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0. Introduction

In this paper we establish analyticity in ¢ of solutions to quasilinear evo-
lution equations

©.1) %+A(r, W =ft,u), O=t<T,

0.2) u(0) = u,.

The unknown, u, is a function of ¢ with values in a Banach space X. For fixed
t and vE€X, the linear operator —A(z, v) is the generator of an analytic semi-
group in X and f(¢,v)€X. In the case that the domain D(A(¢, v)) of A(¢, v)
does not depend on ¢ and v, Massey [7] discussed analyticity in ¢ for equation
of the form (0.1).

In the present paper, we consider analyticity for (0.1), (0.2) under the as-
sumptions that the domain D(A(t, v)*) of A(t, v)* is independent of ¢, v for
some h=1/m where m is a positive integer and that A(¢, A;"v)" is Holder con-
tinuous in v in the sense that ||A(¢, A5%v)"A(t, A7 *w)™"—I|| < C||lv—w||", while
in the previous papers [2], [3] we discussed the same problem in the case that
A(t, A7®v)* is Lipschtz continuous. In order to prove the theorems we shall
make use of the linear theory of Kato [5].

In the following L(X, Y) is the space of linear operators from a normed
space X to another normed space Y, and B(X, Y) is the space of bounded
linear operators belonging to L(X, Y). L(X)=L(X, X) and B(X)= B(X, X).
||| will be used for the norm in both X and B(X); it should be clear from the
context which is intended. 31(¢; T)={t=C; |argt|<¢,0<|t|<T} U {0}
is the sector in the complex plane.

We shall make the following assumptions:
(A-1) There exist A=1/m, where m is an integer, m=2, and 0=a<h/2 such
that 45® is a well-defined operator € B(X) and u, & D(A43*") where 4,=A(0, u,).
(A-2) Ag'is a completely continuous operator.
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(A-3) There exist R>0, M>0, T,>0 and ¢,>0 such that A(z, A7%v) is a well-
defined operator € L(X) for each tE>)(¢,; 1) and veEN= {veX; |lv—ATu||<
R} NY U {4%u,}, and the domain, D(A(¢, A7%v)), of A(t, A5"v) is dense in X.
Where YE‘>U° {veX; |lv—(A%u,+ta)||<tM} (0<M=|lal|) and we shall define

a€ X in the next section.
(A—4) For any t€>(¢y; Ty), vEN

(0.3) { the resolvent set of A(#, A;®v) contains the left half-plane and there
) exists C, such that |[[(A—A(t, A7%0)) IS Cy(14n])7!, Ren=0.

(A-5) The domain D(A(t, A;*v)")=D of A(t, A7*v)" is independent of
tEE(‘i)O; Ty), veN. ) )
(A-6) There exist Cy, Cy, o, 1 —h+a<o =1, a”, a<a”’<h2, 3, L:iﬂ <n
<1 such that —a

(0.4) ||A(t, A7™0)*A(s, A7®w) ™ "|<Cy t, sE3N(po; To), v, wEN.
(0.5) [1A(t, A7")"A(s, 45°w) " —II| = Cs{|t—s|"+|lw—2|["}
t,s€> (po; Ty), v, wEN.

(A-7) The map ®: (¢, v)—A(t, A7 v)*As" is analytic from (23 (¢po; T5)\{0}) X
(N\ {42u}) to B(X).

(A-8) f(t, A5®v) is defined and belongs to X for each 1€ (o5 T,) and vEN,
S(0, uy) € D(A¢), and there exists C, such that

(0.6) [1f(2, A7*)—f(s, AT w)|=Ci{lt—s|"+llw—2I["}
t, S€X3(os To), w, vEN.

(A-9) The map W¥: (¢, v)— f(t, Av™) is analytic from (33(¢h,; T5)\ {0} ) X N into
X.
These constants C; (i=1, 2, 3, 4) do not depend on ¢, s, v, w.

The main result of this paper is the following theorem.

Theorem 1. Let the assumptions (A-1)—(A-9) hold. Then there exist T,
0<T=T, ¢, 0<p=¢y, K>0, k, 1—h<<k<1 and at least one continuous func-
tion u mapping 23(¢p; T) into X such that u(0)=u,, u(t)ED(A(¢, u(t))) and
[|A%u(t)— Asuo||[ <R for t€23(p; T), u: 2(¢p; T)\{0} =X is analytic, du/dt+
A(t, u(t)yu(t) =f(t, u(t)) for t&X3(p; TIN{O}, and ||ASu(t)—ASul|<K |[t|* for
teX(p; 7).

RemMARKs. (1) Under the assumption that D(A(¢, u)*) is constant,
Sobolevskii [10] gave the existence of solutions to (0.1) with differentiable
coefficients. But, as far as the author knows, the proof of [10] (or similar
results) is not published yet.
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(2) From the assumptions (A-3) and (A—4), —A(t, A;"v) generates an analytic
semigroup in X, and the fractional powers A(¢, A7"v)? are defined for BER.
Properties of analytic semigroups and fractional powers, see Tanabe [11]
Sobolevskii [9] Krein [6] Friedman [1] etc.

