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Introduction. The notion of “generalized Siegel domains in C" X C™ with
exponent ¢”’ was introduced by Kaup, Matsushima and Ochiai [3]. In the
previous paper [6], we studied exclusively the structure of generalized Siegel
domains in Cx C™ with exponent 1/2. Since then, as an application of the
results obtained in [6], we considered the equivalence problem and showed
that two generalized Siegel domains in C" X C™ with exponent 1/2 are holomorphi-
cally equivalent only if they are linearly equivalent [7], [8].

In this paper we study the equivalence problem for generalized Siegel
domains in CXx C” with arbitrary exponent. To state our results, we need a
few preparations. Let 9 be a generalized Siegel domain in C"X C™ with ex-
ponent ¢ and g(9) the real Lie algebra consisting of all complete holomorphic
vector fields on 9. Then, by the definition of 9), the Lie algebra g(9) con-
tains the following vector field E on 9 (see section 1):

E=3a+e 3w, 0
=10z, =t Cow,
where (2, *++, 2, @y, ***, W,) is the natural coordinate system in C"XC". We
put, for any A€ R

o, = {XE9(9D)|[E, X] =X} .

Now we can state our results. First of all, we shall prove the following
proposition in section 2 (see Proposition 2.6):

Proposition. Let 9 be a generalized Siegel domain in C"X C" with ex-
ponent c=1. Then §(9D) has the following graded structure:

8(9D) =a-1+8,+81, [8r 8] CBrsn -

Combining the results obtained in [3], [4] and [13] with this fact, we obtain
the following
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Theorem 1. Let 9 be a generalized Siegel domain in C" X C™ with exponent

(1) If c=1]2, then we have
8(9D) = 8_1+8+8, [8 8] CTBrin -

Moreover, in the case when n=1, we have the following direct sum decomposition
of 9(9):
8(9) = (8-, +a0+8)+8¢’ ,

where §¢ and a3’ are vector subspaces of @, such that both §_,+ 84+, and gi’ are
ideals of §(9D).
(2) If c=1/2, then we have

8(9D) = 8.1 +8-12+8+82+ 815 [8n 8] SBavn -

Making use of this theorem, we can prove the following

Theorem 2. Let 9 and 9’ be generalized Siegel domains in CX C™ with
exponent ¢ and c’, respectively. Then 9 and 9’ are holomorphically equivalent
if and only if there exists a non-singular linear mapping L: CX C"—C X C™ such
that L(D)=19'. Moreover, if 9 and D' are holomorphically equivalent, we

have c=c'.

After some preliminaries in sections 1 and 2, these two theorems will be
proved in sections 3 and 4 respectively.

Now, the following generalization of the classical result due to H. Cartan
[2], which states that two bounded circular domains D and D’ in C¥ containing
the origin o are linearly equivalent if there exists a biholomorphic isomorphism
f of D onto D’ such that f(o)=o, will play an important role in the proof of
Theorem 2.

Theorem 3. Let D and D’ be two circular domainsin C¥ containing the origin
o of CV. Suppose that D admits an Aut(D)-invariant Kdéhler metric dsp, where
Aut(D) denotes the group of all biholomorphic transformations of D onto itself.

Then D and D' are holomorphically equivalent if and only if they are linearly
equivalent.

In his letter of May 16, 1978, Dr, K. Nakajima kindly announced, but
without proof, that this fact is true for bounded circular domains in C¥ containing
the origin. Since we do not know his proof, we present our proof of this theorem
in section 1.

1. Preliminaries

Let R (resp. C) denotes the field of real (resp. complex) numbers as usual.
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Let (2, **+, 2, Wy, ***, @,,) be the natural coordinate system in C"x C™.

DeriNITION 1. A domain & in C"X C™ is called a generalized Siegel domain
with exponent ¢ if the following conditions are satisfied:

(1) 9 is holomorphically equivalent to a bounded domain in C**™ and
DN (C"x {0}) +¢, where {0} denotes the origin of C".

(2) 9 is invariant by the transformations of C**™ of the following types:

@) (2, w)— (2+a, w) for all ae R";
(b) (2, w) > (2, € tw) for all t€R;
(©) (2, w)— (e'z, e'w) for all t€R,

where ¢ is a fixed real number depending only on 9. We call ¢ the exponent of

9.

