STRUCTURES OF THE HAKEN MANIFOLDS WITH HEEGAARD SPLITTINGS OF GENUS TWO

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

Tsuyoshi KOBAYASHI

(Received March 5, 1983)

1. Introduction

In this paper we will give a complete list of the closed, orientable 3manifolds with Heegaard splittings of genus two and admitting non-trivial torus decompositions. We use the following notations.
$\mathrm{D}(n)(\mathrm{A}(\mathrm{n}), \mathrm{Mö}(\mathrm{n})$ resp.): the collection of the Seifert fibered manifolds the orbit manifold of each of which is a disk (annulus, Möbius band resp.) with n exceptional fibers.
M_{K} (M_{L} resp.) : the collection of the exteriors of the two bridge knots (links resp.).
L_{K} : the collection of the exteriors of the one bridge knots in lens spaces each of which admits a complete hyperbolic structure or admits a Seifert fibration whose regular fiber is not a meridian loop.

For the definitions of the one bridge knots in lens spaces see section 5. Then our main result is

Theorem. Let M be a closed, connected Haken manifold with a Heegaard splitting of genus two. If M has a nontrivial torus decomposition then either
(i) M is obtained from $M_{1} \in D(2)$ and $M_{2} \in L_{K}$ by identifying their boundaries where the regular fiber of M_{1} is identified with the meridian loop of M_{2},
(ii) $\quad M$ is obtained from $M_{1} \in M \ddot{o}(n)(n=0,1$ or 2$)$ and $M_{2} \in M_{K}$ by identifying their boundaries where the regular fiber of M_{1} is identified with the meridian loop of M_{2},
(iii) $\quad M$ is obtained from $M_{1} \in D(n)(n=2$ or 3$)$ and $M_{2} \in M_{K}$ by identifying their boundaries where the regular fiber of M_{1} is identified with the meridian loop of M_{2},
(iv) M is obtained from $M_{1}, M_{2} \in D(2)$ and $M_{3} \in M_{L}$ by identifying their boundaries where the regular fiber of $M_{i}(i=1,2)$ is identified with the meridian loop of M_{2} or
(v) M is obtained from $M_{1} \in A(n)(n=0,1$ or 2$)$ and $M_{2} \in M_{L}$ by ident-
ifying their boundaries where the regular fiber of M_{1} is identified with the meridian loop of M_{2}.
Conversely if a 3-manifold has a decomposition as in (i)~(v) then it has a Heegaard splitting of genus two.

For the structures of the elements of L_{K}, M_{K} or M_{L} see Lemma 4.2, 4.4, 5.2.

In [9] Thurston listed eight 3-dimensional geometries with compact stabilizers and conjectured that every closed 3-manifold admits a geometric decomposition. Thurston's recent result [10] asserts that every closed, orientable 3-manifold with a Heegaard splitting of genus two has a geometric decomposition. Then our Theorem together with this result implies

Corollary. If M is a closed, orientable 3-manifold with a Heegaard splitting of genus two then either
(i) M admits one of the eight geometric structures stated in [9], or
(ii) M is one of $(\mathrm{i}) \sim(\mathrm{v})$ in the above theorem.

We note that for each of the eight geometric structures there is a 3-manifold which has a Heegaard splitting of genus two and admits the geometric structure. See section 7.

2. Preliminaries

Throughout this paper we will work in the piecewise linear category.
For the definitions of irreducible 3-manifolds, incompressible surfaces we refer to [1]. For the definitions of Haken manifolds we refer to [4].

Let M be a closed, connected 3-manifold. $\left(V_{1}, V_{2} ; F\right)$ is called a Heegaard splitting of M if each V_{i} is a 3-dimensional handlebody, $M=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then F is called a Heegaard surface of M. The first Betti number of V_{i} is called the genus of the Heegaard splitting.

For the definitions of Seifert fibered manifolds, orbit manifold, an isotopy of type A, hierarchy for a surface, an essential arc in a surface and other definitions of standard terms in three dimensional topology we refer to [4]. The 3-manifold M is simple if every incompressible torus in M is boundary parallel.

By [4] every closed Haken manifold contains a unique, maximal, perfectly embedded Seifert fibered manifold \sum which is called a characteristic Seifert pair for M. The components of the closure of $M-\sum$ are simple. The boundary of \sum consists of tori in M. If some components of them are parallel in M then we eliminate one of them from the system of tori. By proceeding
this step we get a system of tori in M which are mutaually non-parallel. We get simple manifolds and Seifert fibered manifolds by cutting M along these tori. In this paper, we call this decomposition a torus decomposition of M.

3. Essential annuli in genus two handlebody

Let F be a 2 -sided surface properly embedded in a 3 -manifold $M . F$ is essential if it is incompressible and not parallel to a surface in ∂M. Let M^{\prime} be a 3 -manifold obtained by cutting M along F. Then there are copies of F on ∂M^{\prime} and we denote the component of the copies also by F.

In this section we will classify the system of essential annuli in the genus two handlebody.

Lemma 3.1 If A is an incompressible annulus properly embedded in the solid torus V, the genus one handlebody, then A is boundary parallel.

Proof. First, we claim that A cuts V into two solid tori. ∂A cuts ∂V into two annuli A_{1}, A_{2}. Then $A \cup A_{i}(i=1,2)$ is a torus in V. Since $\pi_{1}(V) \cong \boldsymbol{Z}$, $A \cup A_{i}$ is compressible in V. By the loop theorem [1] and the irreducibility of V we see that $A \cup A_{i}$ bounds a solid torus V_{i}. Let $p_{i}(i=1,2)$ be a positive integer such that $\operatorname{Im}\left(i_{*} ; \pi_{1}(A) \rightarrow \pi_{1}\left(V_{i}\right)\right)=\left\langle a_{i}^{p_{i}}\right\rangle$, where a_{i} is a generator of $\pi_{1}\left(V_{i}\right)$. Then $\pi_{1}(V) \cong\left\langle a_{1}, a_{2}: a_{1}^{p_{1}}=a_{2}^{p_{2}}\right\rangle$. Then $p_{1}=1$ or $p_{2}=1$ for $\pi_{1}(V) \cong \boldsymbol{Z}$. If $p_{i}=1$ then A is parallel to A_{i}.

This completes the proof of Lemma 3.1.
Let D be a disk properly embedded in a handlebody $V . D$ is a meridian disk of V if D does not separate V. Let $\left\{D_{1}, \cdots, D_{n}\right\}$ be a system of mutually disjoint properly embedded disks in $V .\left\{D_{1}, \cdots, D_{n}\right\}$ is a complete system of meridian disks of V if $\bigcup_{i=1}^{n} D_{i}$ cuts V into a 3-cell.

Lemma 3.2 If A is an essential annulus in a genus iwo handlebody V then either
(i) A cuts V into a solid torus V_{1} and a genus two handlebody V_{2} and there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V_{2} such that $D_{1} \cap A=\phi$ and $D_{2} \cap A$ is an essential arc of A, or
(ii) A cuts V into a genus two handlebody V^{\prime} and there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V^{\prime} such that $D_{1} \cap A$ is an essential arc of A.

See Fig. 1.

