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1. Introduction

The most familiar one-dimensional dynamical system is given by

(1.1) **«=/(*.) for rc^O,

where/ is a transformation from an interval into itself. Usually/ in (1.1) is
assumed to be of piecewise C2. Moreover if / is uniformly expanding the
asymptotic behavior of xn is investigated in detail (see [7], [8], and [14]). But
it will be more natural to consider that / may be changed for each n, by chance.
For example, let S be a measurable space, let {fs}sς=s be a family of transforma-
tions from the unit interval / into itself and let {Xn}n=ι be a sequence of S-valued
independent and identically distributed random variables on a probability space
(Ω, £?, P). The relation between xn and xn+1 is given by

(1.2) Xn+ι=fxn+lω(Xn) n^G.

In this paper, we will study the asymptotic behavior of xn given by (1.2).
Following S. Kakutani [5] and T. Ohno [9], we introduce the skew product
transformation T on /Xίl satisfying

(1.3) proj7oΓn(#, ω) = fχnωfχn_1(<ΰy fχ1ω x, n^O ,

and deduce our problem to the investigation of the asymptotic behavior of T.
In section 5, we introduce an expanding condition (A.I) for the random

transformations /γΛ's. Under this condition, similar to a single piecewise C2

uniformly expanding transformation, we can obtain the following results:
I. Let m denote the Lebesgue measure on /. Then T has a finite number

of (m X P)-absolutely continuous ergodic probability measures such that any
(τwχP)-absolutely continuous Γ-invariant σ-additive finite set function can be
written as a linear combination of them. These ergodic measures have disjoint
supports, each of which is called an ergodic component of T.

II. Each ergodic component of T can be decomposed into finitely many
exact components which are permuted cyclically by T.
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III. If S is a finite set, then each exact component is also a weak Bernoulli

one.
Our results generalize those of [4] (see section 8).
We will prove the above results by investigating the Perron-Frobenius

operator J£ of T with respect to m X P and its eigenfunctions corresponding to
the eigenvalues of modulus 1. To do this, the results in the deterministic case
will play very important roles (for example, Lemma 5.4). From this point of
view in section 3 we will summarize the results in [7], [8], and [14] and prove
Wagner's theorem [14] by using a different method from the original one.
This enable us to apply the results in the deterministic case to our random
iteration case.

In section 5, we will prove the main theorem and in section 6 we will give
some auxiliary results. Bernoulliness is to be discussed in section 7. In the

final section, we will give some examples and remarks.

2. Preliminaries

To begin with, we introduce the so-called Perron-Frobenius operator which
plays important roles in this article.

DEFINITION 2.1. Let (X, IB, m) be a probability space and T be an m-
nonsingular transformation on X3 namely it is measurable and for a measurable
set Ay m(A)=0 implies m(T~1A)=Q. We define the Perron-Frobenius operator
(P-F operator) XTiW of T with respect to m sa follows:

(2.1) j;τmφ = - φdm for every φξΞL\m) .
dm Jr 1( )

-Cτ,m will often be denoted simply by ~CT or J2m.

DEFINITION 2.2. For a measurable transformation T on a measurable
space (X, &), we define an operator Uτ by

(2.2) Uτφ — φoT for each measurable function φ .

Uτ is called the operator induced by T.
Now we summarize some properties of P-F operator which are easily

verified. As usual, we write n times iteration of T by Tn.

Proposition 2.1. Let (X, IB, m) be a probability space. Let T be an m-non-
singular transformation. Then, we have the following :

(1) The Perron-Frobenius operator J?m=J?Tttn is characterized by the identity

(2.3) ί Uτψ φ dm=( ψ Xmφ dm

for every φ^L\m) and
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(2) JCm is a positive linear operator on L\m) with operator norm 1.
(3) For every n^ly

(2.4)

(4) For every φ^L\m) and

(2.5) -Cm(Uτψ φ) = ψ J^φ a.e.(m).

(5) For φ^L\m), ~Cmφ=φ if and only if φm is T-invariant where φm is a

σ-additive set function defined by (φm) (A) = \ φ dm.

Furthermore, let μ be an m-absoultely continuous T-invariant probability meas-
ure with the density function h.

(6) For all

(2.6) h--C^ = _Cm(h-Y) a.e.(m)

where -Cμ.=-CTtP..
(7) For all ψGL\μ),

(2.7) ^UTΛJr = ψ a.e. (μ) .

(8) Put $n=T~n £By we have

(2.8) £μO|-SJ = C/Γ-ΓSΨ a.e. (μ) for each ψ

(9) Xμ w ί/?0 Λα/ operator for the operator Uτ on Lp(μ) (l^

Under the same notations in the above we have the following properties
about the eigenvalues of JCm on L\m).

Proposition 2.2. (1) For λeC and -\lτ^L\μ)) the following are equivalent :

(i) Uτψ* = λψ a.e. (μ) ,

(2.9) (ii) -£μψ = Xψ a.e. (μ) and |λ| = 1 ,

(iii) Xm(^h) = Xψ/ί a.e. (w) αnrf | λ | = 1 .

(2) If μ is maximal, namely any m-absolutely continuous T-invariant pro-
bability measure is μ-absolutely continuous, then the set of all eigenvalues of modulus
1 of -Cμ, on L\μ) coincides with that of Xm on L\m).

Proof. (1) From the formula (2.6), the equivalence of (ii) and (iii) is
obvious. So we prove the equivalence of (i) and (ii). If i7ri/r=Xi/r for X6ΞC
and ψ^L\μ), we have ψ=-Cμ,Uτ'\lr=\J2μ.ψ> a.e. (μ) by (2.7) and
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Thus -/Vψ^X-v/r a.e. (μ) and |X|=1. Conversely, if ^ψ^Xi/r a.e. (μ) and
|λ| =1, we have Epίψ\3)Λ)='X,*ψoT* by (2.8) thus X' ψ oΓ11 converges to some

ψ* in //(μ)- It is easy to see φoΓ=χφ a.e. (μ). We have to show that ty=$r
.a.e. (μ) but

f |φ—ψ | rfμ= f |Xnψ oΓn—X>oT"Ί J//,

= J |ψ-X>oΓn| dμ -> 0 as rc-

Hence UTty=\ty a.e. (μ).
(2) Let Km and Λμ, denote the set of all eigenvalues of modulus 1 of J2m on

L\m) and _£μ on L\μ) respectively. By (2.4) it is obvious that ΛwZ)Λμ. Sup-

pose that λeΛa, and φ^L\m) is an eigenfunction with I | φ | dm=l. Since J2m

is a positive operator and preserves the value of integral, it is easy to see J2m \ φ \
= |φ| a.e. (m). Thus \<$>\m is T'-invariant probability measure. From our as-
sumption { I φ I =0} z> {^=0}, so φ/Γ1 makes sense and φh~l^L\μ). Therefore
we have

h -C^φtϊ) = Xmφ = \φ = \φh-1 h .

