ON Z/2-e-INVARIANTS

HARUO MINAMI

(Received November 25, 1981)

Let G be the group Z/2. Denote by $\pi_{p,q}^S$ the equivariant stable homotopy group of Landweber [12]. In a similar way to the usual e-invariants we define equivariant e-invariants e_G and $e_{G,R}$ on $\pi_{p,2q-1}^S$ by using the Adams operations in the K_G - and KO_G -theories and the equivariant Chern character. And we compute these invariants, in particular $e_{G,R}$, on the image of the equivariant J-homomorphism, making use of the Adams' result for e_R' . Here we study the case when $\widetilde{KO_G^{-1}}(\Sigma^{p,2q-1})$ is torsion-free. The torsion case is discussed by Löffler [14].

1. Definitions

Let $R^{p,q}$ denote the R^{p+q} with non trivial G-action on the first p coordinates. By $B^{p,q}$ and $S^{p,q}$ we denote the unit ball and unit sphere in $R^{p,q}$ and by $\Sigma^{p,q}$ the $B^{p,q}/S^{p,q}$. If p and q are even then $R^{p,q}$ is a complex G-module. In particular, we write 1 and L for $R^{0,2}$ and $R^{2,0}$. Then $\{1, L\}$ are basis of the complex representation ring R(G) of G.

For the Thom class of $R^{2p,2q}$ as a complex G-vector bundle over a point we write $\lambda_{2p,2q}$, so that $\tilde{K}_G(\Sigma^{2p,2q}) = R(G) \cdot \lambda_{2p,2q}$ [16]. Here let $A \cdot x$ denote the module generated by x over a ring A. Then we have the formula

$$\psi^{t}(\lambda_{2p,2q}) = \rho^{t}(2p, 2q)\lambda_{2p,2q}, \ \rho^{t}(2p, 2q) \in R(G)$$

for the t-th Adams operation ψ^t , and $\rho^t(2p, 2q)$ is computed briefly, using the result for ψ^t in $\tilde{K}(S^{2n})$, as follows.

Lemma 1.1. $\rho^t(0, 2q) = t^q$, and if p > 0 then

$$\rho^{t}(2p, 2q) = \begin{cases} \frac{1}{2} t^{p+q}(L+1) & (t \text{ even}) \\ t^{p+q} + \frac{1}{2} t^{q}(t^{p}-1) (L-1) & (t \text{ odd}). \end{cases}$$

As is easily seen, $\tilde{K}_G(\Sigma^{1,0})$ is isomorphic to the augmentation-ideal of R(G). Identifying $\tilde{K}_G(\Sigma^{1,0})$ with $Z \cdot (1-L)$ it is clear that $\tilde{K}_G(\Sigma^{2p+1,2q}) = Z \cdot$

 $(1-L)\lambda_{2b,2q}$. Hence we have the following

Corollary 1.2. ψ^t operates on $\tilde{K}_G(\Sigma^{2p+1,2q})$ as multiplication by 0 if t is even and by t^q if t is odd.

For p, $q-1 \ge 0$ suppose given a base point preserving G-map $f: \Sigma^{p+2k,2q-1+2l} \to \Sigma^{2k,2l}$ for k, l large, which is fixed in this section. f yields a cofiber sequence

where i, j are the inclusion and projection maps and C_f is the mapping cone of f. Applying \tilde{K}_G we obtain the following exact sequence.

$$0 \leftarrow \tilde{K}_{G}(\Sigma^{2k,2l}) \stackrel{i^{*}}{\leftarrow} \tilde{K}_{G}(C_{f}) \stackrel{j^{*}}{\leftarrow} \tilde{K}_{G}(\Sigma^{p+2k,2q+2l}) \leftarrow 0$$

$$\approx R(G) \qquad \approx \begin{cases} R(G) & (p \text{ even}) \\ Z & (p \text{ odd}) \end{cases}$$

Choose generators ξ , η of $\tilde{K}_G(C_f)$ so that

$$i^*(\xi) = \lambda_{2k,2l} \text{ and } \eta = \begin{cases} j^*(\lambda_{p+2k,2q+2l}) & (p \text{ even}) \\ j^*((1-L)\lambda_{p-1+2k,2q+2l}) & (p \text{ odd}) \end{cases}.$$

For any odd integer $t(\pm \pm 1)$, $\psi^{t}(\xi)$ must be given by the formula

$$\psi^{t}(\xi) = \rho^{t}(2k, 2l)\xi + \begin{cases} (c(t)+d(t)(L-1))\eta & (p \text{ even}) \\ c(t)\eta & (p \text{ odd}), \end{cases}$$

 $c(t), d(t) \in \mathbb{Z}$. So we set

$$\lambda(f) = \frac{c(t)}{t^{p/2+k+q+l} - t^{k+l}} \qquad (p \text{ even})$$

$$\mu(f) = \begin{cases} \frac{1}{2} \left(\frac{c(t)}{t^{p/2+k+q+l} - t^{k+l}} + \frac{2d(t) - c(t)}{t^{q+l} - t^l} \right) & (p \text{ even}) \\ \frac{c(t)}{t^{q+l} - t^l} & (p \text{ odd}) \end{cases}.$$

Using Lemma 1.1, Corollary 1.2 and the relation $\psi^s \psi^t = \psi^{st}$ we can check that the values $\{\lambda(f)\}$, $\{\mu(f)\}$ do not depend on the choice of an integer t where $\{\}$ denotes the coset in \mathbb{Q}/\mathbb{Z} . As in [1, IV], §7 we see that the assignment

$$f \mapsto \begin{cases} (\{\lambda(f)\}, \{\mu(f)\}) & (p \text{ even}) \\ \{\mu(f)\} & (p \text{ odd}) \end{cases}$$

induces a group homomorphism

$$e_G\colon \pi_{p,2p-1}^S\to \begin{cases} Q/Z\oplus Q/Z & (p\text{ even})\\ Q/Z & (p\text{ odd}) \end{cases} \text{ for } p,\,q-1\!\geqq\!0\;.$$

Regard e_G as taking values in $\tilde{K}_G(\Sigma^{p+2k,2q+2l})\otimes Q/Z$, namely let $e_G[f]$ be $(\{\lambda(f)\}+\{\mu(f)\}(L-1))\lambda_{p+2k,2q+2l}$ or $\{\mu(f)\}(1-L)\lambda_{p-1+2k,2l}$ according as p is even or odd where [f] is the stable homotopy class of f. Then we have easily the following

Proposition 1.3. e_G is natural for stable maps from $\Sigma^{p,2q-1}$ to $\Sigma^{r,2q-1}$.

