# ACTIONS OF SPECIAL UNITARY GROUPS ON A PRODUCT OF COMPLEX PROJECTIVE SPACES

### Fuichi UCHIDA\*)

(Received October 26, 1981)

#### 0. Introduction

Let X be a connected closed orientable  $C^{\infty}$  manifold which admits a non-trivial smooth SU(n) action. Suppose

$$H^*(X; \mathbf{Q}) = \mathbf{Q}[u, v]/(u^{a+1}, v^{b+1}), \deg u = \deg v = 2,$$

that is, the cohomology ring of X is isomorphic to that of a product  $P_a(\mathbf{C}) \times P_b(\mathbf{C})$  of complex projective spaces, where  $\mathbf{Q}$  is the field of rational numbers. We shall show the following result.

**Theorem.** On the above situation, suppose

$$1 \le b \le a < n \le a + b \le 2n - 3$$
.

Then, a=n-1 and X is equivariantly diffeomorphic to  $P_{n-1}(C) \times Y$ , where Y is a connected closed orientable manifold whose rational cohomology ring is isomorphic to that of  $P_b(C)$ , and SU(n) acts naturally on  $P_{n-1}(C)$  and trivially on Y.

# 1. Preliminary lemmas

(ii)

We prepare the following lemmas.

**Lemma 1.1.** Let G be a closed connected proper subgroup of SU(n) such that  $g=\dim SU(n)/G \le 4n-6$ . Then it is one of the following up to an inner automorphism of SU(n).

(i) 
$$SU(n-k) \subset G \subset S(U(k) \times U(n-k)), n \ge 2k; k=1, 2 \text{ or } 3.$$

| n | G             | g  | 4n-6 | n | G             | g | 4n-6 |
|---|---------------|----|------|---|---------------|---|------|
| 6 | Sp(3)         | 14 | 18   | 4 | <b>SO</b> (4) | 9 | 10   |
| 5 | Sp(2)         | 14 | 14   | 4 | Sp(2)         | 5 | 10   |
| 5 | NSp(2)        | 13 | 14   | 3 | <b>SO</b> (3) | 5 | 6    |
| 5 | <b>SO</b> (5) | 14 | 14   | 3 | $T^2$         | 6 | 6    |

<sup>\*)</sup> Supported in part by Grant-in-Aid for Scientific Research 56540005.

Here NSp(2) denotes the normalizer of Sp(2) in SU(5).

The proof is a routine work by a standard method [2, 3], so we omit it.

**Lemma 1.2.** Suppose  $n \ge 3$  and  $k \le 4n-6$ . Then a non-trivial real representation of SU(n) of degree k is equivalent to  $(\mu_n)_R \oplus \theta^{k-2n}$  or  $\pi \oplus \theta^{k-6}$  (for n = 4). Here  $(\mu_n)_R : SU(n) \to O(2n)$  is a standard inclusion,  $\pi : SU(4) \to SO(6)$  is a double covering, and  $\theta^i$  is a trivial representation of degree i.

Proof. The proof is also a routine work by a standard method [3], but we give a proof for completeness. Denote by  $L_1, L_2, \dots, L_{n-1}$  the standard fundamental weights of SU(n). Then there is a one-to-one correspondence between complex irreducible representations of SU(n) and sequences  $(a_1, \dots, a_{n-1})$  of non-negative integers such that  $a_1L_1+\dots+a_{n-1}L_{n-1}$  is the highest weight of a corresponding representation. Denote by  $d(a_1L_1+\dots+a_{n-1}L_{n-1})$  the degree of the complex irreducible representation of SU(n) with the highest weight  $a_1L_1+\dots+a_{n-1}L_{n-1}$ . Notice that if  $a_i \ge a_i'$  for  $i=1,\dots,n-1$ , then  $d(a_1L_1+\dots+a_{n-1}L_{n-1}) \ge d(a_1'L_1+\dots+a_{n-1}'L_{n-1})$  and the equality holds only if  $a_i=a_i'$  for  $i=1,\dots,n-1$ . The degree can be computed by Weyl's dimension formula. We obtain

$$\begin{split} d(L_i) &= {}_{n}C_i \quad \text{for} \quad 1 \leq i \leq n-1, \ d(2L_1) = d(2L_{n-1}) = n(n+1)/2 \ , \\ d(2L_2) &= d(2L_{n-2}) = n^2(n^2-1)/12, \ d(L_1 + L_{n-1}) = n^2 - 1 \ , \\ d(L_1 + L_{n-2}) &= d(L_2 + L_{n-1}) = n(n+1)(n-2)/2 \ , \\ d(L_2 + L_{n-2}) &= n^2(n+1) (n-3)/4 \ , \\ d(L_1 + L_2) &= d(L_{n-2} + L_{n-1}) = n(n^2 - 1)/3 \ , \\ d(3L_1) &= d(3L_{n-1}) = n(n+1) (n+2)/6 \ . \end{split}$$