Hence λeΛ/x.

Now we consider one-dimensional dynamical systems.

DEFINITION 2.3. Let / be the unit interval. By 3) we denote the taotality
of transformations /of I satisfying:

(1) There is a partition Q=LaQ<a1< <ak=l of I such that for each /=
1, 2, •••, k the restriction / 1 (Λ._1>β|.) of / to (af,l9 α, ) is a function of class C2 and
can be extended to the closed interval [#,-_!, #, ] as a function of class C2.

(2) / satisfies the expanding condition

(2.11) rf/ = inf {|/'(*)| :*Φα,}>0.

REMARK 2.1. In the above definition the partition 0=a0<a1< ••• <ak=l
can be chosen to be minimal in the sense of refinement among all partitions
satisfying (1). Unless otherwise stated, we always take the minimal partition,
so the points Q=a0<a1< ••• <ak=l can uniquely determined by/.

REMARK 2.2. From (2) of Definition 2.3, /is m-nonsingular and /|(β|_ l fβί)
is strictly monotonic for each i.

DEFINITION 2.4. An element / of 3) is said to be uniformly expanding if
df>\ and the totality of such transformations is denoted by 3)Λ.

DEFINITION 2.5. For/e.2), set
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l - - 1 8UPlC/l'(««-ι.«o)//l(2.11) βf = 2d Jl max (ai-ai_,)-1+ max

^ ' ' ϋ

where 0=α0<α!< ••• <ak=l is the minimal partition satisfying (1) of Definition
2.3.

3. Results in the deterministic case

In this section, we are concerned with a single transformation / in S)e.
Unless otherwise stated, ίB and m denote the topological Borel field on the unit
interval / and the Lebesgue measure respectively.

Theorem. 3.1 (Li and Yorke [8]). Let / be in 3)e. Then, there exists a
finite collection of sets L,, L2, •••, L/ and a set of m-absolutely continuous f -invariant
probability measures {μly μ2, •••, μ/} such that

(1) for each /=!, 2, •••,/£,- is a finite union of closed intervals and /L, =L, ;
(2) LfΓiLj contains at most a finite number of points when /Φ/;
(3) for each i, μi(Li)=l and the dynamical system (/, μ{) is ergodic]
(4) if μ is an m-absolutely continuous /-invariant σ-addίtίve finite set func-

tion y then it can be written as a linear combination of μ/s',

(5) let Z)=/\ U Lh then Duf'1 DID —and
-

Theorem 3.2 (Wagner [14]). Let f be in 3)e> and μ be an m-absolutely con-

tinuous ergodic f -invariant probability measure. Put L— |— ̂ >0|. Then, there
(dm )

is an integer N>0 and a collection of disjoint measurable subsets L0, L19 •••, LN^
of L such that

(1) fLf=LJ+l (Q^j<N-\) and fL^^L,;
(2) for each j=Q, 1, •••, N— 1, the dynamical system (fN

y μj) is exact, where
μ.=N μ\Lj.

REMARK 3.1. Bowen proved that ( f N , μy) is weakly Bernoulli in [1],

In the sequel, we will give a poof of Theorem 3.2 by investigating the
eigenfunctions of P-F operator -Cf>m for the following two reasons. First,
Wagner's method is rather complicated; for example, he used the Rohlin criterion
(see [12]). The second reason is that our method employed here is also usefull
in studying the ergodic behavior of the skew product transformation T as one
sees in the later sections.

For a function φ from / into C, let V φ denote the total variation of φ. For
φ&L\m) we define

V φ = inf {Vφ* φ is any version of φ}

and BV={φ(ΞL\m):
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Lemma 3.1. (1) Let /belongs to 3). Then, for each φ^BV, we have

(3.1) V-Cf.m φ^

where df and βf are those defined in section 2 and af=djl.
(2) In addition, iff is in 3)e, then there is a positive constant C such that

(3.2) lim sup V-£/,* Φ^C \\φ\\1>m for every φtΞBV .
n ->. oo

(3) Iff^3)e, then {Xn

f w φ}~=ι ά relatively compact in L\m) for every φe

L\m).

Proof. See [7].

Lemma 3.2. Letf be in ίDe. Let Λ be the set of all eigenvalues of -Cf=
Jlf m with modulus 1, and let E(\) denote the eigenspace belonging to λeΛ. Then,

' ( i ) ISA.
(2) z/λeΛ, then φ^E(\) implies that

(3.3)

where C is the constant which appeared in the inequality (3.2).
(3) dim£(λ)<oo if \eΛ.
(4) ΦΛ<oo.

Proof. (1) By (3) in Lemma 3.1, we can use the Kakutani-Yosida Theo-
( \ »-ι . I °°

rem [6]. Hence, for each φ^L\m), the sequence < — Σ -Γ/φ> converges
I n *=o J»-ι

in L\m). The limit function φ* has the following properties:

Xf φ* = φ* and ί φ* dm = ( φ dm .

Thus
(2) Since BV is dense in L\m), we can choose φp^BV such that \\φp—

φll i w^ — for every p. Pick a sequence {̂  }Γ=ι ̂ N with nj<ni+1 and λΛ'->l (/->

oo ). By (3.2) and Helley's theorem, we can find a subsequence {/Zy}7<=ι
with nfj<n'j+\ and φp^BV such that

||̂ -̂  <M1>m-0 ( -oo) and V$,^C Hφ,!!,.. .

It is easy to see that ||φ^— φ||ι m^ — . Again, we can apply Helley's theorem to

^the sequence {φ }̂ J=ι. Without loss of generality, we may assume that <£>p con-
verges to some φ^BV with Vφ^C ||φ||ι f Λ I in L\m). It is obvious that φ— φ.