(3) In the previous papers [2] [3] we proved similar results with »=1. In
this case we need not the assumption (A-2).

The author wishes to express her hearty thanks to Professor Y. Komura
for his kind advices and encouragements.

1. Preliminaries

We shall make the following assumptions:
I) For each t€[0, T], A(¢) is a densely defined, closed linear operator in X
with its spectrum contained in a fixed sector S,={z&C; |arg z| <0=r/2}.
The resolvent of A(¢) satisfies the inequality

(1Y) s—A@IISM/l=]  for &S,

where M, is a constant independent of . Furthermore, 2=0 also belongs to
the resolvent set of A(f) and

(1.2) 4@~ li=M,

M, being independent of .
II) For some h=1/m, where m is a positive integer =2, D(A(t)*)=D is in-
dependent of ¢, and there are constants k, M, and M, such that

(1.3) NlA®* @) =M, C0=t=<T, 0=s<T.

(1.4) JA@)A(s)y *—I||=Ms|t—s|*, O0=1=T, 0=<s<T, 1—h<k=l1.
RemARk. From (1.2) there exists C>0 such that

(1.2 lA®™MI=C  for t<[0, T]

C being independent of 2.

Under these assumptions, we get the following theorems. They are due
to Kato.

Theorem A. Let the conditions 1) and 11) be satisfied. Then there exists
a unique evolution operator U(t, s)E B(X) defined for 0=s=<t=T, with the fol-
lowing properties. U(t, s) is strongly continuous for 0=s<t=T and
(L.5) U@, r)= U@, s)U(s,7), r=s=t,
(1.6) Uit t)y=1.
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For s<t, the range of U(t, s) is a subset of D(A(t)) and
(L7) AU, s)eBX), [1AQUE )lI=M|t—s|™,

where M is a constant depending only on 0, h, k, T, My, M,, M, and M;. Fur-
thermore, Ul(t, s) is strongly continuously differentiable in t for t>s and

(1.8) %U(t, O+A@UE, s) = 0.

If ue D, U(t, s)u is strongly continuously differentiable in s for s<<t. If in par-
ticular us D(A(s,)), then

(1.9) a%U(t, )it oy = U(t, o) A(so)u

If f(¢) is continuous in t, any strict solution of

(1.10) Z—tu—}—A(t)u — fi2)

must be expressible in the form

(111) u(t)=U(t, OYu(0)+ S; Utt, 5)f(s)ds .

Conversely, the u(t) given by (1.11) is a strict solution of (1.10) if f(t) is Holder
continuous on [0, T; here u(0) may be an arbitrary element of X.

Proof. See, [5].

Theorem B. Assume that A(t) can be continued to a complex neighborhood
A of the interval [0, T in such a way that the conditions 1), 11) are satisfied for
t,SEA. Furthermore, let A(t)™* be holomorphic for tEA. Then the evolution
operator Ul(t, s) exists for s=<t, satisfies the assertions of Theorem A and is holo-
morphic in s and t for s<t. (Here “s<<t” should be interpreted as meaning
“t—se&2)”, where Y is the sector |argt|<m[2—0 of the t-plane, and “s<t” as
“s<tors=t".) If f(t) is holomorphic for tA, t>0, and Holder continuous at
t=0, every solution of (1.10) has a continuation holomorphic for t< A, t>0.

Proof. See, [5].
It follows from I) and II) that
Proposition 1.

(1.12)  |A(2)" exp (TAISNg 7|~ :0=a=2, |arg 7| <7z[2—0
(1.13) [IA@®)*U, s)l|= (h+k—a) !Ny (t—s5)™ :0=a<k+h



ANALYTICITY OF SOLUTIONS OF QUASILINEAR EvoLurioN Equations II 221
(1.14) JJA@)*" U@, )A(s) IS (k—a) Ny(t—s)™* :0<a<k, 0<s<t<T.

Here the constants N;(1=4,iN) are determined by M, M, M, M, 6, h,
k, T. The above Proposition is essentially proved in [5]. In addition to these,
we need the following estimates in [3].

Proposition 2. If 1—-h<k<l1, O<a<a'<<l—k, then for any 0=<r=<s=<
t=<T, the following inequalities hold:
(1.15)  [lA0)*[U(z, 0)— U(s, 0)]A(0)I=C(t—s)
(1.16)  [|A(0)°[U(z, r)— U(s, N]I|= C(t—s)~* (s—7)1,

where the constant C is determined by M,, My, M,, M, 0, h, k, o, T.

Proposition 3. Let the function f(t) be continuous on [0, T]. Then for any
0=s=t=<T, O<a<a'<a”<h, the following inequality holds:

(117) 11451, vt nfnyar— Uts, sl
< Cow | t—s|7*"(|log (t—5)] +1) max || )l -

Proposition 4. If 0<a'<<a”’<<h, then for any 0=<r<t<T, the following
inequality holds:

(1.18) [A@®Y U, rA@r) M| SCEt—r)"*""1  p=1,2,,m.

