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1. Introduction

Let O=0(+, °) be a right quasifield which satisfies the following condi-
tions:

(1.1) Q is a two dimensional left vector space over its kernel K with a
basis {1, A}.

(1.2) There exist two mappings 7 and s from K*=K— {0} into K such
that every element £=a+b)\ of Q not in K satisfies the equation &—r(b)E—
s(6)=0.

(1.3) Each element of K commutes with all the elements of Q.

Several examples of such Q are known. For example, the Hall quasi-
fields satisfy the conditions above, where r and s are constant functions and
the quadratic polynomial x*—rx—s is irreducible over K. Moreover, the
quasifields which correspond to the spread sets constructed by Narayana Rao
and Satyanarayana [3] also satisfy the conditions above, where r(x)=3x7", s(x)=
2x~% and K=GF (5**7").

The purpose of this paper is to study the quasifields satisfying the condi-
tions (1.1)-(1.3). In §2 we prove the following theorem which gives a con-
dition for Q(+, °) to be a quasifield.

Theorem 1. Let K be a field and let r and s be mappings from K* into
K such that (i) x*—r(u)x—s(u) is irreducible over K for each ucK?* and (ii) ¢*
—r(x)v—s(x)=wx has a unique solution in K*¥ for each vEK, weK*. Let
O={x+yr|x, yEK} be a left vector space over K. If a multiplication o on Q

is defined by

2x—ty ' F(x, y)+(zy—tx+t r(y))N if y=0,

(24tn)o(x+yN) = {zx—|—tx7\. if y=0,

where F(x, y)=x*—1r(y)x—s(y), then Q(+, °) is a quasifield which satisfies (1.1)-
(1.3).

Let K=GF(q) and let ®; be the set of the ordered pairs (7, s) such that
r and s satisfy (i) and (ii) of Theorem 1. The spread set X, , which corre-
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sponds to (r, s)E®Py is defined as follows: =, .={M(x, y)|x, yEK}, where
M(x, 0)=(g 2) for x€K and M(x, y)=<’fc(x, ) g(x, y)) for x€K and yeK*.

Here f(x, y)=—y7'(&"—r(y)x—s(y)) and g(x, y)=—=x+7(y).

Let z, , be the translation plane constructed by =, and set L(x, y)={(v,
oM(x, y))|veK XK} for x, yeK, L(0)={(0, 0, v)|]veKxK}. Let G be
the linear translation complement of 7, , and set A={L(x, 0)|x€K} U {L(o=)}
and Q={L(x, y)|x=K, y=K*¥. In §3 we prove the following theorem.

Theorem 2. If Gy 100 5 transitive on Q, then r(x)=ax" and s(x)=
bx*" for some a, bEK and n with 0<n<q—2.

The Hall planes and the planes of Narayana Rao and Satyanarayana satisfy
the condition of this theorem. But an element of ® is not always represented
in this form (Remark 3.6.).

Throughout the paper notations are standard and taken from [1] and [2].
All sets and groups are finite except in §2.

2. Proof of Theorem 1

Let O be a set with two binary operations -+, o satisfying the assumption
of Theorem 1. Since Q is a left vector space, the following holds.

Lemma 2.1. (Q, +) is an abelian group.

Lemma 2.2. Leta,b,c,d=K and assume a+-b =0 and c-+dnN=0. Then
the equation (a—+b\) (x+yN)=c+dr (2.1)
has a unique solution for x-+yx in Q*=Q—{0}.

Proof. (2.1) is equivalent to

ax—by (@ —r(y)r—s(y)) = c, (22)
br(y)tay—bx =dif y+0
or ax=c,bx=d ify=0. (2.3)

By the second equation of (2.2),

br(y) = bx—ay+d (2.4)
Substituting this into the first equation of (2.2), we have
Yy Y dx+bs(y)=c. (2.5)

Hence b s(y)+dx=cy. By this and the second equation of (2.2),
d*—bd r(y)—b s(y) = (ad—bc) y . (2.6)
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Therefore (2.2) is equivalent to (2.4) and (2.6) when 5=0.