It is obvious from the definition that the following vector fields on 9 are
contained in g(9):

(a)’ 0/0z, for k=1,2, -, n
(by I= \/__12_%1,

(o E= sz—-l-CEw

0z, a=1 “Ow,

For later use, we here study the structure of circular domains in C".

DEerFINITION 2. A domain D in C¥ is called a circular domain if D is in-
variant by the rotations

(1.1) l‘: (zl, A ZN)I—*(eV__“zl, “cy e‘/—_”ZN), tER,
where (2, -, 2y) is a fixed coordinate system in CV.

Let D be a circular domain in CV which admits an Aut(D)-invariant Kahler
metric dsp. Then we have Aut(D)CIso(D), where Iso(D) denotes the group
of isometries of D with respect to ds}. Therefore, being a closed subgroup of
the Lie group Iso(D), Aut(D) is also a real Lie group. Moreover, the isotropy
subgroup of Aut(D) at a point p of D is compact, since the isotropy subgroup of
Iso(D) at p is so. We may identify the Lie algebra of Aut(D) with the real Lie
algebra g(D) consisting of all complete holomorphic vector fields on D. Using
the coordinate system (2, **+, 2y), any vector field X in g(D) can be written in
the form

(1.2) X= ka

0z,

where f,(k=1,2, -+-, N) are holomorphic functions on D. Now, suppose fur-
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ther that D contains the origin o0 of C¥. Then it is easy to see (cf. [6], section 1)
that any vector field X €g(D) is a polynomial vector field, that is, in the ex-
pression (1.2) of X every component f, is a polynomial. A vector field X is
called a homogeneous polynomial vector field of degree », if any component
f# of X in (1.2) is a homogeneous polynomial of degree ». In this terminology,
we put '

the set of all homogeneous polynomial vector
(1.3) B, =
fields of degree v
and
X 9
(1.4) 0=V 12—,
k=1 8.2’,,

which is the vector field in g(D) induced by the global one-parameter subgroup
{l;} icg defined in (1.1). Then we can show the following

Lemma 1.1 (cf. [6], [11]). With the same assumptions on D and notation
as above, we define an endomorphism ] of g(D) by J(X)=[0, X] for X=g(D).
Then, denoting by t the Lie subalgebra of §(D) corresponding to the isotropy
subgroup K of Aut(D) at the origin o€ D, we have

(1.5) t=Ker J=g(D)N3,,
where Ker | denotes the kernel of J; and

(16) if we put p— {X=g(D)|JAX) = —X}, then
{ b =9(D)N(Bo+3.);
g(D) = t+b (direct sum).

Lemma 1.2. Let D be a circular domain in CV containing the origin, which
admits an Aut(D)-invariant Kdhler metric dsh. Let G be the identity component
of Aut(D) and D, the G-orbit passing through the origin o. Then D, is a complex
submanifold of D. Moreover, it is a Hermitian symmetric space of non-compact

type.

Proof. First we notice that, being a G-orbit passing through the origin
oD, D, is a Riemannian submanifold of D. Let g be the Riemannian metric
on D, induced from ds}. For each element ¢ of G, we denote by (o) the
restriction of o to Dy, that is, 7(¢)-x=o-x for all x€D,. It is then obvious
that 7 is a Lie group homomorphism of G into the Lie group Iso(D,) consisting
of all isometries of D, with respect to the metric g and 7(G) acts transitively on
D,.

Now, assuming that D, 2 {0}, we shall show that the orbit D, is a non-compact
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complex submanifold of D. Let K be the isotropy subgroup of G at the origin
o. We may identify D, with the quotient space G/K. Let g(D)=£f+p be the
direct sum decomposition of g(D) as in Lemma 1.1 and T((D,) the tangent space
to D, at the origin 0. Then we have

(L.7) T(Dy) = {X(o)| X ¥},
where X(0) denotes the value at o of the vector field X. We now assert that
(1.8) Ty(D,) is a complex subspace of T(D),

where T'(D) is the tangent space to D at the origin o. In view of (1.7), it is
sufficient to verify the following

(1.9) vV —1X(0)eTy(D,) for every Xebp.