To evaluate $\psi^t(\xi)$ we shall next describe e_G in terms of the equivariant Chern character. Let ch_G be as in [18] and ch_G^n denote the 2n-dimensional component of ch_G which is a homomorphism of K_G to $H_G^{2n}(\ , R_G)$ in the notation of [18]. By the definition of equivariant Bredon cohomology [7] we have the following canonical isomorphisms

$$\begin{split} H_G^{\, p+2k+2q+2l}(C_f,\, R_G) &\approx H^{\, p+2k+2q+2l}(C_{\psi f},\, Q) \\ &\approx H^{\, p+2k+2q+2l}(S^{\, p+2k+2q+2l},\, Q) \,, \\ H_G^{\, 2q+2l}(C_f,\, R_G) &\approx H^{2q+2l}(C_{\phi f},\, Q) \! \cdot \! (1\!-\!L) \\ &\approx H^{2q+2l}(S^{2q+2l},\, Q) \! \cdot \! (1\!-\!L) \,. \end{split}$$

Here ψ and ϕ are the forgetful and fixed point functors [3]. Under the identification of the above isomorphisms we may set

$$ch_G^{p/2+k+q+l}(\xi) = a(f)h^{p+2k+2q+2l}$$

and

$$ch_G^{q+l}(\xi) = b(f)h^{2q+2l}(1-L)$$
,

 $a(f), b(f) \in Q$ (p even) where $h^{2i} \in H^{2i}(S^{2i}, Z)$ is a canonical generator such that $ch^i(\psi \lambda_{0,2i}) = h^{2i}$. Then we obtain

Proposition 1.4. If p even then

$$\lambda(f) = a(f), \ \mu(f) = \frac{1}{2} \left(a(f) - \frac{b(f)}{2^{p/2+k-1}} \right)$$

and if p is odd then

$$\mu(f) = \frac{b(f)}{2^{(p-1)/2+k}}.$$

Proof. Consider the following commutative diagram with the exact sequence which ϕf yields as f does.

(Here h's are the inclusions.) Choose $\xi_1 \in \tilde{K}_G(C_{\phi_f})$ so that $i_1^*(\xi_1) = \lambda_{0,2l}$ and put $\eta_1 = j_1^*(\lambda_{0,2q+2l})$. Then we may write

$$h^*(\xi) = 2^{k-1}(1-L)\xi_1 + x(1-L)\eta_1, \quad x \in \mathbb{Z}$$

for a cohomological reason and the fact that $h^*(\lambda_{2k,2l})=2^{k-1}(1-L)\lambda_{0,2l}$. Applying ψ^t we have

(1)
$$\psi^{t}(h^{*}\xi) = 2^{k-1}(1-L)\psi^{t}(\xi_{1}) + xt^{q+1}(1-L)\eta_{1}.$$

On the other hand, apply h^* to the defining formula of c(t), d(t) we have

(2)
$$\psi^{t}(h^{*}\xi) = 2^{k-1}t^{l}(1-L)\xi_{1} + xt^{l}(1-L)\eta_{1} + \begin{cases} 2^{p/2+k-1}(c(t)-2d(t))(1-L)\eta_{1} & (p \text{ even}) \\ 2^{(p-1)/2+k}c(t)(1-L)\eta_{1} & (p \text{ odd}). \end{cases}$$

Combining (1) and (2) shows

$$\psi^{t}(\xi_{1}) = t^{l}\xi_{1} + \frac{x(t^{l} - t^{q+l})}{2^{k-1}} \eta_{1} + \begin{cases} 2^{p/2}(c(t) - 2d(t))\eta_{1} & (p \text{ even}) \\ 2^{(p+1)/2}c(t)\eta_{1} & (p \text{ odd}) \end{cases}.$$

Case p even. From the definition of ch_G it follows easily that

$$ch_G^{p/2+k+q+l}(\xi) = ch^{p/2+k+q+l}(\psi\xi)$$

and

$$ch_G^{q+l}(\xi) = 2^{k-1}ch^{q+l}(\psi\xi_1)(1-L) + xh^{2q+2l}(1-L)$$
.

Hence we get

$$ch^{p/2+k+q+l}(\psi\xi) = a(f)h^{p+2k+2q+2l}$$
 and $ch^{q+l}(\psi\xi_1) = \frac{b(f)-x}{2^{k-1}}h^{2q+2l}$.

Therefore [1, IV], Proposition 7.5 for ψf and ϕf leads to the equialities

$$a(f) = \frac{c(f)}{t^{p/2+k+q+l} - t^{k+l}}$$
 and $\frac{b(f)}{2^{p/2+k-1}} = \frac{c(t) - 2d(t)}{t^{q+l} - t^l}$.

Case p odd. Similar to the proof of the above case.

q.e.d.

2. (0, 2q-1)-stem

Let $\pi: \Sigma^{2k,2q-1+2l} \to \Sigma^{2k,2q-1+2l}/\Sigma^{0,2q-1+2l}$ be the canonical projection map for k, l large. Let $\lambda_{p,q}^S$ denote the equivariant stable homotopy group introduced in [12]. Then we have by [12] a split short exact sequence

$$0 \to \chi_{0,2q-1}^S \xrightarrow{\pi^*} \pi_{0,2q-1}^S \xrightarrow{\phi} \pi_{2q-1}^S \to 0$$

where π^* is the homomorphism induced by π and θ denotes a left inverse of

By the definition we can easily describe the values of e_G on Im θ in terms of the complex e-invariant e_C in [1, IV]. So we consider e_G on Im π^* in this section.