Assume =0 and d=0. Then a=#0 and ¢#0. Hence (2.1) has no solu-
tion in Q—K and has a unique solution a~'¢+0x in K*

Assume b=0 and d=0. Then a=0. By (2.3), (2.1) has no solution in
K and by (2.2) it has a unique solution a”'¢c+a~'d\ in Q—K.

Assume b0 and ad—bc=0. Then (2.6) is equivalent to (b7'd)’—r(y)
(b7'd)—s(y)=0. By the assumption (i) of Theorem 1, (2.1) has no solution in
O—K. Therefore it has a unique solution 'd+0 in K*.

Assume b0 and ad—bc=+0. Then (2.1) has no solution in K by (2.3).
Since 50, (2.6) is equivalent to (b7'd)*—r(y) (b7'd)—s(y)=b"*(ad—bc)y and
hence (2.6) has a unique solution y’ in K* by the assumption (ii) of Theorem 1.
Let x’ be the unique solution of b 7(y")=bx—ay’+d. Thenx'+y’ A is a unique
solution of (2.1).

Lemma 2.3. Let a, b, c, deK and assume a-+-b\=+0, c+dN=+0. Then
the equation

(x4+yn) (@+bN) = c+dr (2.7)
has a unique solution for x+yn in QF.

Proof. If =0, (2.7) has a unique solution a~'¢+a 'dx. Assume b=0.
Then (2.7) is equivalent to linear equations

xa—yb Y (&—r(b)a—s(b)) = ¢,
xb+y(r(b)—a) =d. (2.8)
Since a(r(b)—a)—b(—b" (a*—r(b)a—s(b)))=—s(b)=+=0 by the assumption (i)

of Theorem 1, (2.8) has a unique solution (x, y)==(0, 0). Thus (2.7) has a
unique solution in Q*.

Proof of Theorem 1.
It follows immediately from the definition that Q(+, o) satisfies the fol-
lowing.

£l = 1F = £ for all E€Q. (2.9)
(E+mp =Eptyp forall, o pe0. (2.10)
£0=0 forall 2€Q. @.11)

By Lemmas 2.1-2.3 and (2.9)-(2.11), Q is a weak quasifield. Since Q is a
finite dimensional vector space over K, it is a quasifield by Theorem 7.3 of
[1]. Thus we have the theorem.

Suppose |K|<oo. The spread set =, . ={M(x, y)|x, yK} which
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corresponds to the above quasifield is defined as follows: Let K=GF(q) and
—(* y i

%et M(x, y)—‘(f(x, ) 2, y)) be a 2X2 matrix over K. Define M(x, y) ExEé,s

if and only if No(x+y\)=f(x, ¥)+g(x, y)A. Then we have M(x, 0)=(0 x>

for x€K and M(x, y):(;(x’ ) g (%, y)>, where f(x, y)=—y {(F—r(y)x—s(3))
and g(», y)=—x+r(y) for x€K and yeK?*.

3. The proof of Theorem 2
Throughout this section let p be a prime and K=GF(g), g=p™. We use
the following notations.

K?= {k*|keK}

®y the set of ordered pairs (7, s) of » and s which satisfy the condi-
tions (i) and (ii) of Theorem 1

My(K) the set of 2 X2 matrices over K

tr(M) the trace of a matrix M of M,(K)

det(M) the determinant of a matrix M of M,(K)

Let (r, s)E®x and =, the corresponding spread set defined in the last
paragraph of §2. Let =, , be the translation plane of order ¢ constructed from
P

Lemma 3.1. (i) Let M(x, y)E3,,. If y=0, then r(y)=tr(M(x, y)) and
s(y)=—det(M(x, y))-

(it) Let P, Me My(K) with det(P)==0 and set P"MP=<: J*’> Assume y =
0. Then P"*MPEZS, , if and only if r(y)=tr(P'MP) and s(y)=—det(P'MP).