Proposition 5. Let the function f(t) be Holder continuous on [0, T). Then
for any 0=<r=<T, the following inequality holds:

(119) 1140 [ U, BISCrs ip=1,2,1,m.

Now we shall define a. We shall make the following assumptions;
(a-1)=(A-1)
(a-2) There exists T,>0, such that 4, (t)=A4(¢, u,) is a well-defined operator
from X to X for each [0, Ty).
(a-3) For any t<[0, T,) the resolvent of A, (t) contains the left half-plane and
there exists C; such that [[(A —A4, () ISCy(1+(X])", Ren=0, and the
domain, D(4,(t)), of A,,(t) is dense in X.
(a4) The domain D(4,,(¢)")=D of A,(t)* is independent of t&[0, 7;) and
there exist C,, C,, o, 1 —h+a<<o <1 such that

[ A, ()" A (s) M= C, t, s€[0, Ty),
”Auo(t)hAuo(s)_h—I”écslt_slo- t, SG[O, TO) .

(a-5)  f.,(1)=f(t, u,) is defined and belongs to X for each t&[0, T;) and there
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exists C, such that
1 feo®)—fieOIN=Colt—s] t, s<[0, T,) .
These constants C;(i=1, 2, 3, 4) do not depend on ¢, s.

Then from the Theorem A, there is a unique solution of

du

LB ROESAC
20) = u, .

With the solution of (1.20) set

(1.20)

+
(121) a= Z—tA'gﬁ(t)l,=o.

We can define a since by u,& D(4:*), £,,(0)€D(4%) and 1 —h+a<o=1.

fact from (1.13), (a-5) and (a—4) we have
145 | Ut 9.9
< {14308, 914 1fuol) 7o)l

o 1ABUL(0, 06711 A5 11 (O) s

IA

(ht-k— ) Nyo(t—s5)*C s ds+ 5: C(t—s)"* Cy|| AL, (0)|ds

1+h—a’

t
|
Ct

IA

2. Existence of solutions on the real axis

We consider the Cauchy problem

2.1) duldt+ At wyu = f(t, ) O0<t<T
(2.2) u(0) = u, .

We shall make the following assumptions:

In

(R-1) There exist A=1/m, where m is an integer, m=2, and 0=<a<h/2 such
that 45” is a well-defined operator &€ B(X) and w,&D(A45*") where A,=A(0, u,).

(R-2) A4g'is a completely continuous operator.

(R-3) There exist R>0 and M>0 such that A(¢, 45%v) is a well-defined op-

erator € L(X) for each t€[0, T] and veN= {veX;||v— A%l <R} N

Y U {4%4,} where YE,U {veX; |lv—(A%uy+ta)||<tM}, 0<M=<]||a||, and the
So

domain, D(A(t, A3"v)), of A(t, A7) is dense in X.
(R4) For any t[0, T] and vEN
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2.3) { the resolvent set of A(z, A7"v) contains the left half-plane and there
) exists C, such that |[|[(A—A(¢, 45%0)) YIS Cy(1+[1])7}, Rea=0.

(R-5) 'The domain D(A(t, A5"v)*)=D of A(¢, As"v)" is independent of ¢&[0, T
and vEN.

(R6) There exist Cyy Cy o, 1 —h+a<o=1, a<a’<h2, L=t 1
such that 1—

(24) A, A7) A(s, A7 w) | =C, t,s€[0, T], v,weEN,
(2.5) 1lA(t, Az®0)*A(s, A7°w) "I Cs{lt—s|"+lo—w||"}
t,s€[0, T], v,weN.

(R-7) f(t, Av"v) is defined and belongs to X for each t<[0, 7] and vEN,
and there exists C, such that

2.6) |If(t, A7) —f(s, As*w)| < C,{|t—s|"+|lv—w|[} t,s€[0, T], w,vEN.

Theorem 2. Let the assumptions (R-1)-(R-7) hold. Then there exists S,,
0<S,=T, such that there exists at least one continuously differentiable solution of

(2.1) for 0<i<<S, that is continuous for 0=t<S, and satisfies (2.2).

Proof. Let a<a’<h/2, (1—h+a")p<f<l—a, L>0 and 0<&<]1.
We consider the set F(.S) of all functions v(¢), defined on [0, S) which satisfy
the following;

(2.7) v(0) = Aouy
(2.8) lv(t)—v(t)||SL|t,—t,|¢  forany t,t,E[0,S),
2.9) llo(t)—(A%u,+ta)|<Mt(1—e)  for 0, S)

Suppose S,&(0, T]. Then for any vEF(S))
[lo(t)— Abuy|| = |lo(t)—2(0)[|<L|¢|¢ for t€[0, S)).
So if 0<<S,<min {S,, (RL™*)"4}, then
(2.10)  lo(t)—A%ugl|[<L(RL™) =R  for t€[0, S,).
Therefore from (2.9) we have v(¢)EN for t&(0, S;). Hence the operator
(2.11) A, (f) = A(t, A7%(t))
is well defined for t€[0, S,) and, by (2.3)
=A@ ISCIA+IA)  if Rers0, t€[0, S)).

