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1. Introduction

In this paper we will give a complete list of the closed, orientable 3-
manifolds with Heegaard splittings of genus two and admitting non-trivial
torus decompositions. We use the following notations.

Ό(n) (A(n), Mϋ(n) resp.): the collection of the Seifert fibered manifolds
the orbit manifold of each of which is a disk (annulus, Mobius band
resp.) with n exceptional fibers.

Mκ (ML resp.) : the collection of the exteriors of the two bridge knots (links
resp.).

L,κ : the collection of the exteriors of the one bridge knots in lens spaces
each of which admits a complete hyperbolic structure or admits a Seifert
fibration whose regular fiber is not a meridian loop.

For the definitions of the one bridge knots in lens spaces see section 5.
Then our main result is

Theorem. Let M be a closed, connected Haken manifold with a Heegaard
splitting of genus two. If M has a nontrivial torus decomposition then either

( i ) Mis obtained from Mι e D(2) and M2 G Lκ by identifying their boundaries
where the regular fiber of Mλ is identified with the meridian loop of M2y

(ii) M is obtained from M1<=Mϋ(n) (rc=0, 1 or 2) and M2^MK by identify-
ing their boundaries where the regular fiber of M1 is identified with the
meridian loop of M2y

(iii) M is obtained from Mx^D(ή) (n=2 or 3) and M2^MK by identifying
their boundaries where the regular fiber of Mγ is identified with the
meridian loop of M2y

(iv) M is obtained from Mly M2<=D(2) and M3<=ML by identifying their
boundaries where the regular fiber of Mi (i=\y 2) is identified with
the meridian loop of M2 or

(v) M is obtained from M^A(n) (n=0y 1 or 2) and M2^ML by ident-
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ifying their boundaries where the regular fiber of M1 is identified with

the meridian loop of M2.

Conversely if a 3-manifold has a decomposition as in ( i)^(v) then it has a

Heegaard splitting of genus two.

For the structures of the elements of LK) Mκ or ML see Lemma 4.2, 4.4,

5.2.

In [9] Thurston listed eight 3-dimensional geometries with compact stab-

ilizers and conjectured that every closed 3-manifold admits a geometric decom-

position. Thurston's recent result [10] asserts that every closed, orientable

3-man if old with a Heegaard splitting of genus two has a geometric decomposi-

tion. Then our Theorem together with this result implies

Corollary, If M is a closed, orientable 3-manifold with a Heegaard split-

ting of genus two then either

( i ) M admits one of the eight geometric structures stated in [9], or

(ii) M is one of ( i)^(v) in the above theorem.

We note that for each of the eight geometric structures there is a 3-mani-

fold which has a Heegaard splitting of genus two and admits the geometric

structure. See section 7.

2. Preliminaries

Throughout this paper we will work in the piecewise linear category.

For the definitions of irreducible 3-manifolds, incompressible surfaces we

refer to [1]. For the definitions of Haken manifolds we refer to [4].

Let M be a closed, connected 3-manifold. (Vly V2 F) is called a Hee-

gaard splitting of M if each V{ is a 3-dimensional handlebody, M—VιUV2

and V1ΓΊ V2=dV1=dV2=F. Then F is called a Heegaard surface of M. The

first Betti number of V{ is called the genus of the Heegaard splitting.

For the definitions of Seifert fibered manifolds, orbit manifold, an isotopy

of type A, hierarchy for a surface, an essential arc in a surface and other defini-

tions of standard terms in three dimensional topology we refer to [4]. The

3-manifold M is simple if every incompressible torus in M is boundary parallel.

By [4] every closed Haken manifold contains a unique, maximal, perfectly

embedded Seifert fibered manifold 2 which is called a characteristic Seifert

pair for M. The components of the closure of M—2J are simple. The bound-

ary of 2J consists of tori in M. If some components of them are parallel in

M then we eliminate one of them from the system of tori. By proceeding
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this step we get a system of tori in M which are mutaually non-parallel. We

get simple manifolds and Seifert fibered manifolds by cutting M along these

tori. In this paper, we call this decomposition a torus decomposition of

M.

3 Essential annuli in genus two handlebody

Let F b e a 2-sided surface properly embedded in a 3-manifold M. F is

essential if it is incompressible and not parallel to a surface in 9M. Let M'

be a 3-manifold obtained by cutting M along F. Then there are copies of F

on dM' and we denote the component of the copies also by F.

In this section we will classify the system of essential annuli in the genus

two handlebody.

Lemma 3.1 If A is an incompressible annulus properly embedded in the

solid torus V, the genus one handlebody, then A is boundary parallel.

Proof. First, we claim that A cuts V into two solid tori. QA cuts dV

into two annuli Aly A2. Then A U A{ (/= 1, 2) is a torus in V. Since πλ(V)^Zy

A U Ai is compressible in V. By the loop theorem [1] and the irreducibility of

V we see that AUAi bounds a solid torus F f . Let p{ (i=l, 2) be a positive

integer such that Im (/* π1(A)-+π1(Vi))=(ai

piyy where a{ is a generator of πr^F,).

Then πi(V)e*<al9 a2 : api=ap

22y. Then px=l or p2 = l for m{V)^Z. If

p~l then A is parallel to At.

