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1. Introduction

In obtaining the lower bound in the celebrated law of large deviation of
the occupation distribution for the one dimensional Brownian motion, Donsker
and Varadhan [3] performed a transformation of the absorbing Brownian mo-
tion on an interval (a, b) by a drift b=(log p)\ or equivalently, by a multiplica-
tive functional

into a conservative process on (a> b) with invariant probability measure p2dx,
to which the ergodic theorem was well applied. Here p2 is assumed to be a
probability density O2-function on i?1, positive inside (a, b) and vanishing out-
side.

We show in this paper that their method works for any symmetric Hunt
process corresponding to a regular and irreducible Dirichlet form. In the
present general case, we take function p from the range of the resolvent. In
order to prove the conservativeness of transformed process, we make full use
of an explicit expression of the transformed Dirichlet form, while the Feller
test of non-explosion was available in the special case of [3],

We consider a locally compact separable metric space X and a positive
Radon measure m on X such that Supp[wz]=JY". The inner product in real
L2 space L?(X; m) is denoted by ( , ) and CQ(X) stands for the space of con-
tinuous functions on X with compact support. Let M—(Xt, Px, ζ) be a Hunt
process on X which is m-symmetric in the sense that the transition function
Pt satisfies (Ptf, g)=(f, Ptg), /, g(ΞC0(X). Then the Dirichlet form E of M
can be defined by F=D[E]=D(\/^A), E(U, v)=(\/^Aΰy ^"^^Av) where A
is the infinitesmal generator of the semigroup on L\X\ m) determined by Pt.
We always assume that E is regular: F Π C0(X) is dense both in F and in CQ(X),

In § 2, we derive the Beurling-Deny formula
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E{u, v)=\\ <#<...> + ( (ΰ(x)-ΰ(y))(v(x)-ϋ(y))J(dx, dy)+\ ΰvk ,
Z JX JXxX-d J X

together with the derivation property of the local energy measure μ<uv> due to
Le Jan ([11]). Our approach is more comprehensive than [6] and [11], and
indeed we first decompose the martingale part M1"1 of the additive functional
u(Xt)—u(X0) and then compute the energy of each term.

In § 3, we perform the above mentioned transformation of M to get a

p2m-symmetric process M. Using the fact that the multiplicative functional

involved is a solution of a Doleans-Dade equation related to the martingale M [ p ],

the Dirichlet form E of M is shown to have the expression

E(u, v) = 1 ( p2dji<u>v>+ \ U((x)-ΰ(y))(ϋ(x)-ϋ(y))p(x)P(y)J(dx, dy).
2 Jx jχxx-d

We can then conclude that 1 G D [ £ ] and JS(1, l )=0, which simply means the

conservativeness of M.
In § 4, we assume that there exist relatively compact open sets Gn in-

creasing to X and the part of the Dirichlet form E to each set Gn is irreducible.
Let

t

then the set function L(ty •) called the occupation distribution is an element of
the space ^3ί of probability measures on X, We then have just as in [3] the
estimate

lim — log£Jx(e~tΦ^tf'^ £<f)^—inf[Φ(p2)+2?(p, p)],

where V={ρ^F; p2m^ι3ί, Suρp[p2m] is compact} and Φ is any functional
on c5H such that Φ(μn)->Φ(μ) whenever μn^.JM converge weakly to μ and the
support of μn is contained in a common compact set. The above inequality
holds for every x^X except possibly on a set of zero capacity which is inde-
pendent of Φ.

Since any regular Dirichlet form admits an associated symmetric Hunt
process, we may say that the present lower estimate is an intrinsic property of
Dirichlet form which is regular and irreducible. These two conditions on
Dirichlet form are very mild and directly verifiable. We do not assume the
Feller property nor the absolute continuity of the associated transition function,
although the transition function is always symmetric in our setting.

