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ON Z/2-e-INVARIANTS

Harvo MINAMI

(Received November 25, 1981)

Let G be the group Z/2. Denote by z;, the equivariant stable homo-
topy group of Landweber [12]. In a similar way to the usual e-invariants
we define equivariant e-invariants e; and e on 72—, by using the Adams
operations in the K;- and KOg-theories and the equivariant Chern character.
And we compute these invariants, in particular e; , on the image of the equivari-
ant J-homomorphism, making use of the Adams’ result for ez. Here we study

the case when KOg'(Z”%"!) is torsion-free. The torsion case is discussed

by Loffler [14].

1. Definitions

Let R”? denote the R?*? with non trivial G-action on the first p coordi-
nates. By B?? and S?? we denote the unit ball and unit sphere in R?? and
by ¢ the B#9/S?4, If p and ¢ are even then R?”?is a complex G-module.
In particular, we write 1 and L for R*? and R?°. Then {1, L} are basis of
the complex representation ring R(G) of G.

For the Thom class of R as a complex G-vector bundle over a point
We Write Ny, 80 that Ko(3#2)=R(G)+\,,, [16]. Here let A-x denote
the module generated by x over a ring 4. Then we have the formula

\I"t(XZP,Zq) = Pt(zp’ 2{1)7\»29,2@ pt(zp’ Zq)ER(G)

for the #-th Adams operation ', and p*(2p, 29) is computed briefly, using the
result for y* in K(S?), as follows.

Lemma 1.1. pY(0, 29)=t*, and if p>0 then

% t#+9(L4-1) (t even)

P2, 20) = 1
44 (=1 (L—1) (¢ odd).

As is easily seen, K (Z'°) is isomorphic to the augmentation-ideal of
R(G). Identifying K (=°) with Z-(1—L) it is clear that K (Z#*2)=Z.
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(1—L)xz 2, Hence we have the following

Corollary 1.2. « operates on Ky (S#+'%0) as multz}lz'cation by 0 if t is
even and by t? if t is odd.

For p, ¢—1=0 suppose given a base point preserving G-map f: Zp+%-2a-1+2

— 32! for k, I large, which is fixed in this section. f yields a cofiber se-
quence

—Eo'lf

2p+2k,2q—1+21 Z) 221?,21 __i Cf _"_) 2p+2k,2q+21 3 22k,21+1

where i, j are the inclusion and projection maps and C, is the mapping cone
of f. Applying K; we obtain the following exact sequence.

" "
0 « K (Z22) b KG(Cf)L- Ry (sprakzastly ()

~R(G) -~ {R(G) (p even)
VA (p odd)
Choose generators £,  of K4(C,) so that

T¥Npra,2q+21) (p even)
TH(A—=L)Ap-142,20+2) (p odd).

For any odd integer #(==4-1), ¥(§) must be given by the formula

(c(®)+d(2) (L—1))n (p even)
c(t)n (p odd),

P*(E) = Mg and 7 ={

Vi(E) = p'(2k, 21)5+{
c(t), d(t)eZ. So we set

M) = e (p even)

Y T R

1 ( c(t) +2d(t)~—c(t)> (p even)

2 tﬁ/2+k+q+l____ tk+1 tq+l__ tl

(f)=
: () (p odd).

tq+1__ tl

Using Lemma 1.1, Corollary 1.2 and the relation ry»'=1)* we can check that
the values {\(f)}, {(f)} do not depend on the choice of an integer ¢ where { }
denotes the coset in Q/Z. As in [1, IV], §7 we see that the assignment

L [(OOL O (@ even)
()} (p odd)

induces a group homomorphism

f
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VA Z
€c: Tpop1 —> {Q/ ®QIZ (b even) for p, g—1=0.
o1z (p odd)
Regard e; as taking values in K (S#*%2+2\@Q|Z, namely let e;[f] be

(OO} (O} L= 1) prap 2020 08 {(f)} (1—=L)Ny-142,2 according as p is even
or odd where [f] is the stable homotopy class of f. Then we have easily the
following

Proposition 1.3. e¢; is natural for stable maps from Z#%~! to Ir2~1,

To evaluate 4*(£) we shall next describe e; in terms of the equivariant
Chern character. Let ch; be as in [18] and ch% denote the 2n-dimensional
component of ¢k, which is a homomorphism of K; to H¥( , R;) in the no-
tation of [18]. By the definition of equivariant Bredon cohomology [7] we
have the following canonical isomorphisms