From (2.4) we obtain
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14, A,(s)"=C, if t,5€[0,S,).
From (2.5) and (2.8) we also get
14,0 A(5) P — 1| S Cy | t—s1 "+ llo(t)—o(s)|I7} < Cs {854+ L7857 | ¢ —s|*
where k=min {, {7}. t, s€[0, 5;)

Note that 1 —hA+a<oc=<1 and (1—h+a")/np<t<l—a imply 1—h<k<1.

By Theorem A, there exists a fundamental solution U,(t, s) corresponding
to A,(¢) and all the estimates for fundamental solutions in the previous section
hold uniformly with respect to v in F(S,). In particular, from (1.15) and (1.16)
we get for O<a<a'<1—§, 0<r=<s<t<S,

(2.12) ||4%[Ut, 0)—U,s, 0)]45Y|=C|t—s|**
(2.13)  ||AYUt, r)—Us, NS Clt—s|% |s—r|
where C is a constant depending on 6, &, &, a, C,, C,, Cs, S,

Setting f,(8)=f(t, Av"v(1)), it follows from (2.6) and (2.8) that
@2.14) A —AOISColl =51+ llo()—o(s)ll} S C AT LT3} |1—s] .
Since £,(0)=£(0, 45"v(0))=£(0, w,) is independent of v, (2.14) implies that
(215)  max IfOISIAO, w)l+C{ST 4+ LS5} SESC;

Set w, ()= A%w,(t), where w, is the unique solution of
b, q

(2.16) dw,jdt+A(tyw, = ft)  tE[0, Sy)
(2.17) w,(0) = u, .

Then from (2.14) and Theorem A, , o is given by

(2.18)  w, o(t) = A3U,(2, Oy, + A3 S: Uz, s)f,(s)ds .
In view of (2.18), for any ¢, ¢, in [0, S;) we obtain
(2.19)  |lw, olts)—w, a(L) | S AS[U,(t1, 0)— U (25, 0)]A57 |- || Agtao|
431" Uit 95— [ U, s)fio)asll

Making use of (2.14), (2.15) and (1.17), we find that

(2.20) |14 g: Uty 9)f.(5)ds — S: Uiy, $)fo(5)ds]|
<Clt,—t,|"*(|log (t,—1;) | +1)  where (<l—a<l—q.
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Therefore from (2.19), (2.12) and (2.20) it follows that

120, a(t1) 204, o(t)| < C 15— 1, "= || Aol |-+-C | =1, *%(| log (i—1) | +1) .
Hence if a positive number S, satisfies CSi~5~%||Agu||+ CS3~¢-%%|t,—1,|®
X (|log (#,—2,)| +1)=< L where 0<&é<1—{—a and if S;<.S,, the inequality
(2.21)  w, o(t)—w, o) IS Lt —1,| ¢ for ¢, t,[0, S;)

holds.
We shall prove that if .S, is sufficiently small, the following inequality holds;

(2.22) |, o(t)—(ATuy+-ta) | <Mt(1—€)  for all t<[0, S,).

First. if S5, 0<S;=<S,, is sufficiently small, for any 0=¢<<S; the following
inequality holds;
(2.23)  |lw, o(t) —ASA@)| S Mt(1—8)[2  for t<[0, S5).

1) The case of bounded A(t, A5v).

If A(t,, Av®v,) is assumed to be bounded for some #,&[0,.S,) and some
9, N, in addition to the assumption (R—4) and (R-5), it follows that A(z, A7)
€B(X) for all t€[0,.S,) and v€N. In fact the boundedness of A(t;,, 45%v,)
implies that of A(¢, A7%v,)" so that the constant domain D = D(A(t;, As"v,)")
must coincide with X. Thus from closed graph theorem A(¢, 45"v)" € B(X)
and hence A(¢t, A5"v)eB(X) for all ¢ and v.

Let v,, v, belong to F(S,) and set
Ai(t) = A(t, A7"0,(2))
Ui, s) = U(t, 5)
filt) = fit, Azo,1)
w,(t) = Az w,,; (1) i=12.
Thus, for i=1, 2,

dw;[dt+A(t)w; = f(t)
(2.25) { ) — .

Note that %(¢) € D(Ay(t)), wy(t) € D(Ay(2)) since A,(f)€ B(X) (i=1, 2), and we get

(2.24)

(226) L () A0 (wi—w) = [4:0)— 4 (Ot Us O] -

Now, we shall show the following,
Lemma 1. [A4,(t)—A,(t)]wy(t) ts Holder continuous in t for 0=t<S,.