Fig. 1

Proof. Since A is incompressible in V, by using the complete system of meridian disks of V we can find a disk Δ in V such that $\Delta \cap A=a$ is an essential arc of $A, \Delta \cap \partial V=b$ is an arc such that $\partial a=\partial b, a \cup b=\partial \Delta$. Then we can perform a surgery on A along Δ to get a disk D properly embedded in V. Since A is essential, D is essential, say D is a meridian disk of V or D cuts V into two solid tori.

If D cuts V into two solid tori $V^{\prime}, V^{\prime \prime}$ then there are copies $\Delta^{\prime}, \Delta^{\prime \prime}$ of Δ on ∂V^{\prime}. Then there is a meridian disk D_{1} of V^{\prime} such that $D_{1} \cap\left(\Delta^{\prime} \cup \Delta^{\prime \prime}\right)=\phi$. Since Δ^{\prime} and $\Delta^{\prime \prime}$ are identified in V cut along A, A cuts V into a solid torus V_{1} and a genus two handlebody V_{2}, where Δ is a meridian disk of V_{2} such that $\Delta \cap A$ is an essential arc of A. Then we set $D_{2}=\Delta$.

If D is a meridian disk of V then D cuts V into a solid torus V_{1}. There are copies $\Delta^{\prime}, \Delta^{\prime \prime}$ of Δ on ∂V_{1}. Since Δ^{\prime} and $\Delta^{\prime \prime}$ are identified in V cut along A, A cuts V into a genus two handlebody V^{\prime}. Then we set $D_{1}=\Delta$ and we
have the conclusion (ii).
This completes the proof of Lemma 3.2.
Let M be a 3-manifold and S be a 2-manifold contained in ∂M. Let F be a surface properly embedded in M. Then F is essential in (M, S) if F is incompressible, $\partial F \subset S$ and F is not parallel to a surface in S.

Lemma 3.3 Let V be a genus two handlebody and A_{1}, A_{2} be a system of mutually disjoint annuli in ∂V such that there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V which satisfies $D_{i} \cap A_{j}=\phi(i \neq j)$ and $D_{i} \cap A_{i}$ is an essential arc of $A_{i}(i=1,2)$. If A is an essential annulus in $\left(V, c l\left(\partial V-\left(A_{1} \cup A_{2}\right)\right)\right.$ then A is parallel to A_{1} or A_{2}.

Proof. Since A is incompressible in V, by using $\left\{D_{1}, D_{2}\right\}$ we can find a disk Δ in V such that $\Delta \cap A=a$ is an essential arc of $A, \Delta \cap c l\left(\partial V-\left(A_{1} \cup A_{2}\right)\right)=b$ is an arc such that $\partial a=\partial b, a \cup b=\partial \Delta$. Then we can perform a surgery on A along Δ to get an essential disk D such that $D \cap\left(A_{1} \cup A_{2}\right)=\phi$. Since $D \cap\left(A_{1} \cup A_{2}\right)=\phi, D$ cuts V into two solid tori V_{1}, V_{2}. We may suppose that $A_{i} \subset \partial V_{i}$. By assumption there is a meridian disk D_{i}^{\prime} of V_{i} such that $D_{i}^{\prime} \cap A_{i}$ is an essential arc of A_{i}. Then by the proof of Lemma $3.2 A$ cuts V into a genus two handlebody V_{1}^{\prime} and a solid torus V_{2}^{\prime}. We may suppose that $A_{2} \subset \partial V_{2}^{\prime}$. Then $\operatorname{Im}\left(i_{*}: \pi_{1}\left(A_{2}\right) \rightarrow \pi_{1}\left(V_{2}\right)\right)=\pi_{1}\left(V_{2}\right)$ and $A_{2} \cap A=\phi$. Hence A is parallel to A_{2}.

This completes the proof of Lemma 3.3.
For the two essential annuli in the genus two handlebody we have
Lemma 3.4 Let $\left\{A_{1}, A_{2}\right\}$ be a system of mutually disjoint, non-parallel, essential annuli in the genus two handlebody V. Then either
(i) $A_{1} \cup A_{2}$ cuts V into a solid torus V_{1} and a genus two handlebody V_{2}. Then $A_{1} \cup A_{2} \subset \partial V_{1}, A_{1} \cup A_{2} \subset \partial V_{2}$ and there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V_{2} such that $D_{i} \cap A_{j}=\phi(i \neq j)$ and $D_{i} \cap A_{i}$ $(i=1,2)$ is an essential arc of A_{i},
(ii) $A_{1} \cup A_{2}$ cuts V into two solid tori V_{1}, V_{2} and a genus two handlebody V_{3}. Then $A_{1} \subset \partial V_{1}, A_{2} \subset \partial V_{2}, A_{1} \cup A_{2} \subset \partial V_{3}$ and there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V_{3} such that $D_{i} \cap A_{j}=\phi(i \neq j)$ and $D_{i} \cap A_{i}(i=1,2)$ is an essential arc of A_{i} or
(iii) $A_{1} \cup A_{2}$ cuts V into a solid torus V_{1} and a genus two handlebody V_{2}. Then $A_{i} \subset \partial V_{1}(i=1$ or 2 , say 1$), A_{2} \cap V_{1}=\phi, A_{1} \subset \partial V_{2}$ and there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V_{2} such that $D_{1} \cap A_{2}$ is an essential arc of A_{2} and $D_{2} \cap A_{i}(i=1,2)$ is an essential arc of A_{i}.

See Fig. 2.

Fig. 2

Proof. There is a disk Δ in V such that $\Delta \cap A_{i}=\phi(i=1$ or 2 , say 2$)$, $\Delta \cap A_{1}=a$ is an essential arc of $A_{1}, \Delta \cap \partial V=b$ is an arc in $\partial \Delta$ such that $a \cap b$ $=\partial a=\partial b, a \cup b=\partial \Delta$. We can perform a surgery on A_{1} along Δ to get an essential disk D^{\prime} properly embedded in V. Then there is a disk Δ^{\prime} in V such that $\Delta^{\prime} \cap D^{\prime}=\phi, \Delta^{\prime} \cap A_{2}=a^{\prime}$ is an essential arc of $A_{2}, \Delta^{\prime} \cap \partial V=b^{\prime}$ is an arc in $\partial \Delta^{\prime}$ such that $a^{\prime} \cap b^{\prime}=\partial a^{\prime}=\partial b^{\prime}, a^{\prime} \cup b^{\prime}=\partial \Delta^{\prime}$. By performing a surgery on A_{2} along Δ^{\prime} we have an essential disk $D^{\prime \prime}$ in V, which is disjoint from D^{\prime}.

We claim that $\left\{D^{\prime}, D^{\prime \prime}\right\}$ is not a complete system of meridian disks of V. Assume that $\left\{D^{\prime}, D^{\prime \prime}\right\}$ is a complete system of meridian disks of V. Then we can move A_{2} by a small isotopy into V cut along $D^{\prime} \cup D^{\prime \prime}$. This contradicts the fact that A_{2} is incompressible in V.

Then we have the following three cases.
Case 1. D^{\prime} and $D^{\prime \prime}$ are parallel and D^{\prime} (hence, $D^{\prime \prime}$) does not separate V. In this case, we have the conclusion (i).

Case 2. D^{\prime} and $D^{\prime \prime}$ are parallel and D^{\prime} (hence, $D^{\prime \prime}$) cuts V into two solid tori. In this case, we have the conclusion (ii).