H£+2k+24+21(cf’ Rp) =~ Hf’”“'z”z’(cwy 0)
A Hpthrar( ottt ()
HE*(Cy, Rg) ~ H**?(Cyy, Q)-(1—L)
~ HE(sH, ). (1),

Here 4 and ¢ are the forgetful and fixed point functors [3]. Under the identifi-
cation of the above isomorphisms we may set

Chg/2+k+q+l(§) — a(f)hp+2k+2q+21
and

ch§*!(&) = b(f)k+*(1—L),

a(f), b(f)€Q (p even) where h* = H*(S%, Z) is a canonical generator such that
cH(PYhg i)=Hh*. Then we obtain

Proposition 1.4. If p even then
M) = alf), ) =+ (e~ o))
and if p is odd then

B = s

2(=D/2+k "

Proof. Consider the following commutative diagram with the exact se-
quence which ¢ f yields as f does.

% -
0« KG(EZk,ZI) i— KG(Cf) ’L_ KG(2p+2k,2q+zz) -0
(*) lh* - h* - lh*

0« KG(EO.ZI) 2 KG(C,H) li KG(EO.24+21) <0
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(Here R’s are the inclusions.) Choose &&K(Cy;) so that if(E)=Nryy and
put n,=7¥(No2+2z1). Then we may write

h¥(E) = 2" 1—L)E,+x(1—L)y, x€Z

for a cohomological reason and the fact that A*(\y 5)=2*"(1—L)xg,. Apply-
ing ' we have

(1) WR*E) = 2" (A= L)' (&) +a* ' (1— Ly -
On the other hand, apply #* to the defining formula of ¢(#), d(¢) we have
(2) VH(B*E) = 2F (1 —L)E,+xt'(1— L)y,
. {2”2”"(6(0—2‘1(’))(1“L)m (p even)
20 9eke(t) (1L, (p 0dd).

Combining (1) and (2) shows

gty | [2"%(c(®)—2d())m (p even)

_ g X
V(&) = 16+ =—— 21 T g0 org(yy, (p odd).

Case p even. From the definition of ¢/, it follows easily that

Chglz+k+q+l(§) — L‘hﬂz+k+q+l(\b‘f)

and
ch@*(&) = 2¥1ch*t (JEy) (1—L)+xh*¥*(1—L) .

Hence we get

Chp/z+k+q+l(‘lrg) = a( f)hp+2k+2q+21 and cht () = b(]zc 2 . X pratal

Therefore [1, IV], Proposition 7.5 for 4 f and ¢ f leads to the equialities
f) g B _ cd)—2d)

a(f) = t[z/2+k+q+l_tk+l 2p/2+k-1 tq+1_tl

Case p odd. Similar to the proof of the above case. q.e.d.

2. (0,2g9—1)-stem

Let 7: S¥20-1+2 5 52k20-1421 [50.2¢-1421 he the canonical projection map for
k, [ large. Let A7, denote the equivariant stable homotopy group introduced
in [12]. Then we have by [12] a split short exact sequence

¥
S S — S
00— No,5-1 = 70,201 = w2g-1 —> 0
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where #* is the homomorphism induced by 7 and 6 denotes a left inverse of
¢ as in [4], §5.

By the definition we can easily describe the values of ¢; on Im € in terms
of the complex e-invariant ¢; in [1, IV]. So we consider ¢; on Im z* in this
section.

Suppose given a base point preserving G-map f: X%~ 1+2[50.20-1+20 _, S2k2
so that f and fr define elements [f] and [fz] of A%, and 7% ,,., respec-
tively. We consider fr as fin §1.

Since =7/[$%/ is equivariantly homeomorphic to =*/*1S/° ([12], Lemma
4.1), we have K (Z/[3%/)~K~i"(RP'"Y) [16] where RP" is the real n-dimen-
sional projective space. Let 75, be the complexification of a canonical real line
bundle over RP" and put 7,=1—75,. We now recall [6] that

RYRP™) = Z[2"+7,,,, K(RP™) = 0
KO(RP2n+1) — Z/Z”-iiz,,ﬂ, KI(RPZ”“) ~Z7.

Then we can identify
Kg(zzk,zq-1+21/Eo,2q-1+21) — Z@Z/Zk—l‘(‘I"Xo,zq+2z)’772k—1 .

