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1. Introduction

In [2], R. Griess gave a beautiful construction of the Monster Simple
Group. Namely, he constructed a 196883 dimensional (nonassociative) com-
mutative algebra over the rational numbers and showed that a certain subgroup
of the full automorphism group of this algebra is isomorphic to the Monster
Simple Group.

Recently, Harada considered the automorphism group of a vector space
possessing a (nonassociative) commutative algebra structure, which is closely
related to a natural permutation representation of a multiply transitive group.
([3], also see Example 3.)

These two results suggest us to investigate the automorphism group of
a general (nonassociative) algebra. It would be very interesting if such study
would be useful in the theory of finite groups.

A (nonassociative) commutative algebra is nothing but a vector space
having a binary operation which is bilinear and symmetric. Let V be a vector
space over an algebraically closed field F and θ: Vx V-*V a bilinear map (not
necessarily symmetric). Set Autθ={g^GL(V): θ(ug, vg)=θ(u, v)8 for all

u, v^V}. We are interested in the following three questions on Aut#:
( 1 ) When does Aut θ become finite ?
( 2 ) Which finite group can be represented as Aut θ for a suitable 0?
(3 ) What can we say about the order of Aut θ for a given θ ?
In this paper we shall give a result on ( 1). Namely, we shall show the

finiteness of Aut θ under the condition that θ satisfies a nonsingularity condi-
tion with a restriction on the characteristic of the field F. (See Theorem A.)
However, sometimes it is not easy to show the nonsingularity of θ. For ex-
ample, we could check the nonsingularity of the algebra Harada defined but
we do not know whether the algebra defined by Griess is nonsingular or not.

The above criterion for the finiteness of Aut θ will actually be proved for
a more general θ, i.e., for a (not necessarily symmetric) multilinear map from

Vx ••• xVto V of degree r^ 2.
As a corollary, we shall also prove a result on a multilinear form θ: Vx
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••• X V-*F, where V is a vector space over an algebraically closed field F. (See
Theorem B.)

There are several known results of this type when θ is a symmetric multi-
linear form [4], [5], [6] and [7], The first one uses a lot of inequalities and
is very difficult to read (at least to the author), the second and the third use
theorems in algebraic geometry and our proof was motivated by the last paper
which is very elementary. But we have to note that the proof in the last paper
contains a serious error. (See Example 2.)

Finally we note that throughout this paper we shall frequently encounter
the two kinds of maps:

(1) θ: Vx - XV-+V.

(2) θ: Vx -. XV-+F.

The θ of type ( 1 ) will always be multilinear and called a * 'multilinear map",
the θ of type (2) will be called a "Hermitian, (see Definition 1) or multilinear

form".

2. Definition and theorem

We shall give some definitions, which we need to state our results.

DEFINITION 1. Let F be a vector space over the complex number field
r

C. A map θ:Vx X V-* C is said to be a multilinear Hermitian form of degree
r if it satisfies the following:

( 1 ) θ is multilinear on the first r—l terms.

( 2 ) θ (vly •••, ϋ r_ l f \u+μw) = \θ(vly — , vr.l9 u)

where bars denote the complex conjugates.

DEFINITION 2. Let θ: Vx ••• x V~>F be a form (i.e., a multilinear form
or a multilinear Hermitian form) on a vector space over a field F. Then

Aut0 = {g£ΞGL(V)ι Θ(vl9 -, O - θ(vf, -, vf) for all vl9 -, v,<=V} .

DEFINITION 3. Let θ: Vx ••• X V~> V be a multilinear map on a vector
space V. Then

Aut0 = {g(ΞGL(V): Θ(vl9 -, v,)' = θ(vt, -, ι*) for all vl9 -, vr€ΞV} .

Now we state our main results.

Theorem A. Let θ denote α multilinear map of degree r^2 on a vector
space V of dimension n over an algebraically closed field F of characteristic zero
or greater than n. Then one of the following holds:
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( i ) there exists an element v^V* = V—{0} such that θ(v, •••, v)=Q; or

( ii ) Aut θ is a finite group.

Theorem B. Let θ denote a multilinear form of degree r^3 on a vector
space V of dimension n over an algebraically closed field F of characteristic zero
or greater than n. Then one of the following holds:

( \ ) there exists an element v^V* such that θ(v, •• >v, w)= 0 for all W^L V\

or
( ii ) Aut θ is a finite group.

Theorem C. Let θ denote a multilinear Hermitίan form of degree r^3
on a vector space V of dimension n over the complex number field. Then one of
the following holds:

( i ) there exists an element v^V* such that θ(v, , v, w) — 0 for allw^V\

or
( ii ) Aut θ is a finite group.