Proof. By an easy computation we have (i).
The ‘“‘only if” part of (ii) is an immediate consequence of (i). Assume

#(y)=tr(P~*MP) and s(y)=—det(P*MP) and set P“MP=(§ z) Since tr
(P*MP)=tr(M) and det(P~'MP)=det(M), we have

r(y) = tr(M) = x+u (3.1)
and () = —det(M)=—axu-+yz. (3.2)
By (3.1), u=—=x-r(y). Substituting this into (3.2) gives s(y)=a"—r(y)x-+y=z.

As y=%0, 2=—y Y (x*—r(y)x—s (y)). Hence (;C z)=<}c(x’ ) g(x, y)>€2,,s by
what we have mentioned in the last paragraph of §2.

Lemma 3.2. (i) The equation v*—r(x)v—s(x)=wx has a unique solution
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in K* for any vEK, wek?* if and only if (x—y)vi—(ar(y)—yr(x))o—(xs(y)—
y5(x)) %0 for any veK and x, yeK?, x£y.

(it) Assume p>2. Then (r, s)\&Dy if and only if the following two condi-
tions are satisfied.

@) (r(9))+4s(y)€&E K" for any yEK*.

(b) (r(3)—yr ()P -+4(x—) (5(9)—ys(&) &K for any x, y=K?, x%y.

Proof. Assume (x—y)v*—(xr(y)—yr(x))v—(xs(y)—ys(x))=0 for some V&
K and x, yeK* x+y. Thdn x(v*—r(y)v—s(y))=y(v*—r(x)v—s(x)). Hence
(P—r(y)o—s(y)))y=(P—r(x)n—s(x))[x. Put w=(v*—r(x)v—s(x))/x. Then w
#+0 as v*—r(x)v—s(x) =0 by the assumption (i) of Theorem 1 and the equation
P —r(E)v—s(E)=wkE has at least two solutions for &.

Conversely, assume o2 —7(x)v—s(x)=wx and v*—r(y)v—s(y)=wy for some
x, yeK «x+y. Then wxy=y(v"—r(x)v—s(x))=x(v*—r(y)v—s(y)). This
gives (x—y)v*—(xr(y)—yr(x))v—(ws(y)—ys(x))=0. Therefore (i) holds.

Assume p>2. Then it is well known that a quadratic equation ax*+bx+
¢=0 over K has no solution in K if and only if 4*—4ace£ K2 Hence (ii)
follows immediately from (i).

Lemma 3.3. Assume |K |>3 and let P, Qe MyK). If P+xQ€&3, , for
any xEK, then either (i) Q:(g 8> and PE3, , or (ii) P and Q are scalar matrices.

ab

Proof. Set =3, P=<;;]l.), 1, j, k, lI€K and QZ(C d

_ [(it+ax j+bx
Then P+xQ“<k+cx l—]—dx)'

Assume j=b=0. Then P+xQ&?%, if and only if P+xQ is a scalar matrix.
Hence i+ax=I4dx and k+cx=0. Since x is arbitrary, it follows that i=],
a=d and k=c=0. Thus (ii) holds when j=54=0.

Assume j=#0 and 4=0. By Lemma 3.1, P4+xQ<?%, if and only if 7(j)=
tr(P+x0Q) and s(j)=—det(P+x0Q). Hence

), a, b, ¢, deK.

r(j) = i-+1+(a-+dye (3.3)

and s(j)=—adx*+(je—al—id)x+jk—il . (3.4)
Since (3.3) and (3.4) hold for all x K, we have

r(j)=i+l, a+d=0 (3.5)

and s(j) =jk—il, jc—al—id=0, ad=0 (3.6)

Hence a=d=0 so je=0. As j=+0, ¢=0. Therefore (a b>=<0 0). Thus (i)

cd 00
holds when j==0 and 4=0.
Assume b=0. Set x=—b""j. Then j+bx=0 and so P4xQ is a scalar
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matrix. Hence k—cb™' j=0 and i—ab™' j=I—db™'j. Setting w=—>b""j, we
have j=—bw, k=—cw and |=i+aw—dw. Putting y=j+bx gives P+xQ=

b1 ) -
(ab‘lf;—aw-'_zb‘ld;—l—aw—ki)' By Lemma 3.1, we have r(y)=>b""(a+d)y+2

(aw+7) and s(y)=—b"*(ad—bc)y’—b " (a-+d) (aw+i)y—(aw-+7)®. In particular

xr(y)—yr(x) = 2(i-+aw) (x—y)
and xs(y)—ys(x)=(x—y) (b~*(ad—bc)xy—(aw-+1i)?) . 3.7)

If p=2, then xr(y)—yr(x)=0 by (3.7). Hence we have a contradiction by
Lemma 3.2 (1).