Consider f*: K (3%2) — K (S*24-1+2[3024-1421)  Because [f]ENS 2,1 for
g=1 is of finite order ([12], Theorem 2.4 and Corollary 6.3) we may put

F*0arz) = [B(D] (Yo ,a42) i1 D) EZ
where [ ] denotes the coset in Z/2¢"1,

Lemma 2.1. §(f)=—b(fz) mod 2+
where b( fz) s as in §1.

Proof. Observe the following commutative diagram involving (*) in §1.
*
KG(EZk,2q—l+21 /20.2q—1+21)'f_ KG(Ezk,m) - KG(CJ?) -— KG(E?k,2q+21 /20.2q+2l)

yk

T\:

3
0« KG(EZk,ZI) i_ KG(C;'“) ~G(22k.2q+21) 0
[, [ lh*
0« KG(EO’H) 21_ KG(Cd’(Fn)) KG(ZOTHI) 0
)

Ké(22k,2q+21/20,2q+21)

where the right-hand sequence is the exact sequence for a pair (S*:20+% 30.2a+2l),
Clearly Cy7,)~30%+2\/ 3% hence we can verify that f*(Ay »)=—08jF h*&)
where £ is as in §1. Hence the canonical identification such that Ky(Z%*%)
=K(S*+*\QR(G)=H>*(S%*% Z)QR(G) leads to the desired assertion. q.e.d.

(=
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Let BG denote the real infinite dimensional projective space. There is
an integer ¢(zn) such that ¢(n)y,,-, becomes trivial (see, e.g. [9], p. 219). So we
have an equivariant homeomorphism Z*™08~30¢mS*0  This homeomor-
phism, the equivariant suspension theorem and the Spanier-Whitehead duality
theorem yield an isomorphism

7\4%,” _—> ”5(3G+) ’

denoted by I, as follows. Let 7 be the tangent bundle of RP*~! and v be a
normal bundle of RP*"! for an embedding of RP*! in R*~! for m suitably
large. Note that the Thom complex T(v) of v is a (2m—1)-dual of RP%~!
[5], and TP1=~2kns,_; so that S*T((sc—R)yy-,)~S**T(v) for sc>k where
n%s-1 denotes the underlying real vector bundle of 7,,_, and c=c¢(k) is as above.
Then we have the following isomorphisms.

A= Lim, [Z#mes[Z0me2l, FE02]e by definition [12]
~ lli:;'g [20,”+2[+1ka,0, 22’2,21]0
~ .lkilrl) [22sc,n+21—2sc+lsfk,0’ Ezk,ZI]G for some ¢
~ é;} [Ste-thrszi-zeiig 20 50416 by [3], Theo. 11.9
~ !:L;l, [S*+2=25 1T ((sc— k) y3-1), S?]
ksl
~ i n+2l-2m1 2
~ lim [§743-5+57(), 5

~ lim {S", RP¥~1) by [19], Cor. (7.10)
k
= 7, (BG.)

On the other hand, the geometrical interpretation of I by Landweber [12]
shows that the composite Yz*I~': z;(BG,) — 7, agrees with the Z/2-transfer.
So we write t=-)7*I ! as usual.

Following the homotopical construction of I we see that I[f] is represented
by a stable map g: S¥* ! — RP%¥-!. Let §: S¥'->RP%*"! be the composite
g and the canonical projection from RP3~! to RP*~! and let

a,Ensy—(BG)

denote the stable homotopy class induced by g. Then we have

Proposition 2.2. {52(7]2} = ect(at)

where e is as in [1, IV].
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We prepare a lemma for a proof of Proposition 2.2. We recall the fol-
lowing universal coefficient sequence for a finite CW-complex X [2]

0 — Ext(R%(X), Z) - K(X) ® Hom (KY(X), Z) = 0

where k is a map induced by the Kronecker product. Here we denote by
¢ the injection map. Furthermore we have a natural homomorphism

Hom (K°(X), Q/Z) — Ext(K*(X), Z),

which we denote by A. In particular, for X=RP%*, ; and A are isomorphisms.