For this, take an arbitrary vector field X on D belonging to p. Then, by
Lemma 1.1, X can be wirtten in the form

(1.10) X=X,+X, forsome X,€3,and X,e3,.
By a straightforward computation we have
(1.11) JX) = —v—-1X+v —-1X,Ep,

where J is the endomorphism of g(D) defined in Lemma 1.1. It follows then
that

(1.12) vV —1X(0) = V' —1X(0) = (=J(X))(0) € T(Dy) ,

as desired. Now, let I be the G-invariant complex structure on D. By virtue
of (1.8) we can define an 7(G)-invariant tensor field T on Dy=G'-o by requiring
that, for any point p of D, and any vector X € T (D),

(113) I,(X) = I,(X).

Obviously 7 then defines a complex structure on D, so that D, is a complex
submanifold of D. Since D is an open subset of C¥ and D, is a complex sub-
manifold of D of positive dimension, it is evident that D, is non-compact.

It remains to prove that D, is a Hermitian symmetric space. Let g be the
Kihler metric on D, induced from ds}. Since ds} is G-invariant, the group
7(G) acts transitively on D, as a group of holomorphic isometries. Now, re-
calling that D is a circular domain in CV, we see that G contains the following
element

(1.14) L (2y -0, 2y) o (€771, o0y @7 T7g,) .

It is an easy matter to see that 7(/,) is an involutive holomorphic isometry of D,
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and the origin o€ D, is an isolated fixed point of 7(/,). From this our last asser-
tion is obvious, since the group of all holomorphic isometries acts transitively
on D, q.e.d.

Lemma 1.3. Let D be a circular domain in C¥ as in Lemma 1.2. We denote
by G the identity component of Aut(D) and K the isotropy subgroup of G at the
orgin o as before. Let K, be any compact subgroup of G. Then there exists an
element g€ G such that g7 K,-gCK. In particular, K is a maximal compact
subgroup of G and every maximal compact subgroup of G is comjugate to K under
an inner automorphism of G.

Proof. If G=K, our assertion is trivial. So we may assume that GRK.
Then, by Lemma 1.2 the G-orbit D;=G/K passing through the origin o is a
Hermitian symmetric space of non-compact type with 7(G)-invariant Kihler
metric g, where 7: G—Iso(D,) is the Lie group homomorphism defined in the
proof of Lemma 1.2. Consequently, D,=G/K is a complete simply connected
Riemannian manifold of non-positive sectional curvature. On the other hand,
being a subgroup of G, 7(K,) acts on Dy=G/K as a group of isometries. Hence,
by a classical result due to E. Cartan [1] we conclude that 7(K)) has a fixed point
p=g-0€D,(gEG), thatis, k-g-o=r(k)-(g-0)=g-0 for every keK,. Clearly
this implies our assertion. q.e.d.

Proof of Theorem 3. It is trivial that D and D’ are holomorphically
equivalent, if they are linearly equivalent. Thus we have only to prove the
converse.

Suppose that there exists a biholomorphic isomorphism &®: D—D’ of D
onto D’. Let G (resp. G') be the identity component of Aut(D) (resp. Aut(D"))
and K (resp. K’) the isotropy subgroup of G (resp. G’) at the origin 0. Now we
have two cases to consider. Consider first the case where G+0=o, that is, the
origin o is invariant under G. In this case we have

(1.15) ®(0) = D(G+-0) = G'-D(0) .

Since the group G’ contains the global one-parameter subgroup {/,},cr as de-
fined in (1.1), this means that ®(0)=o. Taking a real number @ arbitrarily,
we now consider the following biholomorphic transformation f of D onto itself
defined by the composition

(1.16) f=@tl_,®-l,

where ®~': D'—D denotes the inverse mapping of @ and /, the rotation defined
in (1.1). Then we have

(1.17) flo)=o and
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(1.18) the differential (fy)y: To(D)—Ty(D) of f at o is the identity mapping.
Noting that the isotropy subgroup K is compact, we can see from the proof of
Theorem 3.3, Chap. V of [5] that, under these two conditions, f must be the

identity transformation of D. Hence, if we put ®=(®,, -+, @), we have from
(1.16) that
(1.19) D;(e " 12) = "D () forall /R,

from which we conclude that each component ®; is linear (cf. [10], p. 67).