For instance, consider locally integrable functions aitj(x)y lfgz, j^dy on
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d

the J-spacei?^ satisfying a{ j=aj , and inf 2 aij(x)ξiξj'>0 for any compact

set K, then the form

E(u, v) = Σ ί
i,j=ijRd

is closable on L\Rd) and the closure Z? becomes a regular and irreducible Diri-
chlet form on L2(Rd). Here Cl(Rd) is the space of (^-functions in C0(Rd).
More generally, we may replace aitJ(x)dx by a Radon measure z/,. ; such that

d
Vij=Vjj and inf 2 ^.X-^)?!?;^^! JSΓ| for any compact i£ where δ^ is posi-

tive constant and | K | is the Lebesgue measure of K. Under the closability
assumption of the associated form E on Cl(Rd)y we have a same kind of form
E. We can instead start with a jumping measure of the type J(dx9 dy)=
N(x, dy)dx which makes the associated symmetric form

E(u, v)=\t d («W-«W) (v(x)~v(y))N(x, dy)dx, u,
JR R dXR —d

closable on L\Rd). In this case, it suffices to assume Suρp[iV(#, )]=Rd for
almost all x in order to obtain the Dirichlet form E possessing the required
properties. In each of the above three examples, the stated lower estimate
holds for the Hunt process on Rd associated with E. See [6] for closability
criteria for the second and third examples. We know from the works in theory
of partial differential equations due to Nash et al. that the transition function
in the first example is Feller and absolutely continuous. We do not know
about this for the second and third examples in general. But see Tomisaki
[12] for relevant information.

Donsker and Varadhan have extended their result in [3] to wider classes
of Markov processes by finding sufficient conditions on the transition func-
tions ([4], [5]). As for the lower estimate in the case of the complete separable
metrizable state space, their conditions on the transition function (Hypothesis
H1^H4 in [5]) include the Feller property and an absolutely continuity in
addition to a transitivity assumption. The intrinsic quantity appearing in
their upper and lower bounds is the /-functional rather than the Dirichlet
form, but those two characteristics have been identified when the transition
function is symmetric and absolutely continuous ([4]). As for the upper esti-
mate, we only note that the relevant statements in [3] remain true for any Mar-
kov process with Feller transition function.

2. Decomposition of martingale additive functionals and the
Beurling-Deny formula

Let (E, F) be a C0-regular Dirichlet space and M=(Xt, Px, ζ)x^x be the
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associated w-symmetric Hunt process, and we use the relevant notions and
notations in Fukushima [6], Dellacherie-Meyer [1], By Theorem 5.2.2 in [6],
the additive functional (AF in abbriviation) A^ul=u(Xt)—u(X0), u^F> has a
unique decomposition

where M [ w ] is a square integrable martingale AF of finite energy and iVc*] is a
continuous AF of zero energy. We further decompose Mίui as

(2.2) M™ = MM+Af w = MW+MW+MW
c d

where M [ M ] and MM are continuous and purely discontinuous part of M [ t t ]

j k

respectively, and M™ and Mίul are defined by

(2.3) M M =
c

Here, for an additive functional A> it's compensator A is defined by A—Ap

with Ap being the dual predictable projection of A (see [1; Definition 73]).
Using the co-energy e of AF's, we can define three symmetric forms by

(2.4) E^(uy v) = <ilfw, MM)

(«, υ) = 2β(MMf MW).

Let (iV(#, έίy), /ί) be a Lέvy system of Hunt process M and z> be a smooth
measure corresponding to AT. We put

(2.5) /(ifc, dy) = —N(xy dy)v{dx), k{dx) = N(x, Δ)v(dx)
Li

and call them the jumping measure and the killing measure respectively. Since

we have

(2.6) E

Further, since

(2.7)

<'>(«, v) =

<MW, M'

) XxX-d

Jo

£ ( Λ ) (w, ?;) - I ,
(XS)ΛΓ(XS, Δ)Jiϊ s> we have

ΰ(x)ϋ(x)k(dx).