- (i) Suppose  $n \ge 5$ . Then a non-trivial complex irreducible representation of degree  $\le 4n-6$  is equivalent to one of the following:  $\mu_n$ ,  $\mu_n^*$ ,  $\Lambda^2(\mu_n)$ ,  $\Lambda^2(\mu_n^*)$ , where  $\mu_n^*$  is the conjugate representation and  $\Lambda^2($  ) is the second exterior product. Therefore a non-trivial self-conjugate complex representation of degree  $\le 4n-6$  is equivalent to  $\mu_n + \mu_n^* \oplus \text{trivial}$ , which has a real form  $(\mu_n)_R \oplus \text{trivial}$ .
- (ii) Suppose n=4. Then a non-trivial complex irreducible representation of degree  $\leq 4n-6=10$  is equivalent to one of the following:  $\mu_4$ ,  $\mu_4^*$ ,  $\Lambda^2(\mu_4)=\Lambda^2(\mu_4^*)$ ,  $S^2(\mu_4)$ ,  $S^2(\mu_4^*)$ , where  $S^2(\phantom{\alpha})$  is the second symmetric product. Therefore a non-trivial self-conjugate complex representation of degree  $\leq 10$  is equivalent to  $\mu_4 \oplus \mu_4^* \oplus \text{trivial}$  or  $\Lambda^2(\mu_4) \oplus \text{trivial}$ . They have a real form  $(\mu_4)_R \oplus \text{trivial}$  and  $\pi \oplus \text{trivial}$ , respectively.
- (iii) Suppose n=3. Then a non-trivial complex irreducible representation of degree  $\leq 4n-6=6$  is equivalent to one of the following:  $\mu_3$ ,  $\mu_3^*$ ,  $S^2(\mu_3)$ ,  $S^2(\mu_3^*)$ .

Therefore a non-trivial self-conjugate complex representation of degree  $\leq 6$  is equivalent to  $\mu_3 \oplus \mu_3^*$ , which has a real form  $(\mu_3)_{\mathbf{R}}$ . q.e.d.

NOTATIONS. In the following sections, let  $K^0$  denote the identity component of a closed subgroup K of SU(n), and N(K) denote the normalizer of K in SU(n). Let  $\chi(X)$  denote the Euler characteristic of a manifold X.

# 2. Smooth SU(n) actions

Throughout this section, suppose that X is a connected closed orientable manifold with a non-trivial smooth SU(n) action such that dim  $X \le 4n - 6$ . Denote by (H) the principal isotropy type.

**Proposition 2.1.** Suppose n=5 and  $H^0=NSp(2)$ . Then  $\chi(X)=0$ . In fact, X has only one orbit type SU(5)/NSp(2).

Proof. Since N(NSp(2)) = NSp(2), it follows that H = NSp(2) and X has no exceptional orbits. Now we shall show that X has no singular orbits. It is clear for dim X=13. Suppose that dim X=14 and X has a singular orbit. Then the orbit type must be  $SU(5)/S(U(1) \times U(4))$  by Lemmas 1.1 and 1.2. Considering the slice representation, we obtain a covering projection of SU(4)/ center onto SO(6). But, there is no injection of  $\pi_1(SU(4)/\text{center}) = \mathbb{Z}_4$  into  $\pi_1(SO(6)) = \mathbb{Z}_2$ , and hence there is no covering projection of SU(4)/center onto SO(6). Therefore, X has no singular orbits. q.e.d.

The next three propositions can be easily proved.

**Proposition 2.2.** Suppose that  $H^0$  is one of the following: Sp(3), n=6; Sp(2), n=5; Sp(2), n=4; SO(5), n=5; SO(4), n=4; SO(3), n=3. Then, X has no singular orbits and X(X)=0.