Suppose given a base point preserving G-map $\tilde{f}: \Sigma^{2k,2q-1+2l}/\Sigma^{0,2q-1+2l} \to \Sigma^{2k,2l}$, so that \tilde{f} and $\tilde{f}\pi$ define elements $[\tilde{f}]$ and $[\tilde{f}\pi]$ of $\lambda_{0,2q-1}^S$ and $\pi_{0,2q-1}^S$ respectively. We consider f_{π} as f in §1.

Since $\Sigma^{i,j}/\Sigma^{0,j}$ is equivariantly homeomorphic to $\Sigma^{0,j+1}S^{i,0}_+$ ([12], Lemma 4.1), we have $\tilde{K}_{G}(\Sigma^{i,j}/\Sigma^{0,j}) \approx K^{-j-1}(RP^{i-1})$ [16] where RP^{n} is the real *n*-dimensional projective space. Let η_n be the complexification of a canonical real line bundle over RP^n and put $\tilde{\eta}_n = 1 - \eta_n$. We now recall [6] that

$$\tilde{K}^0(RP^{2n}) = Z/2^n \cdot \tilde{\eta}_{2n}, K^1(RP^{2n}) = 0$$

$$\tilde{K}^0(RP^{2n+1}) = Z/2^n \cdot \tilde{\eta}_{2n+1}, K^1(RP^{2n+1}) \approx Z.$$

Then we can identify

$$ilde{K}^0_G(\Sigma^{2k,2q-1+2l}/\Sigma^{0,2q-1+2l}) = Z \oplus Z/2^{k-1} \cdot (\psi \lambda_{0,2q+2l}) ilde{\eta}_{2k-1}$$
 .

Consider \tilde{f}^* : $\tilde{K}_G(\Sigma^{2k,2l}) \to \tilde{K}_G(\Sigma^{2k,2q-1+2l}/\Sigma^{0,2q-1+2l})$. Because $[\tilde{f}] \in \lambda_{0,2q-1}^S$ for $q \ge 1$ is of finite order ([12], Theorem 2.4 and Corollary 6.3) we may put

$$ilde{f}^*(\lambda_{2k,2l}) = [ilde{b}(ilde{f})] (\psi \lambda_{0,2q+2l}) ilde{\eta}_{2k-1}, \ ilde{b}(ilde{f}) \in Z$$

where [] denotes the coset in $\mathbb{Z}/2^{k-1}$.

Lemma 2.1. $\tilde{b}(\tilde{f}) = -b(\tilde{f}\pi) \mod 2^{k-1}$ where $b(\tilde{f}\pi)$ is as in §1.

Proof. Observe the following commutative diagram involving (*) in §1.

Proof. Observe the following commutative diagram involving (*) in § 1.
$$\tilde{K}_G(\Sigma^{2k,2q-1+2l}/\Sigma^{0,2q-1+2l}) \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{2k,2l}) \overset{\tilde{K}_G(C_{\tilde{f}})}{\leftarrow} \overset{\tilde{K}_G(C_{\tilde{f}})}{\leftarrow} \overset{\tilde{K}_G(\Sigma^{2k,2q+2l}/\Sigma^{0,2q+2l})} \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{2k,2q+2l}) \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{2k,2q+2l}) \overset{\tilde{f}^*}{\leftarrow} 0 \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{0,2l}) \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{0,2q+2l}) \overset{\tilde{f}^*}{\leftarrow} 0 \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{0,2q+2l}) \overset{\tilde{f}^*}{\leftarrow} 0 \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{2k,2q+2l}/\Sigma^{0,2q+2l}) \overset{\tilde{f}^*}{\leftarrow} 0 \overset{\tilde{f}^*}{\leftarrow} \tilde{K}_G(\Sigma^{2k,2q+2l}/\Sigma^{0,2q+2l}) \overset{\tilde{f}^*}{\leftarrow} 0 \overset{\tilde{f}$$

where the right-hand sequence is the exact sequence for a pair $(\Sigma^{2k,2q+2l}, \Sigma^{0,2q+2l})$. Clearly $C_{\phi(\tilde{f}_{\pi})} \approx \Sigma^{0,2q+2l} \vee \Sigma^{0,2l}$, hence we can verify that $\tilde{f}^*(\lambda_{2k,2l}) = -\delta j_1^{*-1}h^*(\xi)$ where ξ is as in §1. Hence the canonical identification such that $\tilde{K}_{G}(\Sigma^{0,2q+2l})$ $=\tilde{K}(S^{2q+2l})\otimes R(G)=H^{2q+2l}(S^{2q+2l},Z)\otimes R(G)$ leads to the desired assertion. q.e.d. 544 H. Minami

Let BG denote the real infinite dimensional projective space. There is an integer c(n) such that $c(n)_{\eta_{2n-1}}$ becomes trivial (see, e.g. [9], p. 219). So we have an equivariant homeomorphism $\sum_{i=0}^{c(n),0} S_{+}^{n,0} \approx \sum_{i=0}^{0,c(n)} S_{+}^{n,0}$. This homeomorphism, the equivariant suspension theorem and the Spanier-Whitehead duality theorem yield an isomorphism

$$\lambda_{0,n}^{S} \xrightarrow{\approx} \pi_{n}^{S}(BG_{+}),$$

denoted by I, as follows. Let τ be the tangent bundle of RP^{2k-1} and ν be a normal bundle of RP^{2k-1} for an embedding of RP^{2k-1} in R^{2m-1} for m suitably large. Note that the Thom complex $T(\nu)$ of ν is a (2m-1)-dual of RP^{2k-1} [5], and $\tau \oplus 1 \approx 2k\eta'_{2k-1}$ so that $S^{2m}T((sc-k)\eta_{2k-1}) \approx S^{2sc}T(\nu)$ for sc > k where η'_{2k-1} denotes the underlying real vector bundle of η_{2k-1} and c=c(k) is as above. Then we have the following isomorphisms.