(3) From the fact that just has been proved above, any bounded set in E(\)
is relatively compact in L\m). Therefore, dim E(\)<oo.
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(4) Suppose that {λΛ}Γ=ι is an infinite sequence of distinct eigenvalues of
modulus 1. Let φn be an eigenfunction belonging to λn for each n. Let Fn be

the linear span of φυ φ2, •••, φn for n^l and put F0={0}. It is obvious that

XfFn=Fn and Fn^Fn+1 for all n^O. By Riesz' lemma, there exists a ψn^Fn

such that |hKlU=l and Hψ.-ψH^^for any ψeίi..1forn=l,2, -. Thus
Zt

we can easily show that

X? -£7 ψn—ψnςΞFn.λ for 0=1, 2, •••, and for any ΛΓ^l .

Therefore, ifp>q, then

(3.4) 11*7^7 Ψ,-*f^?Ψ.llι..

- , for all JV, MeN .

On the other hand, since ψn^BV so

lim sup VΦ7 -£7 ιK)^C for all p .

Hence, we can choose a sequence {Nn}™=ί such that NM<Nn+1 and N^Nn implies

that VfiS-C"ψΛ)^C+l. B7 Helley's theorem, {%£•-C/ ψn}ϊ-ι is relatively
compact in L\m). But this contradicts (3.4). The proof of Lemma 3.2 is now

complete.

Here we give two general properties of ergodic transformations.

Proposition 3.1. Let (T, μ) be an ergodic dynamical system such that the set

of all eigenvalues of Uτ is written as {1, λ, •••, λ^"1} where λ is a primitive N-th

root of 1. Then the eigenfunction ψ corresponding to λ has the following form up to

constant multiplication.

(3.5) >K*) = SX
ι=0

Proof. Let Λ|Γ be an eigenfunction corresponding to λ. Since (Γ, μ) is
ergodic we may assume that |^|=1. Thus we can write <ψ (#)=g2*lβ^ where

and a(Tx)=a(x)-\ mod 1. Put L{= { — g^α(a?)<*"^ > for /=0, 1,
ΛΓ IΛΓ ΛΓ J

—, AΓ-1. Then L0, Lly •--, L .̂! are disjoint, Γ'1 Li+1=L{ (0^i<N-ί) and

T1""1 LQ=LN-Γ Define a function ψ by fy(x)= Σ λ,1' l^X^). Obviously C7Γ Ψ(Λ?)

By the ergodicity of (T, μ), there is a constant £ such that -$r(x)=cty(x).

Proposition 3.2. Let (T, μ) be a dynamical system where μ is T-invariant.
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Assume that {£$, ψ}~=1 is relatively compact in L\μ)for any ψ^L\μ). Then, if
(T, μ) is weakly mixing, it is exact and

(3.6) \\-Cτ,μ ψ- ψ dμ\\ltμ,-*Q (Λ->OO) far any

Proof. Let (Γ, μ) be weakly mixing. There is a subset J of N with density
zero such that

( £nτtV.tydμ= ( Un

τ\Btydμ-*μ(E) f ψ dμ (n-> oo , Λ $ J) ,

for any ψeL\μ) and for any BϊΞ& (see [10, p. 70]). Thus {-£5 ,μψ }«eN\j

converges weakly to \ -ψ* Jμ, as n-*o°. By our assumption {_£*£ ̂ }T-i is relatively

compact in L\μ) so we may assume that

ί

Put -Soo^fΊ Γ-Λ^, we have
Λ = l

J |̂ μ

=

+5

The first term tend to 0 as n-*oo by Doob's theorem. The second term coin-

cides with I \-Cτ,μ. ψ— \ 'ψ1 dμ I dμby (2.8). This implies that

Eχ<ψ>|-S~)= f ψ έ / A * a n d f |̂ 5 ,μ -ψ — f ψ^| rf^ ^O («->«>) .

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. It is enough to show that the conclusions are
valid if the word "exact" in the statmeent (2) is replaced by "weakly mixing"
because of Proposition 3.2. Let G be the set of all eigenvalues of the operator
Uf: L\μ)-*>L\μ). Then from (2.9) and (4) of Lemma 3.2 G is a finite sub-
group of the unit circle S1. Therefore, there is a positive integer N and a
primitive 7V-th root λ of 1 with G={1, λ, •••, λ^"1}. Let ψ be a eigenf unction
of Uf corresponding to λ. From Proposition 3.1, we may assume that

where L,= {ψ=λ'} (μ) i=0, 1, ••-, N—l and fL{=Ll+1 (O^z^ΛΓ- 2), /£,„_,=
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L0. We will prove that (fN, μ0) is ergodic where μQ~N μ \ LQ. If a measurable

set AdLQ satisfies fNA=Λ and μ0(A)>0, then {/'̂ J /Γo1 is a collection of dis-
- t -

joint sets and U fJA is /-invariant. Since (/, μ) is ergodic, we have μ( U f*A)
ί=o . y=o

= 1. Consequently μ(A)=—-. Thus (/^, μ0) is ergodic.

To prove weak mixing property of (fN, μ0), it is enough to show that the
operator Uf&: L\μ^-*Ll(μ^ has a unique eigenvalue 1. If not, since fN also
belongs to 3)ey we can apply the same argument as above to fN and μ0. There-
fore, there is an integer M^2 and a measurable set L0>0 such that {fiML^*f~v

are mutually disjoint and/wL0>0=L0)0. So we see that {/yiro,o)"y2(Γ1 are mutually
jur-ι

disjoint and μ( U f*L0 0)=1 Define a function % by
y=o

%(Λ) = J^ if *6Ξ/'L0,0,

where Λ is a primitive ΛΓAf-th root of 1. Then %eL2(μ) and Z7, X=κX. This

contradicts the fact G={1, λ, •••, λ^"1}.

4. Random iteration and skew product transformation

From now on, we are concerned with the random iteration of transformations.

Our formulation is due to [5]. Let S be a set with Borel structure, {fs}ses be a
family of transformations from the unit interval / into itself. Let X19 X2, ••• be

a sequence of 5- valued random variables defined on a probability space (Ω, £?, P).

DEFINITION 4.1. For each x^I and ω^Ω, set

XQ == X

(4.1) Xn=fxaω(Xn-ι) for w^l .

The sequence {xn= x,(x> ω)}Γ-o is called the random orbit of x determined by
the random iteration fχnfχn.1 "%fχ1 (simply random orbit of x).