We next consider the case where G-02 {0}. By virtue of Lemma 1.3, we
can choose an element g of G’ in such a way that g7'+(®-K-®7!).g=K’, since
®-K-®7!is a maximal compact subgroup of G’. Considering a biholomorphic
isomorphism &: D— D’ defined by =g~ !-®, we have

(1.20) &(0) = (K -0) = K'-®(0).

Since the isotropy subgroup K’ contains the global one-parameter subgroup as
defined in (1.1), it follows from (1.20) that &(o)=o. Repeating exactly the
same arguments as in the first case, we conclude that & is linear, completing
the proof.

We finish this section by a recent result on the cancellation problem due to
Urata. This will be used in the proof of Theorem 2 in section 4.

Theorem U (Urata [12]). Let X, Y and V be complex analytic spaces such
that V X X is biholomorphic to VX Y. If V is hyperbolic in the sense of Kobayashi
[6], then X is biholomorphic to Y.

2. The structure of generalized Siegel domains in C"XC" with
exponent c=1

Throughout this section we denote by 9 a generalized Siegel domain in
C" x C™ with exponent c=1.

Let Z.(resp. Wy,) be a polynomial vector field on 9 having the following
form

_ = k a _ L ) 6
(2.1) Zyy = z_‘.legz; (resp. W, —Zi" Qw—)

0wy’ ,

where P}, (resp. O%,) are homogeneous polynomials of degree u in 2, (1=<I=<n)
and of degree v in wg (1=8=<m). We denote by B,, (resp W,,) the set of all
vector fields of the form (2.1), that is,

(2:2) Buy = {Zuw} (resp. Wy,={W}).

Then, as we have observed in section 1 of [9], we have the following bracket
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relation in the case c=1:

[E, Zw] = (utv—1)Zu;
[E, Wi] = (54 v—1) Wi
[I, Z;w] = \/:TVZM;

[I: Wl‘-‘v] = \/——1(”—1)W;w ’

(2.3)

where E and I are vector fields on 9 defined in section 1.

Now, as in the case where ) is a generalized Siegel domain with exponent
1/2 (cf. [3], Lemma 3.1), we can see that every holomorphic vector field X in
8(9) can be written in the form

(2.4) X = 3 Zust ZuncA Woot Wot- Wi} .

Using (2.3), we have then
(2.5) adE-X = E {(M—I)Z#ﬁ'ﬂzm‘}‘(ll«_1)W#0+MWM1+(IL+1)WM} .

Hence, putting

(2-6) Xu = Z(;L+1)o+ZfL1+ W(ﬂ-+1)o+ Wm+ W(F-—l)Z
for u=—1,0,1, 2, ---, we can verify easily that
(2.7) X=X,
Hz-1
and
(2.8) D(adE)- X = ) D(pu)X,
K=-1

for every polynomial ®(x)E R[x]. Thus, by the same reasoning as in section
3 of [3], we obtain the following proposition (cf. [3], Theorem 2):

Proposition 2.1. Let 9 be a generalized Siegel domain in C"XC" with
exponent c=1. For each p=—1, let g. be the wvector subspace of §(D) con-
sisting of all vector fields in §(D) of the form (2.6). Then we have

(2.9) gy is the eigen space of adE for the eigen-value p;
(2.10) 9(D)= 23 6u;
=1
(211)  [8s 8] CGus -
Lemma 2.2. For u=—1,0,1, 2, -+, we have

8u = 85481 (direct sum), where
{ gn = g(g)) N ('8(#+1)o+ %m) 5
gi’l/ = Q(g)) n (8;&1‘}‘%(#_1)2) .
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Moreover, we have §_,= { 5”‘_, a,,a—a— [(ay +++,a,) ER™} .
k=1 zk

Proof. Let X be an arbitrary vector field on 9 belonging to g.. Then,
assuming that X has the form as in (2.6), we have by a routine calculation that

{ adl - X = \/-—_IZM—\/:——TW(MH)O‘}‘\/ZW(u—l)z;

2.12
( ) (adI)Z-X = — {Z#1+ W(I"+l)o+ I/I/(M—I)Z} ’

from which we obtain g.=g/+ g}/ (direct sum), where

{ gr.=g¢(9D)N (8(M+1)o+§mn1) >
gy = Q(Q) n (8M1+S~)B(M+1)o+ QB(I'-—l)z) .