$$\lambda_{0,n}^{S} = \lim_{k,l} \left[\Sigma^{2k,n+2l} / \Sigma^{0,n+2l}, \Sigma^{2k,2l} \right]^{G}$$
 by definition [12]
$$\approx \lim_{k,l} \left[\Sigma^{0,n+2l+1} S_{+}^{2k,0}, \Sigma^{2k,2l} \right]^{G}$$

$$\approx \lim_{k,l} \left[\Sigma^{2sc,n+2l-2sc+1} S_{+}^{2k,0}, \Sigma^{2k,2l} \right]^{G}$$
 for some c

$$\approx \lim_{k,l} \left[\Sigma^{2sc-2k,n+2l-2sc+1} S_{+}^{2k,0}, \Sigma^{0,2l} \right]^{G}$$
 by [3], Theo. 11.9
$$\approx \lim_{k,l} \left[S^{n+2l-2sc+1} T((sc-k)\eta_{2k-1}), S^{2l} \right]$$

$$\approx \lim_{k,l} \left[S^{n+2l-2sc+1} T(\nu), S^{2l} \right]$$

$$\approx \lim_{k,l} \left[S^{n}, RP_{+}^{2k-1} \right]$$
 by [19], Cor. (7.10)
$$= \pi_{n}^{S} (BG_{+})$$

On the other hand, the geometrical interpretation of I by Landweber [12] shows that the composite $\psi \pi^* I^{-1}$: $\pi_n^S(BG_+) \to \pi_n^S$ agrees with the $\mathbb{Z}/2$ -transfer. So we write $t = \psi \pi^* I^{-1}$ as usual.

Following the homotopical construction of I we see that $I[\tilde{f}]$ is represented by a stable map $g\colon S^{2q-1}\to RP_+^{2k-1}$. Let $\tilde{g}\colon S^{2q-1}\to RP^{2k-1}$ be the composite g and the canonical projection from RP_+^{2k-1} to RP^{2k-1} and let

$$\alpha_1 \in \pi_{2q-1}^S(BG)$$

denote the stable homotopy class induced by \tilde{g} . Then we have

Proposition 2.2.
$$\left\{ \frac{\tilde{b}(\tilde{f})}{2^{k-1}} \right\} = e_{\mathcal{C}}t(\alpha_1)$$

where e_c is as in [1, IV].

We prepare a lemma for a proof of Proposition 2.2. We recall the following universal coefficient sequence for a finite CW-complex X [2]

$$0 \to \operatorname{Ext}(\tilde{K}^{0}(X), Z) \to K_{1}(X) \xrightarrow{k} \operatorname{Hom}(K^{1}(X), Z) \to 0$$

where k is a map induced by the Kronecker product. Here we denote by ι the injection map. Furthermore we have a natural homomorphism

$$\operatorname{Hom}(\tilde{K}^{0}(X), Q/Z) \to \operatorname{Ext}(\tilde{K}^{0}(X), Z)$$
,

which we denote by Δ . In particular, for $X=RP^{2k}$, ι and Δ are isomorphisms.

Denote by p the collapsing map $RP^{2k-1} \rightarrow RP^{2k-1}/RP^{2k-2}$ and identify RP^{2k-1}/RP^{2k-2} with S^{2k-1} . Then, clearly $p^* \colon \tilde{K}^0(S^{2k}) = K^1(S^{2k-1}) \rightarrow K^1(RP^{2k-1})$ is an isomorphism and hence by using the universal coefficient sequence we see that $p_* \colon K_1(RP^{2k-1}) \rightarrow K_1(S^{2k-1}) = \tilde{K}_0(S^{2k})$ is an epimorphism. Therefore, if we put $z' = p^*(\psi \lambda_{0,2k}) \in K^1(RP^{2k-1})$ then we have an element $z \in K_1(RP^{2k-1})$ such that p_*z is a dual element of $\psi \lambda_{0,2k}$, i.e. $\langle z', z \rangle = 1$, which is a fundamental class of RP^{2k-1} ([19], p. 217). By [19], Corollary (7.8) we have an isomorphism

$$P = z \cap : \tilde{K}^{0}(RP^{2k-1}) \to K_{1}(RP^{2k-1})$$
.

Consider the composite

$$\widetilde{K}^{0}(RP^{2k-1}) \xrightarrow{P} K_{1}(RP^{2k-1}) \xrightarrow{i'_{*}} K_{1}(RP^{2k}) \xrightarrow{(\iota\Delta)^{-1}} \operatorname{Hom}(\widetilde{K}^{0}(RP^{2k}), \mathcal{Q}/Z)$$

where $i': RP^{2k-1} \subset RP^{2k}$ is the inclusion map. Then

Lemma 2.3.
$$((\iota\Delta)^{-1}i'_*P\tilde{\eta}_{2k-1})\tilde{\eta}_{2k} = -\left\{\frac{1}{2^{k-1}}\right\}.$$

