are inverse each other.

Reference

[1] N. Nobusawa: Some structure theorems on pseudo-symmetric sets, Osaka J. Math. 20 (1983), 727-734.

