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ON Z/2-e-INVARIANTS

HARUO MINAMI

(Received November 25, 1981)

Let G be the group Z/2. Denote by πj,q the equivariant stable homo-
topy group of Landweber [12]. In a similar way to the usual ^-invariants

we define equivariant ^-invariants eG and eGtR on πp,2q-ι by using the Adams
operations in the KG- and ίΓOG-theories and the equivariant Chern character.
And we compute these invariants, in particular eGtRy on the image of the equivari-
ant J-homomorphism, making use of the Adams' result for e'R. Here we study

the case when KOcl(Σp'29~1) is torsion-free. The torsion case is discussed
by Lόffler [14].

1. Definitions

Let Rp q denote the Rp+q with non trivial G-action on the first p coordi-
nates. By Bp>q and Sp q we denote the unit ball and unit sphere in Rp'g and
by Σp'q the Bp>9/Sp'q. If p and q are even then Rp q is a complex G-module.
In particular, we write 1 and L for R0>2 and R2ιQ. Then {1, L} are basis of
the complex representation ring R(G) of G.

For the Thorn class of R2p>2q as a complex G-vector bundle over a point

we write λ2ί,2ί>
 so tnat KG&2pt29)=R(G)*\2p.2q [16]. Here let A x denote

the module generated by x over a ring A. Then we have the formula

*'(λ2,A) - p'(2p, 2q)\2pt2q, p'(2p, 2q)^R(G)

for the t-ih Adams operation -v/r', and p*(2p, 2q) is computed briefly, using the
result for ψ * in K(S2n), as follows.

Lemma 1.1. p'(0, 2q)=tq, and ifp>Q then

, 2q) =

— ίί+ί(L+l) (f even)
LJ

f*+«+-l-ί«(f*—1)(L-1) (t odd).

As is easily seen, ^G(21>0) is isomorphic to the augmentation-ideal of
R(G). Identifying £G(Σ1)0) with Z (l-L) it is clear that KG(Σ,2p+1>2q)=Z
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(1— L)\2pt2q. Hence we have the following

Corollary 1.2. ψ* operates on KG(Σ?p+l'2q) as multiplication by 0 if t is
even and by tq if t is odd.

For/), q—l^O suppose given a base point preserving G-map /:
-> 22*'2/ for k, I large, which is fixed in this section. / yields a cofiber se-
quence

f ί
-l21 J 2kl ,2q+2l £ y2k,2l+l

where z, j are the inclusion and projection maps and Cf is the mapping cone
of/. Applying KG we obtain the following exact sequence.

+*t) «- 0

(P even)
Z (p odd)

Choose generators ξ, -η of KG(Cf) so that

y*/n Λ n/ι jy*(V2»A+») (P even)
, (e) = ̂  and ,= ^ odd).

For any odd integer ί(Φ±l)> ty*(%) must be given by the formula

t ((c(ί)-\-d(t)(L—l))η (p even)

\c(t)-n (p odd),

c(t), d(t)^Z. So we set

I / φ)
tk+l £?+/__£/ /

(p odd).

Using Lemma 1.1, Corollary 1.2 and the relation ^s-^t=^st we can check that

the values {λ(/)} , {μ(f)} do not depend on the choice of an integer t where { }
denotes the coset in £)/Z. As in [1, IV], §7 we see that the assignment

, , M/)}) (P even)

({/*(/)} (P odd)

induces a group homomorphism
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\QIZ®QIZ (p even)
*c:*/.2,-ι-*j f o r p , ?iρ/Z (/> odd)

Regard eG as taking values in £G(Σί+2*'2ί+2/)<S>Q/Z, namely let *G[/] be

W/)} (£— l))λί+2*.2β+2/ °r M/)} ί1 — L)^p-ι+2k,2i according as^> is even
or odd where [/] is the stable homotopy class of /. Then we have easily the
following

Proposition 1.3. eG is natural for stable maps from Σ^'2*"1 to SΓi2ί"1.