Proof. Let γ^* be the co-Hopf bundle on the complex (k-1)-dimensional projective CP^{k-1} and γ be its dual. By D and S we denote the total spaces of the unit disk and unit sphere bundles of $\gamma^*\otimes\gamma^*$ with respect to some metric. Then $D{\simeq}CP^{k-1}$ clearly and $S{\approx}RP^{2k-1}$ (see [10], IV.1.14. Example). We identify S with RP^{2k-1} . Because, if we put $\tilde{\gamma}=1-\gamma$ then $K^*(D){\approx}Z[\tilde{\gamma}]/(\tilde{\gamma}^k)$ and $i^*\tilde{\gamma}=\tilde{\gamma}_{2k-1}$, we have a short exact sequence

$$0 \to K^{1}(S) \xrightarrow{\delta} K^{0}(D, S) \xrightarrow{j^{*}} K^{0}(D) \xrightarrow{j^{*}} K^{0}(S) \to 0$$

where δ is a coboundary homomorphism and i, j are the inclusion maps. As is well known, $j^*\lambda = -\tilde{\gamma}^{*2} + 2\tilde{\gamma}^*$ where $\tilde{\gamma}^* = 1 - \gamma^*$ and λ is the Thom class of $\gamma^* \otimes \gamma^*$. Hence $K^*(D, S) \approx \bigoplus_{i=0}^{k-1} Z \cdot \lambda \tilde{\gamma}^i$. Moreover, by an observation for $\tilde{\gamma}^{k-1}$ in [6], p. 100 we have

$$\delta^{-1}\lambda \tilde{\gamma}^{k-1} = z'$$
.

Put $z_1' = \delta z'$ and denote by z_1 a dual element of z_1' so that we may suppose that $\partial z_1 = z$ where ∂ is the boundary homomorphism. Similarly $P_1 = z_1 \cap : K^0(D) \to K_0(D, S)$ is then an isomorphism and the diagram

$$K^{0}(D) \xrightarrow{i^{*}} K^{0}(S)$$

$$P_{1} \downarrow \qquad P \downarrow$$

$$K_{0}(D, S) \xrightarrow{\partial} K_{1}(S)$$

commutes.

A routine computation shows that $\lambda \tilde{\gamma}^{k-2} \in K^0(D, S)$ is a dual element of $P_1\tilde{\gamma}$, i.e.,

$$\langle \lambda \tilde{\gamma}^{k-2}, P_1 \tilde{\gamma} \rangle = 1$$
.

Let put $M=D\times S^{2k-1}$ and i_1 : $S\subset M$ be an embedding given by $i_1(x)=(i(x), p(x))$ $x\in S$. Then we get a short exact sequence

$$0 \to K^*(M, S) \xrightarrow{j_1^*} \tilde{K}^*(M) \xrightarrow{i_1^*} \tilde{K}^*(S) \to 0,$$

which is a free resolution of $\tilde{K}^*(S)$, where j_1 is the inclusion map. Hence we see that

$$ilde{K}^0(M)=igoplus_{i=1}^{k-1}Z\!\cdot\! q^* ilde{\gamma}^i$$
 and $K^0(M,\,S)=igoplus_{i=0}^{k-2}Z\!\cdot\! q^*\lambda ilde{\gamma}^i$,

where q is the projection map of M to D.

Here we adopt the above resolution as a free resolution in the proof of [2], Theorem 3.1 for $K_1(S)$. Define $f \in \text{Hom}(K^0(M, S), Z)$ by

$$f(q^*\lambda \tilde{\gamma}^i) = \begin{cases} 1 & \text{if } i = k-2 \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\operatorname{Hom}(q^*, 1)f = \langle , P_1 \tilde{\gamma} \rangle.$$

This implies that because Coker $\operatorname{Hom}(j_1^*, 1) = \operatorname{Ext}(\tilde{K}^0(S), Z)$,

$$\iota[f] = P\widetilde{\eta}_{2k-1}$$
 ,

where [f] denotes the equivalence class of f in Coker Hom $(j_1^*, 1)$. By the definition of Δ it is verified that

$$(\Delta^{-1}[f])\widetilde{\eta}_{2k-1} = -\left\{\frac{1}{2^{k-1}}\right\}.$$

Hence,

$$(\iota\Delta)^{-1}(P\widetilde{\eta}_{2k-1})\widetilde{\eta}_{2k-1}=-\left\{rac{1}{2^{k-1}}
ight\}.$$

This proves the lemma because $i_*'\iota\Delta = \iota\Delta \operatorname{Hom}(i^{\prime *}, 1)$.

Proof of Proposition 2.2. We may suppose that ν is a complex vector bundle, since the stable tangent bundle of RP^{2k-1} has a complex structure.

Observing the construction of I we have the following commutative diagram.

$$ilde{K}_{G}^{0}(\Sigma^{0,2q+2l}S_{+}^{2k,0}) \overset{ ilde{f}^{*}}{\leftarrow} ilde{K}_{G}^{0}(\Sigma^{2k,2l}) \ I_{0} & I_{1} \ \hat{K}_{G}^{0}(\Sigma^{0,2l}) = ilde{K}^{9}(S^{2l}) \otimes R(G) \ ilde{K}^{0}(S^{2l+2q-2m}T(
u)) & ilde{K}^{0}(S^{2l}) \ D_{2} & D_{3} \ ilde{K}_{1}(RP^{2k}) & ilde{\mathcal{E}}^{*}K_{1}(RP^{2k-1}) & ilde{\mathcal{E}}^{*}K_{1}(S^{2q-1}) \ \end{cases}$$

Here D_2 , D_3 are the duality isomorphisms as in [19], Corollary (7.10), and I_0 , I_1 are isomorphisms given by $I_0((\psi \lambda_{0,2q+2l})\tilde{\eta}_{2k-1}) = (\psi \lambda_{0,2l+2q-2m})\lambda_{\nu}\tilde{\eta}_{2k-1}$, $I_1(\lambda_{0,2l}) = \lambda_{2k,2l}$ where λ_{ν} denotes the Thom class of ν .

By [19], Corollaries (7.8) and (7.10) we have

$$D_2 I_0((\psi \lambda_0)_{2a+2l}) \widetilde{\eta}_{2k-1} = P \widetilde{\eta}_{2k-1}$$

which is pointed out by Dyer in [8]. By Lemma 2.3 we therefore have

$$((\iota\Delta)^{-1}(i' ilde{g})_*eta) ilde{\eta}_{2k}=-\left\{rac{ ilde{b}(ilde{f})}{2^{k-1}}
ight\}$$

where $\beta = D_3(\psi \lambda_{0,2l})$.