Case 3. D^{\prime} and $D^{\prime \prime}$ are not parallel. We claim that D^{\prime} does not separate V. Assume that D^{\prime} separate V into two solid tori V^{\prime} and $V^{\prime \prime}$. Then we may suppose that $A_{2} \subset V^{\prime}$. By Lemma $3.1 A_{2}$ is parallel to an annulus A_{2}^{\prime} in ∂V^{\prime}. Then $A_{2}^{\prime} \cap D^{\prime}=\phi$ for D^{\prime} and $D^{\prime \prime}$ are not parallel. But this contradicts the fact that A_{2} is essential.

Then since $\left\{D^{\prime}, D^{\prime \prime}\right\}$ is not a complete system of meridian disks, $D^{\prime \prime}$ separates V into two solid tori and we have the conclusion (iii).

This completes the proof of Lemma 3.4.
Lemma 3.5 Let $\left\{A_{1}, A_{2}, A_{3}\right\}$ be a system of pairwise disjoint, non-parallel essential annuli in the genus two handlebody V. Then $A_{1} \cup A_{2} \cup A_{3}$ cuts V into two solid tori V_{1}, V_{2} and a genus two handlebody V_{3} which satisfies

1. $A_{i} \subset \partial V_{1}(i=1,2$ or 3 , say 3$), A_{1}, A_{2} \subset \partial V_{3}, A_{1}, A_{2}, A_{3} \subset \partial V_{2}$.
2. there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of V_{3} such that $D_{i} \cap A_{j}=\phi(i \neq j)$ and $D_{i} \cap A_{i}(i=1,2)$ is an essential arc of A_{i} and
3. there is a meridian disk D_{3} of V_{2} such that $D_{3} \cap A_{i}(i=1,2,3)$ is an essential arc of A_{i}.

See Fig. 3.

Fig. 3
Proof. $\left\{A_{1}, A_{2}\right\}$ satisfies one of the conclusions of Lemma 3.4. First, we claim that $\left\{A_{1}, A_{2}\right\}$ does not satisfy (ii). Assume that $\left\{A_{1}, A_{2}\right\}$ satisfies (ii). Then $A_{1} \cup A_{2}$ separates V into two solid tori V_{1}, V_{2} and a genus two handlebody V_{3}. If $A_{3} \subset V_{1}$ or V_{2} then by Lemma $3.1 A_{3}$ is parallel to A_{1} or A_{2}, which is a contradiction. If $A_{3} \subset V_{3}$ then by Lemma $3.3 A_{3}$ is parallel to A_{1} or A_{2}, which is a contradiction and the claim is established.

If $\left\{A_{1}, A_{2}\right\}$ satisfies the conclusion (i) of Lemma 3.4 then $A_{1} \cup A_{2}$ cuts V into a solid torus V_{1} and a genus two handlebody V_{2} where $A_{1}, A_{2} \subset \partial V_{1}, A_{1}$, $A_{2} \subset \partial V_{2}$. By Lemma 3.3 we see that A_{3} is not contained in V_{2}. Then $A_{3} \subset V_{1}$ and by Lemma $3.1 A_{3}$ is parallel to an annulus A^{\prime} in ∂V_{1}. Since A_{3} is essential and is not parallel to $A_{i}(i=1,2), \partial A_{1} \cup \partial A_{2}$ is contained in A^{\prime}. Then we easily verify that $\left\{A_{1}, A_{2}, A_{3}\right\}$ satisfies the conclusions of Lemma 3.5.

If $\left\{A_{1}, A_{2}\right\}$ satisfies the conclusion (iii) then $A_{1} \cup A_{2}$ cuts V into a solid torus V_{1} and a genus two handlebody V_{2}, where $A_{1}, A_{2} \subset \partial V_{2}$ and $A_{i} \cap \partial V_{1}=\phi$ ($i=1$ or 2 , say 1). By Lemma 3.1 we see that A_{3} is contained in V_{2}. Since $A_{3} \cap\left(A_{1} \cup A_{2}\right)=\phi$, by Lemma 3.3 we see that A_{3} is parallel to an annulus A^{\prime} in ∂V_{2}. Since A_{3} is essential and is not parallel to $A_{i}(i=1,2)$, $\partial A_{1} \cup \partial A_{2}$ is contained in A^{\prime}. Then by changing the suffix we easily verify that $\left\{A_{1}, A_{2}, A_{3}\right\}$ satisfies the conclusions of Lemma 3.5.

This completes the proof of Lemma 3.5.

4. Two bridge knot, link complements

A knot is a simple closed curve in the 3 -sphere S^{3}. A link is a union of mutually disjoint simple closed curves in S^{3} with more than one component. For the definitions of the tzo bridge knots and links we refer to [8]. A exterior $Q(K)(Q(L)$ resp.) of a knot K (link L resp.) is the closure of the complement of a regular neighborhood of K (L resp.). The meridian of K (L resp.) is a simple loop in $\partial Q(K)(\partial Q(L)$ resp.) which bounds a meridian disk of the regular neighborhood of K (L resp.). A knot (link resp.) is simple if the exterior is a simple 3-manifold.

Lemma 4.1 Let $V_{i}(i=1,2)$ be the genus two handlebody and A_{1}^{i}, A_{2}^{i} $\left(\subset \partial V_{i}\right)$ be a system of pairwise disjoint, incompressible annuli such that there is a complete system of meridian disks $\left\{D_{1}^{i}, D_{2}^{i}\right\}$ of V_{i} which satisfies (i) $D_{k}^{i} \cap A_{l}^{i}=\phi$ $(k \neq l)$ and (ii) $D_{k}^{i} \cap A_{k}^{i}$ is an essential arc of $A_{k}^{i}(k=1,2)$. If M is obtained from V_{1} and V_{2} by identifying their boundaries by a homeomorphism $h: c l$ $\left(\partial V_{1}-\left(A_{1}^{1} \cup A_{2}^{1}\right)\right) \rightarrow c l\left(\partial V_{2}-\left(A_{1}^{2} \cup A_{2}^{2}\right)\right)$ then M is homeomorphic to certain two bridge knot complement or a two bridge link complement, where the component of ∂A_{j}^{i} corresponds to a meridian loop.

Proof. This can be proved by using the similar arguments of the section 4 of [5].

Lemma 4.2 If K is a non-trivial two bridge knot then $Q(K)$ admits a complete hyperbolic structure or is a Seifert fibered manifold with orbit manifold a disk with two exceptional fibers.

Proof. Since K is a simple knot [8], by [9] and the torus theorem [4] we see that $Q(K)$ admits a complete hyperbolic structure or is a special Seifert fibered manifold. If $Q(K)$ is a special Seifert fibered manifold then the orbit manifold is a disk or a Möbius band for $\partial Q(K)$ has one component (see 155p. of [4]). If the orbit manifold of $Q(K)$ is a Möbius band then it has no exceptional fibers. Hence $Q(K)$ is the twisted I-bundle over the Klein bottle but this is impossible for $Q(K)$ does not contain the Klein bottle.

