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Introduction. In this paper we investigate some function-theoretic
properties of universal covering spaces of certain quasi-projective algebraic
surfaces.

Let X be a two-dimensional complex manifold and let C be a one-dimen-
sional analytic subset of X or an empty set. Let R be a Riemann sutface.
We assume that a proper holomorphic mapping 7: X— R satisfies the follow-
ing two conditions: (i) # is of maximal rank at every point of X, and (ii)
by setting X=X—C and z=#|X, the fiber S,—z"%(p) over each point p
of R is an non-singular irreducible analytic subset of X and is of fixed finite
type (g, n) with 2g—2-+4+x>0 as a Riemann surface, where g is the genus of
S, and 7 is the number of punctures of S, We call such a triple (X, =, R)
a holomorphic family of Riemann surfaces of type (,¢ #) over R. We also
say that X has a holomorphic fibration (X, =, R) of type (g, n).

We assume throughout this paper R is a non-compact Riemann surface
of finite type and its upiversal covering space is the unit disc D=(|¢|<1) in
the complex z-plane.

P.A. Griffiths [2] got the following uniformization theorem of quasi-pro-
jective algebraic surfaces. Let X be a two-dimensional, irreducible, smooth,
quasi-projective algebraic varitey over the complex numbers. Then for every
point x in X, there exists a Zariski neighborhood X of x in X such that X has
a holomorphic fibration (X, =z, R) as above. Then the universal covering
space X of X is topologically a cell. Griffiths proved that X is biholomor-
phically equivalent to a bounded domain of holomorphy in C? using the theory
of simultaneous uniformization of Riemann surfaces due to Bers. (cf. Bers
[1].) The function-theoretic properties of such interesting domains X are
little studied. (cf. Shabat [10].)

At the begining, in §1, we recall some notations and results of [3], [4]
and [5] which will be used later. Let ¥ be the homotopic monodromy group
of (X, =, R), which will be defined in §1. Then we get the following theo-
rems in § 2, §3, §4 and §5.
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Theorem 1. The universal covering space X of X is not biholomorphically
equivalent to the two-dimensional unit ball B,=(|z|*+ |w|?<1).

Corollary. The universal covering space X of X is not biholomorphically
equivalent to any two-dimensional strongly pseudoconvex domains.

Theorem 2. The homotopic monodromy group M is a finite group if and
only if all the fibers S, are confurmally equivalent.

Theorem 3. The homotopic monodromy group M is a finite group if and
only if X is biholomorphically equivalent o the two-dimensional polydisc D*=

(lz] <1)x(lw| <1).

Theorem 4. If (X, =, R) is of type (g, 0) with g>1, then X is biholo-
morphic to the polydisc D? if and only if the analytic automrophism group Aut(X)
of X is not a discrete group.

In the last § 6, we give some examples of these quasi-projective algebraic
surfaces X and some related problems.

1. Preliminaries. We shall briefly explain some notations and results
in [3], [4] and [5] which will be used later.

Let G be a finitely generated Fuchsian group of the first kind with no
elliptic elements acting on the upper half-plane U such that the quotient space
S=U|G is a finite Riemann surface of type (g, n). Let Q,om(G) be the set
of all quasi-conformal automoiphisms w of U leaving 0, 1, oo fixed and satis-
fying wGw™'C SL'(2; R), where SL’ (2; R) is the set of all real Mobius trans-
formations. Two elements w;, and w, of Q.,mm(G) are equivalent if w,=w,
on the real axis R. The Teichmiiller space T(G) of G is the set of all equiva-
lence classes [w] obtained by classifying Q,.m(G) by the above equivalence
relation.

Let wy. be the element of Q_,,,(G) with a Beltrami coefficient p€L>(U, G),
and let W* be a quasiconformal automorphism of the Riemann sphere C such
that W* has the Beltrami coefficient x on the upper half-plane U, and is
conformal on the lower half-plane L, and

WH(z) = ﬁw( l2i])

as 2 tends to —i. This mapping W* is uniquely determined by [w.] up to
the equivalence relation, that is, w.=w, on R if and only if W*=W"on L. Let
¢u be the Schwarzian derivative of W*. Then ¢, is an element of the space
B,(L, G) of bounded holomorphic quadratic differentials for G on L. Bers
proved that the mapping sending [w.] into ¢, is a biholomorphic mapping
of T(G) onto a holomorphically convex bounded domain of B,(L, G), which
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is denoted by the same notation T(G). The space B)(L, G) is a (3g—3+n)-
dimensional complex vector space. We associate with each ¢ of By(L, G)
a uniquely determined solution Wy=w,/w, of the Schwarzian differential equa-
tion on L

_%__(wll/w/)z —_ ¢ ,

where #, and w, are the solutions of the linear differential equation on L
20"+ pw =0

normalized by the conditions w,=w}=1 and w{=w,=0 at 2=—i. The
homomorphism G —SL’ (2, C) induced by ¢, which carries g into ¢ in such
a way that Wyog=goWy, is denoted by X4. Since each point ¢ of T(G) is
a Schwarzian derivative of some W* with p=L>(U, G),, we have Wy;=W" on
L. Hence W, is conformal on L and has a quasiconformal extension of C
onto itself, which is denoted by the same notation. If we set Gy=X4(G)=
WygoGoW ' and Dy=W,(U), then Gy is a quasi-Fuchsian group and the de-
finitions are legitimate since Dy is the complement of the closure of Wy(L)
and since W,|L depends only on ¢. The Koebe’s one-quarter theorem
implies that Dy,C(|w|<<2) for every ¢ of T(G).