Now, we shall prove that gi/=g(D)N (Bu+BWw_y2) in (2.13). The proof is
by induction on p. Let Wy, be an arbitrary element of g’/. Then we see
from (2.12) that Wy, and \/ —1W,, are contained in §(9), so that W, ,=0 by
Cartan’s principle: g(9)N+/ —1g(D)=1{0}. Thus, our assertion is really true
for p=—1. Supposing that our assertion holds for x=—1, we take an arbitrary
vector field X on & belonging to gi%;. By (2.13) X may be written in the
form

(2.13)

(2-14‘) X = Z(F+l)1+ W(I'-+2)0+ an .

Then, since [0/0z, X] € gi/, [0/0=, Zwin] € By [0/9214, Wini230] € Busnor
[0/0zy, Wyp) € Bu—y), for every k=1,2, -+, n and the W ,-component of any
vector field belonging to g’ does not appear by the induction assumption, we
conclude that

(2.15) [0/02;, Winine] =0 for k=1,2, ., n,

which implies that Wi,,,,=0. We have thus proved that X=2Z,.),+ W, and
so @i/ =8(D) N (Bu+Ww_12) for every p. As a consequence of this fact, we
also see that g_,=g(9)N B, Once it is shown that the coefficient of every
vector field on 9 belonging to g_, are real, our proof is completed. But this
follows from the proof of Theorem 3 in [3]. q.e.d.

Lemma 2.3. Let t be the radical of §(9D). Then we have

T= >'1,, where T, =1Ngu.
pz-1

Moreover, tu=gy for p=2.

Proof. This can be proved in exactly the same way as Lemma 4.1 in
[3]. q.e.d.
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Now, let A= hé akai (a,=R) be an element of g_;. According to Kaup,
=1 zk
Matsushima and Ochiai [3], we shall define the linear mapping ®,: g,—g_, by
(2.16) D4(X) = (1/2) (adA)*-X  for Xeg,.

Then, using the concrete expression of X as in (2.6), we can show by a straight-
forward computation that

217) X(V/=Ta, 0)= —®,(X)(/—1a,0) forall Xeg,,

where a=(a,, -*, a,). From this we can verify easily the following lemmas
with the same arguments as in the proofs of Lemmas 4.2 and 4.3 in [3]. So
we will omit the proofs.

Lemma 24. tNg, = {0}.
Lemma 2.5. g.= {0} for p=2,3, -
Thus, summing up we have the following

Proposition 2.6. Let 9 be a generalized Siegel domain in C"X C" with
exponent ¢c=1. For each p=—1, let g be the subspace of §(D) as defined in
Proposition 2.1.  Then we have

(218) Q(Q) = 9_1+Qo+91 ’ [g,;, gv]Cgu+v ’
where
2.19) 6. = {2 a2 |(ay -, a)ER}
k=1 az,,

(2.20) for p=0,1, gu.=gi+gai’ (direct sum), where
{ al. = 8(9D) N (Bwrvot+BWey)
8" = 9(9D) N (Bur+BWu_p2) -

3. Proof of Theorem 1

Throughout this section we denote by &) a generalized Siegel domain in
C x C™ with exponent ¢, unless otherwise stated. By change of linear coordinates
if necessary, we may assume without loss of generality that (\/ —1, 0)€ 9.

Lemma 3.1. If (2, w)E9, then Im.2>0.

