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0. Introduction
Let X be a connected closed orientable C* manifold which admits a non-
trivial smooth SU(n) action. Suppose
H*(X; Q) = Q[u, v][(u**, v'*), degu=degv=2,

that is, the cohomology ring of X is isomorphic to that of a product P,(C)Xx
P,(C) of complex projective spaces, where @ is the field of rational numbers.
We shall show the following result.

Theorem. On the above situation, suppose
1£ba<n=Lat-bsL2n—3.
Then, a=n—1 and X is equivariantly diffeomorphic to P,_,(C)X Y, where Y is

a connected closed orientable manifold whose rational cohomology ring is isomor-
phic to that of Py(C), and SU(n) acts naturally on P,_,(C) and trivially on Y.

1. Preliminary lemmas

We prepare the following lemmas.

Lemma 1.1. Let G be a closed connected proper subgroup of SU(n) such
that g=dim SU(n)/|G<4n—6. Then it is one of the following up to an inner
automorphism of SU(n).

(i) SUmn—k)CGCS(Uk)X Un—k)), n=2k; k=1, 2 or 3.

(if) n G g 4n—6 || n G g 4n—6
6 | Sp(3) 14 18 4 | SO#4) 9 10
5 | Sp(2) 14 14 4 | Sp(2) 5 10
5 | NSp(2) 13 14 3 S0(3) 5 6
5 1 SO(5) 14 14 3 T*? 6 6

*) Supported in part by Grant-in-Aid for Scientific Research 56540005.
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Here NSp(2) denotes the normalizer of Sp(2) in SU(5).
The proof is a routine work by a standard method [2, 3], so we omit it.

Lemma 1.2. Suppose n=3 and k=4n—6. Then a non-trivial real re-
presentation of SU(n) of degree k is equivalent to (,)g@60**" or PO (for n
=4). Here (p,)g: SU(n)— O(2n) is a standard inclusion, =: SU(4)— SO(6) is
a double covering, ond 0 is a trivial representation of degree i.

Proof. The proof is also a routine work by a standard method [3], but
we give a proof for completeness. Denote by L,, L,, -+, L,_, the standard
fundamental weights of SU(n). Then there is a one-to-one correspondence
between complex irreducible representations of SU(n) and sequences (a, -,
a,-;) of non-negative integers such that ¢,L;+ -+ 4a,_,L,_, is the highest weight
of a corresponding representation. Denote by d(a,L,+ -+ +a,-,L,-,) the degree
of the complex irreducible representation of SU(n) with the highest weight
a L+ -+ +a,,L, ;. Notice that if a;=a’ for i=1, ---,n—1, then d(a,L,+ ---
+a,_,L,))=d(alL,+ -+ +a;_,L,_,) and the equality holds only if a;=a; for
i=1, ---,n—1. The degree can be computed by Weyl’s dimension formula.
We obtain

d(L) = ,C; for 1<i=n—1, d2L) = d(2L,_,) = n(n+1)/2,
dQ2L,) = d(2L,_,) = r(w*—1)[12, d(Ly+L, ;) = n*—1,

KL+ L,5) = d(L,+L,_,) = n(n+1)(n—2)/2,

d(L,+L,_)) = w(n+1) (n—3)/4,

AL+ L) = ALyt L) = n(n—1)3,

dBLy) = d(3L,.,) = n(n+1) (n+2)/6 .

(i) Suppose #=5. Then a non-trivial complex irreducible representation of
degree <4n—6 is equivalent to one of the following: u,, p¥, A u,), A*(uy¥),
where uf is the conjugate representation and A% ) is the second exterior
product. Therefore a non-trivial self-conjugate complex representation of
degree <4n—6 is equivalent to p,+u¥Dtrivial, which has a real form (x,)zP
trivial.

(ii) Suppose n=4. Then a non-trivial complex irreducible representation of
degree <4n—6=10 is equivalent to one of the following: u,, u¥, A (u,)=A(p¥),
S¥ ), S p¥), where S ) is the second symmetric product. Therefore a non-
trivial self-conjugate complex representation of degree <10 is equivalent to D
u¥eD trivial or A¥(p,)@P trivial. They have a real form (u,)z® trivial and =P
trivial, respectively.