3. Theorem of Tate and Bott

In this section, we shall prove a key to our results which is related to a
theorem of Tate and Bott. (See [ 7 ])

Proposition 1. Let θ be a multilinear map of degree r^2 on a vector space
V of dimension n over an algebraically closed field F. Suppose that θ(v, ••-, v)
ΦO for all v&V*. Then for every element σ-^Auttf, σ™ is unipotent for some
m at most (rn —\)n .

Proposition 2. Let θ be a multilinear form of degree r^3 on a vector space

of dimension n over an algebraically closed field F. Suppose that θ(v, •••, v, w)
=0 for all w^V implies v=0. Then for every element σ^Aut0, σm is unipotent
for some m at most ((r— l)2n— l)n.

Proposition 3. Let θ be a multilinear Hermίtian form of degree r^3 on
a vector space V of dimension n over the complex number field. Suppose that
θ(v, ••-, v, w)=0 for all w^V implies #=0. Then for every element σ^Autθ,
σm is unipotent for some m at most ((r— l)2n— 1)M.

The proofs of these propositions are very similar and Tate and Bott first
proved such kind of result in the form of Proposition 2. (See [ 7 ].) Hence in
our paper we only give a proof of Proposition 1.

Proof of Proposition 1. It suffices to show that each eigenvalue of σ is
a root of unity of order at most (rn — 1). Let X be an eigenvalue of σ and v

a corresponding eigenvector. Since σ is invertible, λφO. Define u^V by
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u=θ(v, •••, v). By our hypothesis wΦO and

\ru = θ(\v, —, \v) = θ(vσ,

So \r is also an eigenvalue of σ. Letting φ(λ)=λr, we have φfl(λ)— φ*(λ)
for some 0^α<έ^w, as φ*(λ) is an eigenvalue of σ. But now |rβ— r*| ^rw— 1.

Since λfβ"r*=l, λ is a root of unity of order at most rn—l.

4. Unipotent automorphisms

We study a multilinear map with a unipotent automorphism.

Proposition 4. L#£ θ be a multilinear map of degree r^.2 on a vector space

V of dimension n over a field F. Let σφl be a unipotent automorphism of θ.

Assume that (σ— 1)*ΦO but (σ— l)ί+1=0. Then for any elements vl9 v29 •••, vr

in the image of (σ— 1)*, we have Θ(vl9 v2y ••-, vr)=09 if the characteristic of F is

zero or greater than b+l.

Proof. Choose a basis {̂ (1), •••, e(n)} for V so that the matrix A=(aij)
of σ is in (lower triangular) Jordan normal form. Let bl9 ••-, bl be the sizes

of the blocks of A with bλ= ••• =bd>bd+1^ ••• ^6/^1. Let ^=1 and ci+1=

Ci+bf for l^ί^ί— 1.

Note that b+l=bί and the image of (σ—l)b is spanned by {#(£,•): 1^
Since θ is multilinear, it suffices to show that

θ(e(hl\ e(h2\ -,«(Λr)) =

for Λj, A2, •••, Ar in {̂  :

Now we fix Λ3, ••-, Ar {̂  : 1^/^rf} and define

θ*(X,y) = θ(X,y,e(h3),-,e(hr)).

Since A3, •••, hr are fixed but arbitrary, it suffices to show that a bilinear map
(i.e., a multilinear map of degree 2) θ* has the property

- 0 for A l f A2

Since A acts on {tf(£f ): l^i^d} trivially,

θ*(x*, yσ) = Θ*(x9 y

As A is in normal form, we have

afj = 1 if i — y

ί/f y = 1 if i=jjr\ unless /

Λ f y = 0 otherwise.
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To calculate the value θ*(e(h^), e(h2)), we prove several lemmas. Let C

{ck: l^k^t}.

Lemma 1 . The following holds :

( Σ μ>se(s)Y =

Proof. fφ) seC
As ^(ί)σ — <

I e(s)+^(ί — 1) otherwise

we have the formula above.

Lemma 2. There exist constants λ/y, l^iyj, k^t such that

Proof. Since e(ci)
σ=e(ci)ί we have

So the assertion follows from Lemma 1.
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Lemma 3. Let l^ι,j^d. There exist constants X?y, l^k^t, O^w^/w,
^m^bi— 1 such that

e*(e(Ci+m\ e(cj))

= Σ (\ϊ'e(c*+m)+

and that λ?}=λ?, , λ?}=0 ifbk+u^m.