To evaluate ψ*(ζ) we shall next describe eG in terms of the equivariant
Chern character. Let chG be as in [18] and chn

G denote the 2n- dimensional
component of chG which is a homomorphism of KG to H2

G( , RG) in the no-
tation of [18]. By the definition of equivariant Bredon cohomology [7] we
have the following canonical isomorphisms

y RG)
^ ffp+2k+2q+2l^gp+2k+2q+2l^ Q\ ^

, RG) « H^(C^ ρ) (l-L)

«H2«+2/(S2ί+2/,ρ) (l-L).

Here i/r and φ are the forgetful and fixed point functors [3]. Under the identifi-
cation of the above isomorphisms we may set

and

a(f), b(f)^Q (p even) where h2i^H2i(S2i, Z) is a canonical generator such that

)=A2l' Then we obtain

Proposition 1.4. //"_p even then

then

Proof. Consider the following commutative diagram with the exact se-
quence which φf yields as /does.

0 <- ̂ (Σ2*-2') i- KG(Cf) t- ̂ G(Σί+2* 2?+2/) *- 0

U* ^ U* .„, \h*

0 - ^G(Σ° 2/) - KG(Cφf) t
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(Here A's are the inclusions.) Choose ζ\^KG(C^f) so that ί*(?ι)=λof2/ and

put ηι=j*(λoi2q+2i)' Then we may write

for a cohomological reason and the fact that λ*(λ2*f2/)=2*~1(l — £)λ0,2/ Apply-
ing i/r' we have

(1)

On the other hand, apply A* to the denning formula of c(t), d(t) we have

(2) ψ'(A*£) = 2*-¥(l-L)£1+*ί'(l-L),j1

p/^-Xcφ-Z^)) (1-L)^ (p even)
+ \2<*-1^+»i(i)(l-JL)% (p odd).

Combining (1) and (2) shows

(ί even)

Case ^> even. From the definition of chG it follows easily that

and

Hence we get

and .

Therefore [1, IV], Proposition 7.5 for t/r/and φ/ leads to the equialities

a(f] - c(f) and b(f) _c(t)-2d(t)
\J ' 2+k++l .k+1 2+k~l t9+l _ tl

Case p odd. Similar to the proof of the above case. q.e.d.

2. (0, 2q— l)-stem

Let π: ^2q-wι _^^2k ,2^1+21^^-1+21 be the canonical projection map for

k, I large. Let λ/,? denote the equivariant stable homotopy group introduced
in [12]. Then we have by [12] a split short exact sequence

7Γ* Φπ . Λ s " ^s — > _s . r>
U — > Λ 0 2^-1 ^0,20-1 <— 7Γ2ί-l ~> U



Z/2-e- IN VARIANTS 543

where TT* is the homomorphism induced by n and θ denotes a left inverse of
φ as in [4], §5.

By the definition we can easily describe the values of eG on Im θ in terms

of the complex ^-invariant ec in [1, IV]. So we consider eG on Im TT* in this
section.

Suppose given a base point preserving G-map /: ^,2^-1+2/^0,29- 1+2; __^22*'2/,

so that / and /TT define elements [f] and [/TT] of λ 0,2,7-1 an(i ^"0,2?-! respec-
tively. We consider fπ as / in § 1 .

Since 2''y/Σ°'y is equivariantly homeomorphic to ΣQJ+lSΐ'Q ([12], Lemma
4.1), we have ^(Σ^/^'^K^'^RP^1) [16] where RPn is the real w-dimen-
sional protective space. Let ηn be the complexification of a canonical real line
bundle over RPn and put ηn=\— ηn. We now recall [6] that

K\RP2n) = Z/2n^2ny K\RP2n] = 0

K\RP2n+l)

Then we can identify

Consider /*:^G(Σ2* 2ί)-*^G(Σ2*'2ί-1+2i/Σ0 2ί-1+2/). Because [/Jeλ0

s,2,-ι for
^ 1 is of finite order ([12], Theorem 2.4 and Corollary 6.3) we may put

where [ ] denotes the coset in Zβk~l.