(iii) Suppose #=3. Then a non-trivial complex irreducible representation of
degree <4n—6=6 is equivalent to one of the following: us, p¥, S¥us), SHu¥).
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Therefore a non-trivial self-conjugate complex representation of degree <6 is
equivalent to p;P p¥, which has a real form (u;)z. g.e.d.

Nortations. In the following sections, let K° denote the identity compo-
nent of a closed subgroup K of SU(rn), and N(K) denote the normalizer of K
in SU(n). Let X(X) denote the Euler characteristic of a manifold X.

2. Smooth SU(r) actions

Throughout this section, suppose that X is a connected closed orientable
manifold with a non-trivial smooth SU(#n) action such that dim X=4n—6.
Denote by (H) the principal isotropy type.

Proposition 2.1. Suppose n=5 and H°=NSp(2). Then X(X)=0. In
fact, X has only one orbit type SU(5)|NSp(2).

Proof. Since N(NSp(2))=NSp(2), it follows that H=NSp(2) and X has
no exceptional orbits. Now we shall show that X has no singular orbits. It is
clear for dim X=13. Suppose that dim X=14 and X has a singular orbit.
Then the orbit type must be SU(5)/S(U(1)x U(4)) by Lemmas 1.1 and 1.2.
Considering the slice representation, we obtain a covering projection of SU(4)/
center onto SO(6). But, there is no injection of = (SU(4)/center)=Z, into
7,(SO(6))=Z,, and hence there is no covering projection of SU(4)/center onto
SO(6). Therefore, X has no singular orbits. q.e.d.

The next three propositions can be easily proved.

Proposition 2.2. Suppose that H° is one of the following: Sp(3), n=6;
Sp(2), n=5; Sp(2), n=4; SO(5), n=5; SO4), n=4; SOQ3), n=3. Then, X
has no singular orbits and X(X)=0.

Proposition 2.3. Suppose n=3 and H°=T* Then SU(3) acts transitively
on X.

Proposition 2.4. Suppose n=6 and SU(n—3)CH°CS(U(3)x U(n—3)).
Then n=6 and X=8SU(6)/S(U(3) X U(3)).

The remaining possibilities are the followings:
SUn—k)CH' CS(Uk)X Un—k); k=1,2.

In these cases, considering the slice representation, we can prove that SU(n—j)
CcK°cS(U(j)x U(n—j)); =0, 1 or 2, for any singular isotropy type (K). De-
note

Fp = {x€X|SUn—k)CSU(n);C S(Uk) X Un—k))} ,

X(k): SU(”)'F(k) .
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Then X=X U X U Xy for the remaining cases.
Proposition 2.5. If X, is non-empty, then X and Xy are empty.
Proof. Since X, is non-empty, we have n=4 and
*) SUn—2)cH°CS(UQ2)x Un—2)).

Suppose that X(;) is non-empty. Let o, be the slice representation at y & F,.
Then

deg o, = dim X—dim SU(n)-y=2n—4<4(n—1)—6.

Hence we obtain o,|SU(n—1)=(u,-)r@Ptrivial, by (*) and Lemma 1.2. Let
p, be the isotropy representation at y in the orbit SU(n)+y. Then p,|SU(n—1)
=(p,-,)gPtrivial, and hence

codim Fy at y = 4n—4>4n—06 .

This is a contradiction, and hence X() is empty. Similarly we can prove
that X, is empty. q.e.d.

Proposition 2.6. Suppose X=X, and X(X)=+0. Then X=8U(n)/S(U(2)
X Un—2)) or X=SU(n)[SU(n—2)XxyS? where W=S(U2)x U(n—2))/SU
(n—2)=U(2).

Proof. Since X=X(,, we obtain an equivariant decomposition X=8SU
(n)[SU(n—2)X wF(y, where F(, is a connected closed orientable manifold on
which W acts smoothly. The conditions dim X <4n—6 and X(X)=0 imply
that dim F, =<2 and X(F(;)=40. Hence we have a desired result. q.e.d.

Put G, ,=SUm)/S(UQ2)X U(n—2)). For the case X=SU(n)/SU(n—2)x

0
#S% there is a fibration: S?— X — G,,. Suppose that the I¥ action on S? is
non-transitive. Then the W action on S? has a fixed point, and hence the
above fibration has an equivariant cross-section s.