This completes the proof of Lemma 3.1.

Let D be a disk properly embedded in a handlebody V. D is a meridian

disk of V if D does not separate V. Let {Dly •••, Dn} be a system of mutually

disjoint properly embedded disks in V. {Dly •••, Dn} is a complete system of
n

meridian disks of V if U A c u t s V m t o a 3-cell.
ί = l

Lemma 3.2 If A is an essential annulus in a genus two handlebody V then

either

(i) A cuts V into a solid torus V1 and a genus two handlebody V2 and there

is a complete system of meridian disks {Dly D2} of V2 such thatDλ f]A=φ

and D2Γ\A is an essential arc of A, or

(ii) A cuts V into a genus two handlebody V and there is a complete system

of meridian disks {Dly D2} of V such that D1f]Ais an essential arc of A.

See Fig. 1.
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Proof. Since A is incompressible in V, by using the complete system
of meridian disks of V we can find a disk Δ in V such that AΓ\A=a is an
essential arc of A, Af)dV=b is an arc such that da = db, a{Jb=dA. Then
we can perform a surgery on A along Δ to get a disk D properly embedded
in V. Since A is essential, D is essential, say D is a meridian disk of V or D
cuts V into two solid tori.

If D cuts V into two solid tori V, V" then there are copies Δ', Δ " of Δ
on dV. Then there is a meridian disk Dι of V such that Z) 1 n(Δ'UΔ")=φ.
Since Δ' and A" are identified in V cut along ^4, A cuts F into a solid torus Vλ

and a genus two handlebody V2, where Δ is a meridian disk of V2 such that
Δ Π A is an essential arc of A. Then we set D2—A.

If D is a meridian disk of V then Z> cuts V into a solid torus Vx. There
are copies Δ', A" of Δ on dVx. Since Δ' and A" are identified in V cut along
Ay A cuts F into a genus two handlebody F \ Then we set D1 = A and we
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have the conclusion (ii).
This completes the proof of Lemma 3.2.

Let M be a 3-manifold and S be a 2-manifold contained in dM. Let
F be a surface properly embedded in M. Then F is essential in (My S) if F
is incompressible, dFdS and F is not parallel to a surface in S.

Lemma 3.3 Let V be a genus two handlebody and Aly A2 be a system of
mutually disjoint annuli in dV such that there is a complete system of meridian
disks {£>!, D2} of V which satisfies D{ Γ[Aj = φ (i Φj) and Ώ{ Π A{ is an essential
arc of Ai (i=ί9 2). If A is an essential annulus in (V, cl (dV—(A1[jA2))) then
A is parallel to Aτ or A2.

Proof. Since A is incompressible in F, by using {Dly D2} we can find
a disk Δ in V such that Δ Π A=a is an essential arc of A, Δ Π cl (dV—(A1 U A2))=b
is an arc such that da=dby a\Jb=dA. Then we can perform a surgery on
A along Δ to get an essential disk D such that D Π {Aι U A2) = φ. Since
D Π (A1U A2) =φy D cuts V into two solid tori Vλ, V2. We may suppose that
AiddVi. By assumption there is a meridian disk D/ of V\ such that Z> Π Λ
is an essential arc of A{. Then by the proof of Lemma 3.2 A cuts V into a
genus two handlebody V[ and a solid torus F£. We may suppose that A2(ZdVf2.
Then I m ( ^ : ^(A2)->^(V2))=^(V2) and A2ΠA=φ. Hence 4̂ is parallel
to^42.

This completes the proof of Lemma 3.3.

For the two essential annuli in the genus two handlebody we have

Lemma 3.4 Let {Aly A2} be a system of mutually disjoint, non-parallel,
essential annuli in the genus two handlebody V. Then either

( i ) A1\JA2 cuts V into a solid torus Vλ and a genus two handlebody V2.
Then Ax\]A2dWλ, A1{jA2ddV2 and there is a complete system of
meridian disks {Dly D2} of V2 such that D^A—φ (iφj) and fl,Π4
( i = l , 2) is an essential arc of Aiy

(ii) Aλ\]A2 cuts V into two solid tori Vly V2 and a genus two handlebody
Vz. Then AλadVly A2adV2y A^AzCdVs and there is a complete
system of meridian disks {Dly D2} of V3 such that DiC[Aj = φ (i^j)
and Dt Π A{ (i=ίy 2) is an essential arc of A{ or

(iii) AX\]A2 cuts V into a solid torus V1 and a genus two handlebody V2.
Then AiddV1 (i= 1 or 2, say 1), A2ΓiV1 = φ9 Ax ddV2 and there is
a complete system of meridian disks {Dly D2} of V2 such that Dx Π A2

is an essential arc of A2 and D2Π A{ (i=ίy 2) is an essential arc of A{.