Lemma 2.1. b(f)=-b(fπ) mod 2k~l

m § l .

Proof. Observe the following commutative diagram involving (*) in §1.

/* -

"^T ^T"
,ι *-KefCy.) i- K^-W) *-0

|A* ^ JA* .# IA*

^K^^K^C^^K^)

where the right-hand sequence is the exact sequence for a pair (22*'2?+2/, 20>29+2/).

Clearly Cφ(7,)«Σ0 2*+2/VΣ0 2/, hence we can verify that /*(λak,2/) = -δ<;f-%*(?)
where £ is as in §1. Hence the canonical identification such that l£G(Σ0'2q+21)
=K(S29+2I)®R(G)=H2^2I(S29+21, Z)®R(G) leads to the desired assertion, q.e.d.



544 H. MINAMI

Let BG denote the real infinite dimensional projective space. There is
an integer c(n) such that c(n)-η2n-.λ becomes trivial (see, e.g. [9], p. 219). So we
have an equίvariant homeomorphism Σc(w)'05ί*0^Σ°'c(M)*S+ 0. This homeomor-
phism, the equivariant suspension theorem and the Spanier-Whitehead duality
theorem yield an isomorphism

X o,« > τr» (BG+),

denoted by /, as follows. Let r be the tangent bundle of RP2k~l and v be a

normal bundle of RP2k~l for an embedding of RP2k~l in R2^1 for m suitably
large. Note that the Thorn complex T(v) of v is a (2m— l)-dual of RP2

+

k~l

[5], and τ®l^2kη2k-ι so that S2mT((sc—k)ri2k-l)*sS2°eT(v) for sc>k where
ηzk-i denotes the underlying real vector bundle of ^-i and c=c(k) is as above.
Then we have the following isomorphisms.

\s

0>n = lim [22* M+2//2°'w+2/, 22*'2/]G by definition [12]

lira [2°.«+2<+i,S+

2*.°, Σ2*'2']G

*,/

lim pgte. +a-ί t+i.s ».of ^^ for some

lim pΛ -a. +a-te+i.SiWΛ ^o^jc by pj^ Theo> 1L9

*,/

lim [S w-^TKsc-Kfa^), S2']
k,l

lim [5 «'-ί +1ϊχι>), S2']
A,/

lim {S , RPy-1} by [19], Cor. (7.10)

On the other hand, the geometrical interpretation of / by Landweber [12]
shows that the composite ^Tr*/"1: π%(BG+) -> πl agrees with the Z/2-transfer.
So we write t=tyπ*I~l as usual.

Following the homotopical construction of / we see that /[/] is represented

by a stable map g: S2*'1 -> RPlk ~l. Let g: S2q-l-^RP2k~l be the composite
g and the canonical projection from RP2+~l to RP2k~l and let

denote the stable homotopy class induced by g. Then we have

Proposition 2.2. &£>\ = ect(aι}
v Zj '

where ec is as in [1, IV].
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We prepare a lemma for a proof of Proposition 2.2. We recall the fol-
lowing universal coefficient sequence for a finite CW-complex X [2]

k
0 -> Ext(£%Y), Z) -> ̂ (̂ ) -̂  Hom^XZ), Z) -> 0

where & is a map induced by the Kronecker product. Here we denote by
i the injection map. Furthermore we have a natural homomorphism

Hom(£%X), ρ/Z) -* Ext(£%X), Z) ,

which we denote by Δ. In particular, for X=RP2k, ι and Δ are isomorphisms.