Tf p>2, then (wr(y)—yr(x)/-+-4(x—y) (s5(3)—ys(®)=Hx—y)b~* (ad—bo)
xyeEK? by Lemma 3.2 (ii). Let x be any element of K*— {0} and let y be
any element of K—K? Then clearly 4(x—y)’%6 *xyee K*>. Hence ad—bc must
be an element of K? From this x'y’'é¢eK? for any x', y'€K?¥ x'#y’. In
particular K?= {0, 1}, which implies K=GF(3). This contradicts the assump-
tion.

Set L(x, y)={(v, vM(x, y))|vEK XK} for x, yekK, L(c0)={(0, 0, v)|
vEK XK} and A={L(x, 0)|xK} U {L(c0)}, Q={L(x, y)|x€K, yeK*f.
Then AUQ is the set of lines of 7, , through (0, 0, 0, 0). Let G be the linear
translation complement of 7, , and set H=G(.) 1,0, the stabilizer of the lines

L(c0) and L(0, 0) in G. Let a'=<él. g) be a nonsingular 4 X 4 matrix, where

A, B, C, DeMyK). Then the following criterion is well known: o is an
element of G if and only if the following conditions are satisfied.

(1) If C is nonsingular, then C'D&=, . (In this case L(o)o=L(u, v),
where C'D=M(u, v)EZ, ;.)

(2) If C is singular, then C’=(8 8> and D is nonsingular. (In this case
L(e0)o=L(>).)

(3) If A+M(x, y)C is nonsingular, then (4+M(x, y)C)™* (B+M(x, y)D)
€%,, (In this case L(x, y)o=L(u, v), where (A+M(x, y)C)™ (B+M(x, y)
D)=M(u, v)EZ, ;.)

4) If A+M(, y)C is singular, then A-M(x, y)0=(8 8). (In this
case L(x, y)o=L(0).)

Lemma 3.4. Assume either r or s is noi a constant function. Let A, B, C

and D be clements of My(K) and set o—( g). If o€ H, then the following hold.

Q) B:C:(g 8) and A=(“ 2), D—FkA for some a, d, keK* and ceK.

(i) r(a"'dky)=Fkr(y), s(a”'dky)=Fk*s(y). Moreover L(x, y)=L(k(x-+a 'cy),
ka~'dy) for all x, ye K, y=0.
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Proof. Since o fixes L(o) and L(0, 0), B=D=(8 8) Hence o’=(é g

and A7'MDES, for any MeX. In particular 4A7'M(x, 0)D=xA"'DEZ for
each x€K. If K=GF(3),s(1)=s(—1)=0and (r(1)+r(—1))’=(r(1))=(r(—1))
=—(s(41))—1 by Lemma 3.2 (ii). Hence r and s are constant functions.
Applying Lemma 3.3 we have A'D=Fk for some k=K*! Hence A'MD=

kAT'MAES for any Me3. Put Az(g 2) and let x€K, yeK* Then

kA 'M(x, y)A=M(u, v) for some uK and veK* Set M(x, y)=(§§ ) and
fuwv . kx ky\ (ab\_(ab\ (u v
M(u, v)—-(f, g')' Since (kf kg) (c d)‘(c d) (f' g')’ we have

bkx-+dky = av+bg', (3.8)
bkf+dkg = cv+t-dg’ (3.9)
and akx+cky = au--bf". (3.10)

Hence d(av)—b(cv)=d(bkx+dky)—b(bkf+dkg) by (3.8) and (3.9). From this
we have

(ad—be)o=H(By ™)+ (2bd— By~ r(3))-+ (@ — By 's(9)—bar(y) .