**Proposition 2.3.** Suppose n=3 and  $H^0=T^2$ . Then SU(3) acts transitively on X.

**Proposition 2.4.** Suppose  $n \ge 6$  and  $SU(n-3) \subset H^0 \subset S(U(3) \times U(n-3))$ . Then n=6 and  $X=SU(6)/S(U(3) \times U(3))$ .

The remaining possibilities are the followings:

$$SU(n-k)\subset H^0\subset S(U(k)\times U(n-k));\ k=1,2.$$

In these cases, considering the slice representation, we can prove that SU(n-j)  $\subset K^0 \subset S(U(j) \times U(n-j))$ ; j=0, 1 or 2, for any singular isotropy type (K). Denote

$$F_{(k)} = \{x \in X \mid SU(n-k) \subset SU(n)_x^0 \subset S(U(k) \times U(n-k))\},$$
  
 $X_{(k)} = SU(n) \cdot F_{(k)}.$ 

Then  $X=X_{(0)}\cup X_{(1)}\cup X_{(2)}$  for the remaining cases.

**Proposition 2.5.** If  $X_{(2)}$  is non-empty, then  $X_{(0)}$  and  $X_{(1)}$  are empty.

Proof. Since  $X_{(2)}$  is non-empty, we have  $n \ge 4$  and

(\*) 
$$SU(n-2) \subset H^0 \subset S(U(2) \times U(n-2))$$
.

Suppose that  $X_{(1)}$  is non-empty. Let  $\sigma_y$  be the slice representation at  $y \in F_{(1)}$ . Then

$$\deg \sigma_y = \dim X - \dim \mathbf{SU}(n) \cdot y \leq 2n - 4 < 4(n-1) - 6.$$

Hence we obtain  $\sigma_y | SU(n-1) = (\mu_{n-1})_R \oplus \text{trivial}$ , by (\*) and Lemma 1.2. Let  $\rho_y$  be the isotropy representation at y in the orbit  $SU(n) \cdot y$ . Then  $\rho_y | SU(n-1) = (\mu_{n-1})_R \oplus \text{trivial}$ , and hence

codim 
$$F_{(1)}$$
 at  $y = 4n-4 > 4n-6$ .

This is a contradiction, and hence  $X_{(1)}$  is empty. Similarly we can prove that  $X_{(0)}$  is empty. q.e.d.

**Proposition 2.6.** Suppose  $X=X_{(2)}$  and  $\chi(X) \neq 0$ . Then  $X=SU(n)/S(U(2) \times U(n-2))$  or  $X=SU(n)/SU(n-2) \times_W S^2$ , where  $W=S(U(2) \times U(n-2))/SU(n-2) = U(2)$ .

Proof. Since  $X=X_{(2)}$ , we obtain an equivariant decomposition X=SU  $(n)/SU(n-2)\times_W F_{(2)}$ , where  $F_{(2)}$  is a connected closed orientable manifold on which W acts smoothly. The conditions dim  $X \le 4n-6$  and  $\chi(X) \ne 0$  imply that dim  $F_{(2)} \le 2$  and  $\chi(F_{(2)}) \ne 0$ . Hence we have a desired result. q.e.d.

Put  $G_{n,2}=SU(n)/S(U(2)\times U(n-2))$ . For the case  $X=SU(n)/SU(n-2)\times WS^2$ , there is a fibration:  $S^2\to X\stackrel{\pi}{\to} G_{n,2}$ . Suppose that the W action on  $S^2$  is non-transitive. Then the W action on  $S^2$  has a fixed point, and hence the above fibration has an equivariant cross-section s.

**Proposition 2.7.** On the above situation, there is an element of  $H^4(X; \mathbf{Q})$  which is not a linear combination of  $x_j^2$ ;  $x_j \in H^2(X; \mathbf{Q})$ .

Proof. Let  $c_1$  and  $c_2$  be the first and the second Chern classes of the canonical 2-plane bundle over  $G_{n,2}$ , respectively. Suppose that  $\pi^*(c_2)$  is represented as

$$\pi^*(c_2) = \sum_i a_i x_i^2; a_i \in \mathbf{Q}, x_i \in H^2(X; \mathbf{Q}).$$

Then  $c_2=s^*\pi^*(c_2)=\sum_j a_j(s^*x_j)^2=a\ c_1^2$  for some  $a\in \mathbb{Q}$ , and hence  $c_2$  and  $c_1^2$  are linearly dependent in  $H^4(G_{n,2};\mathbb{Q})$ . This is a contradiction. Hence  $\pi^*(c_2)$  is

a desired element. q.e.d.