Let (X, 7, R) be a holomorphic family of Riemann surfaces of type (g, n)
with 2g—2-+r>>0 and let p: D— R be the universal covering with the covering
transformation group I'. Then there exists a holomorphic mapping ®: D—
T(G) such that the quotient space Dg;)/Ga( is conformally equivalent to Sy,
for every t&D. We abbreviate G4 to G, and Dy, to D,. We set

X = {t, w)|teD,weD} .

This set X is topologically equivalent to the two-dimensional polydisc D2
Since D,C(|w|<2) for every t&D, the set X is a bounded domain in C%. We
can also show that X is a domain of holomorphy. Let F, be the conformal
mapping of D,/G, onto S, induced by ®(¢) for every t&D and let II be the
holomorphic mapping of X onto X sending (¢, w) into Fy(w). Then TI: X—>X
is the universal covering of X constructed by Griffiths [2].

Let G be the covering transformation group of the universal covering
I1: X—X. We can explicitly express the elements of & as follows. For each
element v &T, the homotopic monodromy M, of 7 is the element of the
Teichmiiller modular group Mod(G) of G with the property ®oy=Myod.
The subgroup M= {M,|v<T} of Mod(G) is called the homotopic monodromy
group of (X, 7, R). Denote by N(G) the set of all quasiconformal automor-
phisms o of U with weGow™'=G. Take an element wy of N(G) which induces
M,, that is, <wy>=»M, We may assume that wy;=wyow; for all v, S&T.
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For each t&D, let [wy,] be the point of 7(G) with a Beltrami coeflicient p,
corresponding to the holomorphic quadratic diffetential ®(¢) in By(L, G).
For each g &G, we set wy,,=Aowy,o(wy°g) '€ OQporm(G), where A is a real
Mobius transformation. If we set

(7, &)t w) = (Y(2), W¥ro(wyog)o(W*)"H(w))

then the mapping (7, g) is an analytic automorphism of X for all yET, g €G.
Now the covering transformation group & is identical with the set "X G.
By definition, we have the relation

(1) (7, £)°(8, k) = (73, w5 ogewsoh)

for all 7, 8T and g, hEG, that is, G is a semi-direct product of T' by G.
It is noted that (7, g)=(3, k) if and only if y=34 and g=h.
Now, we have the following fundamental theorem. (See [3] and [4].)

Theorem. Let (X, =, R) be a holomorphic family of Riemann surfaces
of type (g, n) with 2g—2+4-n>0. Take a puncture p, of R. Let t, be a para-
bolic fixed point with p(t,)=p, and let v, be a generator of the stabilizer of t, in
T'. Then there exists an element ¢, in the closure of T(G) in By(L, G) such that
the holomorphic mapping D(t): D—T(G) converges to ¢, uniformly as t tends
to t, through any cusped region at t, in D. The homotopic monodromy My, is
of finite order if and only if p,=T(G), and is of infinite order if and only if
b0 E0T(G), where dT(G) is the boundary of T(G) in ByL, G). In the latter
case, the boundary group Gy, correspending to ¢poE0T(G) is a regular b-group.

2. Proof of Theorem 1. Assume that there exists a biholomorphic
mapping F: X—B,. Let p, be a puncture of R and let #, be a parabolic fixed
point with p(Z)=p,. By the above Theorem, there is an element ¢, of the
closure of T(G) such that holomorphic mapping ®(¢) converges to ¢, uni-
formly as ¢ tends to 7, through any cusped region A at ¢, in D. Let G4, be the
Kleinian group corresponding to ¢, which is a quasi-Fuchsian group or a
regular b-group. Take a component Q of G4, which is not equal to the in-
variant component of G, corresponding to the lower half-plane L.

Let K be an arbitrary compact subset of Q. Then K CD,=Dy) for
any A&t sufficiently near 7, Hence, by the diagonal method, we can take
a sequence {7}, in A such that #,—17, as #—co and such that F(¢,, w)=
(Fy(t,, w), Fy(t,, w)) converges tc a holomorphic mapping f(w)=(fi(w), fA(w)):
Q — 0B, uniformly on any compact subset of ( as n— co. Since

AR P fL=)1P =1,

we have
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A1+ 1@ D=2 @)] + L) = o,

62
8262(
which implies that g—fl=g—f2=0 on Q. Hence f=(f;, f,) is a constant map-
02

ping. We may assume that f is a constant mapping with the value (1, 0)€0B,.
Denote by Gy the stabilizer of Q in Gy,. Let G,=X5)(Ga), g=Xow(g)
for geG, t€D, and g,;=X4,(g) for gG. Set A,=Fo(1, g)oF = Aut(B,)
for each g€G, where 1 is the identity element of T. Since g,—g as t—¢,
through A for all g&G, and since g, (Q)=Q for all g&G,, the boundary point
(1, 0) of B, is a fixed point of 4, for all g=G,,.
We set

S = {(u, v)eC?| Im(u)>|v|?} ,

where Im (%) 1s the imaginary part of . This set S is a Siegel domain of the
second kind. We put

u—i 2v
zl == By =

- . 2 .
u+1 ’ u-t1

Then the mapping T: S— B, sending (u, v) into (2, 2,) is biholomorphic and
it carries the boundary point (oo, 0) of .S into the boundary point (1, 0) of B,.
It is known that an analytic automorphism W& Aut(S) of S has a fixed point
(oo, 0) if and only if

W(u, v) = (|a|%u ++2iabv+c+i|b|? av-+b),

where a is a non-zero complex number, b is a complex number and c is a real
number. (See Pyatetskii-Shapiro [8, Chap. 1, § 2, Thm. 1].)