We will study the ergodic properties of the random orbit xn under the
following

Assumptions. (1) S is a complete separable metric space with the topol-
ogical Borel field -$(*S) and π is a probability measure on (S,

(2) The sequence of random variables obtained as follows :

Ω = S00, 3 = .S(Ω), P = π00 , and

-X»(ω) = ωn for

where ωn is the n-th coordinate of ω, that is, {Xn} Γ= i is a sequence of independent
and identically π-distrϊbuted rnadom variables.
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(3) The family {/s}ses « included in 3) and the map (s, x)->fs x is <B(SxI) \

In order to investigate the behavior of the random orbit we consider the

following skew product transformation T and deduce our problems to the study

of its ergodic properties.

DEFINITION 4.2. Define a transformation T: Ix Ω->/X Ω by

(4.2) Ί\x, ω) = (/rlW(*), σω) for (#, ω)e/χΩ,

where σ: Ω->Ω is the shift transformation, that is, (σω)n=ωn+1.

Since //s are all wi-nonsingular and P is σ -invariant T becomes (m X P)-

nonsingular. This fact enable us to consider the Perron-Frobenius operator of

T with respect to mxP.

Let -C=-CT>mxP be the Perron-Frobenius operator of Γ, and J2s=J2fstm

for every $e*S.

Lemma 4.1. (1) For φ&L\m), we can choose a ίB(Sn X Immeasurable

function ψ(sl9 s2, •••, sn) which is a version of (~CSι Xs^ ••• J2Sn φ) (x). Moreover, if

can choose ^(s^ sz, •••, sn) so that

(4.3) Vψ(^, % -, fβ) - V J7Sl XS2 - -rSM φ .

(2) // Φ<=L\mxP) has the form

Φ(x, ω) - φ(*) ψ(^(ω), -Y2(ω), •-, ̂ (ω)) ,

where φ^L\m) and i/reL°°(7r*), then for n^k, we have

(4.4) (_Γ Φ) (*, ω) = J ψ(*ι, -, *») (̂  - A Φ) (*) Ar"(*ι. '". *.)

a,e. (mxP), that is, we can regard LnΦ as an element in L\m).

Proof. We only prove (2). For any A^1B(I) and Γ^ΞF, we have

( XnΦ dm dP
JA*Γ

= ( ΦdmdP
Jr-*Uχr)

= J Φ(χ] Ψί-Xiίω), — , Xk(β>) U(Λ.(«) — AjC-)^) lr(σwω) dm dP

= P(Γ) J φ(x) ψ (fl, -, ̂ ) iχ/Sw -/5l Λ) Jm(^) ̂ (̂  -, sn)

(since σ"nΓ is (J5Γn+1(ω), J?n+2(ω), --^-measurable)

- P(Γ)
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=P(Γ) *(*„ •», ,4) ( ^ (_£. - A φ) (*) dm(x)) dπ»(Sl, »., *.

*(*υ -, **) (-£„ - A Ψ) (*)) ̂ "(̂  -> *•) dm dp

This proves (4.4).

5. The main theorem

and

where J/s and βfaιfs2~ jSN are those which were defined in section 2.
We set the following assumptions:

(A.1) a^L\τe) and ( log a dπ<Q .

(A.2) For some N>(— log 2) (I log a dπ)'1 (if I log a dπ = — °o we regard

the right hand side as 0), ̂ fo, s2, •••, sN)GL\πN) and ̂ (
Then we have:

Theorem 5.1. Assume (A.I) <m/ (A.2). TTzew, there exist finitely many
(mχP)-absolutely continuous T-invariant probability measures Qly Q2, •••, Qn with

the following properties :
(i) (1) For each i=l,2, •••,#, the dynamical system (T, Q{) is ergodic.

(2) Any (mxP)-absolutely continuous T-invariant σ-additίve finite set
function can be represented as a linear combination of (2/s.

(3) For each ί=l, 2, •••, n, the support of Qt has the form A XΩ where

(ii) (4) For each i—l,2, ,n, there is an integer N{ and a collection of sets
AitQ, Aii2, •••, A^Nf-^tB^) such that setting Lίj=AiJχΩl we have TLitj=Litj+l'

(5) The dynamical system (TNf, Qitj) is exact, where QiJ=Ni Qi\Li,r

In the following we give the proof of Theorem 5.1. We put

(5.1) Ωn= {α(X1)«(^2)-α(XM)>τM} for τ>0.

Lemma 5.1. Assume (A.I). Then for any τ>exp (I log α dπ), there exists

a positive constant C=O(τ) such that

(5.2)
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Proof. In Ibragimov and Linnik [3, Lemma 12.2.1], it is shown that if
YΊ, Y2, ••• is a sequence of independent and identically distributed random var-

iables with #[Yi]=0, E[Yl]=σ\ then for any 0<γ<— and p(n) which is

strictly increasing and goes to oo with n, there exist constants Cυ C2>0 such that

(n)-1σ}^C1 exp [-C2(n> p(n)-1)*] .

We apply this to (— OVlog a(Xn) — I (—OVlog a dπ> where t is positive and

chosen to satisfy log τ>l (— OVlog a dπ. Then we have

((-OVlog «(*,)- (-
J

— I (— ί)Vlog α dπ)} .

From this we can easily prove the lemma.

By Lemma 4.1, -C\L*(m) is to be an operator from L\m) into L\nί). For
the simplicity we also write it by X.

Lemma 5.2 (basic). If (A.I) and (A.2) are satisfied, then for eachp^N, there
exist two sequences of linear operators {Z7£Λ}Jlι and {S(^}n=ι from L\m) into L\m)

such that
(I) for every

(5.3) -Γ =

(2) there is a positive constant K which is independent of p with

(5.4) limsup VUφφ^K*\\Φ\\ι,m if φ<=BV

(3) ίAβr^ w ^ positive constant C which is independent of p and n with

(5.5) \\Sφ\\ι,m^C VJ e-'P .

Proof. Take N in (A.2) and choose τ>0 satisfying exp [I log a dπ]<τ<

N\/—. Pat Άp= ΠΩJ where Ω,n is defined by (5.1). Then from (5.2) <γp=P
V 2 n>*

~T for some positive constant independent of p. For fixed ̂

define
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and

for φ&L\m).
Then obviously £"φ= U& φ+Sφ φ and

dP

So statement (1) and (3) have been proved.
Then we have to show (2). Without loss of generality we may assume

that Hφllι.^1. We can write p=qN+r (0^r<ΛΓ) and for n^p+l, n=kN+j
Applying the inequality (3.1) again and again we have for each

φ
*-l

V '2-ί '
ί=o

From (A.I) and (A.2), 2'α(ωj) ••• a(ωiN)<(2τN)i if i>q. Consequently we have

(5.6) lim sup V E7?> φ^ β* dπN .