REMARK. Suppose  $H^*(X; \mathbf{Q}) = \mathbf{Q}[u, v]/(u^{a+1}, v^{b+1})$ , deg  $u = \deg v = 2$ . Then any element of  $H^4(X; \mathbf{Q})$  is represented as

$$p u^2+q uv+r v^2=p u^2+q'(u+v)^2-q'(u-v)^2+r v^2$$
,

where p, q,  $r \in \mathbf{Q}$  and q' = q/4.

Suppose next that the W action on  $S^2$  is transitive. Then  $X = SU(n)/SU(n-2) \times_W S^2 = SU(n)/S(U(1) \times U(1) \times U(n-2))$ . Define

$$X_1 = \{(x_1: \dots: x_n) \times (y_1: \dots: y_n) \in P_{n-1} \times P_{n-1} | \bar{x}_1 y_1 + \dots + \bar{x}_n y_n = 0 \}$$
.

Then  $X_1$  is invariant under the natural diagonal SU(n) action on  $P_{n-1}(C) \times P_{n-1}(C)$ , and we have  $X_1 = SU(n)/S(U(1) \times U(1) \times U(n-2))$ . Considering  $X_1$  as a projective space bundle over  $P_{n-1}(C)$ , we have a ring structure:  $H^*(X_1; Q) = Q[c, t]/(c^n, \sum_i c^i t^{n-i-1})$ , deg  $c = \deg t = 2$ .

**Proposition 2.8.** Let  $X_1 = SU(n)/S(U(1) \times U(1) \times U(n-2))$  and  $u \in H^2(X_1; Q)$ . If  $u^{n-1} = 0$ , then u = 0.

Proof. Any element of  $H^2(X_1; \mathbf{Q})$  is represented as  $u=p \ c+q \ t$ ;  $p, q \in \mathbf{Q}$ . Suppose  $u^{n-1}=0$ . Then we have

$$q^{n-1} = {}_{n-1}C_k p^{n-k-1}q^k, k = 0, 1, \dots, n-2,$$

Hence we obtain p=q=0. q.e.d.

## 3. Proof of the theorem

Throughout this section, suppose that X is a connected closed orientable manifold with a non-trivial smooth SU(n) action, and  $H^*(X; \mathbf{Q}) = \mathbf{Q}[u, v]/(u^{a+1}, v^{b+1})$ ; deg  $u = \deg v = 2$ . Moreover, suppose

$$(1) 1 \leq b \leq a < n \leq a + b \leq 2n - 3.$$

By arguments and notations in Section 2, the possibility remains only when  $X=X_{(0)}\cup X_{(1)}$ .

## **Proposition 3.1.** $X_{(0)}$ is empty.

Proof. Suppose that  $X_{(0)}$  is non-empty. Let U be an invariant closed tubular neighborhood of  $X_{(0)}$  in X, and let E=X—int U. Put  $Y=E\cap F_{(1)}$ . Then Y is a connected compact orientable manifold with non-empty boundary  $\partial Y$ , and U(1) acts naturally on Y. Since there is a natural diffeomorphism:  $E=SU(n)/SU(n-1)\times_{U(1)}Y=S^{2n-1}\times_{U(1)}Y$ , we obtain

(2) 
$$\dim Y = 2(a+b-n+1) = 2k, \ k \le b \le n-2$$
.

Let  $i: E \to X$  be the inclusion. Then,  $i^*: H^i(X; \mathbf{Q}) \to H^i(E; \mathbf{Q})$  is an isomorphism for each  $t \le 2n-2$ , because the codimension of each connected component of  $X_{(0)}$  is 2n by Lemma 1.2. By the Gysin sequence of the principal U(1) bundle  $p: S^{2n-1} \times Y \to E$ , we obtain an exact sequence:

$$0 \to H^{2k-1}(S^{2k-1} \times Y) \to H^{2k-2}(E) \stackrel{e}{\to} H^{2k}(E) \stackrel{p^*}{\to} H^{2k}(S^{2k-1} \times Y) \to 0.$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$H^{2k-1}(Y) \qquad H^{2k-2}(X) \qquad H^{2k}(X) \qquad H^{2k}(Y)$$

Hence we obtain rank  $H^{2k}(Y)$ —rank  $H^{2k-1}(Y)=1$ , by the cohomology structure of X. Considering the homology exact sequence of the pair  $(Y, \partial Y)$  and the Poincaré-Lefschetz duality, we obtain

$$\operatorname{rank} H_0(\partial Y) \leq \operatorname{rank} H_0(Y) + \operatorname{rank} H^{2k-1}(Y) - \operatorname{rank} H^{2k}(Y) = 0$$
.