Denote by p the collapsing map RP^-^RP^/RP2*-2 and identify RP2k~l

/RP2k~2 with S2*-1. Then, clearly p*: K0(S2k)=K1(S2k~1) -* K\RP2k~l) is an
isomorphism and hence by using the universal coefficient sequence we see
that p*: K^RP2*-1) ->^Γ1(S

2*-1)=-So(S2*) is an epimorphism. Therefore, if we
put z'=p*(ψ\Q>2k)ςΞK\RP2k-1} then we have an element z^K^RP2^1) such
that p*z is a dual element of ψλ02jfe, i.e. <V, #>=!, which is a fundamental
class of RP2k~l ([19], p. 217). By [19], Corollary (7.8) we have an isomorphism

P = z n : K\RP2k~l) -> K^RP2*-1) .

Consider the composite

K\RP2k~l) -* K^RF2*-1) *-£ K^RP2*) -̂ -> Hom(K\RP2k), O/Z)

where ιv: RP2k~l^RP2k is the inclusion map. Then

Lemma 2.3. ((iΔJ-^JP^O^* = - |̂ L J .

Proof. Let γ* be the co-Hopf bundle on the complex (k— l)-dimensional
projective CPk~1 and 7 be its dual. By D and S we denote the total spaces of
the unit disk and unit sphere bundles of γ*®γ* with respect to some metric.
Then D^CPk-1 clearly and S^RP2k~l (see [10], IV. 1.14. Example). We
identify S with RP2k~l. Because, if we put 7=!— γ then ^*(D)«Z[<γ]/(<γ*)

and i*7=η2k-ι> we have a short exact sequence

S /* i*
0 -> ̂ (S) -* °̂(Z), 5) J-+ K\D) -> J^0(5f) -> 0

where δ is a coboundary homomorphism and i, j are the inclusion maps. As

is well known, j*\=— γ*2-)-27* where 7*=!— γ* and λ is the Thom class of
*-ι

7*(g)γ*. Hence K*(D, S)«φZ λ7ί. Moreover, by an observation for -γ*"1

ι=0

in [6], p. 100 we have
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Put z{=Sz' and denote by <SΊ a dual element of z{ so that we may suppose
that dZi—z where 9 is the boundary homomorphism. Similarly P1=z1Γ\:
K°(D) — > K0(D, S) is then an isomorphism and the diagram

K°(D)
i*

commutes.
A routine computation shows that \γk~2^K°(D, S) is a dual element of

i.e.,

Let put M=DχS2k~1 and i±\ SdM be an embedding given by iι(x)=

(i(x)9 p(x)) x^S. Then we get a short exact sequence

0 -» X*(M, 5) > J?!*(M) K*(5) -> 0 ,

which is a free resolution of K*(S), where j\ is the inclusion map. Hence we
see that

*-l

ί=l * " ' ' ι=0
K\M) = ez ί*?' and ̂ 0(M, S) =

where q is the projection map of M to D.

Here we adopt the above resolution as a free resolution in the proof of
[2], Theorem 3.1 for K^S). Define/eHorn(K\M, S), Z) by

if i = k-2

otherwise.

Then

Horn(ί*, !]/=< ,Pι9>

This implies that because Coker HomO'f, l)=Ext(£0(S), Z),

where [/] denotes the equivalence class of/ in Coker HomQ'f, 1).
By the definition of Δ it is verified that
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Hence,

This proves the lemma because ^Δ=£ΔHom(zv*, 1).

Proof of Proposition 2.2. We may suppose that v is a complex vector
bundle, since the stable tangent bundle of Rp2k~l has a complex structure.

Observing the construction of 7 we have the following commutative dia-
gram.

f*k'°) i- K°G(Σ2k'21)

K\S2l+2q-2MT(v)) K\S21)

I*
Here D2y D3 are the duality isomorphisms as in [19], Corollary (7.10), and /0,

/! are isomorphisms given by IQ((ty\Q>2q+2i)V2k-i)=(ty'ho,2i+2q-2m)^V2k-i9 Λ(λ.0,2/)
=^2k,2i where λv denotes the Thorn class of v.