Lemma 5.3. T/" (A.I) Λwrf (A.2) αr^ satisfied, then {-C"φ}n-ι is relatively
compact in Ll(mxP)s for any Φ^L\mxP). In addition if the limit Φ* =

'' Φ exists for some {Λ, }Γ-ιClN with ni<ni+1 in L\mxP) then Φ*(Λ?, ω)=

(Λ)β.Λ (P)for

Proof. First we prove that {.£" φ}Γ-ι is relatively compact in L\m) for φ e
. Let {//,-} Γ-i be a sequence of natural numbers with τz, <wί+l. Because of

(5.4) and the diagonal method we can choose a subsequence {#J}7-i with «J<wy+1

such that {E/i??/ φ}7-ι is convergent sequence in L\m) for fixed )̂. Then we have
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Therefore {-£Λ/Φ}7=ι is a Caυchy sequence in L\m). This proves that the
statement is valid for φ^BV. Thus it is valid for φ^L\m) since JC is con-
tractive. From the. formula (4.4) we can easily see that the statements are still
valid for the function Φ^L\mχP) with the form

φ(x, ω) = φ(x) (̂̂ (ω), -, Xk(ω)) where φ(=L\m) and

Since the linear combinations of such functions are dense in L\m X P), the state-
ments are valid for any

Proposition 5.1. Assume (A.I) and (A.2). Then for each λeC with \\\ =

1 and ΦeL^mxP), the sequence \ — Σ X' JC* φ[ is convergent in L\mχP).
I n »=° J»=ι

And the limit Φ* has the following :

(5.7)

(5.8)

In the case of\=l,πe have

(5.9)

In particular if Φ^O and\ Φ d(mχP)>0, (Φ*m)χP is an (mχP)-absolutely

continuous T-invariant measure.

Proof. From Lemma 5.3, we can apply the Kakutani-Yosida Theorem [6,
Theorem 1] to _£. So we get the above.

REMARK 5.1. If we assume (A.Γ) instead of (A.1)

(A.Γ)

Then Kp in (5.4) can be replaced by a constant which is independent of p. Thus
there is a constant OO with

(5.10) limsup V -C"φ^C \\φ\\lm for all φZΞBV .
» -> <x>

From this one can get the smae results as Lemma 3.1 and Lemma 3.2 when
-Cfitn is replaced by -Γ.

Put

h = lim — Σ ̂  1, fr = hm, 0 = μxP
»->«» w »=o

and
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J3inv = {Γe=.3(/xΩ): T~l Γ = Γ (Q)} .

To prove the ergodic decomposition and weakly mixing one, we need the
following:

Lemma 5.4 (basic). (1) If Γe.SinvJ> there is a measurable set A c
ί/iα* Γ=^4 X Ω(m X P).
(2) IfAxΩ,^^θinv, then for almost all s (π). /71

(3) // Ψ &L\Q) and UTΨ=\Ψ, then for almost all s (π),Ψ°fs=\Ψ (/*).
(4) Put E= {s: fs<=3)e}, Then τe(E)>0.
(5) IfAxΩ,^Binv, then A contains at least one ergodic component of fs for

almost all s^E. Hence J3inv is a finite set.

Proof. (1) From the formula (2.5), if Γe^inv we have

X(\τh) = X(\τ*Th) = \^Ch = lrh .

So lτh is independent of ω.
(2) It is easy to see T~\A X Ω) ~DA X Ω(m X P). Thus

0 = Q(T-\Axa))-Q(Axa)

So/71 ^4=^4 (μ) for almost all f (π). Hence /71 A^A(m) for almost all s (π).
(3) If UTΨ= \Ψ, then ^(ΨA)-:λΨA from (2.9). Thus Ψh is inde-

pendent of ω, so we have (3).

(4) Since J log a dπ<0y π(E)>0.

(5) Let SQ be the measurable set such that π(S^=l and s&S0 implies that
/71 A^A(m) for Ad {h>0} with ^[χΩe^inv. If seEΓ]SQj fs has the ergodic
components L(ιs), L(

2

s), •• >L^s) from Theorem 3.1. From (5) in Theorem 3.1

iif^nl^X) for some y= 1,2, —,Λ. fT1 A^)A(m) implies /71 (4 ΠZ^JZ)
AΓ\Lt/\μj). Thus ^X^ί niy^l from the ergodicity of/,. Hence ̂ l^L^m).

Proof of Theorem 5.1. We first prove the assertions (1) and (3) of (i). By
Lemma 5.4, we may asssume

-Sinv=σ ( W ί X Λ : /=!, 2, —, w», where U A~{h>0}(m) and m(^,.n^t )
=0 if

iΦ/. Set hi=μ(Atγ
l hlAi, fa=%i m and Qί=jKf.χP. Then it is clear that .£%,•

=A, and (71, ̂ , ) is ergodic.
The property (2) of (i) is proved as follows. Let Q be any (wχP)-ab-

solutely continuous Γ-invariant <r-additive set function. Then it is easy to
check that Q is ^-absolutely continuous and Q\At*Q is also Γ-invariant for every
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1=1, 2, •••, n. Since (T, £?,•)'$ are ergodic, we have
?, i=l, 2, •••, n. Hence

Now we prove the statement (ii). For the sake of simplicity we assume that
(J1, Q) is ergodic. By (3) in Lemma 5.4, there is an s such that any eigenvalue of
Uτ is that of Ufs. Thus Uτ has only a finite number of eigenvalues and so the
totality of all eigenvalues is {1, λ, •••, λ^"1}, where λ is a primitive N-th root of
1. Let Ψ be an eigenfunction of Uτ on L\Q) belonging to λ. From Proposi-

jr-i
tion 3.1, we can write Ψ=Σ λ* 1L., where L, ={Ψ=λ'}. So we can see that

ί = 0 ^

TLi=Li+lί O^i CΛΓ—1, TLN^I=LQ and for each ί, (TN, £),•) is weakly mixing in
the same manner as in the proof of Theorem 3.2. From Proposition 3.2, (TN, Q{)
is exact.

6. Auxiliary results

In this section we always assume (A.I) and (A.2) and use the same nota-
tions as before.

Analogously to Theorem 3.1, (5) we have

Proposition 6.1. Let L= {A>0} andD=Iχ Ω\L. Then T~l D^D(m x P)
and (inxP) (T-*D)-+Q (n->oo).