Let A¥=T""0A,0TcAut(S) for each g&G. Then the point (co, 0) is
a fixed point of 4} for all g=G,. Hence,

A¥(u, v) = (|a,|u+2iab v+c,+i|b,|% ao+b,)

for all g=G,.

i) If |a,|=+1 for some g,EG,, there exists an element ¥ e Aut(S) with
W(oo, 0)=(co, 0) such that WoAdF oW~V u, v)=(|a,|%, ay), where a, is a non-
zero complex number with |g,| 1. Take an element A=G, such that gyok=
hog, We set

Uu, v) = \I’OA;!‘oo\I”l(u, v) = (laol? u, ay),
V(u, v) = WodFoWY(u, v) = (|a|u+2iabv+c+i|b|? av-+b).

Since gyoh=hog, we have UoV %V oU, which implies that 530 or ¢+0. By
direct computation, we have
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W (u, v) = VoU" Vo lU ~*(u, v)
— (u+ 21— a)bo-+(1— | ay | *)e+21b1? T (at) -+ 1 (1—ad)b %, o-+(1—at)b)

for any integer #. Since |a,| =1, we have
W (u, v) = W(u, v) = (u+2ibv+c+i|b|? v+b)

as m—>oco or —oo, which implies that (F~'oToW 1) oGo(F T oW™) is not
discrete. Hence, G is not discrete and we have a contradiction.

ii) If |a,|=1 for all g€G; and if a, +1 for some g,EG,, there exists
an element WEAut(S) with W(co, 0)=(oo, 0) such that WoAfE oW *(u, v)=
(u+c,, a,v), where g, is a complex number with |g,]=1 and a@,%1, and ¢, is
a real number. Take an element Z& G, such that gooh==hog,. We set

U(u, v) = Vo A¥ oV Y u, v) = (u+-co, ay),
V(u, v) = WodAFoW Y u, v) = (ut+2iabv+c+i|b|? av-+b),

where a is a complex number with |a|=1, b is a complex number, and ¢ is
a real number. Since hogi=gioh for all integer n, we have VoU"F=U"V
which implies that =0 and ag+1. If we set a;=e™, then 6 is an irrational
number. By direct calculation, we have

W,(u, v) = VoU"V " toU ~"(u, v)
= (u+2ib(1—al)o+2|b|? Im(al)+i|b(1—al)|? v+b(1—ab))

for any integer n. Since @ is an irrational number, there exists a sequence
{n;} of integeis such that (a,)"i—1 as j—>oo. Therefore, W, (u, v)—W(u, v)=
(u, v) as j— oo, which implies that (F l'oToW ™) oGo(FtoToW¥™) is not
discrete. Hence, & is not discrete and we have a contradiction.

iii) If a,=1 for all g G,, we have

A¥(u, v) = (u+-2ib v+c,+i(b,|% v-+b,) .

Therefore,
A¥oAFo(A¥)o(AF) W(u, v) = (u—4Im(b b,), v).

Hence, the commutator subgroup of the group {4¥|geG,} is commutative,
which implies that the commutator subgroup [G,, G,] of G, is commutative.
Hence we have a contradiction. This ccmpletes the proof of Theorem 1.
Now, let us assume that there exists a strongly pseudoconvex domain Q in
C? which is biholomorphically equivalent to X. Let F: X—Q be a biholo-
morphic mapping. Since G¥*=F oG oF ! is an infinite subgroup of Aut(Q) and
acts on Q properly discontinuously, for any point § of , there exists an in-
finite sequence {7,} of G* such that T,(§) tends to a boundary point &, of Q



UNi1vERsAL COVERING SPACES 587

as m—oo, Therefore, the Proposition in Rosay [9] implies that Q is biholo-
morphically equivalent to the unit ball B,. Hence, we have a contradiction and
this completes the proof of Corollary.

3. Proof of Theorem 2. If all the fibers S, are conformally equivalent,
then the mapping ®: D—T(G) is a constant mapping with a value ¢, T(G).
By the relation M,o®=>®o7, the point g, is a fixed point of all Mye M. Since
the modular group Mod(G) of G acts on T(G) properly discontinuously, the
subgroup M of Mod(G) also acts on T(G) properly discontinuously. Hence,
M is a finite group.

Conversely, assume that (9 is finite, and let T, be the kernel of the mono-
dromy map v+ My. Then Ty has finite index in T, so R,=D/T, is a Riemann
surface of finite type. Since ®oy=® for all v in T, the holomorphic map
®: D—T(G) factors through R, Since 7(G) is bounded, every holomorphic
map from R, to T(G) is constant, so P is a constant map. Hence, all the fibers
S, are conformally equivalent and this completes the proof of Theorem 2.

4. Proof of Theorem 3. Assume that there exists a biholomorphic
mapping F=(F,, F,): X—D? If we set G*=F*(Q)=FoGoF, then G* is a
properly discontinuous subgroup of the analytic automerphism group Aut(D?).

We recall that any analytic automorphism of D*=(|z2;| <1)X(|z,| <1) is
either one of the following two types:

) (4, B)(21, 2,) = (A(=1), B(2,)) »
(IT) (4, B)(21, 22) = (A(22), B(=1))

where 4, BEAut(D). (See Narasimhan [7, Chap. 5, Prop. 3].) Note that
(4, B)?is of type (I) for all (4, B)< Aut(D?).

We also recall the following results, which will be used frequently in this
section. (See Lehner [6, Chap. 2, §9, Thm. 1 and Thm. 2, and Chap. 3,
Thm. 2E].)

Two Mobius transformations are commutative if and only if they have
the same set of fixed points provided that neither is the identity and provided
that neither is a transformation of order two.