This completes the proof of Lemma 4.2.
Let $\left\{a_{1}, \cdots, a_{n}\right\}$ be a system of mutually disjoint, essential arcs in a punctured torus T. We say that a_{i} is of type 1 if a_{i} joins distinct components of $\partial T, a_{i}$ is of type 2 if a_{i} joins one component of ∂T and a_{i} separates T, a_{i} is of type 3 if a_{i} joins one component of ∂T and a_{i} does not separate T. We say that a_{i} is a d-arc if a_{i} is of type 1 and there is a component S of ∂T such that a_{i} is the only arc that joins S.

The next Lemma is perhaps known but no reference could be found.

Lemma 4.3 Every two bridge link is a simple link.

Proof. Let L be a two bridge link. Since L is a union of two trivial tangles with two arcs, $Q(L)$ has a decomposition as in Lemma 4.1 (see section 4 of [5]). Then we use the notations in Lemma 4.1. Let T be an incompressible torus in $Q(L)$. We may suppose that the components of $T \cap V_{1}$ are all disks and that the number of the components of $T \cap V_{1}$ is minimum among all tori which are isotopic to T and the components of the intersection of each of which with V_{1} are all disks. Since T is incompressible, $T \cap V_{1} \neq \phi$.

Let $T_{2}=T \cap V_{2}$. Then by using D_{1}^{2}, D_{2}^{2} we have a hierarchy $\left(T_{2}^{(0)}, a_{0}\right), \cdots$, $\left(T_{2}^{(m)}, a_{m}\right)$ of T_{2} and a sequence of isotopies of type A which realizes the hierarchy as in [4]. Let $T^{(1)}$ be the image of T after an isotopy of type A at a_{0} and $T^{(k+1)}(k \geq 1)$ be the image of $T^{(k)}$ after an isotopy of type A at a_{k}.

Then we will show that $T \cap V_{1}$ consists of a disk.
Assume that $T \cap V_{1}$ consists of $n(\geq 2)$ disks D_{1}, \cdots, D_{n}. We claim that D_{1}, \cdots, D_{n} are mutually parallel in V_{1} and each D_{i} cuts V_{1} into two solid tori. If some D_{i} does not separate V_{1} then $D_{i} \cap\left(A_{1}^{1} \cup A_{2}^{1}\right) \neq \phi$ for $\operatorname{Im}\left(i_{*}: \pi_{1}\left(A_{1}^{1} \cup A_{2}^{1}\right)\right.$ $\left.\rightarrow \pi_{1}\left(V_{1}\right)\right)=\pi_{1}\left(V_{1}\right)$, which is a contradiction. By the minimality of T it follows that each D_{i} cuts V_{1} into two solid tori. Hence $D_{1} \cdots, D_{n}$ are mutually parallel and the claim is established.

Then we show
(*) $\quad a_{0}, \cdots, a_{n-1}$ are of type 3 and a_{i} and a_{j} joins pairwise distinct components of ∂T_{2} if $i \neq j$.

By Lemma 3.3 each essential annulus in ($V_{1}, c l\left(\partial V_{1}-\left(A_{1}^{1} \cup A_{2}^{1}\right)\right.$) is parallel to A_{1}^{1} or A_{2}^{1}. By Lemma 3.3 of [5] we see that a_{0}, a_{1} are of type 3 and we may suppose that a_{0}, a_{1} joins D_{1}, D_{2} respectively. Note that in [5] we considered the non-separating incompressible torus, but in Lemma 3.1, 3.2, 3.3 of [5] which are proved by using the argument of the inverse operation of isotopy of type A in [2] the non-separating property is not essential.

Assume that $\left(^{*}\right)$ does not hold then there is such $i(\geq 3)$ that a_{i} is not of type 3 or a_{i} is of type 3 and a_{i} joins D_{k} that some $a_{l}(l<i)$ joins. Then we may suppose that $a_{j}(j<i)$ is of type 3 and joins D_{j}. Then $T^{(i-1)} \cap V_{1}=A_{1} \cup$ $\cdots \cup A_{i-1} \cup D_{i} \cup \cdots \cup D_{n}$, where each A_{i} is an essential annulus in $\left(V_{1}, c l\left(\partial V_{1}\right.\right.$ $\left.\left.-\left(A_{1}^{1} \cup A_{1}^{2}\right)\right)\right)$.

Assume that a_{i} is of type 1. If a_{i} joins some A_{k} and $D_{l}(l \geq i)$ or D_{k} and $D_{l}(k, l \geq i)$ as an arc on $T^{(i-1)} \cap V_{2}$ then $T^{(i)} \cap V_{1}$ consists of $i-1$ annuli and $n-i$ disks. Then by performing a sequence of isotopies of type A on $T^{(i)}$ we have such a torus T^{\prime} that $T^{\prime} \cap V_{1}$ consists of $n-1$ disks, which contradicts the minimality of T. If a_{i} joins some A_{k} and A_{l} then A_{k} is parallel to A_{l} in V_{1} for D_{i} separates V_{1} into two solid tori. Then $T^{(i)} \cap V_{1}$ consists of $i-2$
annuli, $n-i$ disks and one disk with two holes B. Some component l of ∂B bounds a disk on ∂V. Since T is incompressible and $Q(L)$ is irreducible, we see that l bounds a disk on $T^{(i)}$ and there is an ambient isotopy $h_{t}(0 \leq t \leq 1)$ of $Q(L)$ such that $h_{1}\left(T^{(i)}\right) \cap V_{1}$ consists of $i-1$ annuli and $n-i$ disks. Then we have a contradiction as above.

Assume that a_{i} is of type 2. Then there is an arc a in ∂T_{2} such that $a \cap a_{i}$ $=\partial a=\partial a_{i}, a \cup a_{i}$ bounds a planar surface P in T_{2}. We easily see that some $a_{j}(\subset P)$ is a d-arc. Hence by Lemma 3.1 of [5] T is ambient isotopic to such a torus T^{\prime} that $T^{\prime} \cap V_{1}$ consists of $n-1$ disks, which is a contradiction.

Assume that a_{i} is of type 3 and a_{i} joins $D_{j}(j<i)$. Then there are two arcs b_{1}, b_{2} in ∂T_{2} such that $a_{j} \cup b_{1} \cup a_{i} \cup b_{2}$ is a simple loop in T_{2} and $a_{j} \cup b_{1} \cup a_{i} \cup b_{2}$ bounds a planar surface P in T_{2}. Then see that some $a_{k}(\subset P)$ is a d-arc and we have a contradiction as above.

Hence $\left({ }^{*}\right)$ is established.
Then $T^{(n)} \cap V_{1}\left(T^{(n)} \cap V_{2}\right.$ resp.) consists of n essential annuli A_{1}, \cdots, A_{n} ($A_{1}^{\prime}, \cdots, A_{n}^{\prime}$ resp.). By Lemma 3.3 each A_{i} is parallel to either A_{1}^{1} or A_{2}^{1}. We may suppose that A_{n} is outermost in ($V_{1}, c l\left(\partial V_{1}-\left(A_{1}^{1} \cup A_{2}^{1}\right)\right)$) and is parallel to A_{1}^{1}. Then some A_{j}^{\prime} is parallel to $A_{k}^{2}(k=1$ or 2$)$ and $\partial A_{n}=\partial A_{j}^{\prime}$. This contradicts the fact that $n \geq 2$.

