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Introduction. Let G be the cyclic group of order 2.
We denote by z%'* the equivariant stable cohomotopy theory [2, 3] and by
KO¥ the K-theory of real G-vector bundles on G-spaces. For a finite pointed

G-complex we then have an equivariant J;-map J: EéEI(X) — 7$%(X) [14],
which becomes a homomorphism if X is a suspension in the usual sense.

Let R?? be the euclidean space R?*? with non trivial G-action on the first p
coordinates and %?*? be the one point compactification of R?¢, with oo as base
point. We have the canonical isomorphism 7%°(S*%)~nx; ,, the (p, ¢)-th equ-
ivariant stable homotopy group of Landweber [9, 3] (which is 7,,,, of Bredon
[5]), and therefore we get an induced map

KOG'(57%) > ny*(SP)~m,,

which we also denote by J;. P. Loffler [10] showed that if I?O/c; (=*9) is a torsion
group then J; is a split injection. In this paper we shall study the image of J,

when I/C\O’EI(ZI’"’) is torsion free. And then we shall give a supplement to [11] on
Im Jz. The J; is also studied by M.C. Crabb [6].

We denote by Z/n a cyclic group of order #n, by R-x the free module over
aring R generated by x. If p=7 mod 8 and ¢=j mod 8, then we write (p, g)=
(7,7) mod 8.

The author would like to express his gratitude to Professor S. Araki for his
kindly advice.

1. The J-homomorphism Jg

In this section we shall give the relations between various homomorphisms
and collect some basic tools. Let X be a finite pointed G-complex.
Let KR denote the K-functor of [4]. By regarding a Real vector bundle

on X as a real G-vector bundle on X we get a homomorphism o: ﬁ—l( X)—
k\éal(X). We define a map J: KR™(X) — z%°(X) by

(L.1) Je=Jco
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which is the same as in [11].
Let p, ¥, X and & be the homomorphisms defined in [2], §§1-5 and J, be
the usual real J-map. From the definitions of these maps it follows that

(12) ‘P’]Gz.]o‘:b's xJG=JGX’ 8.]0:]68 and PJG=JGP

when each map is valid.

Let RO(G) denote the real representation ring of G. If we put 1=R"! and
H=R"° then RO(G)=Z-1Z-H. Define a homomorphism &: RO(G)—Z by
the assignment s-+¢H s and define a homomorphism ¢: KOz'(X)— KO™(X°)
to be the composite of the homomorphisms

i*

KO%(X)——» KO3'(X%)~KO (X)®RO(G)
1Q®¢e

=5 KO Y(X9)®Z = KOY(X°)

where 7 denotes the inclusion of the fixed point set X¢ of X and the isomorphism
is the same as in Remark of [13], p. 133. Then we also have

(1.3) bJe = Jop

where ¢ on the left hand side denotes the homomorphism as in [2], §4.

Let #: Z*'—3"! be the G-map defined in [3], §8 such that Y»(%)=7x: S$?°—S?
is the Hopf map. We see that # and % yield natural homomorphisms of our
cohomology theories. Denote these homomorphisms by the same letters, i.e.,

#: KOG (S 5 X) — KOGA(32* 5 X), #: 2%(SH g X) — 2532 5 X)),
n: KOS AX) — KO S'AX), 7: 73S AX) —nd(SnX).
It is clear that
(1.4) 1) Xt = 1+4p, ii) Yh =9y and iit) §J; = Jeh.
Note that the first formula follows from [3], (8.1).

Let S‘ﬁz‘(X) be the group of stable fibre homotopy equivalence classes
of spherical G-fibrations on =*'X ([7], §7). As in the non equivariant case J; can

be factorized as the composition of maps I’C\éal(X )— .§;/;51(X )—>7$%X). By[7],
Theorem 0.4 we therefore have

Theorem 1.5 ([7], Theo. 0.4). If X is a suspension then, for any x< KOg'(X)
there exists e>0 such that 3° J ;({y*—1)x=0.