Let A be a hyperbolic or loxodromic transformation and let B be a Mobius
transformation which has one and only one fixed point in common with 4.
Then the sequence {BoA"oB~'oA~"} of Mobius transformations converges to
a Mobius transformation as z—oco or — oo,

By these results, we have the following assertion.

Let A, B be two Mobius transformations of infinite order with AoB=
BoA such that they have a common fixed point. Then the group generated
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by 4, B is not discrete.

Let p, be a puncture of R, ¢, be a parabolic fixed point with p(#)=p, and
let v, be a generator of the stabilizer of £, in I'. Then Theorem of §1 im-
plies that there exists an element ¢, in the closure of T(G) in By(L, G) such
that the mapping ®(¢): D — T(G) converges to ¢, uniformly as ¢—#, through
any cusped region A at #, in D and such that the Kleinian group G, corre-
sponding to ¢, is a quasi-Fuchsian group or a regular b-group. Let D,=
Q(G4,)—A(Gs,), where Q(Gy ) is the region of discontinuity of Gy, and A(Gy)
is the invariant component of Gy corresponding to the lower half-plane L.
Then the quotient space

Sy = (D, U {accidental parabolic fixed points of Gy })/Gs,

is a Riemann surface of type (g, #) with or without nodes. Let {p, --*, p:}
be the set of nodes of S;, which may be empty. If z,: U—-S=U/G is the
canonical projection and if a: S—S, is the deformation as in § 3 of [4], then
there exists a family {W,},cn of quasiconformal automorphisms on C such
that W, is conformal on L and has a Schwarzian derivative ®(¢) for all t€A
and such that W, converges uniformly on any compact subset of U,=U—
7o o ({py, ***, Pu}) to a locally quasiconformal mapping W,: U,—D, as
t—t, through A. (See §4 in [4].) Then the locally quasiconformal mapping
W, induces the above deformation a: S — S,

S
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Let =9, -+, =) be the parts of S,, that is, the connected components of
So— {p1, =+, pu} and let Z,=a (Z?) for each i=1, --,r. Take a sufficiently
small neighborhood §;= {(z,, 2,)€C?|22,=0, |2,| <€ and |z,| <&} of a node
p; in S, for each j=1, -« k and set §=58, U - US,. If we set Ci=a (2]
=&)X (2,=0)) and C/=a"Y((2,=0)x (|2, =¢)) for each j=1, -+, k, then the
domain bounded by C% and C/’ is an annulus on S. Let 3/ be the connected
component of S—a (8, contained in 3, for each 7=1, :-,7. Then 3/ is
homeomorphic to ;. (See Figure 1.)

Take a point ¢, on S, which is fixed as a base point. Let (C, ¢) be a pair
of a point ¢ on S and a path C from g, to g on S. A pair (C,, ¢,) is equivalent
to a pair (C,, ¢,) if and only if ¢;=¢, and C,oC3"' is homotopic to the point
¢,- Then we can identify the universal covering space U of S with the set
of all these equivalence classes [C, g] and the covering transformation group
of the universal covering 7,: U—S is identified with the fundamental group
(S, g,) of S with a base point ¢, that is,

G= {[Co]* | [Co] Eny(S, 90)} ’

where [C,]4 is a covering transformation sending [C, q] into [CyoC, gq] for
[C, ql€U. Suppose that g, C/ throughout this section and set

G, = {[C]+|CoEm(Zy, ¢0)} 5
U, = {[C, q]|¢g<%, and C is a path from ¢, to ¢ on =} .

Then U, is a connected component of z5'(Z,), which is invariant under Gi.
Since 3/ is homeomorphic to =, we have G,= {[C,]« | C,E=(Z1, ¢,)}. If weset
Q,=W,(U,), then Q, is a component of Gy, and the isomorphism X4 : G—>Gy,
induces an isomorphism X4 |G;: G;—Gg, where Gy is the stabilizer of Q, in
Gy,

Let (fy,)« be an element of the modular group Mod(S) of the Teichmiiller
space T'(S) corresponding to the homotopic monodromy My =<wy>& Mod(G)
of 7, Since there exists a positive integer m such that (f,,)" is homotopic to
a product d of »-th powers of Dhen twists on S about Jordan curves mapped
by a: §—S, into nodes, we may assume that the quasiconformal automorphism
w, of U with ©;°Gcwi'=G and {w,p>=(M,,)" is induced by d. Since d|Z{
is the identity mapping, ;| U/ is also the identity mapping, where U1 is the
connected component of zy'(Z{) which is contained in U,. Note that U] is
invariant under G,. Hence, we have w,ogowi'=g for all g=G,.

Set (4, B)=Fo(v¢, 1)eF ', (4,, B))=Fo(1,g)oF ! for each gEG, where
1 is the identity of I" or G. We may assume that (4, B) is of type (I).

By the same reasoning as in § 2, we can choose an infinite sequence {¢,}:-:
of A lsuch that #,—#, as n—>co and such that F(¢,, w)=(F\(t, w), Fyt, )
converges to a holomorphic mapping f(w)=(fy(w), fy(w)): £;—>0D? uniformly on
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any compact subset of Q; as #—>co. Since 0D?={(|2,|=1)x(|2,|=1)} U
{11 =1)x(12,] =1)}, we have |f(w)|=1 or |fy(w)|=1 for each weQ,.
Hence, |fi|=1 or |f,|=1 on a non-empty open subset of ;, which implies
that f; or f, is a constant function with a value in 3D. So we suppose that f; is
a constant function with a value ¢;€0D. Now, we have the following lemma.