Hence $T \cap V_{1}$ consists of a disk. Then $T^{(1)} \cap V_{i}$ consists of an annulus A^{i} which is parallel to $A_{j}^{i}(j=1$ or 2$)$. Hence $T^{(1)}$ is parallel to a component of $\partial Q(L)$.

This completes the proof of Lemma 4.3.
Lemma 4.4 If L is a two bridge link then $Q(L)$ admits a complete hyperbolic structure or is a Seifert fibered manifold with orbit manifold an annulus with at most one exceptional fiber.

Proof. By Lemma 4.3 together with [4] and [9] $Q(L)$ is a hyperbolic manifold or a special Seifert fibered manifold. If $Q(L)$ is a special Seifert fibered manifold then the orbit manifold of $Q(L)$ is an annulus and it has at most one exceptional fiber for $\partial Q(L)$ has two components.

5. One bridge knots in lens spaces

Let us give the definition of the one bridge knot in a lens space. For the definition of lens spaces we refer to 20 p . of [1]. In this paper we think that $S^{3}, S^{2} \times S^{1}$ are lens spaces. Let V be a solid torus and let a be an arc properly embedded in V. We say that a is trivially embedded in V if there is a disk D in V such that $D \cap \partial V=b$ an arc, $c l(\partial D-b)=a$. It is easily seen that if a^{\prime} is another trivially embedded arc in V then there is an ambient isotopy h_{t} $(0 \leq t \leq 1)$ of V such that $h_{1}(a)=a^{\prime}$. Let K be a knot in a lens space L_{n}. We say that K is a one bridge knot in L_{n} if there is a Heegaard splitting $\left(V_{1}, V_{2}\right.$;
$F)$ of L_{n} of genus one such that $V_{i} \cap K(i=1,2)$ is an arc trivially embedded in V_{i}. We denote the exterior of K also by $Q(K)$. Then we can naturally define a meridian loop on $Q(K)$.

Lemma 5.1 Let $V_{i}(i=1,2)$ be a genus two handlebody and $A_{i}\left(\subset \partial V_{i}\right)$ be an incompressible annulus such that there is a complete system of meridian disks $\left\{D_{1}^{i}, D_{2}^{i}\right\}$ of V_{i} which satisfies (i) $D_{1}^{i} \cap A_{i}=\phi$ and (ii) $D_{2}^{i} \cap A_{i}$ is an essential arc of A_{i}. If M is obtained from V_{1} and V_{2} by identifying their boundaries by a homeomorphism $h: c l\left(\partial V_{1}-A_{1}\right) \rightarrow c l\left(\partial V_{2}-A_{2}\right)$ then M is homeomorphic to certain one bridge knot complement in lens space, where the component of ∂A_{i} corresponds to a meridian loop.

Proof. This is proved by using the similar arguments of the proof of Lemma 4.1.

Lemma 5.2 Let K be a one bridge knot in a lens space L_{n}. If $Q(K)$ is a Seifert fibered manifold with incompressible boundary, whose regular fiber is not a meridian loop then either
(i) $Q(K) \in D(2)$ where the regular fiber in $\partial Q(K)$ intersects their meridian loop transversely in a single point,
(ii) $Q(K) \in M \ddot{o}(1)$ where the regular fiber in $\partial Q(K)$ intersects the meridian loop transversely in a single point or
(iii) $Q(K)$ is homeomorphic to the twisted I-bundle over the Klein bottle.

Proof. We fix the fiber structure of $Q(K)$. Since an incompressible torus in $Q(K)$ is separating, the orbit manifold of $Q(K)$ is a disk or a Möbius band.

Suppose that the orbit manifold of $Q(K)$ is a disk. First we claim that L_{n} does not admit such a Seifert fibration that the orbit manifold is a 2 -sphere with $n(\geq 3)$ exceptional fibers. $n \geq 4$ implies that L_{n} contains an incompressible torus, which is a contradiction. By Theorem 12.2 of [1] $n=3$ implies that there is an epimorphism from $\pi_{1}\left(L_{n}\right)$ to the group

$$
G=\left\langle a, b ; a^{p}=b^{q}=(a b)^{r}=1\right\rangle \quad(p, q, r>1)
$$

This is impossible for G is not a cyclic group [7] and the claim is established.
Assume that $Q(K)$ contains $m(\geq 3)$ exceptional fibers. Then since the regular fiber of $Q(K)$ is not a meridian loop, L_{n} admits such a Seifert fibration that the orbit manifold is a 2 -sphere with m or $m+1$ exceptional fibers, which contradicts the above claim. Hence $Q(K)$ contains two exceptional fibers. Then if the regular fiber is not isotopic to a loop which intersects the meridian loop transversely in a single point then L_{n} admits such a Seifert fibration that the orbit manifold is a 2 -sphere with three exceptional fibers, which contradicts the above claim.

Then we have the conclusion (i).
Suppose that the orbit manifold of $Q(K)$ is a Möbius band. Since L_{n} does not contain an incompressible torus $Q(K)$ contains at most one exceptional fibers. If $Q(K)$ contains one exceptional fiber then the regular fiber intersects the meridian loop transversely in a single point and we have the conclusion (ii). If $Q(K)$ contains no exceptional fibers then we have the conclusion (iii).

This completes the proof of Lemma 5.2.

6. Proof of Theorem

Lemma 6.1 Let M be a simple manifold whose boundary components are all tori. If M contains an essential annulus then M is a Seifert fibered manifold.

Proof. This is a consequence of the characteristic Seifert pair theorem [4].
We shall divide the proof of Theorem into several cases.
Case 1. M contains a non-separating incompressible torus. In this case by Theorem 2 of [5] we have the conclusion (v) of the Theorem.

Hereafter, we will suppose that each incompressible torus in M is separating.

Case 2. M is decomposed into two components M_{1}, M_{2} by the torus decomposition. Let T be the torus which cuts M into M_{1}, M_{2} and (V_{1}, V_{2}; F) be a genus two Heegaard splitting of M. We may suppose that the components of $T \cap V_{1}$ are all disks and that the number of the components of $T \cap V_{1}$ is minimum among all tori which are isotopic to T and the components of the intersection of each of which with V_{1} are all disks. Let $T_{2}=T \cap V_{2}$. Then as in [4] we have a hierarchy $\left(T_{2}^{(0)}, a_{0}\right), \cdots,\left(T_{2}^{(m)}, a_{m}\right)$ of T_{2} and a sequence of isotopies of type A which realizes the hierarchy. Let $T^{(1)}$ be the image of T after an isotopy of type A at a_{0} and $T^{(k+1)}(k \geq 1)$ be the image of $T^{(k)}$ after an isotopy of type A at a_{k}.