Denote by p the collapsing map RP*~'—RP%*~1/RP%*"% and identify RP%*"!
[RP%-% with S*~%. Then, clearly p*: K%(S*)=KYS*"!) - K}(RP*™") is an
isomorphism and hence by using the universal coefficient sequence we see
that py: K;(RP%*7Y) — K (S%1)=K(S%) is an epimorphism. Therefore, if we
put 2'=p*(Yrn ) EK(RP*1) then we have an element z& K ;(RP*™") such
that puz is a dual element of Yrrg 4, i.e. <2, 2>=1, which is a fundamental
class of RP%*-! ([19], p. 217). By [19], Corollary (7.8) we have an isomorphism

P = 2N : R(RP*) — K,(RP*).

Consider the composite

3 P 1 A)-! _
RY(RP#Y) > K,(RP*"Y) 5 K,(RP) (A Hom (RYRP*), 0|Z)

where i': RP*~'C RP% is the inclusion map. Then

-1y 1

Lemma 2.3. ((:A)"5%Pipy)ilas — _{?Tl}

Proof. Let v* be the co-Hopf bundle on the complex (k—1)-dimensional
projective CP*! and 7 be its dual. By D and S we denote the total spaces of
the unit disk and unit sphere bundles of Y*®@v* with respect to some metric.
Then D==CP*' clearly and S~RP%*"! (see [10], IV.1.14. Example). We
identify S with RP*"'. Because, if we put §=1—v then K*(D)=~Z[7]/(%")
and ¢*§=1#,,_,, we have a short exact sequence

) j* ¥
0 — KYS) - KD, S)— KD) - K°(S) — 0
where & is a coboundary homomorphism and ¢, j are the inclusion maps. As
is well known, j*A=—%*?424* where ¥¥=1—v* and A is the Thom class of

vY*Qv*. Hence K*(D, S)NkEBZ *A%’. Moreover, by an observation for !
i=0
in [6], p. 100 we have
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S =2

Put 2{=38z2" and denote by 2, a dual element of 2} so that we may suppose
that 0z;=z where 0 is the boundary homomorphism. Similarly P,=zN:
K%D) — KD, S) is then an isomorphism and the diagram

xD) L rYs)
P, 9 P
K(D, 5) > K,(S)

commutes.
A routine computation shows that A¥* 2 KD, S) is a dual element of

P97, ie.,
T4 Py =1.

Let put M=Dx S*"! and 7;: SCM be an embedding given by 7(x)=
(#(x), p(x)) x€S. Then we get a short exact sequence
if

7K
0 — K*M, S) 1> R¥) 5 R¥(S) — 0,

which is a free resolution of K*(.S), where j, is the inclusion map. Hence we
see that

RY(M)= B Z-¢* and KM, S) = BZ-¢\7,
i=1 i=

where ¢ is the projection map of M to D.
Here we adopt the above resolution as a free resolution in the proof of

[2], Theorem 3.1 for K,(S). Define f&eHom (KM, S), Z) by
1 if i=k-2

F@ ™) = {0 otherwise.
Then
Hom(g*, 1)f=< , P#%>.
This implies that because Coker Hom (j¥, 1)=Ext(K%(S), Z),
([f1= Piper

where [f] denotes the equivalence class of f in Coker Hom(j¥, 1).
By the definition of A it is verified that

AT D = —{ ) -
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Hence,
(D) H(Pgpr)Top-1 = "{5;1‘:,} .

This proves the lemma because #4:A=¢AHom (i'*, 1).

Proof of Proposition 2.2. We may suppose that » is a complex vector
bundle, since the stable tangent bundle of RP*-! has a complex structure.

Observing the construction of / we have the following commutative dia-
gram.

)f*

K—g(zo,ZqﬂISik,o - K?;(Zz’"”)

| Il
Iol ng(zo.zl) _ K%S”)@R(G)
IZO( S2l+2q-2m T(v)) K’O( SZI)
D, _ D,

K(RP* ERRPHY £ g (5um

Here D,, D; are the duality isomorphisms as in [19], Corollary (7.10), and I,
I, are isomorphisms given by Jy((Yozq-+20)72r-1)= (VN0 21+20-2m) MT2k-1, L2(No,21)
=g, Where A, denotes the Thom class of ».