See Fig. 2.
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7 / /
A A A (iii)

Fig. 2
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Proof. There is a disk Δ in V such that Δ Π Λ - φ (/= 1 or 2, say 2),

Δ (Ί -4X = a is an essential arc of Al9 Δ Π dV~ b is an arc in 9Δ such that a Π b

=da=db, a\Jb = dA. We can perform a surgery on Ax along Δ to get an

essential disk D' properly embedded in V. Then there is a disk Δ' in V such

that A'Γ\D' = φ, A'Γ\A2 = a' is an essential arc of A2y A'Γ\dV = b' is an

arc in 3Δ' such that a' Π bf=daf=^db\ af[jb' = 9Δ'. By performing a surgery

on A2 along A' we have an essential disk D" in F, which is disjoint from D'.

We claim that {D\ D") is not a complete system of meridian disks of V.

Assume that {D\ D"} is a complete system of meridian disks of V. Then

we can move A? by a small isotopy into V cut along D'iJD". This contradicts

the fact that A2 is incompressible in V.

Then we have the following three cases.

Case 1. Df and D" are parallel and Dr (hence, D") does not separate V.

In this case, we have the conclusion (i).

Case 2. Ό' and D" are parallel and D' (hence, D") cuts F into two solid

tori. In this case, we have the conclusion (ii).

Case 3. Dr and D" are not parallel. We claim that Df does not separate

V. Assume that D' separate V into two solid tori V and V". Then we may

suppose that A2 C V. By Lemma 3.1 A2 is parallel to an annulus A2 in dV.

Then A'2Γ) Df = φ for D r and D" are not parallel. But this contradicts the

fact that A2 is essential.

Then since {D\ D"} is not a complete system of meridian disks, D" sepa-

rates V into two solid tori and we have the conclusion (iii).

This completes the proof of Lemma 3.4.

Lemma 3.5 Let {Ax, A2y A3} be a system of paίrwise disjoint, non-parallel

essential annuli in the genus two handlebody V. Then A1 U A2 U A3 cuts V into

two solid tori Vl9 V2 and a genus two handlebody V3 which satisfies

1. Ai(ZdV1 ( i = l , 2 or 3, say 3), Al9 A2ddV3) Au A2, A3ddV2.

2. there is a complete system of meridian disks {Dly D2} of V3 such that

DiΓ[Aj=φ (i=t=j) and D f Π Λ (*'= 1> 2 ) « an essential arc of A{ and

3. there is a meridian disk D3 of V2 such that D3 Π A{ (i = 1, 2, 3) ώ an essen-

tial arc of A{.

See Fig. 3.
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Proof. {Aly A2} satisfies one of the conclusions of Lemma 3.4. First,
we claim that {Aly A2} does not satisfy (ii). Assume that {Al9 A2} satisfies
(ii). Then A1[jA2 separates V into two solid tori Vu V2 and a genus two
handlebody V3. If A3dV1 or V2 then by Lemma 3.1 A3 is parallel to A1 or
A2y which is a contradiction. If A3aV3 then by Lemma 3.3 A3 is parallel
to Ax or A2y which is a contradiction and the claim is established.

If {An A2} satisfies the conclusion (i) of Lemma 3.4 then AX\JA2 cuts V
into a solid torus V1 and a genus two handlebody V2 where Aly A2 ddVl9 Au

A2ddV2. By Lemma 3.3 we see that A3 is not contained in V2. Then A3d Vλ

and by Lemma 3.1 A3 is parallel to an annulus A' in dVλ. Since A3 is essen-
tial and is not parallel to A{ (ι = l, 2), 3A1\JdA2 is contained in A'. Then we
easily verify that {Aly A2, A3} satisfies the conclusions of Lemma 3.5.

If {Au A2} satisfies the conclusion (iii) then A1\JA2 cuts V into a solid
torus V1 and a genus two handlebody V2, where Al9 A2ddV2 and A{ Π dV1=φ
( ί = l or 2, say 1). By Lemma 3.1 we see that A3 is contained in V2

Since A3f] (A1 \JA2) — φ, by Lemma 3.3 we see that A3 is parallel to an
annulus A' in dV2. Since A3 is essential and is not parallel to A{ (i= 1, 2),
dAx U dA2 is contained in A'. Then by changing the suffix we easily verify that
{Aly A2, A3} satisfies the conclusions of Lemma 3.5.

This completes the proof of Lemma 3.5.
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4. Two bridge knot, link complements

A knot is a simple closed curve in the 3-sphere S3. A link is a union of
mutually disjoint simple closed curves in S3 with more than one component.
For the definitions of the two bridge knots and links we refer to [8]. A exterior
Q(K) (Q(L) resp.) of a knot K (link L resp.) is the closure of the complement
of a regular neighborhood of K (L resp.). The meridian of K (L resp.) is a
simple loop in dQ(K) (βQ(L) resp.) which bounds a meridian disk of the regular
neighborhood of K (L resp.). A knot (link resp.) is simple if the exterior is
a simple 3-manifold.

Lemma 4.1 Let V{ ( i = l , 2) be the genus two handlebody and A\, A\
(C3F, ) be a system of pairwise disjoint, incompressible annuli such that there is a
complete system of meridian disks {Z>ί, Di} of V{ which satisfies (i) Di

kΓ\A\ = φ
(kΦl) and (ii) Dif]Ai is an essential arc of A[ (k=l, 2). If M is obtained
from Vι and V2 by identifying their boundaries by a homeomorphism h : cl
(dV1—(A\UA\))-~>cl (dV2 — (A\\JA\)) then M is homeomorphic to certain two
bridge knot complement or a two bridge link complement, where the component of
dA) corresponds to a meridian loop.