Proposition 2.7. On the above situation, there is an element of HYX; Q)
which is not a linear combination of x3; x;€ H(X; Q).

Proof. Let ¢; and ¢, be the first and the second Chern classes of the ca-
nonical 2-plane bundle over G, ,, respectively. Suppose that z*(c,) is repre-
sented as

n*(c,) = 2 ax?; a,€Q, x; = H(X; Q) .

Then ¢,=s*z%(c,)=2); a;(s*x;)*=a ¢} for some a&Q, and hence ¢, and ¢} are
linearly dependent in H%G,,; Q). This is a contradiction. Hence n*(c,) is
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a desired element. q.e.d.

REMARK. Suppose H*(X; Q)=Q[u, v]/(u**, v**"), degu=degv=2.
Then any element of H{X; Q) is represented as
p Wtquotr v = p ¢ (u+v)—q (u—v)*+r 0%,
where p, ¢, r€Q and ¢’'=gq/4.
Suppose next that the W action on S? is transitive. Then X=SU(n)/
SU(n—2)X 5 S?=SU(n)[S(U(1) X U(1) X U(n—2)). Define
Xy={(m: 1 x)X (1 01 9) EPpy X Py | By 91+ - +-8,y, = 0} .

Then X, is invariant under the natural diagonal SU(#) action on P,_,(C)X
P,_(C), and we have X,=8SU(n)/S(U(1)x U(1) x U(n—2)). Considering X, as
a projective space bundle over P,_,(C), we have a ring structure: H*(X,; Q)
=QJc, t]/(c", 23 c't"*7Y), deg c=deg t=2.

Proposition 2.8. Let X,=SU(n)/S(U(1)x U(1)x U(n—2)) and uc HY(X,;
Q). Ifu'=0, then u=0.

Proof. Any element of H*(X,; Q) is represented as u=p c+qt; p, g=Q.
Suppose u""'=0. Then we have

q”—l = n—-lck Pn—k_lqk) k= 01 1; ) n—2 ’

Hence we obtain p—=¢=0. q-e.d.

3. Proof of the theorem

Throughout this section, suppose that X is a connected closed orientable
manifold with a non-trivial smooth SU(n) action, and H*(X; Q)=Q[u, v]/
(u*, v**); deg u=deg v=2. Moreover, suppose

(1) Isb=s=a<n=a+b=2n—3.

By arguments and notations in Section 2, the possibility remains only when
X=XpUXq.

Proposition 3.1. X, is empty.

Proof. Suppose that X(, is non-empty. Let U be an invariant closed
tubular neighborhood of X, in X, and let E=X—int U. Put Y=ENF,.
Then Y is a connected compact orientable manifold with non-empty boundary
0Y, and U(1) acts naturally on Y. Since there is a natural diffeomorphism:
E=SUn)/SUn—1)X y) Y=8*"'X y; Y, we obtain
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@) dim Y = 2(a+b—n+1) = 2k, k<b<n—2.

Let i: E— X be the inclusion. Then, i*: HY(X; Q) —H'E; Q) is an iso-
morphism for each :=2r—2, because the codimension of each connected com-
ponent of X, is 2n by Lemma 1.2. By the Gysin sequence of the principal
U(1) bundle p: S*"'X Y —E, we obtain an exact sequence:

*

0 — H?-Y(S*1% Y) — H?*Y(E) -i H'lk(E)& H*(S*"1xY)—0.

|

HZI:—I( Y) HZk—Z(X) HZk(X) sz( Y)