Lemma 2.1. 1) For α/ry u^F+ (u^F and w^O, m-a.e.) and α > 0 , w ^
ώ o/ yϊmte energy integral and Ex(e~*ζu{XζJ)) is a quasi-continuous version of
UJfi-k).
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2) Foru&F

(2.8) ^ y t f

Proof. 1) Since (2.2) is an orthogonal decomposition with respect to

[-EW(u,u) is don

inequality and (2.7),

ey — EW(u, u) is dominated by e(M^u\ M^)^E(u, u). Therefore, by Schwarz

which means u k is of finite energy integral. By noticing that Ex{e~*ζϋ{XζS))

ί oo

e~*su(Xs)d(I[Xζ_ΦΔfζ^s)ή)y we get the second assertion of 1).

2) For any h<=ΞCt a n d / e ί 7 ,

= (h, RJtf.(l-Ptl)))

Ehm( \ζ e-*sf(Xs)ds; t<ζ)+Ehm( [ζe~"sf(Xs)ds; feζ) .
Jζt Jo

-t

But, since ±Etm{[S e-"f(X.)Js; t ^ ζ)2 g±Ehm{{\'e~mf{Xs)dsfy^Phm{t
t Jo t Jo t

->0(ί->0), we have

lim ^ERΛh.fm{I{^t)) = Ehm(e-*ζf(Xζ-)) = (K UΛ(f-k)) = <*,

In particular, lim — E(Rΰύh)2m(I{ζ^t])=(k> (Rah)2y. We can prove the relation

(2.8) for general M G F in the same way as in [6; Lemma 4.5.2]. q.e.d.
c

Denote by μ<M>, /*,<„>, and μ<M> the smooth measure of <M [ l ί : i>, <(MW)>
d

and <M[M])> respectively, W G F .

Lemma 2 2. If U^LF is constant on an open set G, then A<«>=0 on G.

Proof. Define B(f)=Jl(u(X± ) - M ( Z H ί ) ) 2 , then J5(,M) equals zero on

t<τG=mϊ{t;Xt$G}. On the other hand, limJ3?>=[MM],, ί<τ G , Pw-a.e.,

because of the property of iV>] that Σ (iV^3 — ΛΓJ& )2 tends to zero in L 1 ^ ) -

Since [Mcη# ^ /

(2.9) <AfiΌ>( = 0, t^rG> P.-a.e.

which implies the lemma by virtue of [6; Lemma 5.1.5]. q.e.d.
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Lemma 2.3. For any u9v^F Π CJ" such that Suρp[w] Π Supp[v]=φ,

(2.10) [ u(x)v(x)J(dx, dy) = -\E{U, V) .
JXxX-d 2

Proof. Consider a relatively compact open set satisfying S u p ρ [ κ ] c G c

δc(Supp [©])'. We put Nf(x)=^ f(y)N(x, dy). Since

II/l], ΛfW) = - 1 ( f o.JV|/|.i»+ί \f\ Nvv) torfί=FenCβ,2 Jx Jx

we have

and hence IG Nv v is of finite energy integral with respect to EG. We then

haveHΪ-Gv(x)=Ex([σe-«sNv(Xs)dHs)=U%(Nv.v) on G and Hξ~Gv =
Jo

UG(Nvv)+v. It follows from Ea(H%~Gvy u)=0 that

E(U%{Nvv), u) = 2 j u(x)v(y)J(dxy dy) = -E(uy v). q.e.d.

Theorem 2.1 (Representation of the Dirichlet form E). It holds that

(2.11) E(uy v) = E<c\u, v)+E(>\uy v)+E<k\u, v),

E^c) has the local property E^(uy v)=0 whenever u is constant on the support
of v. E{i) and E(k) are expressed by (2.6) and (2.7) respectively. Moreover
the measure J is symmetric.

Proof. By virtue of Lemma 2.1,

) = ]im±Em((u(Xt)-u(X0)Y)

/|0 t

= E(u,u)-—[ u2dky

2 Jx

and we have (2.11) in view of (2.2) and (2.4). Other assertions follow from
Lemma 2.2 and Lemma 2.3. q.e.d.

This theorem says that formula (2.11) is nothing but the Beurling-Deny
formula ([6]), and moreover the symmetric measure J admits a specific ex-
pression (2.5).
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W e p u t μ<M.v>=-r{μ><u+v>—μ>iu-,))> uyv<=:F. μ<UfV> a n d μ<UfV> are defined

in the same way.