Then we claim that $T \cap V_{1}$ consists of at most two components. Assume that $T \cap V_{1}$ consists of $n(\geq 3)$ disks D_{1}, \cdots, D_{n}. Then by [5] a_{0}, a_{1} are of type 3 and, hence, $T^{(1)} \cap V_{1}=A_{1} \cup D_{2} \cup \cdots \cup D_{n}, T^{(2)} \cap V_{1}=A_{1} \cup A_{2} \cup D_{3} \cup \cdots \cup D_{n}$, where $A_{i}(i=1,2)$ is an essential annulus in V_{1}. If D_{1}, D_{2} are separating in V_{1} and A_{1}, A_{2} are parallel in V_{1} then there are two annuli $A^{\prime}, A^{\prime \prime}$ in ∂V_{1} such that $A^{\prime} \cap\left(A_{1} \cup A_{2}\right)=A^{\prime} \cap A_{1}=\partial A^{\prime}=\partial A_{1}, \quad A^{\prime \prime} \cap\left(A_{1} \cup A_{2}\right)=\partial A^{\prime \prime}, A^{\prime} \cap A^{\prime \prime}$ is a component of ∂A_{1}. We may suppose that $A^{\prime} \subset M_{1}$ and $A^{\prime \prime} \subset M_{2}$. See Fig. 4. By the minimality of T, A^{\prime} ($A^{\prime \prime}$ resp.) is an essential annulus in M_{1} (M_{2} resp.). Hence by Lemma 6.1 and Theorem VI. 34 of [4] M_{1} and M_{2} admit such Seifert fibrations that the component of ∂A_{1} is a regular fiber. Hence M admits a Serfert fibration, which is a contradiction. If D_{1}, D_{2} are separating in V_{1} and A_{1} is not parallel to A_{2} in V_{1} then D_{1}, \cdots, D_{n} are parallel in V_{1}. See Fig.

Fig. 4

Fig. 5
5. Since each a_{i} is not a d-arc [5], a_{2} is of type 3 and we may suppose that $T^{(3)} \cap V_{1}=A_{1} \cup A_{2} \cup A_{3} \cup \cdots \cup D_{n}$ where A_{3} is an essential annulus in V_{1}. Then A_{3} is parallel to A_{1} or A_{2} (Lemma 3.3) and we have a contradiction as above. If D_{1} is separating and D_{2} is non-separating in V_{1} then there exists annuli $A^{\prime}, A^{\prime \prime}$ as above and we have a contradiction. Since A_{1} is incompressible, the case of D_{1} being non-separating and D_{2} being separating cannot occur. If D_{1}, D_{2} are non-separating in V_{1} then D_{1}, \cdots, D_{n} are mutually parallel in V_{1}. Since each a_{i} is not a d-arc, a_{2} is of type 3 and we may suppose that $T^{(3)} \cap V_{1}$ $=A_{1} \cup A_{2} \cup A_{3} \cup \cdots \cup D_{n}$, where A_{3} is an essential annulus in V_{1}. Then there exists annuli $A^{\prime}, A^{\prime \prime}$ in ∂V_{1} such that $A^{\prime} \cap\left(A_{1} \cup A_{2} \cup A_{3}\right)=\partial A^{\prime}, A^{\prime \prime} \cap\left(A_{1}\right.$ $\left.\cup A_{2} \cup A_{3}\right)=\partial A^{\prime \prime}$ and $A^{\prime} \cap A^{\prime \prime}$ is a component of ∂A^{\prime}. Then we have a contradiction as above and we establish the claim.

Now, we have two subcases.

Fig. 6
Case 2.1. $T \cap V_{1}$ consists of a disk D_{1}. Since T separates M, D_{1} cuts V_{1} into two solid tori. Let $A_{1}=V_{1} \cap T^{(1)}, A_{2}=V_{2} \cap T^{(1)}$. Then by Lemma $3.2 A_{i}(i=1,2)$ cuts V_{i} into a solid torus V_{i}^{1} and a genus two handlebody V_{i}^{2}. By attaching V_{1}^{1} and V_{2}^{1} along $c l\left(\partial V_{i}^{1}-A_{i}\right)$ we have $M_{1}(\in D(2))$ and by attaching V_{1}^{2} and V_{2}^{2} along $\operatorname{cl}\left(\partial V_{i}^{2}-A_{i}\right)$ we have $M_{2}\left(\in L_{K}\right)$ (Lemma 5.1). Then we have the conclusion (i) of the Theorem.

Case 2.2. $\quad T \cap V_{1}$ consists of two disks D_{1}, D_{2}. In this case $T^{(2)} \cap V_{1}$ ($T^{(2)} \cap V_{2}$ resp.) consists of two essential annuli A_{1}, A_{2} ($A_{1}^{\prime}, A_{2}^{\prime}$ resp.).

We claim that if A_{1} is parallel to A_{2} then A_{1}, A_{2} satisfies the conclusion (i) of Lemma 3.4. First, we show that A_{1} is non-separating in V_{1}. If A_{1} is separating in V_{1} then there are annuli $A^{\prime}, A^{\prime \prime}$ in ∂V_{1} such that $A^{\prime} \cap\left(A_{1} \cup A_{2}\right)$ $=A^{\prime} \cap A_{1}=\partial A^{\prime}=\partial A_{1}, A^{\prime \prime} \cap\left(A_{1} \cup A_{2}\right)=\partial A^{\prime \prime}, A^{\prime} \cap A^{\prime \prime}$ is a component of ∂A^{\prime}. Hence we have a contradiction as in Case 2. Then by Lemma $3.2 A_{1}$ cuts V_{1} into a genus two handlebody V^{\prime}. Let $A_{1}^{\prime}, A_{1}^{\prime \prime}$ be the copies of A_{1} on V^{\prime}. By the proof of Lemma 3.4 we can show that there is a complete system of meridian disks $\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ of V^{\prime} such that $\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right) \cap A_{1}^{\prime}=D_{1}^{\prime} \cap A_{1}^{\prime}$ is an essential arc of $A_{1}^{\prime},\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right) \cap A_{1}^{\prime \prime}=D_{2}^{\prime} \cap A_{1}^{\prime \prime}$ and each component of $D_{2}^{\prime} \cap A_{1}^{\prime \prime}$ is an essential arc of $A_{1}^{\prime \prime}$. If needed by exchanging A_{1} and A_{2} we may suppose that A_{2} is parallel to $A_{1}^{\prime \prime}$ in V^{\prime}. We will show that D_{2}^{\prime} can be taken so that $D_{2}^{\prime} \cap A_{1}^{\prime \prime}$ is an essential arc of $A_{1}^{\prime \prime}$. If this is done then the claim is established. Since A_{1} is parallel to A_{2} there is an annulus $A^{\prime \prime \prime}$ in ∂V_{1} such that $A^{\prime \prime \prime} \cap A_{i}$ $(i=1,2)$ is a component of $\partial A^{\prime \prime \prime}$. We may suppose that $A^{\prime \prime \prime} \subset M_{1}$. Then $A^{\prime \prime \prime}$ is an essential annulus in M_{1} and by Lemma 6.1 and [4] M_{1} admits such a Seifert fibration that $A^{\prime \prime \prime}$ is a union of regular fibers. If the meridian disk D_{2}^{\prime} as above cannot taken then there is an essential annulus A_{3} in V^{\prime} such that $A_{3} \cap T^{(2)}=A_{3} \cap A_{2}=\partial A_{3}=\partial A_{2}, \quad A_{3} \cap D_{1}^{\prime}=\phi, \quad A_{3}$ is not parallel to A_{2} and $A_{2} \cup A_{3}$ bounds a solid torus T^{\prime} in V^{\prime}. See Fig. 6. Then $M_{1}^{\prime}=M_{1} \cup T^{\prime}$
admits a Seifert fibration and M_{1}^{\prime} is not homotopic into M_{1}. This contradicts the maximal property of the characteristic Seifert pair.