Proof. This can be proved by using the similar arguments of the section

4 of [5].

Lemma 4.2 If K is a non-trivial two bridge knot then Q(K) admits a com-

plete hyperbolic structure or is a Seifert fibered manifold with orbit manifold a

disk with two exceptional fibers.

Proof. Since K is a simple knot [8], by [9] and the torus theorem [4]
we see that Q(K) admits a complete hyperbolic structure or is a special Seifert
fibered manifold. If Q(K) is a special Seifert fibered manifold then the orbit
manifold is a disk or a Mϋbius band for dQ(K) has one component (see 155p.
of [4]). If the orbit manifold of Q(K) is a Mobius band then it has no excep-
tional fibers. Hence Q(K) is the twisted /-bundle over the Klein bottle but
this is impossible for Q{K) does not contain the Klein bottle.

This completes the proof of Lemma 4.2.

Let {au ••• , an} be a system of mutually disjoint, essential arcs in a punc-
tured torus T. We say that a{ is of type 1 if αt joins distinct components of
3Γ, a{ is of type 2 if a{ joins one component of dT and at separates Γ, a{ is of
type 3 if a{ joins one component of dT and a{ does not separate T. We say
that a{ is a d-arc if a{ is of type 1 and there is a component S of dT such that
a{ is the only arc that joins S.

The next Lemma is perhaps known but no reference could be found.
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Lemma 4.3 Every two bridge link is a simple link.

Proof. Let L be a two bridge link. Since L is a union of two trivial
tangles with two arcs, Q(L) has a decomposition as in Lemma 4.1 (see section
4 of [5]). Then we use the notations in Lemma 4.1. Let T be an incompres-
sible torus in Q(L). We may suppose that the components of TΓ\V1 are all
disks and that the number of the components of T ΓΊ Vx is minimum among
all tori which are isotopic to T and the components of the intersection of each
of which with Vx are all disks. Since T is incompressible, TΓϊV^φ.

Let T2=TΓ\V2. Then by using D2

U D\ we have a hierarchy (T2°\ tfo), ,
(T2

m\ am) of T2 and a sequence of isotopies of type A which realizes the
hierarchy as in [4]. Let Γ (1) be the image of T after an isotopy of type A at
a0 and T(k+1) (k>l) be the image of T(k) after an isotopy of type A at ak.

Then we will show that Tf)Vλ consists of a disk.
Assume that TΓ)V1 consists of n(>2) disks Du •••, Dn. We claim that

Du •••, Dn are mutually parallel in Vx and each D{ cuts Vλ into two solid tori.
If some Di does not separate Vx then D( Π (A\ U A\) Φ φ for Im (/*: πx (A\ U A\)
~->π1(V1))=π1(V1)y which is a contradiction. By the minimality of T it follows
that each D{ cuts Vx into two solid tori. Hence Dx •••, Dn are mutually parallel
and the claim is established.

Then we show

(*) aθ9 " ' ί an-\ a r e °f type 3 and a{ and a^ joins pairwise distinct

components of dT2 if

By Lemma 3.3 each essential annulus in (Vu cl {QVX—{A\\JA\)) is
parallel to A\ or A\. By Lemma 3.3 of [5] we see that a0, aλ are of type 3
and we may suppose that a0) aλ joins DXy D2 respectively. Note that in [5]
we considered the non-separating incompressible torus, but in Lemma 3.1,
3.2, 3.3 of [5] which are proved by using the argument of the inverse operation
of isotopy of type A in [2] the non-separating property is not essential.

Assume that (*) does not hold then there is such i (>3) that a{ is not of
type 3 or a{ is of type 3 and <zt joins Dk that some ax (l<i) joins. Then we
may suppose that <z; (j<i) is of type 3 and joins Dj. Then Tii'1)Γ\Vx=A1\J
••• UΛ - iUA U ••• \JDH, where each A{ is an essential annulus in (Vly cl (βVi
-(AlUAl))).

Assume that a{ is of type 1. If a{ joins some Ak and Dι (l>ϊ) or Dk and
T>ι (k, l>i) as an arc on T^~l) Π V2 then Γ ( 0 Π Vx consists of i—ί annuli and
n—i disks. Then by performing a sequence of isotopies of type A on T(i)

we have such a torus T' that Tf f] Vx consists of n— 1 disks, which contradicts
the minimality of T. If a{ joins some Ak and Aι then Ak is parallel to At in
V1 for Di separates V1 into two solid tori. Then T(i) Π Vx consists of ί—2
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annuli, n—i disks and one disk with two holes B. Some component I of dB
bounds a disk on dV. Since T is incompressible and Q(L) is irreducible, we
see that / bounds a disk on T(i) and there is an ambient isotopy ht ( 0 < ί < l )
of Q(L) such that h^T^f] Vλ consists of i—ί annuli and n—i disks. Then
we have a contradiction as above.