Proof. We prove the assertion by induction on m. Suppose that m=0.
Then this is the formula in Lemma 2 and λ?y— λ*/ Suppose Lemma 3
holds for w— 1 , TW ̂  1 . Let

and apply σ on the both sides. Since lϊSffz^ό,— 1,

e(Ci+mf = β(ei+m)+e(cl+m-l)

and e(c,γ=e(cj). So

= θ*(e(ct+m)'t e(c,γ)

Hence by Lemma 1,

θ*(e(Ci+m), e(cj)

= Σ/*.+!«(*)•

By induction's hypothesis, we have

%μMe(S)

λ?* = λ/y, λ?5 = 0 if bk+u^m-l .

Now it follows from the equation above that X"*=0 if bk-\-u^m, as we may
assume that bk+u=m and that λj*=0 for 0<^v<u. Moreover, μs+ι=Q if

k—l. Letμet=\7f. Then

= Σ (λ?
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holds for all

Lemma 3 '. Let 1 ̂  i, y ̂  rf. There exist constants λ'?y,
f — l such that

Proof. Let #'(#, y)=θ*(y> #)• Then 0' is a bilinear map invariant under
the action of σ and

= λ yβ(ί») .

Applying the last lemma to θ', we have the desired assertion.

Corollary 4. For 1 ̂  i, _/ ̂  </,

Proof. The corollary follows from Lemma 2 and Lemma 3 with m

bi=bί for k>d.

Lemma 5. For l^i,j, k^d, 0^/w^δ,-— 2,

fl*

Then the following hold:

( 1 ) μΐf=

(2) AtΓ/»+

Proof. We prove this lemma by induction on m. Let m=Q. Then it
corresponds to the case m=l in Lemma 3'. So μ?y=0 if cA+2^ί^cA+^
— 1. Hence ( 1 ) holds. Since μϊe

jk+1=\'ϊk

j=\ΊJ by Lemma 3', we have ( 2 ).

Suppose Lemma 5 holds for m—1, l^m^i,— 1. We apply σ on the equa-
tion (*). Since m^l,

We have already had the formulas for the first and the third term. So
by Lemma 1, we have
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= Σ Σ λ?5«(ί»+M-«)+ Σ
* = 1 « = o Λ = l

+ θ*(e(ci+m-l)9 e(cj

Let Γfc+fca— l^ί^Cfc-j-w+2. Computing the coefficients of e(s— 1), we

can obtain

mJ Π I Π I m — ls—lμis = 0+0+ μ i j .

Since ck+bk-2^s-l^ck+(m-l)+2,

μmT1S7l = 0

by induction's hypothesis. Hence ( 1 ) is established. Comparing the coefficients

of e(ck+m), we have

Since

and λ?*=λ*y,

as desired.

Now we finish our proof of Proposition 4. Let

Then as in the proof of Lemma 5, we have

So the coefficients of e(ck-\-bk— 1) on the left hand side of the equality are zero

for l^/,y, A^J. On the other hand, they are

Since the characteristic of the field F is zero or greater than δ+1, λ/ ;=0 for

all 1^1,;, Λ^A As
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by Corollary 4, we finally obtained zero as the value of each θ^(e(ci\ e(Cj)) for
all 1 <£/, j ^d. This completes the proof of Proposition 4.

Though we may follow the similar lines of the proof of Proposition 4 to
obtain the multilinear form (or multilinear Hermitian form) version of Proposi-
tion 4, we shall take a different approach which would make clear the relations
between multilinear maps and mulitlinear forms.

Proposition 5. Let θ be a multilinear form of degree r+1^3 on a vector
space V and {e(i)} be a basis of V. Suppose θ admits a unίpotent automorphism
σ. Let σ* denote the transpose inverse of σ according to the basis above. Then
the following hold:

( 1 ) There is an element τ in GL(V) such that

τ~1<r*τ = cr, or τσ~l — σ*τ ,

where σ* denotes an element of GL(V) corresponding to the transpose of σ according
to the basis.

(2) Let

Θ*(vl9 .-., v,) = Σ%ι, -, vn e(t))e(ι)r .

Then θ* is a multilinear map of degree r admitting σ as a unipotent automorphism.

( 3 ) If θ(v, •••, v, w)=0for all w^ V implies v=09 θ*(v, •••, v)=Q implies
v=0.