Lemma 2.4. It holds that

(2.12) dcμ<u2tυ> = 2udfr<Utΰ> for u,v(ΞFΓι CO

Proof. By the same method as in [6; Lemma 5.4.1] we have

(2.13) ( fdμ<u2>p>-2 \ fudμ<UiV>
Jx Jx

= 2 \ (u(x)-u(y)Y(v(x)-v(y))f(x)J(dx, dy)-\ fu>vk .
JXxX—d JX

According to the representation theorem, \ ίdμtf vy—2 \ fudμ^u v> equals the
Jx ' Jx

right hand side of (2.13), and consequently \ fdμ/uz vy=2 \ fudμζu v>. q.e.d.
Jx ' Jx

Theorem 2.2 (derivation property of μ,<«>)

(2.14) dμ<UVtW> = udμ<ϋtW>+ϋdμ<u>w> for u, v,

Proof. This follows from Lemma 2.4 in the same way as in [6; Lemma

5.4.2]. q.e.d.

3. A transformation by a multiplicative functional into a conser-

vative process

In § 2, we have proved that C0-regular Dirichlet form E on L\X\ m)

can be represented as

(3.1) E{u,v) = ±\ dμ<UtV> + \ (ΰ(x)-ΰ(y))(ϋ(x)-ϋ(y))J(dx, dy)
Δ JX JXxX-d

+ \ ΰ{x)ϋ{x)k{dx).
J X

We introduce the space

( p = Ragy α > 0 , g is a strictly positive function in
X = ip /.

{ CbΓlL\m), \ p2dm= 1
J x

Take p=Rag^X. Then, ρ(Xt)—p(X0) can be expressed as
c d

=MίP1-\-MίP1-\-NίP1, because p^F. We consider the transformation of Λfby

the multiplicative functional
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(3 2) L -

Denote by M the transformed Markov process. The transition function

Pt of M has the expression

Ptg(x) = Ex(Ltg(Xt)),

REMARK 3.1. Lt is a solution of Doleans-Dade equation ([2])

(3.3) zt-l = \'z._-±—dM™, t<ζ,

and L, admits a simpler expression

(3.4) Lt= ^ f |
p(X)

()
p

by virtue of Ito formula applied to the semi-martingale p{Xt) Here, Ap=
ap-g.

Theorem 3.1. 1) M is ρ2m-symmetric.

2) Let (E, F) be the Dirichlet space generated by My then FdF and for u.v

(3.5) £(«, v) = \ \ p*djί<UtV> + \ (u(x)-u(y))(ϋ(x)-v(y))
2 JX JXxX-d

Proof. 1) Let {Kn}n^i be a compact nest satisfying inf p(x)z^rn>0 and
o *ΈK»

Kn be a fine interior of Kn, and denote by M(n) (resp. M(n)) the part of M
- o

(resp. M) on KH.
For any f,g(=βϊ

ftΛΛ = (Eί»\Ltg(Xt))J)p2m

= lim £«" '(/(I ( )p(I 0 ) Π exp(-^(XP t

On account of symmetry of M(Λ), the last expression equals
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Hence, we have

and by letting n->oo9 we get equality

^(Xp-ι)^)f(Xt)p(Xt)) by [6; Lemma 4.2.2].

2) First of all, we prove this for u=R<?)g (g(ΞC0). We let

(3.6) (u-Eί'\Ltu(Xt)), »)A,

Since L,-l=—*—[' exp(-['4£(Xu)du)dMγ\ t<ζ, by Remark 3.1,
p(Zo)Jo \ Jo p /

(//), equals

If we set

exp ( - j ^

(HI), = EuPm(u(Xt) \'o
Λτ™ exp (-^A

then, by Schwarz inequality,

τ W exp ( - 2 Γ^(JΓ.)Λ
\ Jo p

But the first factor of the right hand side is not greater than

^ ^ t ) ^ 2 0 Έ ( p , p),

and the second factor equals

1 (IuIp, Ptu
2-u%-1(IuIp, Pru

Hence we get

(3.7)