By the above claim and Lemma 3.4 we see that $\left\{A_{1}, A_{2}\right\}$ ($\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ resp.) satisfies one of the conclusions of Lemma 3.4.

Note that $\left\{A_{1}, A_{2}\right\}$ ($\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ resp.) does not satisfy the conclusion (iii) of Lemma 3.4 for $T^{(2)}$ is separating in M.

We claim that either $\left\{A_{1}, A_{2}\right\}$ or $\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ does not satisfy the conclusion (ii) of Lemma 3.4. Assume that both $\left\{A_{1}, A_{2}\right\}$ and $\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ satisfy (ii) of Lemma 3.4. Then $A_{1} \cup A_{2}$ ($A_{1}^{\prime} \cup A_{2}^{\prime}$ resp.) cuts V_{1} (V_{2} resp.) into two solid tori and a genus two handlebody, but this contradicts the fact that $T^{(2)}$ is connected.

Then we have two subcases.
Case 2.2.1. Both $\left\{A_{1}, A_{2}\right\}$ and $\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ satisfy the conclusion (i) of Lemma 3.4. In this case $A_{1} \cup A_{2}\left(A_{1}^{\prime} \cup A_{2}^{\prime}\right.$ resp.) cuts V_{1} (V_{2} resp.) into a solid torus $V_{1}^{(1)}\left(V_{1}^{(2)}\right.$ resp.) and a genus two handlebody $V_{2}^{(1)}$ ($V_{2}^{(2)}$ resp.) where $A_{1} \cup A_{2} \subset \partial V_{1}^{(1)}, A_{1} \cup A_{2} \subset \partial V_{2}^{(1)}\left(A_{1}^{\prime} \cup A_{2}^{\prime} \subset \partial V_{1}^{(2)}, A_{1}^{\prime} \cup A_{2}^{\prime} \subset \partial V_{2}^{(2)}\right.$ resp.). By attaching $V_{1}^{(1)}$ and $V_{1}^{(2)}$ along $\operatorname{cl}\left(\partial V_{1}^{(i)}-\left(A_{1} \cup A_{2}\right)\right)$ we get $M_{1}(\in M o(n)$, $n=0,1$ or 2$)$ and by attaching $V_{2}^{(1)}$ and $V_{2}^{(2)}$ along $\operatorname{cl}\left(\partial V_{2}^{(i)}-\left(A_{1} \cup A_{2}\right)\right)$ we get $M_{2}\left(\in M_{K}\right)$ (Lemma 4.1). Then we have the conclusion (ii) of the Theorem.

Case 2.2.2. $\left\{A_{1}, A_{2}\right\}$ satisfies the conclusion (i) and $\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ satisfies the conclusion (ii) of Lemma 3.4. In this case $A_{1} \cup A_{2}$ cuts V_{1} into a solid torus $V_{1}^{(1)}$ and a genus two handlebody $V_{2}^{(1)}, A_{1}^{\prime} \cup A_{2}^{\prime}$ cuts V_{2} into two solid tori $V_{1}^{(2)}, V_{2}^{(2)}$ and a genus two handlebody $V_{3}^{(2)}$. By attaching $V_{1}^{(1)}$ and $V_{1}^{(2)} \cup V_{2}^{(2)}$ along $c l\left(\partial V_{1}^{(1)}-\left(A_{1} \cup A_{2}\right)\right)$ and $c l\left(\partial V_{1}^{(2)}-A_{1}\right) \cup c l\left(\partial V_{2}^{(2)}-A_{2}\right)$ we get $M_{1}(\in D(n), n=2$ or 3$)$ and by attaching $V_{2}^{(1)}$ and $V_{3}^{(2)}$ along $c l\left(\partial V_{2}^{(1)}-\left(A_{1} \cup A_{2}\right)\right)$ and $c l\left(\partial V_{3}^{(2)}-\left(A_{1} \cup A_{2}\right)\right)$ we get $M_{2}\left(\in M_{K}\right)$ (Lemma 4.1).

Then we have the conclusion (iii) of the Theorem.
Case 3. M is decomposed into three components M_{1}, M_{2} and M_{3} by the torus decomposition. Let T_{1}, T_{2} be the pair of tori which cuts M into M_{1}, M_{2} and M_{3} and let $T=T_{1} \cup T_{2}$. Then we may suppose that $T_{1} \subset \partial M_{1}$, $T_{2} \subset \partial M_{3}$ and $T \subset \partial M_{2}$. Let $\left(V_{1}, V_{2} ; F\right)$ be a genus two Heegaard splitting of M. Then we may suppose that the components of $T \cap V_{1}$ are all disks and that the number of the components of $T \cap V_{1}$ is minimum among all the pair of tori which are isotopic to T and the components of the intersection of each of which with V_{1} are all disks. Let $T^{\prime}=T \cap V_{2}$. Then we have a hierarchy $\left(T^{\prime(0)}, a_{0}\right), \cdots,\left(T^{\prime(m)}, a_{m}\right)$ of T^{\prime} and a sequence of isotopies of type A which realizes the hierarchy.

We will show that we may suppose that a_{0} and a_{1} are of type 3 and a_{1} joins distinct component of ∂T^{\prime} that a_{0} joins. By the argument of section 3 of [5] both a_{0} and a_{1} are of type 3. Suppose that a_{1} joins the same component of
∂T^{\prime} that a_{0} joins. We may suppose that $a_{0}, a_{1} \subset T_{1}$. Then $T_{1} \cap V_{1}$ consists of a disk D_{1} for if $T_{1} \cap V_{1}$ has more than one component then $a_{0} \cup a_{1}$ cuts T_{1} $\cap V_{2}$ into a planar surface and hence some $a_{i}\left(\subset T_{1} \cap V_{2}\right)$ is a d-arc, which contradicts the minimality of T (see Lemma 3.1 of [5]). Let T_{1}^{\prime} be the image of T_{1} atter an isotopy of type A at a_{0}. Then $T_{1}^{\prime} \cap V_{1}=A_{1}\left(T_{1}^{\prime} \cap V_{2}=A_{1}^{\prime}\right.$ resp.) is an essential annulus in $V_{1}\left(V_{2}\right.$ resp.). Since T_{1} is separating in M, A_{1}^{\prime} cuts V_{2} into a solid torus $V_{1}^{(2)}$ and a genus two handlebody $V_{2}^{(2)}$ where there is a complete system of meridian disks $\left\{D_{1}, D_{2}\right\}$ of $V_{2}^{(2)}$ such that D_{1} $\cap A_{1}^{\prime}=\phi, D_{2} \cap A_{1}^{\prime}$ is an essential arc of A_{1}^{\prime}. Since $T_{2} \cap V_{2}$ is incompressible in $V_{2},\left(T_{2} \cap V_{2}\right) \subset V_{2}^{(2)}$. Then by using $\left\{D_{1}, D_{2}\right\}$ we can define an isotopy of type A at some essential arc b in $T_{2} \cap V_{2}$. Then by the minimality of T, b is of type 3. Hence by taking b as a_{1} we may suppose that a_{0}, a_{1} are of type 3 and a_{1} joins distinct component of ∂T^{\prime} that a_{n} joins.