Identifying $K_1(RP^{2k})$ with $\operatorname{Hom}(\tilde{K}^0(RP^{2k}), Q/Z)$ through the isomorphism $\iota\Delta$, we may write

$$(hlpha_1) ilde{\eta}_{2k} = - \left\{rac{ ilde{b}(ilde{f})}{2^{k-1}}
ight\}$$

in terms of the Hurewicz homomorphism $h: \pi_{2q-1}^S(BG) \to K_1(BG)$. Hence by [11], Theorem 2.1 we obtain

$$(CH^q(lpha_1))\widetilde{\eta}_{2k} = - \left\{ rac{ ilde{b}(ilde{f})}{2^{k-1}}
ight\}$$

where CH^q is the functional Chern character. By the naturality of CH^q we get

$$e_{\mathcal{C}}t(\alpha_1) = -(CH^q(\alpha_1))\widetilde{\eta}_{2k}$$
.

(For the sign, see Remark 4 of [11], p. 128.) Therefore

$$\left\{rac{ ilde{b}(ilde{f})}{2^{k-1}}
ight\}=e_{\mathcal{C}}t(lpha_1)\ .$$

q.e.d.

Consequently we get the following

Theorem 2.4. For $\alpha \in \pi_{0,2q-1}^S$ $(q \ge 1)$,

$$e_{\mathit{G}}(lpha) = egin{cases} (e_{\mathit{C}}(\psilpha),\ 0) & \textit{for} \ \ lpha\!\in\!\operatorname{Im}\ heta \ (e_{\mathit{C}}(\psilpha),\ rac{1}{2}\ (e_{\mathit{C}}(\psilpha)\!+\!e_{\mathit{C}}t(lpha_{1}\!)\!+\!arepsilon) & \textit{for} \ \ lpha\!\in\!\operatorname{Im}\ \pi^{*} \end{cases}$$

 $(\varepsilon=0, 1)$ where α_1 denotes the first factor of $I\pi^{*-1}(\alpha)$ under the identification $\pi_{2q-1}^S(BG_+)=\pi_{2q-1}^S(BG)\oplus\pi_{2q-1}^S$.

Proof. As to the first factors this is clear from the definitions of e_{G} and e_{C} . As to the second this follows in addition from Proposition 1.4, Lemma 2.1 and Proposition 2.2. q.e.d.

3. Images of the S^1 -transfer

Let $\tilde{t}: \pi_n^S(BS_+^1) \to \pi_{n+1}^S(BG_+)$ denote the S^1 -transfer, where BS^1 is the complex infinite dimensional projective space.

Proposition 3.1. Let $\alpha \in \text{Im } \{\pi^* : \lambda_{0,4q-1}^S \to \pi_{0,4q-1}^S \} \ (q \ge 1)$ and $I\pi^{*-1}(\alpha) \in \text{Im } \tilde{t}$. Then

$$e_C t(\alpha_1) = (1 - 2^{2q})e_C(\psi \alpha)$$

where α_1 is as in Theorem 2.4.

Proof. Consider the isomorphisms

$$\lambda_{0,4q-1} \stackrel{I}{\underset{R}{\Rightarrow}} \pi_{4q-1}^{S}(BG_{+}) = \pi_{4q-1}^{S}(BG) \oplus \pi_{4q-1}^{S}.$$

We may write $I\pi^{*-1}(\alpha)=(\alpha_1, \alpha_2)$. Applying t we have

$$\psi \alpha = t\alpha_1 + 2\alpha_2$$

Since $t=\psi \pi^*I^{-1}$ and t operates on π_{4q-1}^S as multiplication by 2. From [13], Theorem 3.4 it follows that

$$e_{\mathcal{C}}(\alpha_2) = 2^{2q-1}e_{\mathcal{C}}(\psi\alpha) .$$

Therefore we get the proposition.

The following theorem follows immediately from Theorem 2.4 and Proposition 3.1.

Theorem 3.2. For $\alpha \in \pi_{0,4q-1}^S$ as in Proposition 3.1 we have

$$e_{\mathcal{G}}(\alpha)=(e_{\mathcal{C}}(\psi\alpha),\,(1-2^{2q-1})e_{\mathcal{C}}(\psi\alpha)+rac{\mathcal{E}}{2}),\ \ (\mathcal{E}=0,\,1)\,.$$

Let $J_G: \widetilde{KO}_G^{-1}(\Sigma^{0,4q-1}) \to \pi_{0,4q-1}^S$ $(q \ge 1)$ be the equivariant J-homomorphism [14, 17]. Set $\alpha = J_G(H\nu) \in \pi_{0,4q-1}^S$ where ν is a canonical generator of $\widetilde{KO}^{-1}(S^{4q-1})$ and $H = R^{1,0}$. Then $\alpha \in \operatorname{Im} \pi^*$ because $\phi(\alpha) = 0$.

Lemma 3.3. Let α be as above. Then $I\pi^{*-1}(\alpha)$ or $2I\pi^{*-1}(\alpha) \in \text{Im } \tilde{t}$ according as q is odd or even.

Proof. We consider the S^1 -homotopy theory. Replace $R^{1,0}$ by the standard complex 1-dimensional non trivial representation V of S^1 in the Z/2-homotopy theory. Then by the same argument as in [12] we have the S^1 -homotopy groups $\pi_n^{V,S}$, $\lambda_n^{V,S}$ and an exact sequence $\lambda_n^{V,S} \xrightarrow{\pi} \pi_n^{V,S} \xrightarrow{\phi} \pi_n^S$. Moreover, we have an isomorphism $\lambda_n^{V,S} \approx \pi_{n-1}^S(BS_+^1)$. Clearly the diagram

$$\lambda_{n}^{V,S} \xrightarrow{\pi^{*}} \pi_{n}^{V,S} \xrightarrow{\phi} \pi_{n}^{S}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

commutes where r denotes the restriction of S^1 -actions. Identifying the left-hand groups with the cobordism groups canonically, r agrees with the S^1 -transfer \tilde{t} .