Finally we recall the following theorems.

Theorem 1.6 ([1, 12]).



EqQuivaARIANT J-HOMOMORPHISM FOR INVOLUTIONS 111

Im {J,: KOS — w1} ~Z|m(2p)
where m(t) denotes the numerical function as in [1, II].

Theorem 1.7 ([5], p. 272).
Vo w1~ @@ L] forp even

and
¢: ”f.q[%] . ﬂf[%} for p odd

are isomorphisms.

2. The equivariant K-theory of spheres

According to [10] 12551(2"") is an abelian 2-group or a free abelian group
(with a single generator as a module over RO(G)). We refer the reader to Table

in [10] for these groups. We extract only the cases when 1?651(21’»4) is free.

(2.1) a) If(p, 9)=(2, 1), (6, 1), (2, 5) or (6, 5) mod 8 then I’{\O’EI(EP'q)zZ,

b) If (p, 9)=(0, 3), (4, 3), (0, 7) or (4, 7) mod 8 then Eéal(zp'q)zRO(G)
(cf. [9]), ~

c) If(p, 9)=(7, 3) or (¢, 7) mod 8 for =1, 2, 3, 5, 6 or 7 then KOg'(Z**)
~Z.

In this section we provide preliminary lemmas. By [9], Lemma 4.1 and [13],
12551(2”'4/20’4)RsKO‘q"z(Pf’"l), where P" is the real projective n-space. This
isomorphism and the exact sequence of the pair (2?4, 3%9) induce the exact se-

quence:
%

22) - KO-%(P*) — KOg'(3/%) —> KOG\ (5%) — KO-1"(Pr1) -
where 7 is the inclusion Z*C 3?1,

Lemma 2.3. Let t be a generator of 12\0/51(21:,«1)’ p=1. Then
i) p(t)=—t and Ht=t in case of (2.1), a),
ii) p(t)=—Hzt in case of (2.1), b),
iii) p(t)=t and Ht=—t in case of (2.1), c).
Proof. i) Using [2], (5.1) of KO¥ we see that +Jr: I’{\OIEI(Z""’)%I’{\O/"(SW”)
is monic. From this and the equalities Y p=—+ ([2], §3) and JrH=+)r the claim

follows immediately.
i) From the equality p?=1 it follows that p(¢)=-t¢ or +-Ht. Since (¢)

is a generator of I,{\O"I(S“"), the relation rp=—+) implies that p(tf)=—t¢ or
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—Ht. Using [8], by (2.2) we get i*(t)=2°(1—H)t, for some s>0 up to sign,

where #, denotes a generator of I’{\éal(Z""’). This and the relation i*p=1* (cf. [2])
show that p(f)=—Hzt.

iii) Analogous to ii). To prove the second we have to use that /* is a
homomorphism of RO(G)-modules. q.e.d.

Lemma 2.4. i) In case of (2.1), a), if (p, 9)=(2, 1) or (6, 5) mod 8 then
¥: KOG\ (5) ~KOY(S**9), and if (p, §)=(2, 5) or (6, 1) mod 8 then v carries a
generator of 1265’(2"“) to twice a generator of Eé"‘(S"*"). And =0 on
M)

i) In case of (2.1), b), W(t) and $(t) generate KOY(S**%) and KO(S?)
1
)
iii) In case of (2.1), ¢), y=0 on 1?651(2"4) [—;«] and ¢(t) generates I?é“(S")

[%] , where t denotes a generator of I’C\O’EI(E‘> ).

Proof. i) Making use of [2], (5.1) of KO¥ we get Im 1[r=I?6“‘(S’+‘1) or

2[?6‘1(81’*") according as p+¢=3 or 7 mod 8. The second is immediate.
ii) The claim for +Jr is obvious by the definition of . As in the proof of
Lemma 2.3, ii) we obtain ¢¥(¢#)=2°(1—H)t,, with the above notation, when p>0.