Therefore  $\partial Y$  is empty; this is a contradiction. q.e.d.

Consequently we obtain  $X=X_{(1)}=S^{2n-1}\times_{U(1)}F_{(1)}$ .

**Proposition 3.2.** 
$$a=n-1$$
 and  $H^*(F_{(1)}; \mathbf{Q})=H^*(P_{\bullet}(\mathbf{C}); \mathbf{Q})$ .

Proof. Since  $n \cdot \chi(F_{(1)}) = \chi(X) = (a+1)(b+1) \pm 0$ , the U(1) action on  $F_{(1)}$  has a fixed point  $y_0$ . Consider the following commutative diagram:

$$S^{2n-1} \xrightarrow{i} S^{2n-1} \times F_{(1)} \xrightarrow{q} S^{2n-1}$$

$$\downarrow^{\pi} \qquad \downarrow^{p} \qquad \downarrow^{\pi}$$

$$P_{n-1}(C) \xrightarrow{i} X \xrightarrow{\overline{q}} P_{n-1}(C).$$

Here  $\pi$ , p are projections of the principal U(1) bundles, q is the projection to the first factor, i is an inclusion defined by  $i(x)=(x, y_0)$ , and i,  $\overline{q}$  are induced mappings. Denote by  $e(\ )$  the Euler class of a principal U(1) bundle. We can represent as  $e(p)=k\ u+j\ v$ ;  $k,j\in Q$ . Then

$$0 = \overline{q}^*(e(\pi)^n) = e(p)^n = (ku+jv)^n = \sum_{i} {}_nC_i k^{n-i}j^i u^{n-i}v^i$$
,

and hence  ${}_{n}C_{i} k^{n-i} j^{i} = 0$  for  $n-a \le i \le b$ . Hence we obtain kj = 0. Suppose k=0. Then

$$0 + e(\pi)^{n-1} = i^*(e(p)^{n-1}) = i^*(j^{n-1}v^{n-1}) = 0$$
,

because  $v^{b+1}=0$  and  $b \le n-2$ . This is a contradiction. Therefore e(p)=k  $u(k \pm 0)$ . Since  $i^*((ku)^{n-1})=e(\pi)^{n-1}\pm 0$ , we obtain  $u^{n-1}\pm 0$  and hence a=n-1. Next, considering the Gysin sequence of the principal U(1) bundle  $p: S^{2n-1}\times Y \to X$  and the ring structure of  $H^*(X; \mathbf{Q})$ , we obtain  $H^*(F_{(1)}; \mathbf{Q})=H^*(P_b(\mathbf{C});$ 

**Q**). q.e.d.

# **Proposition 3.3.** The U(1) action on $F_{(1)}$ is trivial.

Proof. Suppose that the U(1) action on  $F_{(1)}$  is non-trivial, and let Y be the fixed point set. Consider the following commutative diagram:

$$H^{t}(S^{2n-1}\times_{U(1)}F_{(1)}) \stackrel{j^{*}}{\leftarrow} H^{t}(S^{\infty}\times_{U(1)}F_{(1)}) \stackrel{L}{\rightarrow} S^{-1}H^{*}(S^{\infty}\times_{U(1)}F_{(1)})$$

$$\downarrow i^{*} \qquad \downarrow i^{*} \qquad \downarrow S^{-1}i^{*}_{\infty}$$

$$H^{t}(S^{2n-1}\times_{U(1)}Y) \stackrel{j^{*}}{\longleftarrow} H^{t}(S^{\infty}\times_{U(1)}Y) \stackrel{L}{\longrightarrow} S^{-1}H^{*}(S^{\infty}\times_{U(1)}Y).$$

Here  $i, i_{\infty}, j, j_{Y}$  are natural inclusions;  $L, L_{Y}$  are localization homomorphisms;  $S^{-1}$  is a localization by the Euler class of the universal principal U(1) bundle. It is known that  $S^{-1}i_{\infty}^{*}$  is an isomorphism [1]. Since  $H^{\text{odd}}(F_{(1)}; \mathbf{Q}) = 0$ , we have that  $j^{*}$  is surjective and L is injective, in particular,  $i_{\infty}^{*}$  is injective. On the other hand,  $j_{Y}^{*}$  is isomorphic for each  $t \leq 2n-2$ .