Proof of Lemma. Write
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(2.27)  [Ayt)—Ax(8)]wo(t)—[Ax(s) — As($)]wi(s)
= [Ay(2) —Aa(5)]ews(#)+A(s) [202(2) —w5(5)]
—[Ay(#)— Ay(8)]w(t) — Ai(5)[wx(£) —wo(s)] -

First we verify the following two inequalities:

(2.28) [I[4i(t)—A)]zAD)|<D(t—s)  0=s=t<S,, i=1,2,
(2.29) || Ai(s)[wot) —wo(s)]| S DSt —sy*  0=s=t<S,, i=1,2,

where the constants D,, D, do not depend on v;, s, ¢t but depend on || 44|
From (2.4), (2.5), (1.13) and (2.15) we have

14— A )]
= 3 140 MA A~ 1A (Ut Oot-|| Ut Df(r)art |

= 3 A A A1 LA T Tite, Oyl 1Tt 7)ftr) ]

= mcm(t—s)k[(h“l‘k)—lle' [2ol] "‘t(h“,‘k)—lleCs] | IA%I ["Cs
<D,(t—s)*.

From (2.4), (2.12) and (2.20) we have
Ao
<114 0) 45" 14U, O+ [ Uslt, nflo)dr— Uils,Opn— | Usls, )|
<114, 47 {143 Ui(t, 0)— Uy (5, 0145 - A
141, Ui, Ny —{ Uits, nfranlil

S CPIIAUMIATIH{C(t—9)= || Agteol |+ C(t—s)1=*"( | log (¢—s) | +1)}
<D,(t—s)"" .

Thus using (2.27), (2.28) and (2.29) we obtain

(230) 11[4(2)— A(O)olt) — LA5)— Ai(e)]eod5)l|
<2D;|t—s|"+2D,|t—s|**
<D,|t—s|**

so that [A4,(¢)— A4.(t)]w.(t) is Holder continuous. q.e.d.
From (2.6) for any 0=<s=<¢<S, it follows that

(231) ILA® —fL)]—LAEO—f)I=2C | 1]

Hence from (2.30) and (2.31) the right-hand of (2.26) is Holder continuous.
Then applying Theorem A to (2.25) and w,(0)—w,(0)=0 we can write
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¢
(2.32) w(1)—wyt) = So Un(t, ){[Aor)— Ai()]woo(r)+[fi(r)—folr) 1} dr
Therefore from the definition of w, , we get the identity

(2.33) W, a(t)— 4 a(2)
= Avw,(t)— Asw,(t)

= — 43 (] Ut DA — A0+ L) —Fio D dr
= A3 g: Uy, 7) é A(r) P Ay(r)t Aor)~ — T A7) Pw(r)dr

+45 . Us (@, LA ~F N
= — pﬁl S: ASU\(t,r) Ay(r) 2 [A(r)" Ao(r)~*— 11 Ax(r) 20,(r)dr

+ |, 430 DU N

In the following the constants Ej, E,, -+ do not depend on s, ¢, v;, ||A%]].
So, put v,=v and v,=A;
(2.34) |lw, oft)—w A:ﬁ‘a(t)ll

= — p=21 S: AU (2, V)Al(r)l_ph[Al(”)hAz(r)-h_l ]Az(r)""wz(r)dr
+ g; ABUAt, AL —Flr))dr -

From (2.8), (2.7), (2.18), (1.17) and (1.15) we get

(2.35) |lo(r)— A4l
=llo(r)—o(0)l|+ | A34(r) — ASu, |

< LrS+-|| A% S; U, (7, )fu(8)dsl|+1AS[U,(r, 0)— U, (0, 0)] A7 Agu,|

< Lré+Cr-®[|log r| +1] g‘é’i Ilf,,o(t)ll—i—Crl‘a

<Cr¢ where {<l—d<l—a.
For any 0=<¢<S; the following inequality holds;

t ,
2.36) || SO 43U, (4, 7)) —fo)drl < Co- 7.
We see this, using (1.13), (2.6) and (2.35) for O0<a<a'<h/2, as follows;
¢
@37) I | 43U(t, DA —F)Nbr
< S' Moai(h+-k—a") Ni(t—1)~* C,Cré"dr
0

SCpvHe,
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We cite (1.18) for A=A4,, U=U,;
(238) 114407 Uy (2, 1) Au(r) | S Eyt—r)?="".
Note that
(2.39)  Ay(r)w,(r) = Ay(r)*"Uyr, O)uy+Ay(r)?* So Uy(r, $)f(s)ds

(240) | 4o(r)*" Uy (r, OYuol| <11 Ao(r)* Un(r, 0)A5" | [| Aol
= (k—ph+h) " Nigr"~**|| Ao
éEsrh—ph

by (1.14).
From (1.19) we find that

(2.41) || Ay(r)?* S Uy(r, $)fi(s)ds|| S Eg'~?* .

Hence using (2.39), (2.40) and (2.41) we have

(242) || 4y(r)"wn(n)|| S Eg~? +-E =7
<Eg" .