So ¢(t) is 2° times of a generator of I?é"(S") and hence the claim for p>0
follows immediately. Clear when p=0.

iii) Since I?é“l(Sf’*") is a 2-group, the claim for v is obvious. For ¢,
same as in ii). q.e.d.

Lemma 2.5. For X: KOG (S*)— KOG (¢~19), p=1, =0, and #: KO
(Zr19)— KOG\ (29, p=2, ¢=1, we have

) If (b, 9=(2, 3), (3, 3), (6, 7) or (7, 7) mod 8 then X: KOG'(S**)~KO3"
(Z#719), and % carries a generator of KOg'(Z#77) to twice a generator of %al(zﬂ'q),

i) If (p, 9=(2,7), (3, 7), (6, 3) or (7, 3) mod 8 then X carries a generator
of KOG'(Z*%) to twice a generator of kT)E‘(E""q), and 9: @EI(EP‘I'q)NEéE‘
(39),

i) If (p, 9)=(1, 3), (5, 3), (1, 7) or (5, 7) mod 8 then X carries a generator
of KOg'(Z*9) to (1+p) or (1—H) times a generator of I%/EI(E"I’q) according as
p>1or p=1, and 9 is epic,

iv) If (p, 9=(0, 3), (4, 3), (0, 7) or (4, 7) mod 8 then X is epic, and % carries
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a generator of I’f\({)al(E"‘l"’) to (1+p) times a generator of IZEE‘(E"'“).

Proof. For the proof we use Lemma 2.3 freely. The claims for X follow
immediately from [2], (5.1) of KO¥. Hence i)-iii) for % follow easily from the
results for X and (1.4), i). We now prove iv) for %. Let ¢ be a generator of

%E‘(E""’) and write X(¢£)=¢'. Then ¢’ becomes a generator of IEBE‘(E"“) by
iv) for X. Put 9(¢t')=(a+bH)t, then, by (1.4), i) we see that a—b=2. By (1.4),

ii) Yi(t")=xyr(t")=0 because IZ\O/“(S“""):O. This implies that a45=0 and
therefore a=—b=1. Hence #(¢')=(1—H)t=(1+p)t. q.e.d.
Finally we consider
o1 KR™(3#%) - KOG'(3"9)
when ﬁ'I(EP'“)wZ.

Lemma 2.6. i) If (p,q)=(2,1) or (6,5) mod 8 then o: ﬁ“(zﬁ N~
KOGI(E” 9, and if (p, 9)=(2,5) or (6 1) mod 8 then o carries a generator of
KR- Y(=9) to twice a generator of KO3 Y=,

i) If (p, 9=(0, 3), (4, 3), (0, 7) or (4, 7) mod 8 then o carries a generator of
ﬁ"‘(E"") to (1—p) or (1+H) times a generator of KOG (Z"?) according as p>0
or p=0.

Proof. By r and ¢ we denote the realification homomorphism and the com-
plexification homomorphism. Then it is clear that Jro=rc. Let #, ¢ and ¢, be

generators of ﬁ‘l(Ep'q), E(SE‘(E”"’) and I,C\O/'I(S””) respectively. From the
relations between ¢, » and the coefficients of K-theories it follows that
t, for (p, 9)=(2, 1), (6, 5) mod 8
re(f) = {4t, for (p, 9)=(2, 5), (6, 1) mod 8
2t, otherwise
up to sign.
i) Immediate from this and Lemma 2.4, 1).
il) Since ﬁ"l(z" ) ~KO™(S% the assertion for p=0 is obvious. So we
consider the case p>0. Put o(f)= (a+bH)t Since yr(t)=t, (up to sign) and

re(f)=2t, we get a+-b=-+2. p acts on KR 1(Z#'%) as —1 because ¢ is monic.
Using this and Lemma 2.3, ii), from the equality op=po it follows that a=4 and
hence a=b=-1. This and Lemma 2.3, ii) complete the proof. q.e.d.

3. ImJsand Im J;
Let
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I, ,=1Im{J: I’{651(2M) -z, forg=1.
Denote by ¢ a generator of 1?651(2%4), so that I?é?(zﬂ«):Z -t or RO(G)-t in
our cases. Put
a=J?).
Let m(s) be as in Theorem 1.6 and v,(s), p prime, be the power in 5. (We write
p(*)=px.)

Theorem 3.1. Suppose that (p, 9)=(2, 1), (6, 1), (2, 5) or (6,5) mod 8.
Then

1,,= Zm (1_’+_gﬂ)-a .

Theorem 3.2. Suppose that (p, 9)=(3, 3) or (i, 7) mod 8 for i=1, 2, 3, 5,
6or7. Then

1,,=Zm (Ezd)a .

Theorem 3.3. i) Suppose that g=3 or 7 mod 8. Then
- g+1), g+1),
IM_Z/"’( 2 ) a®zjm ( 2 ) g
where 3= J;(Ht),
i) Suppose that €=0 or 1, v)(2q+8) Zvy(p+-q+-€) and
(m(41’+49+4‘5) , d) -1

Qb +ate)ta ]

where

J— (m(41)+4q+4»e) m(4q+2¢)

Quy(ptateyts 7 ov2gte)+s )

Then, for 8p+4£>0

m(4-p+4‘q+4-8)m(4-q+28) . a@Z/2v2(2q+e)+2d .y

Iap+4e,sq+4e—1 = Z/ 2v,2a+e) 42y

where
__ (m(Ap+4q-+4€) , m(4q+2€) m(4p-+4q+4¢
y= (ML) U E2D) (14 pa— LA o
Corollary 3.4.

i) 14,,,4,,-1=Z/2m(41))-aea2/@-7
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where
— (m(4p)  m(2p) __2m(4p)
= (m—(zf)Jerz(ms) (I+-p)a m(2p) &
il)  Suppose that vy(p)=vy2p—1). Then
) Z/m(“'P)m("T—Z).a@Z/4..3v3<p)+1.ry

,8p-5 — 4. 3v3(p)+1

where

y= (D M=) D),

8-3%w1 8 4350 7

ReEMARK. We can take 7 to be the following simpler elements respectively
in Corollary 3.4:

i m(4p) —
) 2D (14—t

4

it) (1+p)a—%a for vy(2p—1)—2=vy(p)=vy(2p—1). (i) was sug-

gested by the computation of 77 ; by Araki-Iriye [3] and also this suggested (5.4)
of §5.)

Let o(x) denote the order of an element x of a finite group. Then we obtain
Proposition 3.5. Let aEn%, 4 g445-1, Sp+4E>0, where §,6=00r 1. Then
i) o((1—p)a) = m(4p+4q+26+23),

o(1+p)a) = m(4q+23),

i) o(ar) = m(41>+4q+252;;28)m(4q+23)

where

d— m(4p+4q+2&+28) m(4q—f—28))

2\42(2p+2q+€+8)+3 4 2v2(24+8)+3

and € is the following integer:
v20+6)+12  if €= 8 and v(2q+8) < vip+q+e),
vy(29+€)+2 or vy(2q+€)+3
if €=23 and vy(2q+€) = v(p+q+&)+1,
v(p+q+E)+3 if €=208 and vy(29+¢€) = vy(p+q+E)+2,
2 or 3 if €=0 and =1,
2 if €=1and §=0.

For a finite abelian group 4, we denote by 4, the p-component of 4 and by
¥€ A, the p-component of xE 4.
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Proposition 3.6. i) Suppose that v,(2q+E) vy (p+q+E), E=00r 1. Then
(Lsprae, g ra—1)s = 227205 q P Z 2@ +042.5
for 8p+4€>0 where
¥ = (14 p)a—2"p+arO)=Y@rt0+2y |
i) Suppose that vy(2q+€) Zvy(p+q+€)+2, E=00r 1. Then
Tsprae,sprae-1) = Z[272CT I QP Z[2" 0425

for 8p+4&>0 where

34p+ze_ 1
zv NV, (2p+E)+3

Japtagtee__ |

(14-p)a—

QVy(2p+e)+2 ’
1) (Tgprg sgm1)o=2[220* 5 ADZ[4-7
for p=0 where
34,,

dptigte
—L14p)a —§~4—1a.

Let
I,,=1Im{Jz: KR(3M) >} forg=1.
Suppose that ﬁ"l(zp"’)zZ, generated by 7, and set
a=Jx().
Then we have

Theorem 3.7.
jZ/"_’(z_s)-a if (p, )=(2,5) or (6, 1) mod 8
I — 2

. (Z/m(ZS)'d’ if (P, 9)=(2,1),(6,5), (0, 3), (4, 3)
(0,7) or (4,7) mod 8

where s:—’izq—_‘——l .

4. Proofs of Theos. 3.1, 3.2 and 3.3, i)

Proof of Theorem 3.1. Put mzm(ﬁgj———l) for brevity.

We divide the proof into two cases: (i) (p, g)=(2, 1) or (6, 5) mod 8 and (ii)
(#» 9=(2, 5) or (6, 1) mod 8.
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Let £, be a generator of Eé‘l(S’+q). By Lemma 2.4, i), (1.2) and (1.3) we
have

Jo(%) for (1)
2],(t,)  for (ii)

up to sign and ¢=0 on nf.q[—%] in any case. Therefore, by Theorems 1.6 and

e =

1.7 we see that the odd components of o(a) are equal to those of m, and also 7| o(«x)
for (i) and %Io(a) for (ii). Since Y of KO¥ is monic, ¥(¢)=3®+**D/%,  From

Theorem 1.5 and the equality v,(3¢**V2—_1)=y,(m) ([1, II], Lemma (2.12)) it
follows that v,(m)=v,(o(a)). Hence o(a)=m for (i).

For (ii) itsuffices to prove that %a#O. Observe [2], (5.1) of KO§. Then,
using (1.2) we have 8(J,(¢,))=a (up to sign). So if —”Zz(x:(), then, by [2], (10.5)

there exists an element B of 7;_; ¢4 such that 1#(,8):1’15 Jo(t;). Using the equ-

alities E66(28”+"“'8”+"+1):k\O’G(EB”“”“”““)=O and the formula for y* on
1’566(28”'8”) of [9] we see that (B gives rise to a contradiction such that
e}(%l— ],,(to))=0 [1, IV]. Therefore also we have o(a)=m for (ii) Thus we
obtain Im J;=Z/m-a because 12551(2”'4)22-1.

Proof of Theorem 3.2. Let t& KOz (St#He+iset-1) 0<g §<1 and 1<i
<3. By Lemma 2.5 we have

Xi(t) = (1-+p)ty or (1—H)ty
according as 8p+4€>0 or 8p+4&=0 for (&, 6)=(0, 1) or (1, 0) and
#74(8) = (1+p)ta
for (&, 8)=(0,0) or (1,1), where ¢,, s=0, 1, is a generator of 12\0/51(28"“"*4"8"“5‘1).
Therefore, using (1.2) and (1.4), iii), we get
™ m(4q+28)| o(ax)

by Theorem 3.3, i) and Proposition 3.5, i), which will be proved in the following.

The proof of the inverse of (*) is analogous to that of Theorem 3.1 for (i).
Then we have need of the equality y*(#)=3%"%¢, which is obtained by the in-
jectivity of X’ or #*~¢ and the equality *((1—H)z,)=3%*2(1--H)t,, 0=s=<1 [9].

Proof of Theorem 3.3,1). Let ¢, be a generator of I?é"‘(S"). Then, yr(a)
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=(B)=],(t), p(at)=],(t,) (up to sign) and ¢(B)=0 clearly. We get o(ax)=0(/5)
=m(1-;—1> as in the above, so that it follows that o and B have no relation.

5. Proofs of Theos. 3.3, ii), 3.7, Cor. 3.4, Props. 3.5 and 3.6

As we saw in §4, by Theorems 1.6, 1.7, Lemma 2.4, ii), (1.2) and (1.3) we
can determine the odd components of the order of elements of Im J;. So we
observe only the 2-component. Let o,( ) denote the 2-component of o ).
We use freely the equalities

vy(3%—1) = vy(m(2s)) = wy(s)+3
([1, I1], p. 139 and Lemma (2.12)) in the following.
Let ¢ and & be as in §3. By Lemma 2.3, ii) and (1.2)
pa = —J(HY), teKOz (s,
We begin by considering o((1—p)a). Write t,=nJr(¢). Then ¢, is a generator

of I?é"(SS”B““H“"). Put §(t)=(a+bH)t. By the definition of & we get
8 (t,)=2t,, hence a+b=2. Using [9], Lemma 3.3 and Proposition 3.5, from the
equality Symfr®=1)?0+)r it follows that a=b. Therefore a=b=1, so that 5(f))=
(1+H)t. This and (1.2) show 8(J,(t,))=(1—p)a. Since o(J,(t,))=m(4p-+4q
+26+28) by Theorem 1.6, we therefore have

o((1—p)a) | m(4p+4q-+2€-+29) .

Suppose that o((l—p)a)zm<4p+4q; 26428)  pen, by [2], (10.5) we

have an element BEmg,4e-1 54+45 Such that \!’_(B):m(%+4q2—}—28+25) Jo(ts). As
m(4p+4q2«|—28+28)10(t0))

in the proof of Theorem 3.1, @ yields a contradiction: ek(-

=0. This proves
(5.1) o(1—p)a) = m(4p-+4q-+26+23) .
By Theorem 1.5, [9], Lemma 3.3 and Proposition 3.5, we obtain

34q +25 1
2

JapHagt2e+as

= (e—Da=

(5.2)

(p+Da .

From (5.1) and (5.2) it follows that
(5.3) o((1+p)a) = m(4q+-23) .
Using (5.3), the equality (5.2) can be transformed into the following
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K Car |

(5 .4_) (34p+4q+2!+28_ l)a_ 2

(I+pa=0.

Proof of Proposition 3.5. i) Immediate from (5.1) and (5.3).
ii) 'The proof breaks up into the 4 cases.
Case 1) &=20 and v,(2¢+&)Svy(p+q+€). We have

*) 2L p)t —
by (5.3). By (5.1), 2%@*a+9+4(]1—p)¥=0. Hence we get
2ty — (),
If 2V(0+a+® )ty —(, then
DVibFaR I QVy(ptate)+ay
— ety by (%),

This shows 2%*2*9+3(] _p)¥=0, which contradicts to (5.1). Therefore we
have

(5'5) 02(a) — zvz(p+q+z)+5 .

By (5.4) and (5.5) we have o,((1+ p)ar)=2"®*"%3, Comparing this with
(5.3) we get

(5.6) vy(2p+-E) = vy(29+6) .

Case 2) &=206 and v,(29+8&)=v,(p+q+&)+1. Asin Case 1) we can prove
vy(0)(c)) S vy(2g+E)+4. To show the inverse we have to use the fact that (Im J,),
=Z[2"9%3. () (Lem. 2.4, ii) and Theo. 1.6). Hence we have

(57) oz(a) — 2v2(2q+z)+3 or 21'2(Zq+€)+4 .

Case 3) &=0 and v,(2¢+8&)=v,(p+q+E)+2. The same argument as in
Case 1) shows

(5.8) 0y(0) = 2V2RatOIH
and
(5.9 v)(2p+8) = vy(p+q+&)+1.

Case 4) (&, 8)=(0, 1) or (1, 0). As in Cases 1) and 2) we can prove
(5.10) o)(a) = 2% or 2* for (& 8)=(0,1) and 2%@*  for (&, 8§)=(1, 0).
(5.5), (5.7), (5.8) and (5.10) complete the proof of ii).

Proof of Theorem 3.3, ii). For the simplicity we put
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m(4p+4q-+4€)=2"011*qd and m(4q+2€) = 222+ +3pq

where d is as in §3. Then a, b and d are odd and (4, b)=1.
Since v,(2p+&)=v,(29+ &) by (5.6), we have

(5.11) 2V GTOHY (] | p) = 2V ety

by (5.4), (5.3) and (5.5).
Define

= (202 V@G L b (14 p)or— 2¥(PHe V@O 2y

We observe o(y). Since vy(p+q+ &) = vy(2p + &) =wy(29+€), 0,((1+p)ax) =

2220+9)43 and 0,( ) =2"2P*1+*S we have
2n2r+2y — ()
by (5.11). Note that
() = — 22U E@ 20 ) () = 2bdp(ax)

and
o(P(a)) = 2"+ g the odd component of o(p(cr)) = bd .
Since (2224 Hg) = _ 2V (+a+H3 () 0,
o(§) = 2va@++o+
and so
(5.12) o(y) = 2%tz
From the assumption such that (a, d)=1 it follows that
*) (22 (pHat V@O pd, 2VPPTONp]) = 1 .
Using (5.3), we then have
(1p)ar = x(y -2+t + 2 )

for some integer x. This shows that « and 7 generate Im J,.

Next we prove that there is no relation between « and . Suppose that xa
=yv. Then

(o04-2V2@Har )=V @+ 200N oy — g(2VpBHaFO=V 04 g L b)) (14-p)ax

and

(5204500420 g 2) — 0.
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Hence
2v2(p+q+e)+4ad|x+2v2(p+q+e)—v2(2y+e)+2ay .

Since o(ar)=2"2#*+)+3h ],

2by(2rr+arO=vCor+1g L bd) (14-p)ar =0 .
So

220 +3hg | 2fy(2VHFOI=VE g b
since o((1+p)a)=2"2®*"7% pd. From this and (*), it follows that

2%+ | 4

Therefore xa=yv=0 by (5.12).

Proof of Corollary 3.4. i) Let p=gq and replace 2p+& by p in Theorem
3.3,ii). If »,(m(2p))=1 for odd prime g then v (m(2p))=v (m(4p)) ([1, II], p.

139). Hence, d= gvl(iﬁ-)a and so the assumption holds. The remaining follows
2

easily.
ii) Take p=0 and &=1, and replace ¢ by p—1 in Theorem 3.3, ii). By
the definition of m(t) [1, II] we have

vy(m(4p—2)) = 14-v5(2p—1), vs(m(4p)) = 1+vs(p)
and if v (m(4p—2))=1 for a prime ¢=5, then v (m(4p))=0. Therefore,

d — 31Hmin(va(2),%3(2p-1)) — 31+Vg(0)

using the condition. This shows that the assumption holds. The rest is
immediate.

Proof of Proposition 3.6. Similar to the proof of Theorem 3.3, ii). We
make only a remark. In order to determine o,(v) we have to use (5.4) and
0,(Y(a)). From o0,(7), 0)(cx) and o0,((1+p)e) it follows that there is no relation
between « and 7.

Proof of Theorem 3.7. This theorem follows immediately from Lemma
2.6, Theorem 3.1 and Proposition 3.5, i).

ADDENDUM TO THE REMARK OF §3. This is proved by the analogous argument
to Theorem 3.3, ii) and Proposition 3.6. We note that in order to determine
o(7) in ii) we have need of the inequality of [1, IT], Lemma (2.12): »,(3*—1)=
v,(m(2s)), ¢ prime = 5.
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