Lemma 1. The analytic automorphism (A, B)=F o(v§, 1)oF~! of D? is
equal to (A4, 1) and A is of infinite order. For each g =G, the analytic automor-
phism (A,, B,)=Fo(1, g)oF ! of D? is of type (I) and B, is of infinite order
provided that g +=1. Moreover, the group A={A,|g€G\} is commutative.

Proof. Since w;ogowi'=g for each g=G,, the relation (1) of §1 implies
that (1, g)o(v§, 1)=(7¢, 1)o(1, g) for each g=G,. Hence, we have (4,, B,)°
(4, B)y=(4, B)°(4,, B,) for each g=G,. If (4,, B,), g€G,, is of type (I),
then A,0A=A-A4, and B,oB=BoB,. In general, denote by Fix(T) the set of
fixed points in C of an element TeAut(D). Then, if neither 4 nor A4, is the
identity, we have Fix(4)=Fix(4,). Similarly, if neither B nor B, is the iden-
tity, then Fix(B)=Fix(B,).

Assume that neither 4 nor B is the identity. Take two non-commutative
elements g,, 2, G, such that both (4,, B, ) and (4,, B,,) are of type (I).
If at least one of 4, , A,, is the identity, then clearly 4, and A4, are commuta-
tive. If A, =1 and 4, #+1, then Fix(4)=Fix(4,)=Fix(4,,), which implies
that 4, and A4, are commutative. Hence, in any case, 4,, and 4, are com-
mutative. Similarly, it is shown that B, and B, are commutative. Hence,
(4,, B,,) and (4,, B,,) are commutative and so are g, and 4. We have a
contradiction. Therefore, at least one of A, B is equal to the identity. Since
7%, is of infinite order, either 4 or B is of infinite order. Hence, we have the
two cases: (i) A is of infinite order and B=1, (ii) A=1 and B is of infinite
order. Assume that 4=1and B is of infinite order. Then we have 4, 04, =+
A, 0A,, ByoB, =B, 0B, and we have that 4, and A, are of infinite order
because no powers of g, or A, commute. Set g, ,=Xow(g) for each t&D.
Then (1, go)(t, w)=(¢, go«(w)) for each (¢, w)&X. The relation Fo(l, g)=
(44, Bg)oF implies that

F:{}d
Fl(t’ go,t(w)) = AgooFl(tr w),
Fyt, go,(w)) = By oFy(t, w)

for each (t, w)eX. Let g, =X4(g)- Since Fy(t,, w), Fyt,, w) and g, (w)
converge uniformly on any compact subset of Q, to fi(w)=c,, fy(w) and g, ; (w),
respectively, as #—oco and since g, ()=, we have A, (c;)=¢; and fyog,,
=B, of, Similarly, we have A4, (c;)=c, and f,ohy, =B, °f,. Since 4, and
4,, are two non-commutative Mobius transformations of infinite order with a
common fixed point ¢; and since B,, and B, are commutative, the group
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generated by (4,,, B,,) and (4,, B,,) is not discrete. Hence, FoGoF ™! is not
discrete, which implies that & is not discrete and we have a contradiction.
Therefore, A is of infinite order and B=1. Moreover, it is shown that both
B,, and B, are of infinite order, 4, and A4, are commutative, and B, and
B, are non-commutative.

Now, assume that (4,, B,) is of type (II) for some gG,. Then we have

(Ag By)o(4, 1)(2y, 22) = (Ag(22), BgoA(21)) s
(A4, 1)o(Ay, Bp)(21 25) = (AoAy(2,), By(2y)) -

Since (4,, B,) commutes with (4, 1), we have
(Ag(2), Bgod(z1)) = (AoA,(22), By(21))

for each pcint (2, 2,) of D% Hence, A=1, which contradicts 441. There-
fore, (4,, B,) is of type (I) for all g=G,.

Since (4, B)=(4, 1), (4,, B,) is of type (I) and (4, 1) commutes with
(4,, B,), we have that 4oAd,=A4,A4 for all g=G,. Hence, the group A=
{4,1g=G}} is commutative.

Moreover, B, is of infinite order for all g=#1 of G, by the same argument
as the one that 4, and 4, are of infinite order. This completes the proof
of Lemma 1.

Lemma 2. The yomotopic monodromy My of v, is of finite order.

Proof. We use the notations in the proof of Lemma 1. Assume that
M,, is of infinite order. 'Then S, is a Riemann surface of type (g, #) with nodes
by, P Denote by C; the Jordan curve a™'(p;) on S for each j=1, -+, k.

i) Assume that at least one of C,, :-+, C}, say C,, is a non-dividing cycle
on S. Suppose that geC{=a"'((|2|=¢E)X(2,=0)) and take a closed path
C, starting at g, on X;. (See Figure 2.)

Figure 2.

Since the Dehn twist d inducing the homotopic monodromy (My,)"=
{wyy is the identity mapping on S—a~Y(3,), we have [d(Cy)]=[C1]"[C,] for
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some integer v, Set g,=[C{]lyo€G,, h=[Cl«<EG, Uy=h(U,) and G,=
hyoGiohs'. Then the relations [d(Cy)]=[C {]"°[C,), demy=msow; and o,| U;=1
imply that e,0hy=g.,oh, on U,. Hence, we have w,=g, on U, If we set
w,=gs owy, then w,|U,=1, <w,>=<w,> in Mod(G) and w,chow;'=h for all
heG, Moreover, the quasiconformal mapping w, induces an analytic auto-
morphism (1, g;)~'o(7#, 1) of X. Hence, we have an element (4;'e4, By\)e
FogoF~!, Note that, by Lemma 1, B, is of infinite order. By the same
reasoning as in the proof of Lemma 1, the relation w,chow;'=h for each k=G,
implies that 4z 'cA=1, (4,, B;) is of type (I) for all A&G, and the group
{B,|h=G,} is commutative.