Analogously for S^1 -actions we can define the equivariant J-map J_v as follows. Denote by U(kV+l) the unitary group of $kV \oplus C^l$ with the induced action and by U_v the infinite unitary group obtained by taking a limit with respect to canonical inclusions of U(kV+l)'s. Then we have a map J_v from the equivariant homotopy group $[S^n, U_v]^{S^1}$ to $\pi_n^{V,S}$ as usual.

Now a generator μ of $\tilde{K}^{-1}(S^{4q-1})$, viewed as a map from S^{4q-1} to an unitary group, comes from $[S^{4q-1}, U_V]^{S^1}$ and so $V\mu$ does. Generally an equivariant map from S^{4q-1} to U_V defines an element of $\tilde{K}^{-1}_{S^1}(S^{4q-1})$. So we have a map $[S^{4q-1}, U_V]^{S^1} \to \tilde{K}^{-1}_{S^1}(S^{4q-1})$.

Because $J_V(V\mu)=0$, using the same notation for $V\mu$ in $[S^{4q-1}, U_V]^{S^1}$, there exists $x\in \lambda_{4q-1}^{V,S}$ such that $\pi^*x=J_V(V\mu)$. From the above discussion it follows that $r(J_V(V\mu))=\alpha$ or 2α , so that $r(x)=\pi^{*-1}(\alpha)$ or $2\pi^{*-1}(\alpha)$, according as q is odd or even.

Let J_0 be the real J-homomorphism. By [1, IV], Theorem 7.16 we may write

550 H. Minami

$$e'_R J_o(\nu) = \frac{a_q}{m(2q)} \in Q/Z, \ (a_q, m(2q)) = 1$$

where m(2q), e'_R are as in [1, II]. Then we have

Theorem 3.4. For $\alpha = J_G(H\nu) \in \pi_{0,4q-1}^S(q \ge 1)$,

$$e_{\mathcal{G}}(\alpha) = \begin{cases} \left(\frac{2a_q}{m(2q)}, 2(1-2^{2q-1})\frac{a_q}{m(2q)} + \frac{\mathcal{E}}{2}\right) & (q \text{ odd}) \\ \left(\frac{a_q}{m(2q)}, (1-2^{2q-1})\frac{a_q}{m(2q)} + \frac{\mathcal{E}}{4} + \frac{\mathcal{E}'}{2}\right) & (q \text{ even}) \end{cases}$$

 $(\varepsilon, \varepsilon'=0, 1)$ as rational numbers mod 1 and the order of each factor of $e_G(\alpha)$ is $\frac{m(2q)}{2}$ or m(2q) according as q is odd or even.

Proof. The first claim follows from Theorem 3.2, Lemma 3.3 and [1, IV], Proposition 7.14. The second follows from [1, II], Lemma (2.12) and the equality $\nu_2(m(2q)) = 3 + \nu_2(q)$ ([1, II], p. 139) immediately. e.d.q.

4. Real Z/2-e-invariants

We take a base point preserving G-map $f: \Sigma^{p+8k,2q-1+8l} \to \Sigma^{8k,8l}$ as a representative of elements of $\pi_{p,2q-1}^S$ for $p, q-1 \ge 0$. Then the parallel argument to e_G , using the Adams operation in the KO_G -theory [12] and Table of [14], yields the following equivariant e-invariants.

(1)
$$e_{G,R} \colon \pi_{8p+4\zeta+i,8q+4\delta-1}^{S} \to \begin{cases} (Q/Z)^2 & (i=0) \\ Q/Z & (i=1,2,3) \end{cases}$$

$$(2) e_{G,R} \colon \pi^{S}_{8p+4\zeta+2,8q+4\delta+1} \to Q/Z$$

for ζ , $\delta = 0$, 1.

Theorem 4.1. For $\bar{\alpha}=J_G(\nu)$, $\alpha=J_G(H\nu)\in\pi_{0,4q-1}^S$ $(q\geq 1)$,

$$\begin{split} &e_{G,R}(\overline{\alpha}) = \left(\frac{a_q}{m(2q)}, \ 0\right), \\ &e_{G,R}(\alpha) = \left(\frac{a_q}{m(2q)}, \ (1-2^{2q-1})\frac{a_q}{m(2q)} + \frac{\varepsilon}{4} + \frac{\varepsilon'}{2}\right) \end{split}$$

 $(\varepsilon, \varepsilon'=0, 1)$ as rational numbers mod 1 and the order of the second factor of $e_{G,R}(\alpha)$ is m(2q).

Proof. As to the first factors of the equialties this follows immediately from the definitions of $e_{G,R}$ and e'_R . As to the second this follows in addition from Theorem 3.4 and the fact that $e_G = e_{G,R}$ or $2e_{G,R}$ according as q is even or odd. The proof of the last claim is similar to that of Theorem 3.4. q.e.d.

Finally we shall consider $e_{G,R}$ on $\operatorname{Im} J_G$ for $\pi_{p,4q-1}^S(p \ge 1)$. Let χ , ρ be as in [3] and θ be the homomorphism induced by the element of [4], (8.1). Observe χ , ρ and $\hat{\eta}$ on the groups $\widetilde{KO}_G^{-1}(\Sigma^{p,2q-1})$ (see [15], §2), then since $e_{G,R}J_G$ commutes with χ , ρ and $\hat{\eta}$ (by an analogue of Proposition 1.3), we can compute $e_{G,R}$ of (1) on Im J_G inductively by using Theorem 4.1. For $e_{G,R}$ of (2), considering $\psi e_{G,R}$ we get readily $e_{G,R}$ on Im J_G . Specifically we have