Therefore from (2.38), (2.5), (2.42) and (2.35) it follows that
(2.43) || S: A3U(t, r) A, (r) = [A(r) Ay(r) ™" — I 1Ay r) wy(r)dr ||
< St Ez(t—r)ph_“”'llI‘Z)(T)—Agﬁ(r)l]nEsrh—ﬂhdr
0

= S’ Ey(t—r)?" =% "1CrinEgph=tt gy
0
< Clh—w”+§"l .
Then from (2.34), (2.43) and (2.36) we have

(244)  Nwy,o(t) —w g (D= mCE =¥+ Cpp="+¢n
<CpHen

Put v,=A%u, and v,=A%(t), from (2.18) and (1.15) it follows that
(2:45)  [1A(r)—u,l|

S|[Usr, 0)—U, (0, 0)] A5 Agu,l |+ So HU.o(7, $)fuo(5)l1ds
<Cr-F where 0<€<a.

Then as we get (2.44), we have
(2.46) [l gy, o(H)— ATA(D)|| < Ctb="n0=5)
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Note that (1—A+ a”)n<€<l—a implies h—a”’+ p(1—&>h—a’” +En>1.
Therefore from (2.44) and (2.46)

(*) ku,w(t)_Agﬁ(t)“ < Cph=o"+¢n-1 Wt
< CSE+n-1y 4 for any <0, S;).

S0 if 0<Ss< min (S5, {M(1—€)[2C}+*"~4~4), then
|l20,,o(t)— ATAE)| | < M(1—E)2/2 .

Thus (2.23) is obtained.

2) The general case.

We now turn to general case in which A(t, 45%v) is not necessarily bound-
ed. We first construct a sequence of bounded operators A4,(¢, A7) that ap-
proximate A(¢, A7"v) in a certain sense. We set

A, (¢, A7) = A(l, A7) ] (¢, A7)

@47 {Jﬂu, A570) = (L4 A(t AT n=1,2, .

Obviously 4,(t, A7"v) belongs to B(X) and satisfy the assumptions I), II).
Therefore, all the estimates deduced in the preceding section are valid, whose
constants do not depend on n. Hence from I) there exists a fundamental so-
lution U, ,(t, s) corresponding to A,(¢, A7%v,(t)) and a solution w; , of

Wn 14,01, A5 (O)0; 0 = F0)
w; ,(0) = %, v,€F(S), i=12.

Then we get by (x)
(248) (14,0, ) w01, (1) — 2, (D] SCSE"*4m"1x 2

Due to Kato [5], we obtained that A3(0, u,)U; (¢, 0)—=A3U(t, 0) as n—>co.
Thus (2.23) is obtained.
Next, from (1.21) for any >0 there is a £,>>0 such that

- (43(t)— ATw] —all <3 for any te(0, 4].

Then choose §=M(1—¢)/2 there is a #,>0 such that
(2.49) || ASA(t)—[Au,+-ta]l|

— 1|1 [A3é(0)— ] —allt

=M(1—-6)t/2 for t€(0, t,]
Hence if 0<<.S,< min {S;, #,}, then from (2.23) and (2.49)
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(2.50)  [lz,,a(2)—[A0uy-ta]|l
= Ilw,,o(t)—ASA(2)||+-|| ATh(t)— [ ATuy+-ta]
SMy1—-¢) for any t€[0, S,)

holds. Thus (2.22) is proved.
Since (2.17) implies

(2.51)  w,,6(0) = Aow,(0) = AGuy ,

we get w, , EF(S,) .
We defined a transformation T: v—w,, for vE€F(S,). Then from (2.51)
(2.21) and (2.50) we have

(T0)(0) = w,,o(0) = Aduq
(To) (1) —(To) )L t,—1,|¢  for t, £,€[0, S))
[| To(2)—(ASuy+ta)|| = Mt(1—¢) for t€(0, S,)

that is, T maps F(S,) into itself.
We now consider F(.S,) as a subset of the Banach space Y=C([0, S,); X)
consisting of all the continuous functions (z) from [0, S,) into X with norm

21| 202‘1&”7}(0” .

We shall prove that T is a continuous mapping in F(S,) (with the topol-
ogy induced by Y).

1) The case of bounded A(#, 45%0).

Let v, and v, belong to F(S,). From (2.33)

(252) W, ot)— 10, u()
— _;;? S: AU, (t, 1) Ay(r)=P[Ay(r) ()™ — T Ay(r)Peoy(r)dr
+ S: AUt L) —for)]dr -
For any 0=t<S,, the following inequality holds:
(253) 11 43Ui(t, DA~ arl| S B ~Hlos—e I
We see this, using (1.13) and (2.6) for 0<a<a'<h, as follows;
1, 43Ut DA~
< | 145407 114" Ui, DI —0)lldr

é S; Maa’(h-}-k—a/)—1N18(t_r)_¢’C4I I‘I)l(r)“—‘vz(r)l |”dr

SES o=l
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Therefore from (2.33), (2.38), (2.5), (2.42) and (2.53) it follows that
(2.54)  lwo,,a(t) =20, o(2)l|
=< 3 14308, DAL 1ALV A0) T Ao Yoo

1, 43Ut DA —Flo )

” ¢ 24
= ES E, (t_r)ﬁh-a “[Ivl(r)—'vz(r)lI"Esrh""dr—i—Eltl”‘”Ivl—vZH]"
0

p=1
SE " +79)llo)—v,llI"
SE " llo,—dlll”.