If (4,, B;)=Fo(1, h)oF " is of type (I), then {B,|g€G\} and {B,|he
G;} are conjugate by B, . Since the group {B,|A€G,} is commutative, the
group {B,|g=G}} is also commutative and we have a contradiction.

Now, suppose that (4,, B,) is of type (II). We set k,=hyog, and U;=
hi(U,) for each gi=G;. The relations [d(Cy)]=[C{]%°[C,], domy=myow; and
w;| U=1 imply that w,=g ko g0k on Us. If we set ws=(hogs ok ogs!)ow,,
then we have w;|U;=1, <{w;>=<w;> and wzohows'=h for all A€hioG ohi>.
The elemnt w;EN(G) induces an analytic auotmorphism (1, #0853 ok oggt)o
(7%, 1) of X and we have an element (X,, ;) EF 0 GoF !, where X,=(4,,°B,,)°
Bglo(A4,0B,) " and Y,=B, cA;'oBj'oB;!. Note that (X;, Y)) is of type (I).
By the same argument as the proof of Lemma 1, we see that (X, Y;)=(Xj, 1)
with X;=+1 or (X;, Y;)=(1, Y,) with Y;#1. Since B, is of infinite order,
we have X,%+1 and Y,=1. We set h,=hyoogi. The same reasoning as above
implies that the element (/,0 g5 ok7 0 g5")ow; of N(G) induces an element (X, 1)
of FoGoF ™!, where X,=(4,,0B;)°B; o(4;,°B)™". Now, we can prove that
A={4,lg=G;} is a discrete subgroup of Aut(D) as follows. Assume that
J is not discrete. 'Then there exists a sequence {4,} of distinct elements of
A such that 4,—1 as n—oco. Take an element g,&G, with goog,+g,0g, and
consider the sequences {(4,, B,)o(Xy, 1)o(4,, B,) "} = {(4,°X,°4;", 1)} and
{(4,, B,)o(X,, 1)o(4,, B,)} = {(4,°X,04;", 1)} in G. They converge to
(X, 1) and (X,, 1) respectively as n— co. Therefore, the discreteness of &
implies that for any sufficiently large n, 4, commutes with X; and X,. Thus,
Ao XeAy'=X, and A,0X,04;'=X, for any sufficiently large n, which implies
that

Fix(4) = Fix(4,) = (A4,°B,)(Fix(B;))
Fix(4) = Fix(4,) = (4,,°B2)(Fix(B;)) .

Hence, we have B, (Fix(B,,))=Fix(B,,), which implies that the group generated
by (4., B,,) and (4,,, B,)) is not discrete and we have a contradiction. There-
fore, (A is an Abelian discrete subgroup of Aut(D). Then A is generated by
an element 4,, for some g,=G, with gy=F+1. Take an element g,=G, with
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gx08,F 808y Let A,=(A4,)" for some integer n and let gy=g,005"€G,.
Then g;#1 and Fo(1, g5)oF "'=(4,, Bs)=(1, B,). Since (4,, B, is of type
(II), we have Fo(l, hyogsohi')oF ~'=(A; 0B, Ay}, 1), which is of type (I).
Therefore, (Ag, By,) and (A, 0B, 0A0;", 1) are commutative, which implies
that g, and hjog;ohT' are commutative. Since g; and k, are elements of the
discrete subgroup G with no elliptic elements of Aut(U), it is shown that g,
and h,=h,og, are commutative, where g, is an arbitrary element of G,. Take
an element g, =G, with gohy+hog,. Since g; and hyog, are commutative and
gs and hypogl are also commutative, we have. that kg, and Ahpog? are com-
mutative. Hence, %, and g, are commutative and we have a contradiction.

ii) Assume that all the Jordan curves C, ---, C, are dividing cycles on
S. Take two connected components 3, and 3, of S—a ™ '({p, -+, p}) which
have the common boundary curve C,. Let g,&C1, ¢¢=C1{’ and let L be a
simple path from g, to g on the annulus tounded by C{ and C'{’. (See Figure 3.)

Now, we set

U,= {[C, q]|¢g€=, and C is a path from ¢, to ¢ on 3},
U,= {[L°C, ¢]|¢g=Z=, and C is a path from ¢} to ¢ on =},

Gy = {[Cl+|[ClEm(Z1, 90)}
G, = {[LoC L] |[ClEm(Z,, qi)} .

Then U, and U, are invariant under G, and G,, respectively. Since the Dehn
twist d inducing the homotopic monodromy (My)"=<w,> is the identity on
S—a7Y(8,), it is shown that d(L) is homotopic to (C{)"oL for some integer v,.
Hence, if we set g,=[C{]4°€G,, then we have w,=g, on U, and w,ohowi'=
Zoohkogy! for all heG,. Note that g,&G,NG,. If we set w,=g5 ow,, then we
have w,|U,=1 and w,ohow;'=h for all heG,, and <{w,>=<w,> in Mod(G).
Moreover, the quasiconformal mapping w, induces an analytic automorphism
(1, &) *o(7%, 1) of X and we have an element (4704, B;'YeFogoF~'. Note
that B, is of infinite order. By the same reasoning as in the proof of Lemma
1, the relation w,ohow;'=h for each hEG, implies that A;'oA=1, (4,, B,)
is of type (I) for each k=G, A, is of infinite order for each A1 of G, and
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the group {B,|h=G,} is commutative. Take a closed path C, starting at
g6 on =, and set C;=LoCyoL ™" and hy=[C]x G, (See Figure 3.) Let U=
hy(Uy), G,ZhoolGIOhg_l and &lz(goohoogO'IOh[{l)'loml. Since wlngOhOOgEIOhEl
on U, we have &,|U,=1, &ogodri=g for all g€G,, and <& =<wy in
Mod(G). The quasiconformal mapping &, induces an analytic automorphism
(1, goohyogatohs ') to(vF, 1) of X and we have an element W=(4, 04, 0A4s °
AzloA, BB, oB;loB;!) of FoGoF™'. Since A;loA=1 and since B, and
B, are commutative, we have \Ifz(A,,OOAEOOA;;, 1).