Assume that a{ is of type 2. Then there is an arc a in dT2 such that a Π a{

=da=daiy #Uflr- bounds a planar surface P in T2. We easily see that some
cij ( c P ) is a rf-arc. Hence by Lemma 3.1 of [5] T is ambient isotopic to such
a torus T' that Γ'ΠFΊ consists of n— 1 disks, which is a contradiction.

Assume that at is of type 3 and a{ joins Dj (j<i). Then there are two arcs
bl9 b2 in dT2 such that #,- U bλ U Λ, Uέ2 is

 a simple loop in T2 and α, U #i U fl, U b2

bounds a planar surface P in TV Then see that some ak ( c P ) is a d-arc and
we have a contradiction as above.

Hence (*) is established.
Then Γ ( w ) ΠFi (T^Γ\V2 resp.) consists of n essential annuli Au •••, An

(A{, •••, ̂ 4ί resp.). By Lemma 3.3 each ^4t is parallel to either A\ or A\.
We may suppose that An is outermost in (Vu cI(dV1—(A\ U-^2))) and is paral-
lel to A\. Then some A'j is parallel to A\ (k=l or 2) and dAn=dA'j. This
contradicts the fact that n>2.

Hence TC\Vλ consists of a disk. Then Γ(1) Π F t consists of an annulus
A1 which is parallel to A) (j=l or 2). Hence Γ (1) is parallel to a component
of dQ(L).

This completes the proof of Lemma 4.3.

Lemma 4.4 // L is a two bridge link then Q(L) admits a complete hyper-
bolic structure or is a Seίfert fibered manifold with orbit manifold an annulus with
at most one exceptional fiber.

Proof. By Lemma 4.3 together with [4] and [9] Q(L) is a hyperbolic
manifold or a special Seifert fibered manifold. If Q(L) is a special Seifert
ίibered manifold then the orbit manifold of Q(L) is an annulus and it has at
most one exceptional fiber for dQ{L) has two components.

5. One bridge knots in lens spaces

Let us give the definition of the one bridge knot in a lens space. For the
definition of lens spaces we refer to 20p. of [1]. In this paper we think that
S3, S2 X S1 are lens spaces. Let V be a solid torus and let a be an arc properly
embedded in V. We say that a is trivially embedded in V if there is a disk
D in V such that Df]dV=b an arc, cl(dD—b)=a. It is easily seen that if
a1 is another trivially embedded arc in V then there is an ambient isotopy ht

( 0 < ί < l ) of V such that A1(Λ)=Λ /. Let K be a knot in a lens space Ln. We
say that K is a one bridge knot in Ln if there is a Heegaard splitting (Vly V2\
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F) of Ln of genus one such that V{ Γ\K ( i = l , 2) is an arc trivially embedded in
V{. We denote the exterior of K also by Q(K). Then we can naturally define
a meridian loop on Q(K).

Lemma 5.1 Let V{ ( ί=l, 2) be a genus two handlebody and A{ ( c 9 F t )
be an incompressible annulus such that there is a complete system of meridian disks
{Z){, Di} of Vi which satisfies (i) D[p{Ai=φ and (ii) DiftAf is an essential
arc of A{. If M is obtained from Vλ and V2 by identifying their boundaries by
a homeomorphism h: cl(dVι—A^->cl(dV2—A2) then M is homeomorphic to certain
one bridge knot complement in lens space, where the component of dA{ corresponds
to a meridian loop.

Proof. This is proved by using the similar arguments of the proof of
Lemma 4.1.

Lemma 5.2 Let K be a one bridge knot in a lens space Ln. If Q{K) is
a Seifert fibered manifold with incompressible boundary, whose regular fiber is
not a meridian loop then either

(i) Q(K)^D(2) where the regular fiber in dQ(K) intersects their meridian
loop transversely in a single point,

(ii) Q(K)^Mϋ(\) where the regular fiber in dQ(K) intersects the meridian
loop transversely in a single point or

(iii) Q(K) is homeomorphic to the twisted I-bundle over the Klein bottle.

Proof. We fix the fiber structure of Q{K). Since an incompressible
torus in Q(K) is separating, the orbit manifold of Q(K) is a disk or a Mϋbius
band.

Suppose that the orbit manifold of Q(K) is a disk. First we claim that
Ln does not admit such a Seifert fibration that the orbit manifold is a 2-sphere
with n (>3) exceptional fibers. n>4 implies that Ln contains an incompres-
sible torus, which is a contradiction. By Theorem 12.2 of [1] n=3 implies
that there is an epimorphism from π^L,) to the group

G = <α,6; aP = b* = {ab)r = V> (p,q,r>l).

This is impossible for G is not a cyclic group [7] and the claim is established.
Assume that Q(K) contains m (>3) exceptional fibers. Then since the

regular fiber of Q(K) is not a meridian loop, Ln admits such a Seifert fibration
that the orbit manifold is a 2-sphere with m or m+1 exceptional fibers, which
contradicts the above claim. Hence Q(K) contains two exceptional fibers.
Then if the regular fiber is not isotopic to a loop which intersects the meridian
loop transversely in a single point then Ln admits such a Seifert fibration that
the orbit manifold is a 2-sphere with three exceptional fibers, which contradicts
the above claim.
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Then we have the conclusion (i).