E(\u\p, u2)-E(|«|p, «2) = 0.
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lim—(II), = Um±Ettm(u(XΛ fΛτ exp ( - ['^£{XJάuXiM™) ,
t^o f no t \ Jo \ Jo p / '

which in turn equals

1 / ΓfΛT00 / CsAp N

l im—E u P m[ (u(Xt)—u(X0)) \ exp ( — I ~-^(Xu)du
tio t V Jo \ Jo p J

= lim — Eu

Noticing that there is a constant iV such that

exp - - ^
Jo p

o p for

we have

(3.8) lim 1 (//), - lim j ^ P β

Last equality holds by [6; Lemma 5.1.5].
On the other hand, we have

C Λ )) = \χUPdμ<P,u>.

(3.9) m

From (3.6), (3.8) and (3.9), we have finally that ueF and

(3.10) E(u,u) = E(u,up2)-\ updμ<PιU>.
J X

We can see that the right hand side of (3.10) equals the right hand side
of (3.5). To see this, rewrite the right hand side of (3.10) as a sum of two
terms / and // where

2 Jx Jx

II = \ w(x, y)J(dx, dy)
J XxX—d

with w{x,y) = {u{x)-u{y)){u{x)p\x)~u{y)p\y))

-2u(x)p(x)(P(x)-p(y))(u(x)-u(y)).

Note that the contribution from the killing parts cancels out at this stage. By
the derivation property, we easily see that
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2

On the other hand, since w(x, y)—(u(x)—u(y))2ρ(x)ρ(y) = (u(x)—u(y))

X(ρ{x)-ρ(y))u{y)p(y)-(u(x)-u{y))(p(x)-p(y))u(x)p(x) and the measure/ is

symmetric,

(u(x)-u(y)Yp(x)P(y)J(dx,dy).
XxX—d

We have proved (3.5) for u=R[n)g, g^C0> and consequently Ex(uy u)^

,Eχ(uf u) for u=R[u)gy g^C0. Now we can get the conclusion of Theorem

3.1 because limR[n)g=Rιg in Z^-norm for g^C0 and {i?^,^GC0} is a dense

subset of F. q.e.d.

Lemma 3.1. If B is a nearly Borel set and v€zFb satisfies inf \ v(x) \ =

v(x)
^ 11 u{x)-u{y) I +\ I u(x)v(x)-u( y)v( y) \,

then —
v

Proof. Since

u(x) __ u(y)
v(x) v(y)

, we can conclude — e F 5 . q.e.d.
v

We may assume that M is a standard process on X and has the elements

Ω, Xh ζ in common with M. We then have ([10])

(3.11) PX(A; t<ζ) = Ex(Lt; A), Λefr, ^ 1 ,

where /3f is the cr-field of Ω generated by XSJ s^t. It follows from (3.11)

that the notion of the exceptionality of sets and consequently the q.e. statements

are the same for M and M.

Theorem 3.2. Mis conservative: PJC(f< + oo)=:0, q.e. x^X.

Proof. It suffices to prove that I E F and E(l> l ) = 0 ([7]). Let us put

hn— * *. By Theorem 3.1 and Lemma 3.1,
Kg

(3.12)

Since
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we have

(3.13) E^(hn-hmy hn-K) = 1

The first and second terms of (3.13) clearly tend to zero by letting n, m to in-
finite. Since

|f {K-hm)dc

μiRγg_R^gtRΛgy\^(\ (hn-hm)2djί<Rae>γ<2(\ d^^-R^y)112

J X J X J X

by Schwarz inequality, the third term also tends to zero.
On the other hand, we get