Hence we obtain rank H*(Y)—rank H*"}(Y)=1, by the cohomology structure
of X. Considering the homology exact sequence of the pair (Y, 9Y) and the
Poincaré-Lefschetz duality, we obtain

rank H(0Y)=<rank Hy(Y)+rank H* {(Y)—rank H*(Y)=0.
Therefore 0Y is empty; this is a contradiction. q.e.d.
Consequently we obtain X=X,=S"X y,,F ) .
Proposition 3.2. a=n—1 and H*(F); Q)=H*(P,(C); Q).
Proof. Since n+X(F()=X(X)=(a+1) (b+1)=+0, the U(1) action on F,
has a fixed point y,. Consider the following commutative diagram:
o1 Ly ety L g

ln‘ . l P _ ln’

z
o —>x 25 P 0.
Here 7, p are projections of the principal U(1) bundles, g is the projection to
the first factor, ¢ is an inclusion defined by #(x)=(x, y,), and 7, g are induced
mappings. Denote by ¢( ) the Euler class of a principal U(1) bundle. We

can represent as e(p)=Fk u-+j v; k, jEQ. Then
0= g%(e(=)") = e(p)" = (kutjo)" = 25 ,C; B ~'j'w " 0"
and hence ,C; k**j’=0 for n—a=<i=<b. Hence we obtain k=0. Suppose
k=0. Then
0 elmy™! = #H(e(p)™") = #(j* 0" = 0,
because v'*'=0 and b=n—2. This is a contradiction. Therefore e(p)=Fk u
(k=0). Since 7¥((ku)*"')=e(r)* '=%0, we obtain u""*+0 and hence a=n—1.

Next, considering the Gysin sequence of the principal U(1) bundle p: S*"!x Y
— X and the ring structure of H*(X; @), we obtain H*(F(); Q)=H*(P,C);
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Q). q.e.d.
Proposition 3.3. The U(1) action on F is trivial.

Proof. Suppose that the U(1) action on F(; is non-trivial, and let Y be
the fixed point set. Consider the following commutative diagram:

N .

H{(S" X yyF) Ly 1S=X vwFw) = STH*(S* X ywyF )
* it |-

HA(S™ X gy ¥) L HH(S™ X iy V) —5> STH*(S X vy Y) -

Here i, i, j, jy are natural inclusions; L, L, are localization homomorphisms;
S~! is a localization by the Euler class of the universal principal U(1) bundle.
It is known that S~%% is an isomorphism [1]. Since H°¥(F(,; Q)=0, we
have that j* is surjective and L is injective, in particular, ¥ is injective. On
the other hand, j¥ is isomorphic for each t<2n—2.

Now we shall show that @’*'=0 implies @*=0 for weH¥(S* X yyFy;
Q). We can represent as 1*(w)=p¥(a)+pF(B) for some asH¥P,_,(C)), BE
HYY), where p,, p, are projections from S#*7'X yh)Y=P, ,(C)XY to each
factor. Then

0 = k*i*(at*) = (R¥(pH(@)+pH(BY)"™ = @™,

where k: P,_,(C) - P,_,(C)X Y is an inclusion defined by k(x)=(x, *). Since
b<n—2, we obtain @=0, and hence *(w)=p¥(B). Therefore *(w’)=p¥(5’)
=0, because dim Y<2b=dim F(;. Since j* is surjective, there is an element
we HY(S” X voyFy; @) such that j*(@w)=w. Then

JHE@Y) = ¥ H(@") = (@) = 0,

and hence @w*=0, because j#i% is injective for the degree 2b (<2n—2). Then
wb=j*w*)=0.

On the other hand, X=S8"'X y,)F) and H¥(X; Q)=Q[u, v]/(u'*', v*+Y),
where a=n—1. There is an element v € H*(X; @) such that v**!=0 but v*=*
0. This is a contradiction. q.e.d.

Summarizing the above propositions, we obtain X=P,_,(C)X Y as SU(n)
manifolds, where Y is a connected closed orientable manifold with trivial SU()
action, and H*(Y; Q) =H*(P,(C); Q). This completes the proof of the theo-
rem stated in Introduction.

4. Concluding remark

We give examples [2] of a manifold whose rational cohomology ring is
isomorphic to that of Py(C).
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ExampLE 1. Let p be a positive integer. There is a connected closed
orientable C~ manifold Y; such that
H*(Yy; @) = H¥(P(C); Q) and m(V))—Z|pZ
for each k=3.

ExampPLE 2. Let G be a finitely presentable group such that H,(G; Z)
=H,(G; Z)= {0}, where Z is the ring of integers. Thereisa connected closed
orientable C* manifold Y, such that

H*(Y,; Z) = H*(P(C); Z) and m(Y,) = G

for each k=5.
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