By [19], Corollaries (7.8) and (7.10) we have

which is pointed out by Dyer in [8]. By Lemma 2.3 we therefore have

where β=
Identifying κ(RP2k] with Hom(K°(RP2k), Q/Z) through the isomorphism

^Δ, we may write

in terms of the Hurewicz homomorphism h: πjq-\(BG) —> K^BG). Hence by
[11], Theorem 2.1 we obtain

where CHq is the functional Chern character. By the naturality of CH" we
get
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(For the sign, see Remark 4 of [11], p. 128.)

Therefore

{|8} -«*«>•
q.e.d.

Consequently we get the following

Theorem 2.4. For a^πi2q-ι (q^ 1),

α), 0) /or

(£=0, 1) where aλ denotes the first factor of Iπ*~l(ά) under the identification

Proof. As to the first factors this is clear from the definitions of eG and
ec. As to the second this follows in addition from Proposition 1.4, Lemma

2.1 and Proposition 2.2. q.e.d.

3. Images of the S^transfer

Let t: πϊ(BS\)-*πϊ+l(BG+) denote the ^-transfer, where BS1 is the
complex infinite dimensional projective space.

Proposition 3.1. Let αelm {TT*: λo.^-i -+ τro.4?-ι} (?^1) and Iπ*~l(a)
. Then

where a\ is as in Theorem 2.4.

Proof. Consider the isomorphisms

We may write Iπ*~1(a)=(a1, a2) Applying t we have

= ΐal+2a2 ,

Since t=ι]rπ*I~1 and t operates on πjq_ι as multiplication by 2. From [13],

Theorem 3.4 it follows that

Therefore we get the proposition.
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The following theorem follows immediately from Theorem 2.4 and Pro-
position 3.1.

Theorem 3.2. For a^π$Λq-ι as in Proposition 3.1 we have

eG(a) = (e^lra), (l-22<-^c(^)+-)> (6 = 0, 1) .

Let JG: KθGl(??Λq~l) -* π$Aq_ι (q^ί) be the equivariant /-homomor-
phism [14, 17]. Set a—JG(Hv}^πQΛq-ι where v is a canonical generator of

S^'1) and H=R1>°. Then α<Ξlm ?r* because φ(α)=0.

Lemma 3.3. L ί̂ α fe <zs above. Then Iπ*~\a) or 2/7Γ*~1(α)6Ξlm /
according as q is odd or even.

Proof. We consider the ^-homotopy theory. Replace R1>Q by the standard
complex 1 -dimensional non trivial representation V of S1 in the ^/2-homotopy
theory. Then by the same argument as in [12] we have the S^homotopy groups

τtn's, λ«'s and an exact sequence λΓ'5 -*τrl's -* πl . Moreover, we have an
isomorphism \%'s ^π%-ι(BS+). Clearly the diagram

L,« ^

Ί *
0 —> XQ,« ~^ 7Γθ,« ""* 7Γ«

commutes where r denotes the restriction of ^-actions. Identifying the left-
hand groups with the cobordism groups canonically, r agrees with the S1-
transfer ϊ.

Analogously for ^-actions we can define the equivariant /-map Jv as
follows. Denote by U(kV+l) the unitary group of kV(&Cl with the induced

action and by Uv the infinite unitary group obtained by taking a limit with
respect to canonical inclusions of U(kV-{-iys. Then we have a map Jv from
the equivariant homotopy group [Sn

y Uv]
sl to πl's as usual.

Now a generator μ of jK""1^49"1), viewed as a map from S49"1 to an unitary

group, comes from [S^'1, Uv]
sl and so Vμ does. Generally an equivariant

map from S^'1 to Uv defines an element of K^S*9'1). So we have a map

[S4*-1, UyF-^RsKS4*-1).
Because Jv(Vμ)=ΰ, using the same notation for Vμ in [54ί-1, Uv]

sl, there

exists ΛreλΓί'fi such that π*x=Jv(Vμ). From the above discussion it follows
that r(Jv(Vμ})=a or 2a, so that r(x)=π*~\a) or 2τr*~1(α), according as q is
odd or even. q.e.d.