Then by the argument of Case 2 we see that $T \cap V_{1}$ consists of two disks. Let T^{1} be the image of T after an isotopy of type A at a_{0}, T^{2} be the image of T^{1} after an isotopy of type A at a_{1}. Then $T^{2} \cap V_{1}\left(T^{2} \cap V_{2}\right.$ resp.) consists of two essential annuli $A_{1}, A_{2}\left(A_{1}^{\prime}, A_{2}^{\prime}\right.$ resp.) where $\partial A_{1}=\partial A_{1}^{\prime}$ and $\partial A_{2}=\partial A_{2}^{\prime}$. By the argument of Case $2.2\left\{A_{1}, A_{2}\right\}\left(\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}\right.$ resp.) satisfies one of the conclusions of Lemma 3.4.

Since T_{1} and T_{2} are separating in M, each A_{i} (A_{i}^{\prime} resp.) is esparating in $V_{1}\left(V_{2}\right.$ resp.). Hence both $\left\{A_{1}, A_{2}\right\}$ and $\left\{A_{1}^{\prime}, A_{2}^{\prime}\right\}$ satisfy the conclusion (ii) of Lemma 3.4. $A_{1} \cup A_{2}\left(A_{1}^{\prime} \cup A_{2}^{\prime}\right.$ resp.) cuts $V_{1}\left(V_{2}\right.$ resp.) into two solid tori $V_{1}^{(1)}, V_{2}^{(1)}\left(V_{1}^{(2)}, V_{2}^{(2)}\right.$ resp.) and a genus two handlebody $V_{3}^{(1)}\left(V_{3}^{(2)}\right.$ resp.) where $A_{i} \subset \partial V_{i}^{(1)}\left(A_{i}^{\prime} \subset \partial V_{i}^{(2)}\right.$ resp.) $(i=1,2)$. By attaching $V_{1}^{(1)}$ and $V_{1}^{(2)}$ $\left(V_{2}^{(1)}\right.$ and $V_{2}^{(2)}$ resp.) along $c l\left(\partial V_{1}^{(1)}-A_{1}\right)$ and $c l\left(\partial V_{1}^{(2)}-A_{1}^{\prime}\right)\left(c l\left(\partial V_{2}^{(1)}-A_{2}\right)\right.$ and $c l\left(\partial V_{2}^{(2)}-A_{2}^{\prime}\right)$ resp. $)$ we get $M_{1}(\in D(2))\left(M_{2} \in D(2)\right.$ resp. $)$. By attaching $V_{3}^{(1)}$ and $V_{3}^{(2)}$ along $c l\left(\partial V_{3}^{(1)}-\left(A_{1} \cup A_{2}\right)\right)$ and $c l\left(\partial V_{3}^{(2)}-\left(A_{1}^{\prime} \cup A_{2}^{\prime}\right)\right)$ we get $M_{3}\left(\in M_{L}\right)$ (Lemma 4.1).

Then we have the conclusion (iv) of the Theorem.
Note that M does not have such a torus decomposition that M decomposed into more than three components. Assume that M has such a decomposition. Let $T_{1}, \cdots, T_{n}(n \geq 3)$ be a system of tori which gives the decomposition. We may suppose that each component of $\left(T_{1} \cup \cdots \cup T_{n}\right) \cap V_{1}$ is a disk. Note that $\left(T_{1} \cup \cdots \cup T_{n}\right) \cap V_{1}$ has more than two components and we can derive a contradiction by using the arguments of Case 2.

If M admits a decomposition as in (i) $\sim(\mathrm{v})$ of Theorem then by tracing the above arguments conversely we can show that M has a Heegaard splitting of genus two.

This completes the proof of Theorem.

7. Geometric structures of the 3-manifolds with Heegaard splittings of genus two

In this section we show that for each of eight geometric structures in [9] there exists a 3 -manifold M which has a Heegaard splitting of genus two and admits the geometric structure.

Lemma 7.1 If M is a Seifert fibered manifold with orbit manifold a 2sphere with three exceptional fibers then M has a Heegaard splitting of genus two.

Proof. Let f be an exceptional fiber in M and Q be the closure of the complement of a regular neighborhood of f. Then Q contains such an essential annulus A that A cuts Q into two solid tori. Let a be an essential arc in A and V_{1} be a regular neighborhood of $N \cup a$ in M. Then V_{1} is a genus two handlebody. We easily see that $c l\left(M-V_{1}\right)$ is also a genus two handlebody.

This completes the proof of Lemma 7.1.
Let M be a Seifert fibered manifold as in Lemma 7.1. Then by Theorem 12.1 of $[1] \pi_{1}(M)$ has the presentation

$$
\left\langle a, b, c, t ;[a, t]=[b, t]=[c, t]=1, a^{p}=t^{p^{\prime}}, b^{q}=t^{q^{\prime}}, c^{r}=t^{r^{\prime}}, a b c=1\right\rangle
$$

where $p>1, q>1, r>1$. Then for the geometric structure of M the following theorem is given by Kojima [6].

Theorem. If M is a Seifert fibered manifold as above then M admits a geometric structure according to the table:

$1 / p+1 / q+1 / r$	>1	$=1$	<1
$p^{\prime} \mid p+q^{\prime} / q+r^{\prime} / r$	ϕ	type 2	type 5
$=0$	type 1	type 7	type 6
$\neq 0$			

where the type of geometries appears in [9].
Then by Lemma 7.1 we see that for each of the geometries that appeared in the above Theorem there is a 3-manifold with a Heegaard splitting of genus two, which has the geometric structure.

The examples of the 3-manifolds with Heegaard splittings of genus two in the hyperbolic geometry (type 3) are obtained by Dehn surgery on the figure eight knot [11].

The closed 3-manifolds in the type 4 geometry are only either $S^{2} \times S^{1}$ or $P^{3} \# P^{3}$, each of which has a Heegaard splitting of genus two.

Any torus bundle over S^{1} with a hyperbolic monodromy has type 8 geometric structure [9]. Then the torus bundle whose monodromy is $\left(\begin{array}{cc}0 & 1 \\ -1 & m\end{array}\right)$
($m \geq 3$) has type 8 geometric structure and by [3] it has a Heegaard splitting of genus two.

References

[1] J. Hempel: 3-manifolds, Ann. of Math. Studies No. 86, Princeton N.J., Princeton University Press, 1976
[2] M. Ochiai: On Haken's theorem and its extension, Osaka J. Math. 20 (1983), 461-468.
[3] M. Takahashi and M. Ochiai: Heegaard diagrams of torus bundle over S^{1}, Comment. Math. Univ. S. Paul. 31 (1982), 63-69
[4] W. Jaco: Lectures on three manifold topology, Conference Board of Math. Science, Regional Conference Series in Math. No. 43, 1980
[5] T. Kobayashi: Non-separating incompressible tori in 3-manifolds, J. Math. Soc. Japan 36 (1984), 11-22
[6] S. Kojima: A construction of geometric structures on Seifert fibered spaces, preprint
[7] W. Magnus: Noneuclidean tessalations and their groups, Academic Press, 1974
[8] D. Rolfsen: Knots and links, Mathematics Lecture Series 7, Berkeley Ca., Publish Inc. 1976
[9] W. Thurston: Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381
[10] —: Three manifolds with symmetry, preliminary report (1982).
[11] -: Geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1978