(3-14) ε«κι.,-K,K-H.) =

where Rn

a-
mg=Rin)g~Rim)g. Since \Rag(x)Rl mg{y)-Rag{y)R"a

 mg{x)\^Rag(x)
\Rΐmg{y)-Rl mg{x)\ + \RΓg{x)\ \R«g(*)-R«g(y)\ and the left hand side is
also dominated by Rag(y)\R: mg(x)-R:'mg(y)\ + \Rn

a

 mg(y)\ \RΛg(y)-R»g{x)\,
it holds that

«\hn-K, hn-hm) ^\χχχJR:-mg(x)-RΓg(y))2J(dx, dy)

+ 2 \ I hn{x)-hm{χ) 11 Rl mg{χ)-Rl mg{y) \ | Rag(χ)-Rag(y) I J(dχ, dy)
JXxX-d

+ \ Ihκ(x)-hm(x) I Ihtt(y)-hm(y) | (Rag(x)-Rag{y))2J(dx, dy).
JXxX-d

The first term of the right hand side clearly tends to zero by letting n, m to
infinite and the third term tends to zero by the bounded convergence theorem.
Finally we see the second term also tends to zero since it is dominated by

2( ί (hJx)-hm(x)Y(RΛg(x)-RΛg(y)YJ(dx,
JXxX-dJXxX-d

X

and this means EU)(hn—hmi hn—hm)->0 (n, m-+oo). Therefore, it holds that
Ei(hn—hmy hn—hm)-+0 (n, ra^oo). Moreover, because /*M->1 (w-^oo)

Next we get lim E(hn> hn)=0, because

J 2 f c f 2

JΓ " Jx Λ g ix a g

2 1 J*c O I 7̂ *- Λ

n—>oo
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and

(K{x)-hn{y)fJ{dx, dy) = \ (R^g(x)-R^g(y))2J(dx, dy)
xX-d JXxX-d

-2 \ hn(x)(Rag(x)-Rag(y))(R?g(x)-R?g(y))J(dx, dy)
J XxX~d

XxX ~d
hn(x)hn(y)(Rag{x)-Rag(y)fJ(dx, dy)

d

- 2 (
XxX-d

> 2 \ (R«g(χ)-Rag(y)YΛdχ, dy)
#—>oo JXxX-d

(RΛg(χ)-RΛg(y))2J(dχ, dy) = 0.
d

This means £(1, l )=0. Therefore, we conclude that M is conservative, q.e.d.

By virtue of (3.11) and Theorem 3.2, it holds that

(3.15) PX(A; t<ζ) = έJB^l exp(Γ^(JΓ,)Λ); A ) q.e.

This formula will be used in the next section.

4. A lower estimate related to the Donsker-Varadhan theory

The Dirichlet space (E> F) is called irreducible if any Prinvariant set is
trivial, namely, a Borel set AdX satisfies either m(A)=0 or m(X— A)=0 when-
ever Pt(IAu)=IAPtu for any u^βt and t>0. Denote by <3ί the space of
probability measures equipped with the weak topology and let L(tf ω, A)=

[lA(Xs)ds.
Jo

Proposition 4.1. If(E> F) is irreducible, then for

(4.1) \jm ω, ^-E(p, p) q.e.

where NP2 is any neighborhood of p:

Proof. By (3.15),

(4.2) Px(L(t, ω, ) ^ ^ P 2 , t<ζ) =

We set

p(Xt)
^P(Xs)ds); L(t, ω,
p J

q.e

S(ty 6) = cαGΩ; ( ^(y)L(t, ω, dy)— [ pApdtn <ε)
I Jx p JX )
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S'(t, ε) = (fflefl; L{t, ω, .)eJVpi} ΠS(ί, 6)

then, the right hand side is greater than

«p(ί( ( p ^ p ^ m - ^ X ^ i β ) ; S'(t, C))^exp(ί( ί PApdm-6))
JX \pyΛ.t) / Jx

Now, the irreducibility of (2?, F) implies the same property of (E, F) be-

cause Lt is positive until the life time ζ. Since M is conservative with invariant

measure p2dm by Theorem 3.2, Mis ergodic ([9]) and

(4.3) FA.(lim! ^(Xs)ds = \ pApdrn) = 1 .
W~ t Jo p Jx /

If we denote by Λ the event inside the braces of (4.3), we get PΛ(Λ)=1, M-q.e.

by noticing that PX(A) is an excessive function. By virtue of the remark made

before Theorem 3.2, we then have lim PX(Ω—S'(ty £))=0, q.e. Therefore

(4.4) lim — log Px{L{t, ω, ) e Λ Γ p 2 ; t<ζ)^ [ pApdm-S, q.e.
' -> M t Jx

As θ is arbitrary and \ pAρdm=—E(ρy p), we arrive at Proposition4.1. q.e.d.