Proof. In the case where the exponent ¢ of 9 is non-zero, this can be
verified in the same way as in the proof of Lemma 1 in [6].
We next consider the case ¢=0. Suppose that there exists a point
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(20 ) €D such that Im. 2,<0. Then, by the same reasoning as in the proof
of Lemma 1 in [6], @ contains a point of the form (0, @,). Then, by the
definition 1, 9 also contains the set {(a, W,)€CX C"|acR}. Moreover, since
9 is open in CXC", we can choose a positive number 7, in such a way that the
points —(v/ — 17, @,) and (\/ — 17y, @,) are contained in 9. Then 9 also con-
tains the set {(2, W)ECXC"|Im.z2 +0}. As a result, we conclude that 9
contains the set {(2, @,)=C X C"|z=C}, which is naturally identified with C.
But, since 9 is holomorphically equivalent to a bounded domain in C™*', this
is a contradiction. q.e.d.

Lemma 3.2. We put Do={wel”|(V—1,w)=D}. Then

(3.1) Dv= is a circular domain in C™ containing the origin o;
(32) D= {(z,w)eCXC"|Im.2>0, w/(Im.2)' € Dv=}.

Proof. This is immediate from the definition of ) and Lemma 3.1. q.e.d.

Proof of Theorem 1. The second statement (2) of the theorem is nothing
but a result due to Kaup, Matsushima and Ochiai [3]. Moreover, combining
Theorem 3.2 in Kaup and Upmeier [4] and Proposition 7.1 in Vey [13] with
Proposition 2.6 in section 2, we obtain the first assertion of (1).

In the following part of the proof, we denote by 9 a generalized Siegel
domain in C'X C™ with exponent ¢. We have now two cases to consider. Con-
sider first the case c=0. Then, by Lemma 3.2, 9 is the direct product X D, =,
where O is the upper half plane {=C|Im.2>0} and 9. is the circular
domain defined in the same Lemma 3.2. Combining this fact with Proposi-
tions 7.1 and 8.1 in Vey [13], we can see that () has the following structure:

(3.3) 9(9D) = g(9)+9(Dv=1) (direct sum of ideals) ;
(34) g(®)=g-.1+66+a:;
(3:5) 8(Dv=1) = 8(D) N (Voo LW+ W) C o

where
(36) §.= {ojlacR};
3

(3.7) 8t =98(D)NB1KTG;
(3.8) a1=19(9) N8By -

Therefore, putting g;’=g(9+=1), we have our assertion.

Consider next the case ¢+0. By Theorem 3.2 in Kaup and Upmeier
[4], the linear mapping (ad(0/02))*: ¢,—>@_, is injective in the case ¢1. We
also claim that this is true for the case c=1. Indeed, using the equality (2.17),
this can be verified with the same arguments as in the proof of Lemme 6.4 in
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Vey [13]. Consequently, we have dim g,<1, because dimg_,=1 by Propo-
sition 2.6. We want to show that dim g,=1. For this it is sufficient to prove
that g, +{0}. We put 9={(z, w)€D|w=0}. Then, 9, is identified with
the upper half plane © by Lemma 3.1. Now, it is well-known that each el-

ement 7=(?3>GSL(2, R) acts on O by a holomorphic transformation

(3.9) I(z) = (az+b)+(cz+d) ™,

and conversely each biholomorphic transformation of © onto itself is obtained

in the manner described in (3.9). For each element 'y-:(?g)eSL(Z, R), we

here define a mapping Iy: § X C"—>9H X C" by
(3.10) Iy(z, w) = (h(2), (cz+d) ) .

It is then checked easily that 7, is a holomorphic mapping and 7,(9D)C 9, so
that 7y induces a biholomorphic transformation of 9 onto itself (cf. [6], Corollary
3). By the construction of Iy, it is obvious that /y=Iy on 9),. Therefore, the
group Auty(9),) can be identified with a subgroup of Aut,(4) via the correspon-
dence ly—1,. Finally, consider the global one-parameter subgroup

(3.11) Iy, (3, w) = (ly(2), (tz+1)*w), tER,
of Aut,(9) defined by the one-parameter subgroup

00 10
(3.12) v7: = exp t(l 0) = (t 1) ’ IER,

of SL(2, R). Then, we can see by a direct computation that {Jy},cr defines a
non-zero vector field on 9 belonging to g,. Consequently, we have g,={0},
as desired. :

Now, noting that g,= {Xeg(9)|[E, X]=0} and the group Aut,(D,) can
be considered as a subgroup of Aut,(9) as above, we can show that Aut,(9)
leaves invariant the complex submanifold ), of &), and in fact 4, coincides
with the Aut,(9)-orbit passing through the point (/' —1, 0): D,=Aut,(9D)-
(v —1,0). Hence, there is a natural homomorphism 7 : g(9)—g(9,) induced
by the Lie group homomorphism of Aut,(9) to Aut,(9),) defined by g—g, 9,
where g9, denotes the restriction of g€Aut,(9) to 9D,. Let g(Dy)=¢%,+
a0-+4a} be the decomposition of g(9),) as in Kaup, Matsushima and Ochiai [3].