By [19], Corollaries (7.8) and (7.10) we have

DzIo((‘!’xo,zq+21)’72k—1) = Pﬁzk—l ’

which is pointed out by Dyer in [8]. By Lemma 2.3 we therefore have
(A ¢ 2wy = —{%D)

Where B=D3('\J/’XO’21). _
Identifying K;(RP*) with Hom(K°%(RP*), Q/Z) through the isomorphism

tA, we may write
() = — {50}

in terms of the Hurewicz homomorphism #: 73,_1(BG) — K,(BG). Hence by
[11], Theorem 2.1 we obtain

(CHsam, = {4

where CH? is the functional Chern character. By the naturality of CH? we
get
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ect(ay) = —(CHY (o)) -

(For the sign, see Remark 4 of [11], p. 128.)
Therefore

{Z(T]f)‘} = ect(ay) .

Consequently we get the following
Theorem 2.4. For a€ns -1 (q21),
(ec(vrer), 0) for acIm @
T {(ec(‘l’a)’  (ectba)tect(e)+€) for aelmz*
(=0, 1) where a, denotes the first factor of Ix* ') under the identification
750-1(BG ) =n3—1(BG) D3, ..

Proof. As to the first factors this is clear from the definitions of e; and
e.. As to the second this follows in addition from Proposition 1.4, Lemma
2.1 and Proposition 2.2. q.e.d.

3. Images of the S'-transfer

Let £: n;(BS}) — 73.1(BG,) denote the S'-transfer, where BS® is the
complex infinite dimensional projective space.

Proposition 3.1. Let a€Im {z*: \§ -1 = 7o40-1} (q=1) and Iz* ()
€Im . Then ‘
ect(ay) = (1—2%)ec(Yrax)

where oty ts as in Theorem 2.4.

Proof. Consider the isomorphisms

I N S N
No,40-1 ~ 7[411—1(BG+) = 7’44—1(BG)€B”441—1 .
We may write Iz*"Y(a)=(ay, ;). Applying ¢ we have
Yra = toy+2a,,

Since t=+z*I"' and t operates on 7zj,_, as multiplication by 2. From [13],
Theorem 3.4 it follows that

ec(a,) = 2 lec(Yrar) -

Therefore we get the proposition.
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The following theorem follows immediately from Theorem 2.4 and Pro-
position 3.1.

Theorem 3.2. For aEnrg -1 as in Proposition 3.1 we have
eo(at) = (ecra), (1=2"Ne(ba)+5), (€=0,1).

Let Jo: KOG(S*%™Y) — 7§ ,,_, (¢=1) be the equivariant J-homomor-
phism [14, 17]. Set a=];(Hv)En{ -1 where v is a canonical generator of

KO Y(S*"") and H=R™. Then a&Im z* because ¢(c)=0.

Lemma 3.3. Let a be as above. Then Iz*Ya) or 2Iz* Y a)€Im
according as q is odd or even.

Proof. We consider the S*-homotopy theory. Replace R'® by the standard
complex 1-dimensional non trivial representation V' of S* in the Z/2-homotopy
theory. 'Then by the same argument as in [12] we have the S'-homotopy groups

s
n ¢
7y, Ay'S and an exact sequence A,'S — 7, = z]. Moreover, we have an

isomorphism A, **~n,_,(BS}). Clearly the diagram

*
= L3

v,S 7! —

An’ Ty

ol ol

O—éXOn_')n'On ""”n

commutes where 7 denotes the restriction of S'-actions. Identifying the left-
hand groups with the cobordism groups canonically, » agrees with the S-
transfer 7.

Analogously for S'-actions we can define the equivariant J-map J, as
follows. Denote by U(kV-+I) the unitary group of RVEPC' with the induced
action and by U, the infinite unitary group obtained by taking a limit with
respect to canonical inclusions of U(kV+-I)’s. Then we have a map J, from
the equivariant homotopy group [S”, U] to z)'S as usual.

Now a generator p of K~(S%~?), viewed as a map from S“! to an unitary
group, comes from [S*~Y U,]%" and so Vu does. Generally an equivariant
map from S%~! to Uy, defines an element of K3i(S%7!). So we have a map
[S4q—1, UV]sl _>K§11(S4q—l)_

Because J,(Vn)=0, using the same notation for Vy in [S%~Y, U,]%, there
exists xEn{>; such that z*x=],(Vp). From the above discussion it follows
that 7(J,(Vu))=a or 2a, so that r(x)=n*"a) or 22* (), according as q is
odd or even. q.e.d.