From now we require the following assumption.

ASSUMPTION 4.1. There exists a sequence .£?={(?„} JΓ-i of increasing rela-
tively compact open sets satisfying: 1) \jGn=X, 2) (EGn, FGn) is irreducible.

A comparison theorem concerning the irreducibility of local Dirichlet
forms has been given in [8]; if 2?(1) and Z?(2) are such forms, Z?(1) is dominating
2?(2) on a common core and £ ( 2 ) is irreducible, then 2?(1) is also irreducible.
From this, we can show that the first two examples in § 1 satisfy Assumption
4.1. The irreducibility of the third example in § 1 follows from the relation
between / and the Levy system stated in § 2.

Let us introduce the following space

£ = {p;p = R£ g,a>0,g>0,geΞCk, \ P

2dm = 1, n = 1, 2,...}
Jx

and let Φ be a function on <5M such that Φ(μn)->Φ(μ) whenever μn^^3ί con-
verge weakly to μ and the support of μn is contained in some compact set. We
further assume that Φ(μ) Φ — °° for any μ e JM.

Lemma 4.1. It holds that
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(4.5) lim -*- log ^ ( * - ' w.-. » ) ^ -inf [Φ(p2)+£(p, p)] q.e.
P<ΞX

Proof. Take p=R%ng^X. Since (J?Gw, FGjι) is an irreducible C0-regular
Dirichlet space, it follows from Proposition 4.1

Urn 1 logPx(L(ty ω, )eΛΓp2, t<ζ)^-E(P> p) q.e.

Therefore, this theorem can be shown by the same method as [3]. q.e.d.

Lemma 4.2. It holds that

(4.6) inf [Φ(p2)+Z?(p, p)]=S inf [Φ(p2)+E(p, p)]

where U={p£ΞFΓίC$; [ p2dm=ί} .
Jx

Proof. For any p^U, take Gn^3 such that Supρ[pm]czGn. Since
aR%np->p(a->oo) in £j and R%»(p\/£)-+RZ»p(£->0) in £Ί, there exists a
sequence {pp=R%»gp; α > 0 , gp>0,g,eCb}ϊml such that p,->p (^->oo) in £ l β

Therefore, —^—e%->p (p->oo) in £Ί, and we get (4.6) in view of the property

of Φ. q.e.d.

Lemma 4.3. It holds that

(4.7) inf [Φ(p*)+E(P, p)] = inf [Φ(p2)+E(P> p)]

; Suρp[pm] is compact. I
•

Proof. For p^Vy we take the relatively compact open set such that
Supp [pm] C G. Since (2?G, FG) is a regular Dirichlet space, there exists a
sequence {pn} (ZFGf)C0 such that pn-+ p in 2?lβ Therefore, noting that
E{\Pn\> \pn\)^^(Pny Pn)> w e s e e Λat the left hand side is not greater than the
right in the same way as Lemma 4.2. q.e.d.

Theorem 4.1. It holds that

(4.8) ljm 1- log ^ ( < r ' ^ ' " ' - » ) ^ -inf [Φ(p2)+E(p, p)] q.e.

/->«» / PGΓ

Proof. By virtue of Lemma 4.2 and Lemma 4.3, we have

(4.9) inf [Φ(P*)+E{p, p)] = inf [Φ(p*)+E(p, p)].

Hence this theorem is clear by Lemma 4.1. q.e.d.
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The above proof shows that, in equality (4.9), we can replace the space
V by a smaller one V Π D where D is any core of F satisfying the conditions
of [8; pp. 198].
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