Hence
(2.55)  [[[Tv,—Twll =ozltlg’s‘lval.u(t)—wvz,a(t)ll
<ESy|llo;—ollI" v, 1, €F(S,) .

This means that T is a continuous operator.
2) The general case.
we get by (2.54)

(2.56) 14,0, w)*[wr,, (1) =2, OIS EeSI|llvy—2olll"  nEN,.

Due to Kato [5], we obtain that A4,(0, u,)*U; ,(t, 0)—A3U (¢, 0) as n—>oo.
Thus T is a continuous operator.

We now claim that the set TF(S,) is contained in a compact subset of Y.
Indeed, the functions v(¢) of F(S,) are uniformly bounded (by (2.10)) and equi-
continuous (by (2.8)). If we can show that for each ¢ the set {w, «(f); vEF(S,)}
is contained in a compact subset of X, then by applying Ascoli’s Theorem we
can prove that TF(S,) is contained in a compact set of Y.

We can write, for each tE[0, S,), w, o(t)=As"A¥w, o(t) Wwhere0<y<<h—a.

From (2.12) and (2.41), we have

t
1450, 0)| = LAHASUL(t, O3 |, Uity )]
=1 AF[UL2, 0)— U0, 0)]A5* Aguol |-+ | AT+ “uq|
t
HI4T A0 140" | U, Il

< C= 7| Agug| |+ 1| 45wyl + ME -
§E9 .

Thus {4lw, «(2); vEF(S,)} is a bounded subset of X. And by assumption
(A-2), 45" is completely continuous. Therefore {w,.(f); vEF(S,)} is indeed
contained in a compact subset of X.
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We can now apply Schauder’s fixed point theorem and deduce that T has
a fixed point v in F(S,). Noting Tv=w,, and w,(t)=Aw,(t), we have
ow,(f)=2v(¢) or w,(f)=A5"v(¢). Applying (2.16) we find that

—d‘l—tAa"v(t)nLA(t, A5*o(t) A52o(t) = f(t, A7*0() -
This finishes the proof of Theorem 2 for S=.5, and u=45%.

3. Proof of Theorem 1

From (0.3) there are constants C;, ¢,>0, 7,>>0 such that for t&3>}(¢;; Ty),
vEN and |6|<¢,, the resolvent set of €®A(t, A;"v) contains the left half-
plane and

(3.1) |(v—e PA(L, A7) YIS C(1+[A[)"  Rer=0,

We let ¢p=min {¢y, ¢;}, (1—k+a”)[p<t<l—a, 0<&<1 and L>0.
We consider the set E(S) of all functions #(¢#), defined on >(¢;.S) which
satisfy the following;

(3.2) :2(¢; S\ {0} — X is analytic,

(3.3) 9(0) = Adu,,

(34) llo@®)—o(0)|I=<L|t|¢  forany tE2}(¢p;S)

(3.5) |lo(t)—d(t)l|=L|t,—t,]¢ for any real #, £,€][0, S),

(3.6) I10()—(ASuw+ta)|=Mlt|(1—8)  for te3)(; S)

If 0<S,<min {T;, (RL™*)Y¢}, then
16()— A3l SLItIS<LRLY) =R for t€X(; S).

Let us note that if S, is small enough to #(¢)EN for t=(0, S,) the operator
A;(2) = A(t, AT"0(t))

and the function

fe@®) = f(t, 45°0(2)
are well defined for t&3(p; S)), since > (s S1) S 2 (po; To)-

We first restrict ¢ to be real in (0.1), t [0, S,). Then it follows from
(0.3)—(0.6) that the family {4;(¢); 0=¢<<S;} and the function f3: [0, S,)—X
satisfy the hypotheses of Theorem A. Thus there is a continuous function @:
[0, S;)—X which is the unique solution of

dw; |dt+ Az (W5 = f(¢)
Wy(0) = u, .

(3.7) {
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For 0<<€é<S,/2 we consider the sector >3(¢; S;—26)\ {0} +&. Since the
function #+— A5 (£)*4(0)~* and ¢+ f5(f) are analytic in a neighborhood of the
closure of X1(¢; S;—26)\ {0} +& and by (0.6) f+(¢) is Holder continuous, we
can apply Theorem B; @5 has an extention to U {3)(¢; S;—28)\ {0} +&; >0} =
2 SHO\{0} such that @;:>3(¢; S)\{0} =X is analytic, @;(t)eD(4;5(t))
and dw;(¢)/dt+ Az (£) w5 (£)=f7(t) for t€X](¢; S\ {0}.

Next we shall show that 43@;: >(¢; S;)\{0} =X is analytic. Actually
seeing that #—A4;(#)*4(0)* is analytic, t—A4(0)*45(¢)™"* is analytic. By rewrit-
ing the equation as Ay ()5 (t)=f73(#)—@y(¢) and using the fact that t—@;(t)
and #— f5(t) are analytic, we have that t—A; ()" 5 (t)=A5 ()" [ f+()— @z (?)] is
analytic. Then ¢ ASw;(t) = A5 "AtA5(¢)"A5()"@w5(t) is analytic from
)3 SO0} to X.