Proof. ( 1 ) is well-known, and it can be checked easily by transforming
the matrix of σ into Jordan's canonical form. By the definition of 0*, it is
easy to see that 0* is a multilinear map of degree r, and that ( 3 ) holds. To
see ( 2 ) let (λ, ; ) be the matrix of σ according to the basis above. Since σ is
an automorphism of 0, we have

= Σ %ι, ., f „ Σ

= Σ Σ θ(vlt " ,vn

On the other hand we have



668 H. SUZUKI

(θ*(vlt -.., ϊv)Γ'

Thus <?*«-', -, »,*-')=<?*(»„ -, «,,)--'.

Therefore or is an automorphism of 0* as well as θ. This is a proof of ( 2 ).

5. Theorems of Burnside on linear groups

In this section we collect theorems on linear groups which we need in
the following section. We note that they are essentially proved by Burnside.

Lemma 6. Let G be a group (not necessarily finite), and let F be an al-
gebraically closed field. Suppose that Tly •••, Tk are ίnequivalent irreducible
matrix representations of G in F, and let

Then the coordinate functions

frij:l^i,j^nr,l^r^k for all

are linearly independent over F\ that is

Σraίy/ί,fe) = 0 for all

implies that each arij=0.

Proof. See Corollary 27.13 in [ 1 ].

Proposition 6. Let V be a vector space of dimension n over a field F, and

G be a subgroup of GL(V). Suppose that the exponent m of G is finite. More-

over, assume one of the following :
( i ) the characteristic of F is zero]
(ii) G is absolutely irreducible \ or
(iii) the order of any unίpotent normal subgroup of G is finite.

Then G is a finite group.

Proof. We may assume that F is algebraically closed. Consider the case
where G is an (absolutely) irreducible group of linear transformations. Let-
ting X(g) denote the trace of the linear transformation g, we see that for each
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y the number X(g) is a sum of n m-th roots of unity. Therefore the set
): g^G} has only a finite number of distinct elements. Relative to some

fixed F-basis of V, let the matrix of g^G be

By Lemma 6, there exist n2 elements gl9 •••, gj^G such that rf w2-tuples
{fM:\^i,j^n,\^k<^rf}

are linearly independent over F. For^eG, we have

*,y=ι

Regarding this as a set of n2 linear equations in the n2 unknowns {//;(#)}, we
see that the rows of the matrix of coefficients are linearly independent over F,

and hence there is a unique solution for the {//,•(#)}, this solution of course
depending on the values {X(gkg)} But % takes on only a finite number of
possible values and hence so does each /„•(#). Therefore the group G is finite
in this case.

We now use induction on n, and note that we have established the result
when G is irreducible (the case (ii) above). Now let G be a reducible set of
linear transformations. Relative to some F-basis of F, the matrices corre-
sponding to the elements g of G take the form

0

V(g\

The m-th power of such matrix has T(g)m and V(g)m as diagonal blocks, and
the groups

are groups with finite exponents. We may assume that the first group acts
irreducibly on the corresponding subspace. By the induction hypothesis, both
of these groups are finite.
Set

: T(g) = /}, H2 = {gtΞG: V(g) = /} .

Then Hγ and H2 are normal in G and are of finite index. Hence also | G : Hλ

Γ\H2\ is finite. Since HλΓ\H2 is normal in G and if g^H^H^ the matrix
of g is just

Γ 7 01

is a unipotent normal subgroup of G, so the case (iii) is done. Now
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we may assume that the characteristic of the field F is zero. Since the w-th
power of the matrix above is

/ 01

mU(g) I]'

we must have U(g)=Q, as m is the exponent of G. Thus g=l in this case.
This completes the proof of Proposition 6.

REMARK. The proof of Proposition 6 is essentially taken from [ 1 ] Theo-
rem 36.1, which states only the case ( i ) explicitly.

6. Proofs of theorems

Now we give the proofs of our main results.

Proof of Theorem A [resp. Theorem B]. Let G=Aut0. Suppose the
case ( i ) does not occur. Then it follows from Proposition 1 [resp. Proposi-
tion 2] that there exists a number m^ (rn— l)n! [resp. ((r— l)2w— 1)Λ!] such
that gm is unipotent for every element g of G. By Proposition 4 [resp. Pro-
position 5], gm—\. So the exponent of G divides m, in particular, it is finite.
Now the finiteness follows from Proposition 6.

DEFINITION 4. Let θ be a multilinear map [resp. a multilinear form], θ
is nonsingular if θ is not in the case ( i ) of Theorem A [resp. Theorem B]. More-

over, we define the nonsingularity of a multilinear Hermitian form in the same
way.

Using the case (ii) of Proposition 6, we have the following theorem as
a corollary to the proof above.