Suppose that the orbit manifold of Q(K) is a Mϋbius band. Since Ln

does not contain an incompressible torus Q(K) contains at most one excep-

tional fibers. If Q{K) contains one exceptional fiber then the regular fiber

intersects the meridian loop transversely in a single point and we have the con-

clusion (ii). If Q(K) contains no exceptional fibers then we have the conclu-

sion (iii).

This completes the proof of Lemma 5.2.

6. Proof of Theorem

Lemma 6.1 Let M be a simple manifold whose boundary components are

all tori. If M contains an essential annulus then M is a Seifert fibered manifold.

Proof. This is a consequence of the characteristic Seifert pair theorem [4].

We shall divide the proof of Theorem into several cases.

Case 1. M contains a non-separating incompressible torus. In this case

by Theorem 2 of [5] we have the conclusion (v) of the Theorem.

Hereafter, we will suppose that each incompressible torus in M is separat-
ing.

Case 2. M is decomposed into two components Mly M2 by the torus

decomposition. Let T be the torus which cuts M into Mly M2 and ( F l t V2;

F) be a genus two Heegaard splitting of M. We may suppose that the com-

ponents of T Π Vι are all disks and that the number of the components of T Π Vλ

is minimum among all tori which are isotopic to T and the components of the

intersection of each of which with Vλ are all disks. Let T2=TΓ\V2. Then

as in [4] we have a hierarchy (T2°\ ao)y •••, (T2

m\ am) of T2 and a sequence

of isotopies of type A which realizes the hierarchy. Let Γ (1) be the image of

T after an isotopy of type A at a0 and Γ(*+1) (k> 1) be the image of T<k) after

an isotopy of type A at ak.

Then we claim that T C\Vλ consists of at most two components. Assume

that T P[Vλ consists of n (>3) disks Dly •••, Dn. Then by [5] aOί aλ are of type

3 and, hence, T<»nV1=A1\jD2\J - \JDΛ9 T<2) nV^A^A.OD^ ... [jDny

where A{ (i=l> 2) is an essential annulus in Vx. If Dly D2 are separating in

Vι and Aly A2 are parallel in Vλ then there are two annuli A'y A" in dVx such

that i ί / n(i4iUiί 2 )=i4 / ΠΛ=9-4 / =9Λ» A"^(A^A^dA", A'[\A" is a

component of dAλ. We may suppose that A'dM1 and A"dM2. See Fig. 4.

By the minimality of T, A' (A" resp.) is an essential annulus in Mλ (M2 resp.).

Hence by Lemma 6.1 and Theorem VI. 34 of [4] Mλ and M2 admit such Seifert

fibrations that the component of dAλ is a regular fiber. Hence M admits a

Serfert fibration, which is a contradiction. If Dly D2 are separating in Vλ

and Aγ is not parallel to A2 in Vλ then Dly •••, Dn are parallel in Vλ. See Fig.
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Fig. 4

A, A,

5. Since each a{ is not a rf-arc [5], a2 is of type 3 and we may suppose that
Ti3)Γ\V1=A1[jA2[jA3[j ••• \jDn where A3 is an essential annulus in Vλ.
Then A3 is parallel to A1 or ^42 (Lemma 3.3) and we have a contradiction as
above. If Dλ is separating and D2 is non-separating in Vλ then there exists
annuli A\ A" as above and we have a contradiction. Since Aλ is incompres-
sible, the case of Dλ being non-separating and D2 being separating cannot occur.
If Du D2 are non-separating in Vλ then Dly •••, Z)Λ are mutually parallel in Vx.
Since each a{ is not a J-arc, α2 is of type 3 and we may suppose that Γ(3) Π Vx

=Aι\jA2{jAz\j ••• \jDn9 where A3 is an essential annulus in Vx. Then
there exists annuli A', A" in dV1 such that A' Γ\(A1UA2[jA3)=dA'y A//Π(A1

\JA2\JA3)=dA" and A'{\A" is a component of dA'. Then we have a con-
tradiction as above and we establish the claim.

Now, we have two subcases.
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Fig. 6

Case 2.1. TΓiVΊ consists of a disk Dλ. Since T separates M, Όx cuts
Vx into two solid tori. Let A1=V1Γ\T(1\ A2=V2f]T^\ Then by Lemma
3.2 Aι (i=l, 2) cuts V{ into a solid torus F, and a genus two handlebody F7.
By attaching V\ and F | along cl{$V\—Aϊ) we have Mj (eZ>(2)) and by at-
taching F? and Ff along cl(dVj—Ai) we have M2 (GLjf) (Lemma 5.1). Then
we have the conclusion (i) of the Theorem.