Set Wy o(t)=A%W;(2).

Let us restrict ¢ to be real, &[0, S,). From assumptions (A-1)-(A-6)
and (A-8), assumptions (R-1)-(R-7) hold. Therefore if S,>>0 is small enough,
as we get (2.21), we can show that

W5 oft)) — W5 ot2) | SL|ti—1,]¢ for t, t,€[0, S)).
We shall show that
18 { W5 o(t)—W5 «(O)[=L|t]¢ for t€>(¢; S).
O 1 @7 o) (At SMI2l(1—8)  for teX)(g; S).

In order to prove it, in (3.7) we make the change of variable t=7¢, 7€[0, S)),
|d] <¢, so equations (3.7) become

(3.9) Soendi(re)o = e°f5(re")

2(0, ) = u,,

where v(7, )=y (Te®), Wy (t)=v(|¢], t/|2]).
We hold |0] <¢ fixed and let
B(r, 9, 0) = e A(7e", D), g(, 7, 0) = e*f(re®, D)

for T€[0, S)), ASDEN, 6] <¢p. We shall show that for fixed 6, B(r, 7, 0)
and g(r, 7, 0) satisfy the assumptions (R-1)-(R-7) with constants independent
of 4.

First, note that

1= B0, uy, 0)~' = e A(0, up)™ = e~ 45",

and (R-2) is verified.
Since A(t, Ay“w) is well defined for any we N and t&33(p; T), and
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B(t, By*w, §) = B(, B(0, u, 0)~*w, 0) = e A(7e®®, Az*(e™**w))
B(7, B5"w, 0) is well defined for w& N, and 7€[0, T}), which verifies (R-3) where
NezeiaoN-
(R4) is verified since by (3.1) and D(B(r, By"w, 6) = D(A(re*, 45"
X (e7*"w))).
For any we N, and 7€]0, T,) we have
D(B(r, By*w, 0)*) = D(e®*A(r, A7%(e~**w))*) = D,

and (R-5) is verified.
From (0.4) and (0.5) it follows that
[|B(7y, Bs"w, 0)*B(t,, B5®v, 0)7*|
= || A(,e%, A5®e~"w)te= " A", Ay e~ "0)"||
=G
and
[|B(7y, By"w, 0)*B(t; Bs®v, 0)~*—1I||
<I||A(e?, A7 "w)" A(T,e®, Ay®e "v) " —I||
S Co{l e —7e | "+l w—e~* 0|7}
éC‘{''7'1—7'21(’."}—”w"'v”ﬂ} w, ‘UENG y T 726[01 TI) .
Thus (R-6) is verified.
Finally, from (0.6) we get
”g(Tl’ B(_)-wz‘)) 0)_g(72’ Ba-ﬁv’ 0)“
= || f(7,e, A7 e " "0w)— e f(T,e, A7 "e™""0)||
§C4{ITI-TZIG+”70_’W”"} w, vENG) Ty TZG[Oy Tl)y
which verifies (R-7).
Hence as we get (2.21), we can show that there exists a unique solution
o(T, €®) of (3.9) defined for &[0, S,), |0| <, which satifies
[|A%30(y, €9)—Ado(T,, e0)||SL| 71—, ¢ for 7, 7,€[0, .5)
and
[|A%v(T, ) —(ASuy+ta)|=M|t|(1—€)  for 7€]0, ).
Therefore we obtain (3.8).
Since (3.7) implies
Wy o(0) = Aow;(0) = Adu,

we get Wy ,EE(S)).
We define a transformation T: #—® for # € E(S;). Then T maps E(S))
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into itself.

Denote by F(S) the set of the restrictions v(¢) of all functions () in E(S)
to [0,S). And we define a transformation T, in the way (Ty0)(t)=(79)(z)
for t€[0, S)). Then T, maps F,(S,) into itself.

Therefore we can use the argument in §2 with Fy(S)) in stead of F(S,).
And we can show that w, is a unique solution of

{ dw,|dt+A(t, A7 *v(t))w, = f(t, A7*0(2))
w,(0) = u,

where v € F(S,), w,=A5°Tv and T is the map which is defined in §2.

Since the functions #(¢) of E(S)) are uniformly bounded. F(S,) is a
closed convex subset of the Banach space Y=C([0, S,); X).

On the other hand from the definitions of T,, T and (3.7) it follows that
A7°Tyw=A5"Tv by uniqueness. It follows from Theorem 2 that there is a
fixed point v& F(S)) such that Tv=v. Therefore

(T2)(5) = (Tw)(t) = (To)(t) = o(t) = B(t)  for 1[0, S)).

Noting 9 and 7% are analytic from 3(¢; S)\ {O}to X, we have To=10.
This finishes the proof of Theorem 1 for 7=, and u=A45"D.
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