Theorem D. Let θ denote a nonsingular multilinear map of degree r^2
or a nonsingular multilinear form of degree r^3 on a vector space V of dimension
n over an algebraically closed field of arbitrary characteristic. If Autθ acts ir-

reducibly on V, the order of Autθ is finite.

Since the proof of Theorem C is almost the same as that of Theorem, B
we just give a sketch of the proof.

Proof of Theorem C. As we can follow the same lines of the proof of
Theorem B, we need only to show the result corresponding to Proposition 5.
Let σ be a unipotent automorphism of a nonsingular multilinear Hermitian
form θ. Let bars denote the complex conjugates. According to a fixed basis,
let cr*=(σ1)"1. Since σ and σ* are conjugate in GL(V) by an element r, we
can define θ* in the same way as in Proposition 5. Hence we reach the de-
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sired conclusion.

Let Si be the set of all nonsingular multilinear Hermitian forms of degree

r+1^3 on a vector space V over the complex number field, and Jά be the
set of all nonsingular multilinear maps of degree r^2 on the same vector space
V. The following theorem gives a nice one-to-one correspondence between

the elements of M and JM and the automorphism groups of them.

Theorem E. The following hold:

( 1 ) Let θ^^ίy and {e(ί)} a basis. Then there is a Hermitian positive de-
finite matrix X such that xσ=σx for all σ eAutfl, where x is the linear transfor-

mation of V represented by X according to a basis above. Moreover let

Φ(θ) K .", vr) = Σ Θ(vl9 -, vr, e(

Then Φ(θ) belongs to 3ά and

Aut<9 = Aut(Φ(<9)).

( 2 ) Let θ e c5K, and {e(i}} a basis. Then there is a Hermitian positive de-
finite matrix X such that xσ=σx for all σ^Autfl, where x is the linear transfor-

mation of V represented by X according to a basis above. Let {/(i)} be the dual
basis and

« «
zϋ* = wx — 2 μiβ(ϊ)> for each w = Σ λ, e(z) .

ί=l » = 1

Define

Ψ(θ) K -, vn w) =

Then Ψ(θ)(ΞJί and Aut0:=Aut(Ψ(0)).

Proof. Let θ be an element of <4i [resp. ^M\. Since θ is nonsingular,

Aut# is a finite complex linear group. Hence as is well-known, there is a posi-

tive definite Aut0 invariant Hermitian form. So we can define a correspond-
ence above and it is easy to establish the rest of the properties of the corre-
spondence.

7. Examples

In this section we give a couple of examples. The first example shows

that the restriction given for the characteristic of the base field in Proposition

4 is best possible, Example 2 gives a counter example to Proposition 2 of [ 7 ].

In the following two examples, let V be a vector space of dimension p,
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which is equal to the characteristic of the base field F, and σ be a cyclic per-
mutation of a basis {e(i)} of V, i.e., e(i)"=e(i+l) for l^i^p— I and e(py

EXAMPLE 1. Let θ be a multilinear map of degree 2, defined by θ(e(i),
e(j))=Sije(i). Then it is easy to see that θ is nonsingular and admits a uni-
potent automorphism σ.

EXAMPLE 2. Let θ be a symmetric multilinear form of degree 3, defined

by
θ(e(ί), e(j), e(k}) = 8{jSik - (#)

Then it is easy to check that θ is nonsingular and admits a unipotent automor-
phism σ. If p^3, the corresponding cubic form/ has the form

Moreover, counting the number of triples which satisfy (if), we see that

Aut(9 = Aut/= Z3 wr Σ,.,

where wr denotes the wreath product of two groups. Thus even in this case,
Aut0 is a finite group. (See [ 5 ], [ 6 ].)

EXAMPLE 3. In [ 3 ], K. Harada proved the following:
Let A be a commutative (nonassociative) algebra over some field F satis-

fying the following conditions:

( 1 ) A is a vector space over F with a system of basis xly x2, '"> and χn
(2) x?=(n— iχ for
(3) XiXj^—Xi—Xj for
Then if the characteristic of F is zero or greater than n+1, the automor-

phism group of A is isomorphic to the symmetric group ΣΛ+ι of degree n-\-l.
Since a commutative algebra is nothing but the one whose product is de-

fined by a symmetric multilinear map of degree 2 using the universality of
the symmetric tensor, we can regard this theorem as a theorem on a specific
symmetric multilinear map of degree 2. By a little computation, one can
show that the corresponding symmetric multilinear map of degree 2 is non-
singular, if and only if (2p, n+l)= 1, where ^>=charF if charJF is nonzero,
and p= 1 if charί^O. So the finiteness part of the theorem follows from

Theorem A if (2ρ, n+ί)=l.
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