Case 2.2. TΓ\V1 consists of two disks Dl9 D2. In this case Γ(2) Π Vλ

(Γ ( 2 ) f lF 2 resp.) consists of two essential annuli Al9 A2 (A'ly A2 resp.).
We claim that if A1 is parallel to A2 then Al9 A2 satisfies the conclusion

(i) of Lemma 3.4. First, we show that A1 is non-separating in Vx. If A1

is separating in V1 then there are annuli A', A" in dV1 such that A' Π {AX\JA2)
^A'ΓίA^dA'^dA^ A//Π(A1\jA2)=dA'f9 A'(\A" is a component of dAf.
Hence we have a contradiction as in Case 2. Then by Lemma 3.2 A1 cuts V1

into a genus two handlebody V. Let A{y A" be the copies of Ax on V, By
the proof of Lemma 3.4 we can show that there is a complete system of meridian
disks {Dί, D'2} of V such that (Dί{jD/

2)f]Aί=D[ΠAl is an essential
arc of A'u (DΊUDfinAί'^DίΓlAΊ' and each component of Ό'2{\Aϊ is an
essential arc of A". If needed by exchanging A1 and A2 we may suppose
that A2 is parallel to A[f in V. We will show that D2 can be taken so that
D2 Π A" is an essential arc of A{'. If this is done then the claim is established.
Since A1 is parallel to A2 there is an annulus Afff in dV1 such that A'fr [\A{

(i=\y 2) is a component of dA'". We may suppose that A/ί;dMv Then
^47// is an essential annulus in M1 and by Lemma 6.1 and [4] M1 admits such
a Seifert fibration that Af" is a union of regular fibers. If the meridian disk
Z>2 as above cannot taken then there is an essential annulus A3 in V such that
A3ΠT^=A3f]A2=dA3=dA2y A3ΠD[ = φy A3 is not parallel to A2 and
A2\JA3 bounds a solid torus T in V. See Fig. 6. Then M[^MX\]T
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admits a Seifert fibration and M{ is not homotopic into Mx. This contra-
dicts the maximal property of the characteristic Seifert pair.

By the above claim and Lemma 3.4 we see that {Aly A2} {{A[y A2} resp.)
satisfies one of the conclusions of Lemma 3.4.

Note that {Aly A2} ({A{, A'2} resp.) does not satisfy the conclusion (iii)
of Lemma 3.4 for T^2) is separating in M.

We claim that either {Aly A2} or {A{y A2} does not satisfy the conclusion
(ii) of Lemma 3.4. Assume that both {Aly A2} and {A[y A'2} satisfy (ii) of
Lemma 3.4. Then Aλ\]A2 (A{{JA'2 resp.) cuts Vx (V2 resp.) into two solid
tori and a genus two handlebody, but this contradicts the fact that T(2) is con-
nected.

Then we have two subcases.

Case 2.2.1. Both {Aly A2} and {A[y A'2} satisfy the conclusion (i) of
Lemma 3.4. In this case A1\JA2 (AίUA2 resp.) cuts V1 (V2 resp.) into a
solid torus V[Ό (V{2) resp.) and a genus two handlebody V2

λ) (Vψ resp.)
where A^A.ddV^, A1UA2ddVi1) (Aί\jA'2<zdVi2\ A[ \jA'2cdVP resp.).
By attaching V[l) and V[2) along cl{dV{i)-(Al\jA2)) we get M^^Mofn),
n=0y 1 or 2) and by attaching V{

2

1) and V(

2

2) along c/(8J>T-(A UΛ)) w e

get M2 ( E l J (Lemma 4.1). Then we have the conclusion (ii) of the
Theorem.

Case 2.2.2. {Aly A2} satisfies the conclusion (i) and {A[y A'2} satisfies
the conclusion (ii) of Lemma 3.4. In this case A1[JA2 cuts V1 into a solid
torus V[ι) and a genus two handlebody V£\ A[{jA2 cuts V2 into two solid
tori V[2\ Vi2) and a genus two handlebody F p . By attaching V[ι) and
Vi2)\jV2

2) .along cl(dVί1)-(A1\jA2)) and cl(dVί2)-Aι)UcI(dVf)--A2) we get
M^tEDin), n=2 or 3) and by attaching V^ and V(

3

2) along cHβV^-^A^A^)
and cl(βV?)-(A1\jA2)) we get M2 ( G I , ) (Lemma 4.1).

Then we have the conclusion (iii) of the Theorem.
Case 3. M is decomposed into three components Ml9 M2 and M3 by

the torus decomposition. Let Tu T2 be the pair of tori which cuts M into
Mly M2 and M3 and let Γ = Γ 1 U Γ 2 . Then we may suppose that TλCLdMly

T2ddM3 and TddM2. Let (Vly V2y F) be a genus two Heegaard splitting
of M. Then we may suppose that the components of Γ Π ^ are all disks and
that the number of the components of T Π V1 is minimum among all the pair
of tori which are isotopic to T and the components of the intersection of each
of which with Vλ are all disks. Let T'—Tf)V2. Then we have a hierarchy
(T"(0), ao)y •••, (T'(m\ am) of T' and a sequence of isotopies of type A which
realizes the hierarchy.