Now, assume that J={A4,|g=G,} is not discrete. Then there exists a
sequence {4,} of distinct elements of . such that 4,—1 as n—>oc0. Thus the
sequence {(4,, B,)o(A,°A4°A;]}, 1)o(A4,, B,)"'} tends to (4,,04°A4;], 1) as
n—> oo, which implies that 4,0(4, 0404y, )0 A =4,,0A0 Ay, that is, 4, and
Ay 0AoA;) are commutative for any sufficiently large integer n. Hence, we
have Fix(4)=Fix(4,)=A4,,(Fix(4)), which implies that 4, fixes every fixed
point of 4. By the same argument, we can take another element %, G, with
the same property as %, and koh,=hoh,. Since B, and B, are commutative,
A, and A, are non-commutative. Hence, 4, and 4, are two non-com-
mutative Mobius transformations of infinite order with a common fixed ¢,
which implies that the group generated by (4,, B;,) and (4,, B,,) is not dis-
crete and we have a contradiction. Therefore, 4 is an Abelian discrete sub-
group of Aut(D). Then A is generated by an element 4, for some g,€G,
with g,#1. Take an element g,&G, with g,og,%g0g,. Let A,,=(4,,)" for
some integer # and let g;=g,0g7"<G,. Then g;#1 and (4, B;,)=(1, Bg,°Bz)).
If we set g=hyogsohy*, then we have (43, B;)=(1, B;0B,,oBj}). Then (4, 1)
and (43, B;) are commutative and so are (v¢, 1) and (1, ). Then, by the
relation (1) of §1, we have wiofowi’=F. Since wohwi’=gohyogs' and
w1°gzom1 " =g;, we have gyo(goohy'ogy ohy) = (g,ohv'ogs ohg)ogs. Similarly, it
can be proved that g, and A,=g,oh5"o g7 'ohs are commutative for any integer n,
which implies that Fix(g;)=Fix(h,) for any non-zero integer #. 'This is impos-
sible. In fact, by conjugation, we may assume that /,(z)=Fk?z for some constant
k>1 and gy(2)=(az+b)/(cz+d) with ad—bc=1. Since G is discrete and since
& and A, are non-commutative, we have g,(0)==0 and g,( o)== oo, which implies
that 4+0 and ¢==0. By direct computation, we have

__ (ad—FR"bc)z+(1—k~*")ab
(1—k*")cdz+ad—k™?"bc
If a=0, then the relation ad—bc=1 implies that bc=—1 and we have
K"z
(1—Ek*")cdz-+k™2

Since both %, and %, are Mobius transformations of infinite order with a com-
mon fixed point #=0 and since G is discrete, we have Fix(h,)=Fix(#,), that

0

(h,2)

h(2) =
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is, h,(c0)=-co. Hence, we have (1—£&*)cd=0. Since £2>1 and ¢=+0, we have
d=0 and #r*(g,)=0. Hence, g, is an elliptic element and we have a contradic-
tion. Therefore, we have a==0. Similarly, it can be shown that 530, c¢+0
and 4 #0.

Now, by direct computation, the fixed points 2z, of %, are given by the
formula

5 — ,(k_z”——kz”)bci {(Zad—(kz"—{—k"z”)bc)z_Al.} y2
’ 2(1—k")ed :

Then the two fixed points go to 0 and b/d as n— -+ co and they go to oo and
ajc as n—>—oo, On the other hand, since Fix(g;)=Fix(h,) for any non-zero
integer #, we have a contradiction. 'This completes the proof of Lemma 2.

Lemma 3. If X is biholomorphic to the polydisc D* and the homotopic
monodromy My, of 7, is of finite order, then the homotopic monodromy group M
of (X, =, R) is a finite group.

Proof. Let My =<wy,> for some wy,€N(G). Since (My)"=1 for some
integer m, we may assume that {(wy,)"> is represented by the identity mapping
on the upper half-plane U.

We use the notations in the proof of Lemma 1. By Lemma 1, we may
assume that Fo(v¢, 1)oF ! is equal to (4, 1) and is of type (I). Take an ele-
ment €T with ¥,08807, Set Fo(5, 1)oF'=(X, Y). We may assume
that (X, Y) is of type (I) and we have Fo(807F 087, 1)oF '=(XoA4oX " 1).
If X is of finite order, then (X*0A40X "% 1)=(4, 1) for some integer n. Hence,
we have (77, 1)=(8"o¥7067", 1), which implies that v§=8"0v§o86"". Hence,
v, and § are commutative and we have a contradiction. Therefore, X is of
infinite order. Similarly, it is shown that 4 and X are non-commutative.
Since (wy,)"=1, we have w6°76"°3‘1=1 and the relation (1) of §1 implies that