Let J, be the real J-homomorphism. By [1, IV], Theorem 7.16 we may
write



550 H. MiNamr1

ekJo €0/Z, (a,, m(29)) = 1

(2)

where m(2q), ek are as in [1, II]. Then we have

Theorem 3.4. For a=J,(Hv)E7r3 -1 (q21),

2a, 20-1
(m(2 201247 s (2) +£) (g odd)
eg(ar) = &
(m(Zq) , (1— m(2q) 4 +7) (g even)

(& &=0, 1) as rational numbers mod 1 and the order of each factor of eg(a) is

@ or m(2q) according as q is odd or even.

Proof. The first claim follows from Theorem 3.2, Lemma 3.3 and [I1,
IV], Proposition 7.14. The second follows from [1, II], Lemma (2.12) and
the equality vy(m(2q))=34-v,(q) ([1, IT], p. 139) immediately. e.d.q.

4. Real Z/2-e-invariants

We take a base point preserving G-map f: Zpt8h2-1+8! _ 58681 35 3 re-
presentative of elements of z; ., for p, g—1=0. Then the parallel argu-
ment to eg, using the Adams operation in the KOg;-theory [12] and Table of
[14], yields the following equivariant e-invariants.

(1) e. o 7S ] - {(Q/Z)z (i = O)

G,R* Tgp+al+i,8g+45-1 Q/Z (i _ 1’ 2’ 3)
(2) €G,R: ”zzsp+4§+2,8q+4s+1_’ 0|1z
for ¢, =0, 1.

Theorem 4.1. For a=]4(v), a=J(Hv)Ens -1 (q=1),

folft) = <m((l§q)’ ),

291 i ,.8_:
conle) = (oo, (120Gt L4 5)

(& &=0, 1) as rational numbers mod 1 and the order of the second factor of eg g(ct)
is m(2q).

Proof. As to the first factors of the equialties this follows immediately
from the definitions of e; ; and ek. As to the second this follows in addition
from Theorem 3.4 and the fact that e;=e;  or 2¢; ; according as ¢ is even or
odd. The proof of the last claim is similar to that of Theorem 3.4. q.e.d.
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Finally we shall consider ¢; ; on Im J; for 7} - (p=1). Let X, p be as
in [3] and # be the homomorphism induced by the element of [4], (8.1). Ob-
serve X, p and # on the groups I’C\éal(zl""’"‘) (see [15], §2), then since e; /¢
commutes with X, p and % (by an analogue of Proposition 1.3), we can compute
egr of (1) on Im J; inductively by using Theorem 4.1. For e; , of (2), con-
sidering yre; » We get readily e; x on Im J;. Specifically we have

Theorem 4.2. Let v, & KOG (S#+4:5+48-1) (8p+ 4> 0), , & KOG (SH#+4+

8a+ad-1y (1<7<3) and vaeI’{\é’al(E“”“?“-“*““) be generators as modules over
the real representation ring of G respectively and set oy=Jo(vy) (1=k=3). Then
as rational numbers mod 1

Apptag+L+8 1 { Ayp+29+L4+5

eox(0) = a1 4g 1 267 20)" 2 \m(4p+-4q 2 1-28)

_ A2g+5 i_él_
— (1_24q+28 1) m(4q+28)— 4 5 —f—E”}) ,

/
Aog+5 &

tolan) = (1= 24470 Cues b g

. Dop+2g+5+5+1 4 &
eo.x(®) = s Tag 28 125 12) T 2
(& &, &=0, 1) up to sign and

m(4p+-4q-+28+28)m(49+-23)
2d ’

order eg g(a;) =

order e; z(ct;) = m(4q+28),
order eg g(ats) = m(4p+4q-+26+28+-2)

where

(m(41>+4q+2§+28) m(4q+-28)

QV2(2p+2q+{+8)+3 2Va(24+8)+3
and « is the following integer:
vy(29+8)+2 if £=238 and v,(2¢+%) < vy(p+q+9b),
vy(29+8)+3 if £=23 and vy(2¢+8) = vy(p+g+8)+1,
v(p+q+8)+3  if £ =8 and v,(2¢+8) = v(p+q+8)+2,
3 if =0 and =1,
2 if =1 and §=0.
Here let v,(s) denote the exponent to which 2 occurs in s.

By Theorems 4.1, 4.2 and the results of [15] we have
Corollary 4.3. For r; , in [15], Theorems 3.1, 3.2 and 3.3,
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provides a direct sum splitting.

(1]

[2
B3]

(4]
[3]
(6]
(7]
[8]
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