Let J0 be the real/-homomorphism. By [1, IV], Theorem 7.16 we may
write
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, (αf, 111(2})) = 1

where m(2q), e'R are as in [1, II]. Then we have

Theorem 3.4. For a=JG(Hv] e πξ^g-i (ϊ^ 1),

<ίodd)

+f + <*
(£, £'=(), 1) fl-y rational numbers mod 1 α/zJ ίfe orώr o/ £#£/z factor of eG(ά) is

^ ^' or m(2q) according as q is odd or even.

Proof. The first claim follows from Theorem 3.2, Lemma 3.3 and [1,

IV], Proposition 7.14. The second follows from [1, II], Lemma (2.12) and

the equality v2(m(2q))=3+v2(q) ([1, II], p. 139) immediately. e.d.q.

4. Real Z/2-e-invariants

We take a base point preserving G-map /: 2/>+8*'29~1+8/ -> Σ8M/ as a re-
presentative of elements of τr/ f 2 f f_ι for py #—12^0. Then the parallel argu-

ment to eG, using the Adams operation in the ./£OG-theory [12] and Table of

[14], yields the following equivariant ^-invariants.

(2) ^G,Λ

for ?, 8=0, 1.

Theorem 4.1. For a=JG(v), a

4 2

(6, 6/==0, 1) as rational numbers mod 1 and the order of the second factor of eGtR(ά)

is m(2q).

Proof. As to the first factors of the equialties this follows immediately

from the definitions of eG >R and e'R. As to the second this follows in addition
from Theorem 3.4 and the fact that eG=eG)R or 2eGtR according as q is even or

odd. The proof of the last claim is similar to that of Theorem 3.4. q.e.d.
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Finally we shall consider eG tR on Im/G for πjΛq-ι (p^l). Let %, p be as

in [3] and ή be the homomorphism induced by the element of [4], (8.1). Ob-

serve %, p and ή on the groups JfΓOs^Σ*'2*"1) (see [15], §2), then since eGtRJG

commutes with %, p and ή (by an analogue of Proposition 1.3), we can compute
ec,R of (1) on Im JG inductively by using Theorem 4.1. For eGtR of (2), con-
sidering tyeGtR we get readily eGιR on ImJG. Specifically we have

Theorem 4.2. Let ι;1eXOs1(Σw+^ ββ+4β-1) (8/>+4>0), i^eXOs1^-"^''-

β,+4ί-i) (i^/^3) and v^f&G1^^*2'*9*48*1) be generators as modules over

the real representation ring of G respectively and set ctk—Jctyk) (1^A^3). Then
as rational numbers mod 1

a2p+2q+ζ+δ 1

2 (m(4p+4 q+2ζ+2S)

(£, £', £"=0, 1) up to sign and

order,orαer ̂

order eGtR(a^ — m(4q-}r28),

order eGιR(a3) = m(4p+4q+2ζ+28+2)

where

m(4q+2S)\

# w the following integer:

p2(2q+ξ)+2 if ξ=8 and v2(2q+ξ) ^ v2(p+q+ζ),

ι/ f = S and v2(2q+ζ) = v2(p+q+ζ)+l ,

ί/ ? = 8 αιu2 ^2(2?+r) ̂

3 if ζ = 0 and S=ly

2 if ξ=l and 8 = 0.

Here let v2(s) denote the exponent to which 2 occurs in s.

By Theorems 4.1, 4.2 and the results of [15] we have

Corollary 4.3. For πf>q in [IS], Theorems 3.1, 3.2 and 3.3,
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τ Γ ί s 6G,R
Im/G c_» πs

pΛ > Im

provides a direct sum splitting.
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