Now we shall show that  $w^{b+1}=0$  implies  $w^b=0$  for  $w \in H^2(S^{2n-1} \times U(1)F_{(1)}; \mathbf{Q})$ . We can represent as  $i^*(w)=p_1^*(\alpha)+p_2^*(\beta)$  for some  $\alpha \in H^2(P_{n-1}(\mathbf{C}))$ ,  $\beta \in H^2(Y)$ , where  $p_1$ ,  $p_2$  are projections from  $S^{2n-1} \times U(1)Y = P_{n-1}(\mathbf{C}) \times Y$  to each factor. Then

$$0=k^*i^*(w^{b+1})=(k^*(p_1^*(lpha)+p_2^*(eta)))^{b+1}=lpha^{b+1}$$
 ,

where  $k: P_{n-1}(C) \to P_{n-1}(C) \times Y$  is an inclusion defined by k(x) = (x, \*). Since  $b \le n-2$ , we obtain  $\alpha = 0$ , and hence  $i^*(w) = p_2^*(\beta)$ . Therefore  $i^*(w^b) = p_2^*(\beta^b) = 0$ , because dim  $Y < 2b = \dim F_{(1)}$ . Since  $j^*$  is surjective, there is an element  $\overline{w} \in H^2(S^{\infty} \times_{U(1)} F_{(1)}; \mathbf{Q})$  such that  $j^*(\overline{w}) = w$ . Then

$$j_Y^*i_\infty^*(\overline{w}^b)=i^*j^*(\overline{w}^b)=i^*(w^b)=0$$
 ,

and hence  $\overline{w}^b = 0$ , because  $j_i^* i_{\overline{w}}^*$  is injective for the degree 2b ( $\leq 2n-2$ ). Then  $w^b = j^*(\overline{w}^b) = 0$ .

On the other hand,  $X=S^{2n-1}\times_{U(1)}F_{(1)}$  and  $H^*(X; \mathbf{Q})=\mathbf{Q}[u, v]/(u^{b+1}, v^{b+1})$ , where a=n-1. There is an element  $v\in H^2(X; \mathbf{Q})$  such that  $v^{b+1}=0$  but  $v^b\neq 0$ . This is a contradiction. q.e.d.

Summarizing the above propositions, we obtain  $X=P_{n-1}(C)\times Y$  as SU(n) manifolds, where Y is a connected closed orientable manifold with trivial SU(n) action, and  $H^*(Y; \mathbf{Q})=H^*(P_b(C); \mathbf{Q})$ . This completes the proof of the theorem stated in Introduction.

#### 4. Concluding remark

We give examples [2] of a manifold whose rational cohomology ring is isomorphic to that of  $P_k(C)$ .

Example 1. Let p be a positive integer. There is a connected closed orientable  $C^{\infty}$  manifold  $Y_1$  such that

$$H^*(Y_1; \mathbf{Q}) = H^*(P_k(\mathbf{C}); \mathbf{Q})$$
 and  $\pi_1(Y_1) = \mathbf{Z}/p\mathbf{Z}$ 

for each  $k \ge 3$ .

EXAMPLE 2. Let G be a finitely presentable group such that  $H_1(G; \mathbf{Z}) = H_2(G; \mathbf{Z}) = \{0\}$ , where  $\mathbf{Z}$  is the ring of integers. There is a connected closed orientable  $C^{\infty}$  manifold  $Y_2$  such that

$$H^*(Y_2; \mathbf{Z}) = H^*(P_k(\mathbf{C}); \mathbf{Z})$$
 and  $\pi_1(Y_2) = G$ 

for each  $k \ge 5$ .

#### References

- [1] T. tom Dieck: Lokalisierung äquivarianter Kohomologie-Theorien, Math. Z. 121 (1971), 253-262.
- [2] F. Uchida: Smooth actions of special unitary groups on cohomology complex projective spaces, Osaka J. Math. 12 (1975), 375-400.
- [3] F. Uchida: Real analytic SL(n, R) actions on spheres, Tôhoku Math. J. 33 (1981), 145-175.

Department of Mathematics Yamagata University Koshirakawa, Yamagata 990 Japan