Proof. It is obvious that Γ'ΌcZ). And we have

lim —Σί

— Σ ( 1D°T* d(mxP)
/2 ί=o JD

-Cl\Dd(mxP)

^lim —Σ( J:ild(mxP)
Λ->°» 72 »=o JD

= ί hd(mxP)
JD

= 0

From the above Proposition one can see that IχΩ=^L\jD is the Hopf
decomposition for the Markov operator Uτ (see [2]). So from the Chacon-
Ornstein Theorem, we have

1 «-ι
Corollary. For each Φ^L\mxP), — Σ -C* Φ converges almost everywhere

n »'=°
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(jfixP).

The operator Jβ has the following spectral decomposition.

Proposition 6.2. Let Λ be the set of all eigenvalues of -C on L\mxP) with
modulus 1. Let E(\) be the eigenspace belonging to λ. Then:

(1) leΛ.
(2) #Λ<oo.

(3) Put Λ= {l=λ!, \2, — , λ/} . Then £(λ, ) dL\m) and dim £(λ, )< oo for
everp ι=l, 2, •••,/.

(4) For every «eN, we have

(6.1) -Γ = Σλ?

Pi is projection onto the eigenspace, namely, ίPf 3>j=3>j 3?i=O (&Φ/), 3*i ίP,
=5>

ί αwJ ̂  37=32^=0.
(5) For ^β^A i=l, 2, ••-, /, λ, ώ a root of 1.
(6) For each Φ<=L\m X P).

(6.2) II^ΓΦIUx^O (n-*oo).

Proof. (1), (2), and (4) are easy consequences of the Kakutani-Yosida
Theorem and Proposition 5.1. For (3) we have only to show that dim E(\i)<
oo. But if we consider TNf instead of T where λf«'=l, we can deduce the
problem to the case X,-=l. It remains to prove (6.2). Without loss of gener-
ality, we may assume that (T, Q) is ergodic. Let Z/0, L19 •••, LN^ be the exact
components of TN and let L and D be the sets stated in Proposition 6.1. For
Φ e L\m X P) we have

The first term tends to 0 by Proposition 6.1. Next using (2.5) and (2.6) we have

Σ A y (^(ΦAj1)- J^ Φhf dQj)+ g A

where hj=Nh\L. and Qj=NQ\Lj. The last term corresponds to the projec-
tions. From Proposition 3.2,

1)-- ΦΛj1 έ/0y)-*0 in L\mxP) as w

This completes the proof.
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7. Bernoulliness

Assume that the S is a finite set and assumption (A.I) is satisfied. We have
proved the existence of (m X P)-absolutely continuous Γ-invariant probability
measures. Let Q be one of such measures. Here we have:

Theorem 7.1. // the dynamical system (T,Q) is weakly maixing, then it is
weakly Bernoulli.

To prove the above we need some lemmas.

Lemma 7.1. Let φ be a nonnegative function of bounded variation. If
(A.I) and (A.2) are satisfied, any limit point φ* of the sequence {£" φ}£=ι has the
following .

For any r with 0<τ<l, there are positive cosntants K& Klt K2 and p with
0</o<l such that

for every Be£l(I) with m(B)<τ".

Proof. Let φ* be a limit point of {-Γ'φJ Γ-i From Lemma 5.2, we have

φ* = φf+φf for each peN,

where φj1 and φf2 are functions with

for some K and

Moreover, we may assume that

llφflk^C" K* for some constant C" .

Indeed, let ψp be a version of φf1 with

= Vφf .

We may assume that ψp converges to φ* almost everywhere as p goes to <χ>. So
there is an # e/ such that {^(tf)}£=i is a bounded sequence. Therefore

Hence we have

For a given T with 0<τ<l choose a natural number L such that τL<K~1
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and put p=τlr\/χr. Then we have

\ φ*dm=\ φf^dm
JB JB

whenever m(B)<τn.

From now on, put

S ={1,2,...,?}

' l / ί l
and

ps = π({s})>Q for each

Let {/,-}/. i be the partition of / into intervals which is determined by

Put ξ= {/,X|>]: l^i^r, l^s^

and

v
i = 0

If B is an atom in ξv, then we can write B=A X Γ, where A has the form

A-, n/7,1/!, n - n/jo1/!,1 -fTΪ-J*
and Γ is a cylinder set having the form

Γ= [/Ό '̂i, -Jur]

Hence we have the following:

Lemma 7.2. £ is a generator for (T,Q).

The next lemma can be proved in the same way as Lemma 1 in [1].

Lemma 7.3. Let A X Γ be an atom in ξo+1. If A f t W/^sii ί-ι = φ, then

Lemma 7.4. Let h^L\m) be the density function of Q. Given £>0
there exists g^BV with
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and

\ (h—gl) dm<e.

Proof. We may assume that h=lim JC? 1. Taking φ=l in (5.3) and
(5.4) we have

JC 1 = UP 1+S<» 1

and

limsup V Uφi^K*.
*

By Helley's theorem we may assume that lim U^ l—gp exists. Then we see

and

\\h~gp\\\,m^C \/~ρ ^^ by (5.5).

Lemma 7.5 and Lemma 7.6 correspond to Lemma 3.2 and Lemma 3.3 in

[11] respectively,

Lemma 7.5. Given £>0, there is an integer NQ=NQ(S) and a positive
constant H0 satisfying :

If N^NQ then there exist collections of atoms aN<^ξ^ and aίfdξQ such that

and

Q(\J(XN)>l—HQ——,
N2

where Q( U a) denotes the total Q-measure of all atoms contained in the collection a.
(2) A X T^aN U <XN implies ΓcΩ#, where ΩN is the set defined by (5.1) for

some fixed Y—>τ>exρ (\ log a dπ).

2
^—— for every x,y^Ay whenever AxT^aN and

2
^- for every x,y^A, whenever AxΓ^a'N and

(3)

where gz is the function which appeared in Lemma 7.4.

Proof. Write g for £ε. Let 0<δ<l. For a cylinder Γ=[/0, i^ —, iN

consider the following exhaustive list of possibility for an atom A X Γe?^.
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<>
(i) g(x) ;> — for all x^A and g(y)>e*g(z) for some y, z&A.

δ 3
(ii) g(x)< — and g(y)^ — δ for some x,y&A.

2 4

(iii) g(χ)<-*~S for all x^A.
4
£

(iv) g(x) ̂  — for all x^A and g(y) ̂  e*g(z) for all y, z e A .