(3.11)
On the other hand, by Lemma 3.1 (i), we have
kr(y) = r(v)
and Es(y) = s(v) (3.12)

We argue b=0. Suppose b+0 and set ¥, ={v|r(v)=Fkr(y)} for yeK*
By (3.11), | w,| >(¢+1)/2 if p>2 and |¥,| >¢/2 if p=2 for any y=K*. Thus
|'w,|>|K* /2 for any yeK* so we have ¥,N V¥, %= ¢ for all y, z&K*. This
implies that » is a constant function. Similarly s is also a constant function.
This contradicts the assumption. Therefore 5=0.

From (3.8) and (3.10), v=a"'dky and u=kx+a 'cky. Hence r(a~'dky)=
kr(y), s(a”'dky)=F?s(y) by (3.12) and L(x, y)o=L(u, v)=L(kx+a~'cky, a~'dky).
Thus lemma holds.

Lemma 3.5. Set Q,={L(», y)|x€K} for yeK* and H,={ ‘g 2)

[A=<? 2), acK*! ceK}. Then HCH. Moreover H, acts on Q, and is transi-

tive on Q, for each ye K*.

Proof. Let o=((y 9)€H, Since A~'M(x, y)A=<”+§'1‘y ﬁ), A"M

(%, y)A<= by Lemma 3.1 (ii) so c€H. Moreover L(x, y) o=L(x+a'cy, ).
Since a=K* and ceK are arbitrary, we have the lemma.
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Proof of Theorem 2.
Any mapping from K* into K can be uniquely written in the form 2 cx',
geK, 0<i<g—2. Set r(y)= Z} ¢;y' and s(y)= Z} d;y'. We may assume

that 7 or s is not a constant functlon. By Lemma 3.4- (i), L(0, 1)o=L(a"ck,

a~'dk), where a-:(g1 k?d)’ A=(a 0>. By Lemma 3.5, H is transitive on & if

and only if K'= {a‘ldk|<‘o4 k?q)eH A= (“ 9)}. Set h=a~dk. Then, by
Lemma 3.4,

r(hy) = ad~'hr(y) (3.13)
and s(hy) = (ad~")H’s(y) (3.14)

Suppose H is transitive on Q. Then, for any zK?, there exist a and
d in K* which satisfy (3.13) and (3.14) simultaneously. Hence 42-_‘,1 c;h‘y‘:qE—z
i=0

i=o
c:ad-hy' and ;3 d,.hfyf=§ d(ad~'Yh?y'. Therefore chi—cad='h and dhi—
d(ad "R for all ¢ with 0<i<¢—2. If ¢,=*0 and ¢,=0 for some m, n with
0<m, n<q—2, then A" '=h""'=ad ™' and so A" "=1 for any h€K* Thus
m=n, so that we have r(y)=c,y". By a similar argument above, we have s(y)=
d,y* for some ¢t with 0<t<q—2.
Since (r(y)/(r(3)—=s(hy)/s(y) by (3.13) and (3.14), clhtryinjciyts—d,h'y!|
d,y'. From this #*""*=1 for any heK* Thus ¢t=2n (mod ¢—1).

REMARK 3.6. An element of @y is not always represented in the form
(r(x), s(x)), r(x)=ax", s(x)=>bx**. We list some of such examples below, which
were obtained by a computer search using Lemma 3.2.

(1) K=GF(7), r(x)=4x"+6x*, s(x)=6x"+3x*+ 6x°+4x*-+3.

(i) K=GF(11), r(x)=>5x"+6x"4+9x5+42, s(x)=3x%+ Sx®+ 6x7+ 9xf-4x°+
10x*+ 9+ 2x%+4-9.

(i) K=GF(11), r(x)=2x°+6x+-4x"+ 3x°+8, s(x)=>5x"+x°+8x°+410x°+
x*+2x°+10x24-10.
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