We will show that we may suppose that a0 and a1 are of type 3 and ax joins
distinct component of dTf that a0 joins. By the argument of section 3 of [5]
both a0 and aλ are of type 3. Suppose that aλ joins the same component of
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dTf that a0 joins. We may suppose that a0, ^ c Γ j . Then Tι[\Vι consists

of a disk Dx for if T1Π V1 has more than one component then a0 U ax cuts 7\

Π V2 into a planar surface and hence some a{ (dT1f] V2) is a i-arc, which

contradicts the minimality of T (see Lemma 3.1 of [5]). Let T{ be the image

of Tλ after an isotopy of type A at aQ. Then T[Γ\V1=A1 {T{ Π V2=A[

resp.) is an essential annulus in Vx (V2 resp.). Since Tx is separating in M,

A[ cuts V2 into a solid torus Vψ and a genus two handlebody Vψ where

there is a complete system of meridian disks {Dly D2} of Vψ such that Dx

Π^4ί=φ, D2ΓiAί is an essential arc of A[. Since T2[\V2 is incompressible

in F 2 , (Γ2Π Γ 2 )cFS 2 ) . Then by using {Dly D2} we can define an isotopy of

type A at some essential arc b in T2ΓiV2. Then by the minimality of T, b

is of type 3. Hence by taking b as aλ we may suppose that aOy aγ are of type

3 and ax joins distinct component of QT' that an joins.

Then by the argument of Case 2 we see that T Π Vλ consists of two disks.

Let T1 be the image of T after an isotopy of type A at a0, T
2 be the image of T1

after an isotopy of type A at ax. Then T2Π Vλ (T2Γ) V2 resp.) consists of two

essential annuli Au A2 (A'u A'2 resp.) where dA1=dA{ and dA2=dA'2. By the

argument of Case 2.2 {Aly A2} {{A[y A
f

2} resp.) satisfies one of the conclusions

of Lemma 3.4.

Since Tλ and T2 are separating in M, each A{ {A\ resp.) is esparating

in Vι (V2 resp.). Hence both {Au A2} and {A{, A2} satisfy the conclusion

(ii) of Lemma 3.4. A1l)A2 (Aί{jA2 resp.) cuts V1 (V2 resp.) into two solid

tori V[ι\ Vψ (V[2\ Vψ resp.) and a genus two handlebody Vψ (Vψ resp.)

where A^dVψ {A\cdV\2) resp.) ( i=l , 2). By attaching Vψ and Vψ

(Vψ and Vψ resp.) along cl^Vψ-A,) and cl(dVψ-A[) (cl(ΘVψ~A2) and

cl(dVψ—A'2) resp.) we get M2 (eZ)(2)) (M26fl(2) resp.). By attaching ^ υ

and Vψ along ^ / ( a Π ^ - ^ U Λ ) ) and cl(dVψ~(A{ \JA'2)) we get M3 ( ε M J

(Lemma 4.1).

Then we have the conclusion (iv) of the Theorem.

Note that M does not have such a torus decomposition that M decom-

posed into more than three components. Assume that M has such a decom-

position. Let Tl9 •••, Tn (n>3) be a system of tori which gives the decomposi-

tion. We may suppose that each component of (T^U ••• U Tn) Π Vλ is a disk.

Note that (T1U ••• U Γ )̂ Π FΊ has more than two components and we can derive

a contradiction by using the arguments of Case 2.

If M admits a decomposition as in (i)^(v) of Theorem then by tracing

the above arguments conversely we can show that M has a Heegaard splitting

of genus two.

This completes the proof of Theorem.
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7. Geometric structures of the 3-manifolds with Heegaard split-
tings of genus two

In this section we show that for each of eight geometric structures in [9]
there exists a 3-manifold M which has a Heegaard splitting of genus two and
admits the geometric structure.

Lemma 7.1 If M is a Seifert fibered manifold with orbit manifold a 2-
sphere with three exceptional fibers then M has a Heegaard splitting of genus two.

Proof. Let / be an exceptional fiber in M and Q be the closure of the com-
plement of a regular neighborhood of /. Then Q contains such an essential
annulus A that A cuts 0 into two solid tori. Let a be an essential arc in A
and V1 be a regular neighborhood of N U a in M. Then Vλ is a genus two
handlebody. We easily see that d(M— Vλ) is also a genus two handlebody.

This completes the proof of Lemma 7.1.
Let M be a Seifert fibered manifold as in Lemma 7.1. Then by Theorem

12.1 of [1] πλ(M) has the presentation

<α, b,c,t; [a, t] = [ft, t] = [c, t] = 1, a*=t*\ bq = f\ cr = f, abc = 1>

where ^>>1, #>1, r > l . Then for the geometric structure of M the following
theorem is given by Kojima [6].

Theorem. If M is a Seifert fibered manifold as above then M admits a

geometric structure according to the table'.

= 0

Φ0

> 1

φ

type 1

= 1

type 2

type 7

< 1

type 5

type 6

where the type of geometries appears in [9].

Then by Lemma 7.1 we see that for each of the geometries that appeared
in the above Theorem there is a 3-manifold with a Heegaard splitting of genus
two, which has the geometric structure.

The examples of the 3-manifolds with Heegaard splittings of genus two
in the hyperbolic geometry (type 3) are obtained by Dehn surgery on the
figure eight knot [11].

The closed 3-manifolds in the type 4 geometry are only either S2xS1 or
P3#P3, each of which has a Heegaard splitting of genus two.

Any torus bundle over S1 with a hyperbolic monodromy has type 8 geo-

metric structure [9]. Then the torus bundle whose monodromy is ί ., )
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(m>3) has type 8 geometric structure and by [3] it has a Heegaard splitting
of genus two.
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