δ2

The variation of g over an A X Γ satisfying (i) and (ii) is at least — . The
4 ^

total number of such atoms A X Γ is at most — y g. Thus the total ^-measure

of all atoms satisfying (i) and (ii) is at most

Σ P(Γ) Σ ( h dmg± VgH, e-^^Γ
IcΩjγ A JA O

for some constants Hl and H2 by Lemma 7.1.
3

The total Q-measure of all atoms satisfying (iii) is at most — δ+£. Therefore

the total ^-measure of all atoms A X Γ with ΓcΩ^ satisfying (i), (ii) or (iii) is at
most

O T

Next put C,= \ | / ί | dμ, where μ=hm. For each s and Γsc[ί]ΠΩ^ con-

sider the following exhaustive list again:
g

(i)7 φ9(x)^- for all x&A and φs(.y)>βδφs(^) for some y,

(iiγ φs(x) <— and φ,(y) ^— δ for some #,
Zι T*

(iii)' ΦS(Λ;)<— δ for all #<Ξ ̂ 4.

(iv)7 φs(x)^— for all Λ:e^[ and φs(y)^e*φs(z) for ally,
δ2

The variation of φs over an A X Γs satisfying (i)' and (ii)7 is at least — . The
4total number of such atoms A X Γs is at most — Vφ s. Thus the total (J-measure

of all atoms satisfying (i)7 and (ii)7 is at most

±

3
The total ^-measure of all atoms satisfying (iii)7 is at most — δ Cs ps. Therefore
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the total ^-measure of all atoms A X Γ with Γ C [s] Π ΩN and satisfying (i)', (ii)' or
(iii)' for some s is at most

I- fli VW e~s^r . Σ V φ. p.+lδ Σ C, A .

Put

1δ =
N2

alf={Axr<Eξ%:Γc.ΩNaιιd (iv) holds} and

α'N = {AxΓ<=ξ$: ΓcΩN and (iv)' holds for all

If N is large enough

for some H0 and (3) holds.

Given £>0 put Qe=ge mxP we have:

Lemma 7.6 (basic). Given η>0 there exists an integer M=M(η)—M(8, η)
such that for each m^Q, one can find a collection

(1) Tm(AXΓ)<Ξξy for any AxΓ<= βM+m.

(2)

(3)

for any measurable DaAxΓ<=βM+m whenever Q,(AxΓ)>0 and Qe(Tm(AxΓ))

Proof. By Lemma 7.3 one can see that (1) will hold for A X Γ unless at least

one of the sets A,fiQA, —,/*„,_ x —fiQA intersects {cff^} ί*.0 ί-i if Γc[/0, ily

For Q<^k^m, the total -measure of all atoms AxΓ^ξ™+m~k satisfying
ίlo. ί-ι=f=φ and ΓcΩM+w_* is at most 2^+1)̂  ^-2^^+^=* since m(^4)^

τw+«-*β The total g-measure of all atoms A X Ω,^ξ^+m'k with Γφ ΩM+m-k is at
most Ce~^M+m-k. Since /l J f e _ l •• fioAXσkΓ is a subset of some atom in ξ^+m~k if

1"1" and since Q is Γ-invariant, the total g-measure of all atoms AxT

f+w with T\AxT)ζ=Ξξ%+m-k for all O^k^m is at least

n^K

Put
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air = {AxΓ(=ξ$: AxΓ<£a'N} ,

and put

= {B: B = T~m C with

= T—+*

or

: B<£β'k for all O^k^m and

Then we have

-2S-H0±-H0-^-y

Now we have only to show (3). Assume that AxT^βM+m, T=[iQ, ily •••,
iM+m], Q,,(A X Γ)>0 and Qe(Tm(A X Γ))>0. In the first place, consider the case
D=Axΐ* where Ad A and ΓcΓ is a cylinder set.

Writing £ for£8 and set v=gm> we have

where ρ(x) = -^

So
«(*)

/I,-/!.*)

Since βM+m C «M+m Π T~maM Π T~ka'M+m we have

».-,-/*o«)_1
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-1

00 / 2 \
Because lim Π I 1±—) _ i

ΛΓ->~ jf \ n

2/ '

L-l <?70 if M is sufficiently large.

Thus we have

( p ( X ) g ( X ) d m P ( T )
J A

P(y) (̂* 'p(y)\~s(χ)

P(y)\ g(*) *a-
»/ A J A

y(^) P(Γ)

P(Γ)

- 8

Next if D= LJ^Ϊ. xΓ. is a finite disjoint union of Jί. xΓ. with A{C.A and a

cylinder Γ. CΓ, then we have

(7.1) Q,(TmD)

and

<«w t \ \ / / i u /ί^, c \

To prove this it suffices to show the following:

If Dl dA X Γ, A d-4 X Γ and Dl Π A=Φ, then Γ^A Π TmD2=φ.
If (#, ω^^Γ^AΠ ywA> then there is a unique 2^A with /l ••• Λ z=\ ' / 1 I I ^7 T. Jtm-ι J tQ

nd a unique ω'^ΓΓlcr~"Λlω with σ"ω'=ω9 that is, ω'^DΌ, ̂  •••, ί»-ι] Henc

?, ωO^AnA
Put <f? - {DtΞ$(A x Γ): (7:1) holds} .
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It is easy to see that S is a monotone class. Hence we have now proved that
(7.1) holds for every measurable DdAxT.

We can show that

1-qo Q,(D)
Qs(AxΓ)

for every measurable DdA X Γ in the same manner. This implies (3).

Proof of Theorem 7.1. Given £>0 choose gζ as Lemma 7.4 and M= M(β)
as Lemma 7.6.
Put

Q(B) and

Q(TmB)}

Then we have £(U &,+„)> l-5£-2\/£~ .

In fact, Q( U B)<Q(Ix Ω)—Qζ(Iχ Ω)<£ and the total g-measure of all atoms
$gCB)=0

A&ξ™ with Qs(A)=ΰ is at most 6. Since Q is Γ-invariant and TmB is contained
in some atom A^ξtf if B^ξ%+m, the total ^-measure of all atoms B&ξtf+m with
Qt(TmB)=0 is also at most S. Next the total ^-measure of all atoms B^+m

vfithQ(B)-Qs(B)^VWQ(B)is at most Vε~ since €>Q(VB)-Qs((JB)^V^
Q(DB), where \JB means the union of all atoms B^ξ^+m with Q(B)~Q,(B)^
\/ξ~Q(B). And the total Q-measure of all atoms A^ξtf with Q(A)—Qe(A)^
\/~sQ(A) is at most \/^. Since Q is T-invariant the total ^-measure of all atoms

tf with Q(TmB)-Q9(TmB)^Vs'Q(TmB) is at most Vε~
For families of finitely many disjoint measurable sets ξ1 and ξ2, put

Notice that f, cf, ί=l, 2. then

t, Q^2(2-ρ( U f ,)-

In oder to prove that ? is a weak Bernoulli generator for T, we have to esti-
mate D(ξ^m, ξ2

M

MSm

2?άN). From the above

+D(/3M+M, £jft.W) .