Theorem 4.2. Let $\nu_1 \in \widetilde{KO_G^{-1}}(\Sigma^{8p+4\zeta,8q+4\delta-1})$ (8p+4>0), $\nu_2 \in \widetilde{KO_G^{-1}}(\Sigma^{8p+4\zeta+i},$ $^{8q+4\delta-1}$) $(1 \le i \le 3)$ and $\nu_3 \in \widetilde{KO}_G^{-1}(\Sigma^{8p+4\zeta+2,8q+4\delta+1})$ be generators as modules over the real representation ring of G respectively and set $\alpha_k = J_G(\nu_k)$ $(1 \le k \le 3)$. as rational numbers mod 1

$$\begin{split} e_{G,R}(\alpha_1) &= \left(\frac{a_{2p+2q+\zeta+\delta}}{m(4p+4q+2\zeta+2\delta)}, \frac{1}{2} \left\{ \frac{a_{2p+2q+\zeta+\delta}}{m(4p+4q+2\zeta+2\delta)} \right. \\ &- (1-2^{4q+2\delta-1}) \frac{a_{2q+\delta}}{m(4q+2\delta)} - \frac{\mathcal{E}}{4} - \frac{\mathcal{E}'}{2} + \mathcal{E}'' \right\} \right), \\ e_{G,R}(\alpha_2) &= (1-2^{4q+2\delta-1}) \frac{a_{2q+\delta}}{m(4q+2\delta)} + \frac{\mathcal{E}}{4} + \frac{\mathcal{E}'}{2}, \\ e_{G,R}(\alpha_3) &= \frac{a_{2p+2q+\zeta+\delta+1}}{m(4p+4q+2\zeta+2\delta+2\delta)} + \frac{\mathcal{E}}{2} \\ (\mathcal{E}, \mathcal{E}', \mathcal{E}''=0, 1) \ \textit{up to sign and} \\ &\text{order } e_{G,R}(\alpha_1) = \frac{m(4p+4q+2\zeta+2\delta)m(4q+2\delta)}{2^\kappa d}, \\ &\text{order } e_{G,R}(\alpha_3) = m(4q+2\delta), \\ &\text{order } e_{G,R}(\alpha_3) = m(4p+4q+2\zeta+2\delta+2\delta) \end{split}$$

where

$$d = \left(\frac{m(4p + 4q + 2\zeta + 2\delta)}{2^{\nu_2(2p + 2q + \zeta + \delta) + 3}}, \frac{m(4q + 2\delta)}{2^{\nu_2(2q + \delta) + 3}}\right)$$

and κ is the following integer:

$$\begin{array}{lll} \nu_2(2q+\zeta) + 2 & \text{ if } \; \zeta = \delta \; \text{ and } \; \nu_2(2q+\zeta) \leqq \nu_2(p+q+\zeta) \; , \\ \nu_2(2q+\zeta) + 3 & \text{ if } \; \zeta = \delta \; \text{ and } \; \nu_2(2q+\zeta) = \nu_2(p+q+\zeta) + 1 \; , \\ \nu_2(p+q+\zeta) + 3 & \text{ if } \; \zeta = \delta \; \text{ and } \; \nu_2(2q+\zeta) \geqq \nu_2(p+q+\zeta) + 2 \; , \\ 3 & \text{ if } \; \zeta = 0 \; \text{ and } \; \delta = 1 \; , \\ 2 & \text{ if } \; \zeta = 1 \; \text{ and } \; \delta = 0 \; . \end{array}$$

Here let $v_2(s)$ denote the exponent to which 2 occurs in s.

By Theorems 4.1, 4.2 and the results of [15] we have

Corollary 4.3. For $\pi_{p,q}^{S}$ in [15], Theorems 3.1, 3.2 and 3.3,

552 H. Minami

$$\operatorname{Im} J_{G} \stackrel{i}{\hookrightarrow} \pi_{p,q}^{S} \xrightarrow{e_{G,R}} \operatorname{Im} e_{G,R}$$

provides a direct sum splitting.

References

- [1] J.F. Adams: On the groups J(X)—II, IV, Topology 3 (1965), 137–171, 5 (1966), 21–71.
- [2] D.W. Anderson: Universal coefficient theorems for K-theory, Preprint.
- [3] S. Araki and M. Murayama: τ-Cohomology theories, Japan. J. Math. 4 (1978), 363–416.
- [4] ——— and K. Iriye: Equivariant stable homotopy groups of spheres with involutions, I, Osaka J. Math. 19 (1982), 1-55.
- [5] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310.
- [6] —: K-theory, W.A. Benjamin, Inc., 1967.
- [7] G.E. Bredon: Equivariant cohomology theories, Lecture Notes in Math. 34, Springer-Verlag, 1967.
- [8] E. Dyer: Relations between cohomology theories, Coll. on Algebraic Topology, Aarhus 1962, 89-93.
- [9] D. Husemoller: Fiber bundles, McGraw-Hill, Inc., 1966.
- [10] M. Karoubi: K-theory. An introduction, Berlin-Heidelberg-New York, Springer, 1978
- [11] K. Knapp: Das bild des Hurewicz-homomorphismus $h: \pi_*^{\S}(BZ_p) \to K_1(BZ_p)$, Math. Ann. 223 (1976), 119–138.
- [12] P.S. Landweber: On equivariant maps between spheres with involutions, Ann. of Math. 89 (1969), 125-137.
- [13] P. Löffler and L. Smith: Line bundles over framed manifolds, Math. Z. 138 (1974), 35-52.
- [14] P. Löffler: Equivariant framability of involutions on homotopy spheres, Manuscripta Math. 23 (1978), 161-171.
- [15] H. Minami: On equivariant J-homomorphism for involutions, Osaka J. Math. 20 (1983), 109-122.
- [16] G.B. Segal: Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.
- [17] —: Equivariant stable homotopy theory, Actes Congrès intern. Math., 1970, t. 2, 59-63.
- [18] J. Slomińska: On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. XXIV (1976), 909-913.
- [19] G.W. Whitehead: Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227-283.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan