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1. Introduction

Let G be a compact topological group. We say that X is a trivial G-space
if X is a topological space with the G-action gx=x for all g€G and all x€X.
Let V; run over the inequivalent irreducible complex G-representations. For
any complex G-representation V, there is a canonical isomorphism

(%) @ V: ® Home, (V, V)=V

Using this isomorphism, Atiyah and Segal had a decomposition of a complex
G-vector bundle over a compact trivial G-space X [4]. As a consequence
they showed that the equivariant complex K-group Ky(X) is isomorphic to
the tensor product R(G)®@K(X) of the complex representation ring R(G) and
the complex K-group K(X).

In the present paper, we first make real and symplectic versions of these
for our later use, although they seem familiar to us all (Propositions 3.1 and
4.1).

Similar decompositions have been already obtained for some special cases;
by Conner-Floyd [7] for G a cyclic group of odd prime order, by Atiyah-Singer
[5] for G a monogenic group, and by Uchida [25] for semi-free S’-and S*-actions.

Moreover we show that the decompositions of real and symplectic G-
vector bundles are unique up to isomorphism in respective category (Proposi-
tion 4.2).

As an application, we express the equivariant real K-group KO;(X) and
the equivariant quaternionic K-group KSps(X) in terms of irreducible G-
representations and their types, the real K-group KO(X), the complex K-
group K(X) and the quaternionic K-group KSp(X) (Theorems 5.1 and 5.2)
(Compare [21] for KOy(X)). Consequently we know that the real version of
the Atiyah-Segal theorem above does not hold in a similar form in general.
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Namely KO(X) is not isomorphic to RO(G)QKO(X) in general (Remark
5.7). If all the irreducible representations are of the real type in the sense of
Adams [2], then we have an isomorphism KO;(X)=RO(G)®@KO(X) of rings
and an isomorphism KSpy(X)=RO(G)QRKSp(X) of additive groups (Coro-
llary 5.3).

The normal bundle of the fixed point set of a smooth (symplectic) G-
manifold is in the situation considered and the bordism group of real (or sym-
plectic) G-vector bundles can be expressed uniquely in terms of the ordinary
bordism groups of classifying spaces (Proposition 6.1 and Remark 6.2).

In order to clarify the substance of the discourse, we next deal with a special
case, namely, semi-free G-actions. If G acts semi-freely, then G has to be a
group which has a fixed point free representation except for two special cases,
the trivial G-actions and free G-actions. These groups and their fixed point
free representations are classified in [26].

Fortunately they have a desirable property for our purpose. Namely if
the order of G is greater than two, then all the fixed point free representations
of G come from complex or quaternionic representations and have the same
degree (Proposition 6.5). Consequently, we have an exact sequence involving
bordism groups of semi-free G-manifolds (Proposition 6.6).

The J;-image of the normal bundle of the fixed point set of a smooth G-
manifold M is an invariant of the G-homotopy type of M [13], [15] and we study
Je(X) finally. This is in fact my motivation of the present paper.

Once we conjecture the present results and become aware of the formu-
lations, the proofs are somewhat easy. So we only outline the proofs mostly.

In a forthcoming paper, we shall determine the centralizer of an arbitrary
closed subgroup of the orthogonal group O(z) along our line.

The real and symplectic versions of (*) were originally proven by case-
by-case discussion. The unified proof given in this paper was shown to me
by J.F. Adams. -

I would like to thank Professor J.F. Adams for his kind advice and for
permitting me to employ his argument.

2. Review of representation theory

In this paper, we make use of the book [2] of Adams freely.

First we recall some of it. Let G be a compact topological group and 4
be one of the classical fields R (the real numbers), C (the complex numbers) or
O (the quaternions). Then a AG-space is a finite-dimensional vector space
V over A provided with a continuous homomorphism

p: G—=AutV.

Such a V is also called a representation of G over A or a G-space over A.
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Let V and W be AG-spaces. A G-map is a function f: V—W which
commutes with the action of G, that is

flgv) = gf(v) for geG, vel.

A AG-map is a G-map which is A-linear. The set of such AG-maps is written
Hom,; (V, W). It is a vector space over R if A=R or Q, over C if A=C.
A AG-isomorphism is a AG-map which has an inverse. Two AG-spaces

V and W are said to be equivalent (denoted by V=W) if they are isomorphic
V=w).

DerintTiON 2.1, (i) If V' is a G-space over R, define cV=CQV, regarded
as a G-space over C. *

(i1) Similarly, if V" is a G-space over C, define qV—Q® V, and regard it
in the obvious way as a G-space and a left module over Q.

(iii) If V is a G-space over Q, let ¢’V have the same underlying set as V'
and the same operations from G, but regard it as a vector space over C.

(iv) Similarly, if V is a G-space over C, let rI/ have the same underlying
set as I and the same operations from G, but regard it as a vector space over R.

(v) Let V be a G-space over C. We define ¢tV to have the same underly-
ing set as V and the same operations from G, but we make C act in a new way:
z acts on ¢tV as Z used to act on V.

DEerFINITION 2.2. We say that a CG-space V is real (resp. symplectic or
quaternionic) when there exists an RG-space V' (resp. QG-space V?) such
that V=cV" (resp. V=c'V").

ReEMARK 2.3. V" and V? in Definition 2.2 are unique up to equivalence
by the following lemma and we use these notations hereafter.

‘ Lemma 24. rc=2, cr=1+1, q¢'=2, c'q=1+1, tc=c, rt=r, tc'=c’, qgt=
g, '*=1. These equations are to be interpreted as saying that rcV =V @V for
each RG-space V, crV =V @tV for each CG-space V, etc.

DerINITION 2.5. Given G-spaces V' and W over the same field 4, we
can form Hom, (V, W), the set of A-linear maps from V to W. It is a vector
space over R if A=R or Q, over C if A=C. We can make G' act on it by

(ef) (v) = 8(flg7'v)) for g€G, fEHom (V, W).

The subspace of elements in Hom, (V, W) which are invariant under G is pre-
cisely Hom,, (V, W). We set

End ¢ (V) = Homy, (V, V).

We now recall the following theorem of Adams [2].
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Theorem 2.6. Suppose given a compact group G. Then it is possible
to choose representations V; over R, V; over C and Vg, over Q to satisfy the follow-
ing conditions.

(i) The inequivalent irreducible represemtations over R are precisely the
Vieis7Vej and re' V.

(ii) The inequivalent irreducible representations over C are precisely the
Vi, Vijy tVej and ¢'Vy,.

(iii) The inequivalent irreducible representations over Q are precisely the
qcVri, qV¢j and V.

DEFINITION 2.7. When an irreducible RG-space V is equivalent to Vi,
rV¢; or r¢'Vg, we call V an RG-space of R-type, C-type or Q-type respectively.
When an irreducible QG-space V is equivalent to qcVg;, qV¢; or Vg, we call
V a OG-space of R-type, C-type or Q-type respectively.

DeriniTION 2.8, Let V be a CG-space. A structure map on V is a G-map
Jj: V=V such that

(i) jis conjugate-linear, that is,

j(zv) = Zj(v) (z€C), and
(i) j*=£1.

3. AG-structure decompsition of RG- and QG-spaces

Let {V.} be a complete set of inequivalent irreducible CG-spaces. Then
for a CG-space V, the evaluation map

® V; @ Homeo Vs, V) > ¥

is a CG-isomorphism (e.g. Lemma 3.25 of [2]).
We wish to find the analogue of this result for real and symplectic repre-
sentations, using structure map j. In the following, we use Lemma 2.4 freely.
For each i, let 7 be the index such that V7 is the complex conjugate of V.
Choose a conjugate-linear isomorphism

Jir Vi— Vi
such that
j,’j;—:e,': j:l: V,‘*’ V,'.

If V; is real, this is certainly possible with &=+1; if V; is symplectic, it is
equally possible with &=—1; and if V; is not self-conjugate, we can choose
j; first and construct j7 from it, with either sign of &;. (Of course we get &i=¢;.)

Now suppose that ¥ comes provided with a conjugate-linear structure map
J, such that ji=g,=41. Then we define a kind of structure map
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Ji: Homeg (Vi, V) — Homeg (Vi, V)

by sending A;€Homg; (V;, V) to jh;j7'. This map jh;ji* lies in Homg,
(V3, V); the structure map j/ is conjugate linear; and we have

j;—]: == 8,,8,' .

For all this, compare [2], p. 31.
We can now define the structure map

j,' ®j{: V,? Homcc (V,', V) - V; ? HOmCG (V;, V) .
By construction, the evaluation map e commutes with the structure maps:

e(7i®ji) =jee -
Therefore, we have an automatic answer to the question posed above: under
the isomorphism e, the given structure map j, on V' corresponds to the structure
map with components j;®jf. It remains only to make this description more
explicit.

Consider first the case i=27. In this case Homg(V;, V) gets a structure
map whose square is &,&;, so that it is real or symplectic according as &,; is }1
or —1. Thatis,

(1) if V;is real and V is real Homg (V5, V) is real,

(2) if V;is real and V is symplectic Hom¢s(V;, V) is symplectic,

(3) if V; is symplectic and V is real Hom¢s(V;, V) is symplectic,

(4) if V;is symplectic and V is symplectic Homgg(V;, V) is real.
(Compare [2] pp. 31-32.) The tensor product V; ?HomCG(V;, V) can then be

interpreted as a tensor product over R in three cases and Q in one case (Compare
[2] pp. 29-30). Explicitly V;® Homeg(V;, V) is isomorphic to the following
in respective case: g

(1) (Vi@ Homgs (V7, V7)),
(2) ' (ViQHomgs (Vi V7)),
(3) (V1@ Homygg (V4, 77)),
4 e @ Homgg (VE, V).

Consider secondly the case ¢ 47 In this case we have put a structure map
jon
[V,' ? HOmCG (V,', V)]@[V; ? HomCG (V;, V)]

and its square is &, If &§=-1, then the corresponding RG-module is the
+1 eigenspace of j (compare [2] p. 25), and clearly this is isomorphic to the
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RG-module underlying V;@Hom¢(V;, V) which is isomorphic to Vi@HomRG
c
(Vi, V7). If &,=—1, then the corresponding QG-module is clearly
0 ? [V; @ Home (V3, V)].

Thus we have shown the following

Proposition 3.1. For an RG-space (resp. QG-space) V, the evaluation
map

D Vi (% Homgg (Vii, V)
5} E? T[Vc;' @ Hompgg (ch, V)] I /4

e
@G? Vo ? Homgg (Vs V)
(resp.
D Vi §) Homgg (Vi V)
o &) GP q[Ve; ? Homg (Vej, V)] - V)

©D Var Q Homgg (Vaw, V)
is an RG-isomorphism (resp. QG-isomorphism).
4. AG-structure decomposition of real and symplectic G-vector

bundles

Once we have canonical isomorphisms p for vector spaces, we get a cor-
responding result for vector bundles, by following the arguments of Atiyah and
Bott [3], and Atiyah and Segal [4].

Proposition 4.1. Let & be a real G-vector bundle over a trivial G-space X.
Then Hompg (Vi £), HomRG(La, &), Homgs(Vos, &) inherit canonically real,
complex, symplectic vector bundle structures respeaizely and there is a canonical
isomorphism of real G-vector bundles:

G? @@ Homg, (Q’ £)
.| Ve @ Home (Ve 01 |
DD Vay @ Homg (Vap
Similarly for a symplectic G-vector bundle £, Homp, (Vi £), Homee (Ve €),

Homgg (Vs &) inherit canonically symplectic, complex, real vector bundle structures
respectively and there is a canonical isomorphism of symplectic G-vector boundles:
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G? Ve §) Homgg (Vii, £)
O alVe; ® Homee (Vey, )
@EP @ @ Homge (Q’ £)

=

— £,

Here V denotes the G-vector bundle X X V —X.
Moreover the decompositions in Proposition 4.1 are unique.

Proposition 4.2. Let &;, £} bereal, &;, £} complex and &,, E; symplectic vector
bundles over X with trivial G-action. Suppose that there is an isomorphism of real
G-vector bundles:

P Vn @ OVu
SOV @1 | _, | @D 1[Ve; Q]
OO Va @ & DO Vo @ &

Then we have
E,=El, E;=E  and E,=E;.
R ¢ P)

Let &;, £ be symplectic, &;, &} complex and E,, E} real vector bundles over X
with trivial G-action. Suppose that there is an isomorphism of symplectic vector
bundles:

O VuQE O VuQE!
SV L] | | | @@V @8]
OO Vor ® & OO Vor @ &

Then we have
E,=E&l, E; =E and &, =E}.
Q c R

In the real case, we can rewrite Propositions 4.1 and 4.2 in the following
form. Let {V;} be a complete set of inequivalent irreducible RG-spaces. Then
for a real G-vector bundle £ over X with trivial G-action, we have a unique
decomposition

E=@V. 0k

where 4;=Endz;(V;) and §; are 4;-vector bundles.

5. KO4X) and KSpg(X)
Let X be a compact space with trivial G-action. Let Vy,;, V; and Vg, be as
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in Theorem 2.6. Denote by KO(X);, K(X); and KSp(X);, the copies of
KO(X), K(X) and KSp(X) indexed by the set of irreducible RG-spaces {Vg},
the set of irreducible CG-spaces {V;} and the set of irreducible QG-spaces
{Vai} respectively. Then we have

Theorem 5.1. We have an isomorphism of additive groups:

®: @ KO(X): P K(X); ® KSpX); — KOo(X)

Proof. Let &;, %; be real G-vector bundles and &;, »; be complex G-
vector bundles and &,, n, be symplectic G-vector bundles. Denote by [£]
the equivalence class represented by £ in respective category. Then we define

® by
@ (D (E]-[7]) @D ([E]—[n]) P (E:d—[nd)
—[OVuQEOD V@ OP VoL
_[GP I_/_gi§ 7 GBG? Ve ? 7; OD rc'’Vas ? ] -
In the latter, @ means the Whitney sum of G-vector bundles. It is easy to
see that @ is a well-defined homomorphism. It follows from Proposition 4.1

that @ is surjective. The injectivity of @ follows from Proposition 4.2.
This completes the proof of Theorem 5.1.

Denote by KSp(X);, K(X); and KO(X),, the copies of KSp(X), K(X)
and KO(X) indexed by the set of irreducible RG-spaces {Vj;}, the set of
irreducible CG-spaces {V;} and the set of irreducible QG-spaces {Vq:} respec-
tively. Then we have

Theorem 5.2. We have an isomorphism of additive groups:
D: GP KSp(X); D K(X); oD KO(X), - KSps(X) .
Proof. Note that the index set of KSp(X) is {Vg} and the index set of

KO(X) is {Vqi}. Since the proof is quite similar to that of Theorem 5.1, we
omit it.

Corollary 5.3. Let G be a group, all of whose irreducible representations
are of R-type. Then we have an isomorphism of rings:

KO,(X) = RO(G)QKO(X)
and an isomorphism of additive groups:

KSpy(X) = RO(G)QKSH(X) .
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Proof. Isomorphisms of additive groups follow from Theorems 5.1 and
5.2. 'The ring isomorphism in the case of KO.(X) is verified in the manner of
the proof of K(X) [4].

As remarked in [17], every irreducible representation of the Weyl group of
a compact connected Lie group is of R-type. Hence we have

ExampLE 5.4. If G is the Weyl group of a compact connected Lie group,
then we have the isomorphisms in Corollary 5.3.

ExampLE 5.5. Let Z,» be the cyclic group of an odd prime power order
p". Denote by p:Zps—> U(l) be the representation defined by p(t) =
exp (2ztn/—1/p"). Then we have

{Vr} = R: the trivial representation,
{VCJ'} = {P’ Pz’ ) P(pﬂ—l)lz} ’
{Vai} = ¢: empty.

It follows from Theorems 5.1 and 5.2 that

(*—1)2
KO, ,(X) = KOX)®KX)®DKX),
(" —D)2

KSpz J(X) = KSp(X)DK(X)D - DK(X).

ExampLE 5.6. Let I, be the binary icosahedral group [26]. As is well-
known, I is isomorphic to SL(2,5). In view of [2] and [11], one verifies that

{Ve} = {pv, = 0},

{VC:'} =¢,

{Vai} = {pss =+, s} -
Hence we have

5 4

KO,(X) = KO(X)®--- ©KOX)SKSpX) @ DKSHX)
5 4

KSpy(X) = KSpX)® - DKSHX) DKOX) D DKO(X) .

REMARK 5.7. For p an odd prime integer, we have

i
KO, (S = Z®-®Z,

(p+1)/2
—te—
RO(Z)RKO(S*) = Z® D2,
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i S
K,,(S%) = R(Z,)®K(S) = ZdDZ,
P
KSp;(S°) = Z,ZD - DZ.

Hence they are quite different. In particular,
KO,,(S° 2 RO(Z,)QKO(S°) .

RemARK 5.8. A formula similar to that of Theorem 5.1 holds in the case
where G is a compact Lie group with an involution [27]. 'This was shown to
the author by the referee.

6. Bordism groups of GS-bundles and semi-free G-manifolds

Let S be a family of irreducible real representations of G. Let »—X be
a real G-vector bundle over a trivial G-space X. Each fiber 5, over x€X may
be regarded as a representation space. Then 7 is called a GS-bundle when
each irreducible representation which appears in 7, belongs to S for every
xeX.

Let M7 be closed oriented manifolds with trivial G-action and £,—~M" be
real GS-bundles over M? of fiber dimension k (=1, 2). The &; are bordant
if there is a real GS-bundle E—W™*! over a compact oriented manifold with
trivial G-action satisfying the following conditions:

(1) there is a diffeomorphism d9W"*'=M,U — M, preserving the orienta-
tion,

(ii) there are G-vector bundle isomorphisms E|M;=E; (i=1, 2).

We refer to this relation as the bordism relation. Then the bordism relation
is an equivalence relation on the class of GS-bundles. The resulting set B(Q,,, R¥)
(G, S) of equivalence classes is an abelian group with addition induced by the
disjoint union. We call B(Q,, R*) (G,S) the oriented bordism group of real
GS-bundles.

For a finite subset p(z) (i=1, 2, --+, 5) of .S, let n(p(¢)) be positive integers
indexed by p(7). For a Lie group H, we denote by BH the classifying space
of H.

Put

Ap(®) =R, C, Q
and

BA(p(0))(n(p(9))) = BO(n(p()), BU(n(p(2))), BSp(n(p(7)))

according as p(7) is of R-type, C-type, Q-type respectively. Denote by Q,,(X)
the oriented bordism group of X (see [7]). Then we have
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Proposition 6.1. There is an isomorphism:

@: DQW(BA(p(1)) (n(p(1))) X -+ X BA(p(s)) (n(p(5)))) = B(Qm, R*) (G, S)

where the direct sum is taken over all s, p(i)E S, n(p(z)) with
31 (dimg p(@)m(p(i)) = k-

Proof. An element of

DQ(BA(p(1)) (5(p(1))) X =++ X BA(p(5)) (n(p(s))))
is represented by
DEED, -, EE)
where E2%? are A(p(i))-vector bundles of fiber dimension 7(p(7)) over a closed
oriented manifold M;"* Then we set
D(D(EET, -, &) = 2 Bp() R EEHD.
i == APG)

The inverse map @7 is given by the unique decomposition of G-vector bundles
of Propositions 4.1 and 4.2.

Once we have correspondences @, @7, Proposition 6.1 is easily proven.

ReEMARK 6.2. For 4=71, Q, QY, Q% and for A=R, C, Q, the bordism

groups B(4,, 4) (G, S) are defined similarly and those versions of Proposition
6.1 hold.

As the set S, we take for examples: the set of all irreducible representations,
the set of non trivial irreducible representations, the set of fixed point free ir-
reducible representations (see below).

DeriniTION 6.3, If p is a AG-representation and if edg&G implies
that p(g) does not have +1 for an eigenvalue, then p is fixed point free. Let
F/G) denote the set of all equivalence classes of irreducible fixed point free
AG-representations.

DerFINITION 6.4. A fixed point free group is a finite group which has a
fixed point free 4-representation.

It is easy to see that the definition does not depend on the choice of A.
Fixed point free groups G and the set F(G) are studied in [26] and the follow-
ing theorem is deduced easily from [26].

Proposition 6.5. The elements of FG) all have the same A(G)-type and
the same degree d(G). Moreover if G is not isomorphic to Z,, then A(G)=R.
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As a typical case, we now consider bordism groups of weakly symplectic
semi-free G-actions.

A weakly symplectic structure for a vector bundle £ is a symplectic vector
bundle structure on the stable bundle of £. A weakly symplectic manifold is a
pair consisting of a differentiable manifold M and a weakly symplectic struc-
ture on the tangent bundle TM of M [19], [20], [24]. Then the weakly sym-
plectic bordism group Q,?(X) is defined as usual (Compare [7], [23]). A
weakly symplectic G-action on a weakly symplectic manifold M is a G-action such
that the differential dg: TM—TM is stably symplectic linear for allgG. Then
the fixed point set F becomes canonically a weakly symplectic manifold and
the normal bundle » to F in M is given canonically a QG-bundle structure
(Compare [8]). The isotropy group G, of xM is the subgroup {g€G|gx=
x} of G. If G,={e} (resp. {e} or G) for all k& M, the action is called free (resp.
semi-free). The symplectic bordism group

Q%G, F) (resp. Q:%(G, SF))

of free (resp. semi-free) symplectic G-manifolds is defined as the reader under-

stands without ambiguity.
Recall the symplectic bordism group

Bt 01 (G, S)

of symplectic GS-bundles in Remark 6.2.
We now consider the case where S is the set Fo(G) of irreducible fixed

point free QG-representations.

Put

BA(G) (n(p(2))) = BU(n(p(2))), BO(n(p(2)))

according as 4(G)=C, Q respectively.

Obviously for a finite group G, there are an isomorphism:

Q%(G, F) = Q*(BG)
and an exact sequence:
- = Q$YG, F) - Q;%(G, SF) —
DB’ 0" (G, Fo(@))) = Q2y(G, F) — -

m+4k=n
In view of Remark 6.2, we have

Proposition 6.6. Let G be a fixed point free group which is not isomorphic
to Z,. Then we have the following exact sequence:
= Q(BG) - Q(G, SF) —
SQ(BAG) (n(p(1))) X -+ X BA(G) (n(p(s)))) —> Qa2y(BG) — +--,
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where the summation is taken over all s, p(i)E Fo(G), n(p(i)) with
m-+4do(G) 2 n(p(i)) = n.

ReMARK 6.7. Although we dealt only with weakly symplectic case in Pro-
position 6.6, unoriented, oriented, weakly complex versions hold similarly.

ReMARK 6.8. When a finite group G is not a fixed point free group, we
have an isomorphism:
Q:(G, SF) = Q5 (BG)BQ;’ .

REMARK 6.9. In case G=S", the exact sequence splits [25]. However
the exact sequence in our case does not split in general.

ExampLE 6.10. Let I, be the binary icosahedral group. According to
[11], [26], 14 has two fixed point free representations of Q-type whose degree is
1. It follows from Proposition 6.6 that we have the following exact sequence:

— Q$¥BI,) — Q$*(1,, SF) —
D 0Lun1(BO(m) X BO(n5)) > Q31y(BL) — -

7. Equivariant J-group Jg(X)

First we recall the definition of Jg(X) [13], [15].

Let G be a compact topological group and X be a compact G-space. Let
& and 5 be G-vector bundles over X. Denote by S(&) (resp. S(7)) the sphere
bundle associated with & (resp. 7).

DerINITION 7.1.  S(£) and S(7) are said to be of the same G-fiber homo-
topy type if there exist fiber-preserving G-maps:

f: 8(E) = S(), f': Stn)— S()
and fiber-preserving G-homotopies:

h: SE)XI— S(E), h': S(p)xI— S(n)
with

BIS(E)X0=f"-f, h|S(E)x1= identity

B'|S)X0=f-f, h'|S()x1=identity.

Let KOy(X) be the Grothendieck-Atiyah-Segal group [4] defined in terms
of real G-vector bundles over X. Let T4(X) be the additive subgroup of
KO4(X) generated by elements of the form [£]—[7], where £ and 7 are G-vector
bundles whose associated sphere bundles are G-fiber homotopy equivalent.
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DeriniTION 7.2. We define our equivariant J-group J(X) by
Jo(X) = KOu(X)[To(X)

and define our equivariant J-homomorphism J; by the natural epimorphism

Jo: KO(X) = Jo(X).
When X is a point *, J(*) is studied in [9], [10], [12], [14], [16] and [17].
Similar groups JO(G) and jO(G) are studied in [6], [18] and [22].
We now recall [13], [15].

Theorem 7.3. Let M,, M, be closed smooth G-manifolds. If there is a G-
homotopy equivalence f: M,—M,, then

Jo([TM,]) = Jo([f*TM])
where TM; denote the tangent G-vector bundles of M; (i=1, 2).

Let f: M,—>M, be a G-homotopy equivalence. Denote by F{ each com-
ponent of the fixed point set of M;,. Set F5=f(F{). Then the union UF¥
®
is the fixed point set of M, and each F¥ is a component of UF%. Denote by
Nt the normal bundles of F¥ in M; (i=1, 2). “
As a corollary to Theorem 7.3, we have

Corollary 7.4.

Jo(INt]) = Jo([(fI FE)*N£]) -

Namely each J;([N{]) is a G-homotopy type invariance. The normal
bundle N{ is a G-vector bundle over a trivial G-space F{ and from now on we
will deal with J;: KOg(X)— J4(X) in the case where X is a trivial G-space.

Denote by {0} the zero dimensional vector bundle over X. Let £ be a

G-vector bundle over X and {p;} be the set of irreducible G-representations
which appear in £&. Denote by V; the representation space of p;. By Pro-
positions 4.1 and 4.2, we have a unique decomposition

E=0 V.0

where 4;=Endg;(V;) and &; are A;-vector bundles. Let H be a normal
subgroup of G. Then, £# is a vector sub-bundle of £. Since H is a normal
subgroup, £# is even a G-vector bundle. Then we have

Lemma 7.5. If H is a normal subgroup of G, then we have
EH = @ Vi ® E i

KerpiDH a4 ;
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Proof. It is easy to see that

@V ®§)” EBV”®E.

in general. Obviously we have

o ® V®§,-

KerPiDH —

Suppose that they are different. Denote by £’ the complementary G-vector
sub-bundle of @ V; ®£ in £% that is

KerP,DH*

r=( & Vi ®£)€BE'

Kerp;DH =—

Decompose £’ as before:

=@V, QF.
i T A

It follows from the uniqueness of the decomposition that Ker p; does not in-
clude H for 7 with &/ ﬂ . Hence H acts non-trivially on such V;. It follows
that o

ET—QVIQEE QY OH=F.

This is a contradiction. Namely &'= {0}
This completes the proof of Lemma 7.5.

Let £ and % be real G-vector bundles over X. Denote by L the set of
irreducible RG-representations which appear in £ and 5. Then we define a
set {H,} of subgroups of G by

{Hxli: 1, ) k} :{KCI‘,DIPEL} .

It is possible to arrange {H;} in such order that ;2D H; implies i=<j. We classify
the set L by kernels such that Ker p;,=H;. Denote by V', the representation
space of p;. Set

Ai! = EndRG (Vit) .

By Propositions 4.1 and 4.2, we have unique decompositions:

E—@EBW:@E;: and 77=€BEBL~;/<‘8)77¢:-
L

tt

Then we set

F—EDODV Vs @ e

s=1 ¢
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and

7= @O V@ L.

Lemma 7.6. If there exists a G-fiber homotopy equivalence f: S(E)—
S(z), then there exist G|H -vector bundles o; and G-vector bundles [3; over X for
1=1, :++, k such that

(@) S(D Vi 29 £ @ a;) and S(D Z_i;l@ nit © ;) are G/H-fiber homo-
topy equivalent, N N
(b); S(E'PRB;) and S(n'PB;) are G-fiber homotopy equivalent.

Proof. We prove Lemma 7.6 by induction on z. Note that H; is a normal
subgroup of G and is maximal in {H;, H,,,, --+, H;}. It follows from Lemma
7.5 that

EHIZ@LQ§E1t

1t

and
77}11:@@®771t-
t =4

1t

Note that the restriction
ff S — S(n)™

is a G-fiber homotopy equivalence. We can also regard f#1 as a G/H,-fiber
homotopy equivalence. Hence we get a G/H,-fiber homotopy equivalence

[ SO Vi @ 1) > S(D Vi ® mu) -

Thus we have (a), by taking a,= {0:} . Let f{ be a G-fiber homotopy inverse
of ff1, Then the map
frfiz SE) = SES (D Ve © )
= S(z') = S(n)+S (D Vu ;619 Eu)
1t
gives a G-fiber homotopy equivalence where % denotes the join. Thus we
have (b), taking 8,= {0}.

Suppose that Lemma 7.6 is true for all j<i. By the induction hypothesis
(b);, there is a G-fiber homotopy equivalence

fi: S(fi@lei) g S(’?‘EB;&) .

Then the restriction

[l SEOBY = S DBiY i
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is a G/H;,,-fiber homotopy equivalence. In virtue of Lemma 7.5, we have

(f')”‘” = @ VH—lt ® Eiu EB 69 {@ Vst ® (Est@nst)}

§+12 s— i+1
and

(’7 )H'*l = @ V:+lt ® Niv1t GB @ {@ Vst ® (nst®gst)}

i+1¢ s i+1 ¢ —-—Atf
We now set

Qi+l =H 69 {Gt9 Lf_l ;1@ (Est@’)st)} @B{‘{‘.'” .

s=Ti+1

Then we obtain a G/H|,,-fiber homotopy equivalence

f i+1] (SGB Vz-m ® §z+1t@a;+1)—>S(EB V:+1t ® 7ir1uDAisy) -

i+1t §+1¢

Thus we have (a);,,. Let f/ be a G-fiber homotopy inverse of f{i+1. We now
set

Biv1 = BiPai .

Then we obtain a G-fiber homotopy equivalence

f*f, S(E'H@B;H) = S(‘E DB; )*S(GB Vz+u ® 7iruPAir)

u+1t

g S("?‘H@Bsﬂ) = S("? DB )*S($ VH—lt ® §x+1t@a:+1)
x+ll
Thus we have (b);4,.
This makes the proof of Lemma 7.6 complete.

REMARK 7.7. (a); of Lemma 7.6 is what we need and (b); is what we used
in order to put forward the inductive step of (a);.

Denote by {H,} the set of all Ker p where p are irreducible RG-represen-
tations. We classify the set of all irreducible RG-representations by the kernels

such that Ker p,u=H,. It follows from Theorem 5.1 that we have a decom-
position

KO4(X) = @ 4,

corresponding to the set {H,} where X is a trivial G-space. Moreover we can
regard A, as a subgroup of KO¢/y,(X). Then we have

Proposition 7.8.

Je(X) == GP Jo(4y) = EP Jor(4y) -

Proof. For the first isomorphism, it suffices to prove that

Ker Jo = @ Ker (J¢14,) .
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Obviously Ker J;D E}\B Ker (Js14,). On the other hand, Lemma 7.6 (4); means
nothing but
Ker]GCG)? Ker (J;14,) .

Furthermore Lemma 7.6 (a); means that
Ker (J5|4)) = Ker (Jerun145) -

This completes the proof of Proposition 7.8.

For a compact topological group G, we define a subset A(G) (resp. MG))
of {R, C, O} by

{Endg(V)|V: irreducible RG-space}
(resp. {Endgs(V)|V: non-trivial irreducible RG-space}) .

We define KA(X) for 4=R, C and Q by KR(X)=KO(X), KC(X)=K(X)
and KQ(X)=KSp(X). Denote by RO(G) the subgroup of RO(G) generated by
non-trivial irreducible RG-representations. Then we set

Jo(*) = Jo(RO(G)) .
By making use of Propositions 4.1 and 4.2, we deduce easily the following

Proposition 7.9. (i) If KA(X)=Z for all AENG), then Jo(X)= - Jo(*).
(i) If KAX)=Z for all ASX(G), then J(X)=]J(X)+]o(*).

Denote by Z, the cyclic group Z/nZ of order n where 7 is an integer greater
than one. Let n=2%.pi®"...p}" be the prime decomposition of #. Then we

define a group J% (*) as follows.

Case 1. k=2. We set
J2,(¥) = ZDZp-D gtal Z(pyh— prtid-1)
Case 2. k=0or1. We set
Jz,(*) =ZD {’gt? Ziprh_ prd-n} | Z,

where the inclusion of Z, into GtBZ(pg(O_pr.(i)—l) is given by 1— é(p?“’—p,-""")/z.
i=1 ¢ i=1

Let G be a compact abelian topological group and F,, F; and F, be the
family of all closed subgroups H of G such that G/H is isomorphic to the circle
S, Z, for some n>2 and Z, respectively. For a set F and for an abelian group
H, we denote by H(F) the direct sum of copies of H indexed by F. Let S" be
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the #-dimensional sphere with trivial G-action.
Then we have

Corollary 7.10. We have the following isomorphisms:

JG(S2n+l)
ZOUFYD @ Jou()@ZFs) for n0, mod4,

R

ZOLOUF)D @ Jou(NBEZDZ)(F) for n=0,mod4.

Proof. It is easy to see that any irreducible representation of a compact
abelian topological group is either of R-type or of C-type. Moreover R-type
occurs only in the form: p: G—O(1). If #n=%0 mod4, then KO(S**)=Z
and K(S**)=~Z. Hence the isomorphism in this case follows from Proposi-
tion 7.9 (i) and the result of [14]. If =0 mod 4, then KO(S**\=ZDZ,
and K(S**!')=~Z. Hereafter we assume that n=0 mod 4. Let A4 (resp. B) be
the subgroup of KO4(S**') generated by the elements of the form B@E (resp.

g?&) where p is of R-type (resp. of C-type) and £ is a real (resp. complex)

vector bundle. Since the kernel of p which appears in 4 and that of p which

appears in B are different, we have a direct sum decomposition by Proposition
7.8,

Jo(8*7) = Jo(A)D Jo(B) -

Concerning B, an argument similar to the proof of Proposition 7.9 is valid,
since K(S**")=Z. Concerning 4, we have only to prove that

Jzot KOz(§™7) = J2(§*)

is an isomorphism. As is well-known, J: KO(S**')— J(§***!) is an isomor-
phism [1]. It follows that J(S**)\=Z@Z,. Denote by a: Z,—O(1) the non-
trivial irreducible representation. Suppose that S(Elﬂaci%‘fz) and S(m@g§n2)

are Z,-fiber homotopy equivalent where &; and #; are real vector bundles.
Restricting to the fixed point set and forgetting the Z,-action, we have that

JE)=J0n) and JEDE) = J(nDn) .
Hence J(&)=J(7:). Since J is an isomorphism in this case,

]22: Kozz( S2n+l) —_— ]Zz( S2n+l)
is also an isomorphism.,
This completes the proof of Corollary 7.10.

ExampLE 7.11. Z, be the cyclic group of an odd prime power order p".
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Recall Example 5.5. If K(X)=<Z, then we have by Proposition 7.9 (ii) and
[14] that

JepX) =IX)® & (ZDZy-y-n1) -
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