(8075087 1) and (1, g) are commutative. Hence, we have (XoA4oX 104, B,)
=(A,0X 042X, B,), that is, (XoAdoX ")od,=A,0(X0AcX"") for all g=G.
Assume that A,#+1 for some g&G with g=1. Since Fix(4)=Fix(4,)=
Fix(XoA4oX ")=X(Fix(4)), 4 and X have a common fixed point. Hence, 4
and X are non-commutative Mobius transformations of infinite order with a
common fixed point, which implies that the group generated by (4, 1) and
(X, Y) is not discrete. Therefore, we have a contradiction. Hence, 4,=1
for all g&G. Then we have the relations Fyo(1, g)=F;, F,o(1, g)=B,oF, and
gioE,=E,oB, for each g&G, where F=(F,, F,) is the above biholomorphic
mapping, E=(E,, E,)=F"' and g,=X,(g) for each t&D. The relation
Fio(1, g)=F, for all g G implies that F; is a bounded holomorphic automor-
phic function on Dy, for Gy, for each t&D. Since Dgy/Goy is of finite
type, the function F; is a constant function with a value ¢,&D on Dq, for
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each teD. Set D(t)=(z;=c¢;)X(|2,| <1) for each t&D. Then F, induces
an injective holomorphic function (F,);: Dey— D(t) for each t&D. More-
over, E, is a constant function with a value ¢ on D(¢) and E, induces an injec-
tive holomorphic function (E,),: D(t)—Dy(,) for each t&D. Since EoF=1%
and FoE=1,2, we have (EZ)tO(FZ),zl%(t) and (F,);o(E,);=1pw. Hence, (F,);:
Dy»—D(t) is conformal and it induces a conformal mapping of Dgy/Ge
onto D(t)/ B for each t=D, where $={R,| g=G} is a finitely generated Fuch-
sian group with no elliptic elements. Since all the Riemann surfaces D(t)/ 43,
teD, are conformally equivalent, all the fibers S,, pER, are also conformally
equivalent. Hence, Theorem 2 implies that the homotopic monodromy group
M of (X, =, R) is a finite group. This completes the proof of Lemma 3.

Now, we can prove Theorem 3. If the homotopic monodromy group ¢
of (X, =, R) is a finite group, then Theorem 2 implies that the mapping
®: D—T(G) is a constant mapping with a value ¢, Hence, the universal
covering space X of X is equal to DX Dy, which is biholomorphic to the
polydisc D2

Conversely, if X is biholomorphic to D? then Lemmas 2 and 3 imply
that % is a finite group. This completes the proof of Theorem 3.

5. Proof of Theorem 4. If X is biholomorphic to the polydisc D?
then it is clear that Aut(X) is not discrete. Conversely, assume that Aut(X)
is not discrete. Since the fibers of (X, 7, R) are compact, Theorem 3 in Shabat
[10] implies that Aut(X) is transitive. Hence, by E. Cartan’s Theorem, the
homogeneous bounded domain X in C? is biholomorphic to the unit ball B,
or the polydisc D% By Theorem 1, X is not biholomorphic to B,. Therefore,
X is biholomorphic to D% This completes the proof of Theorem 4.

6. Examples and problems. We give the following typical examples
of (X, =, R).

ExampLE 1. Let S be a Riemann surface of finite type (g, #n) with 2g—
2+n>0 and let R be an open Riemann surface of finite type whose universal
covering space is the upper half-plane. Let X=R X S and let = be the canonical
projection of X onto R. Then (X, =, R) is a holomorphic family of Riemann
surfaces of type (g, #) over R. All the fibers are conformally equivalent to S
and the homotopic monodremy group ¥ is tiivial. It is clear that the universal
covering space X of X is biholomorphic te the polydisc D>. Theorem 1 implies
that X is not biholomorphic to the unit ball B,. Hence, Theorem 1 is a gener-
alization of the famous theorem due to Poincaré which asserts that the polydisc
D? is not biholomorphic to the unit ball B,.

ExampLE 2. We set
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R=C—{0,1},
X = {(x 9 t)|y* = x*+t, (v, y)EC* tER} .

Let z: X—R be the canonical projection. Then (X, z, R) is a holomorphic
family of Riemann surfaces of type (1, 1) over R and its homotopic monodromy
group M is a finite cyclic group. All the fibers S, are conformally equivalent
and the universal covering space X of X is biholomorphic to the polydisc D?

ExampLE 3. We set
R=C—-{0,1,2,3},
X = {(x, 9, 2, 1) EP(C)X R| y%=® = x(x—2t)(x—2)(x—22)(x—32)} ,

where P,(C) is the two-dimensional complex projective space and (x, y, 2) are
the homogeneous coordinates of P,(C). Let z: X —R be the canonical projec-
tion. Then (X, =, R) is a holomrophic family of Riemann surfaces of type
(2, 0) and its homotopic monodromy group # is an infinite group. All the
fibers S, tER, are not confomally equivalent. Theorems 1 and 2 imply that
the universal covering space X of X is nct biholomorphic to B, or D% More-
over, Theorem 4 implies that Aut(X) is a discrete group.

Let (X, =, R) be a holomerphic family of Riemann surfaces of type (g, #)
with 2g—2-+n>0. Let us give the following problems.

ProBLEM 1. Let R be a closed Riemann surface of genus g,>1. Then

prove that the universal covering space X of X is not biholomorphic to the
unit ball B,. (cf. Shabat [10].)

ProBLEM 2. Let X be a Stein manifcld. Then prove that the universal
covering space X of X is biholomorphic to the polydisc D? if and only if
Aut(X) is not a discrete group. (cf. Shabat [10].)

ProBLEM 3. When Aut(X) is a discrete group, can we write down all
the elements of Aut(X)? Note that the covering transformation group & of
II: X— X is a subgroup of Aut(X) and its elements are known as in §1.
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