= Σ .Σ \Q(BnC)-Q(B)Q(C)\

Q(B) Q(T»B)
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Clearly

Σ Q(B)-^ ) Q(B) Q(B)

Qt(T"B)

Q(T"B) J

)lJ

A 2^ Σ Q(B) Q,(E)1,2 - j VΛ )V* J Q(E)Qt(E)

= Σ (Q(B)-Q,(B))

By Lemma 7.6,

A.3 ̂
_ v- Σ

< Σ Q(B)

— ̂ g( TmE)

A,5 < \/F in the same way as Dlf .

Thus A(A0^
Now we prove that A(^0~*0 (JV-*<=o).

- s
V~l f\f ϊ?\ ^"^

^ ' !C\Γ^) ' '
Λ σ

^ ;
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^ Σ Σ |Q(βnc)-ρcB)ρ(C)|
"-τ-*dίίϊ?

(!B-Q(B))dQ\

The last term goes to 0 as ΛΓ-»°o from Proposition 3.2.

8. Examples and remarks

EXAMPLE 8.1 (Ito and Tanaka [4]). Consider the case S= {1, 2, •••, /}, π{i}
I

=/),.>0, Σ/>, =1 and/, is given by

where 0<a{<2 i=l, 2, •••,/.
(1) Γ has an (wxP)-absolutely continuous invariant probability measure if

and only if

(8.1) Π α, *'>!

(2) Assume (8.1). Then the (m X P)-absolutely continuous Γ-invariant
probability measure is ergodic.

(3) Assume (8.1) and let Q be the above. If T satisfies that Q(T"(A X Ω))
->1 for any A&Ά(I) with ρ(^4χΩ)>0, then (Γ, Q) is weakly Bernoulli.

Proof of (1). In this case a(s)=ajl

y so (A.I) is equivalent to (8.1). Only
if part can be proved in the same way as Proposition 1.3 and Proposition 1.4 in

[4]
Proof of (2). From Lemma 5.4 the number of (m X P)-absolutely con-

tinuous ergodic probability measures is less than the number of the m-absolutely
continuous ergodic invariant probability measures for /,- with dfi>\. And each
f i has at most one m-absolutely continuous invariant probability measure since
//s are unimodal.

Proof of (3). Let Ψ be an eigenfunction of Uτ with UTΨ=\Ψ. From
Lemma 5.4, we can find A&l£(I) such that Ψ takes constant value on AxΩ.
We may assume that Ψ=l on AxΩ Then Q(T"(AxΩ.))-*l implies Ψ=l a.s.
(Q) and λ=l. Therefore (T, Q) is weakly Bernoulli by Theorem 7.1.

EXAMPLE 8.2. Let/0 be the identity function on /. Consider the case S=
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{0,1, •••,?}, τr{/}>0for all /e*S. If (A.I) is satisfied, then caeh ergodic com-
ponent of T is weakly Bernoulli one. In fact, if UτΨ=\Ψy then [7/0Ψ=λΨ by
Lemma 5.4. Thusλ=l.

REMARK 8.1. In general, we can say that we can expect nice ergodic pro-
perties of T if the family {/s}ses consists of transformations having distinct spectral
types one another.

EXAMPLE 8.3. Consider the case: S=R, π=N(a, 1) and

I
ex

(**+δ) x (log n^ί^log (n+l—S) mod 1

(n+1) x (log (*+l-δ)£f <log (Λ+l)

for weN, where δ is a positive constant with 0<δ<l. Then T has a unique
(m X P)-absolutely continuous invariant probability measure Q and the dynamical
system (T, Q) is exact if α>log 2. In fact, a(s)^e~s and

2>s

2
es+8-n

2 (log («+l-δ)^ί<lqg (n+1)

So a&Lπ and

\ log a dπ < — I s dπ

<-log2

oo Λlθg(»

+2ΣI
«=ιJ logn

oβ f l

+2 Σ ί
»=ι Jiog(»+ι-δ)

<00

Thus assumption (A.I) and (A.2) are valid with N= 1.

REMARK 8.2. One can easily see that our results are based on the inequality
(3.1). So if the family {/S}se5 satisfies the smae type inequality as (3.1), we can
get the same results as above. For example, if there is a constant k^ί and
there are measurable functions βn(sly •••, sn) with
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(8.2) V-£. - -£, φ^*α(Ί) "••«(*.) V

for φξ=BV and for w=l, 2, •••, then under the assumption (A.I) and the follow-
ing new assumption (A.2'), our arguments still works.

(A.20 For some JV>(-log k) (ί log a dπ}~\ PN(sl9 •••, sN)&Ll(πN) and &(*)e

LΌr).

EXAMPLE 8.4. Consider the case: *S=R, π=N(a, 1), and

/,(#) = β*# mod 1 .

Then Γhas a unique (mxP)-absolutely continuous invariant proabbility measure
Q and the dynamical system (Γ, g) is exact whenever a>0.

Proof. Put f(x)=cx mod 1 with c>0, and φ^BV. If c^l, we have
l \\φ\\1>m by (3.1).

* = 1

l[o,c-»] Φ°/!Γ+ι> where/^/lάf-i^-i.ίe-i) for i=l, 2, —-, w and/„+!=/|5i-ιti).
Therefore

n ic~l

1

ιιc-3

^c-1 V φ+c-1 V φ+c-1 ||φ||1>

= 2C-1 V

Consequently

(8.3) V Xf φ^2c~l V φ+2^-1 \\φ\\ltm .

-| '>l Λ? mod 1. Put β.fa, s2) •-•, sn)=2 e-(si+s2+'"+s»\
From (8.3), (8.2) is valid with βn(sι, s2i~-, sn) and

(8.4) j A(fl, % -, O jr"^ *,-&,)< oo .

We have

I log a(s) π(ds) =\s π(ds) = — α<0 .

Thus (A.1) is satisfied. From (8.4), (A.2') is valid.
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