. Q) e .
Then, since n:(E):za—, 7 preserves the gradition, i.e., 7(g,)Cg:. Moreover, it
2

is clear that z(g,)=g3 for A=—1 and 1. On the other hand, since g(9,) is
a simple Lie algebra isomorphic to s/(2, R), we have gi=[g’,, 7], so that gj=
7([8-1 8:]) C 7(g,). Therefore, = is surjective. Put gf’=Kerz and gf=
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[6_.,8,]C8, Since = is injective on @, for A=—1 and 1, we see gy’ Cg,.
From this we conclude that [g¢’, g,]= {0} for A=—1 and 1, and hence
[a¢’, gt]= {0} by the Jacobi identity. Finally it is an easy matter to see that
g_,+a6-+g, and g¢’ are ideals of g(9) satisfying the condition: g(9D)=(g_,+ a4+
8,)+a¢’ (direct sum), completing the proof.

4. Proof of Theorem 2

Throughout this section we denote by 9 (resp. 9’) a generalized Siegel
domain in Cx C™ with exponent c(resp. ¢’). In general, for given two domains
S and S’ we employ the notation 4’ for denoting the onject for S’ corresponding
to an object 4 for S.

Now, we begin with the following

Lemma 4.1. Let B and B’ ‘be two hyperbolic circular domains in CV con-
taining the origin o. Suppose that the following two conditions are satisfied:

(4.1) The Lie algebra §(B) (resp. §(B’)) contains the element I (resp. I') of the

form

- __ XN 9 5 — & 0
1:\/_1l§2zka? (resp. I'=\/= Ezi—);

I3 =z 0z

(4.2) There exists a non-singular linear mapping ®: CV—CV of the form

z{ 1 @% ...... QIIV 2
@ . zé — 0 @g ...... @12\’ . |12
s 0 BYeeeee Y 2y

such that ®(B)=DB".
Then ®;=0 for k=2, 3, -+, N.

Proof. Let A: B'—B be the inverse mapping of & and put

2 1 A; ...... }\I z{
4.3) Az | =0 AFend| L e
av) 0 AY-AN) e

Denoting by A: g(B’)—g(B) the differential of A, we have by routine calcu-
lation that

(44) A = VTSNS Asdtz) 2
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= (—vV -1 ®iz) —+1
1=2 0z,
Consequently, the vector field
N
(4.5) X=(—v—-12 zzz)—
1=2 z

also belongs to g(B). Then, as we can see easily, the global one-parameter
group {¢.},cr generated by X is given by

1 —/—1®it------ —\V/ — 1D}t
0 1 OQeeeenenen 0

(4.6) b= |: : A , tER,
0 0 0eeeene0 1

so that ¢, acts on B by the following transformation
N
2 —V/ —1( E Diz)t

4.7)
22, for k=2,3,---,N.

Here we notice that the group Aut,(B) contains the global one-parameter sub-

group

(4.8) Wy (21 2 ) 2y) o (V7102 25, =+, 2y), OER.

In fact, {¥,}eer is the one-parameter subgroup of Auty(B) generated by the

holomorphic vector field v/ — 1216—21—'\/ —1 ‘é‘lz,,—;k —1I belonging to g(B).
Now, suppose that (@3, 3, -+, D) +(0, 0, --+, 0). Then, choosing a point

20=(0, 23, -+, 2%) of B such that ‘fz_,‘zd)}z? +0, we see that B contains the set

{‘1,0'¢t'p0|0a tER} = {(zlx zg) ) zg’ECNIzIEC} ’

which is canonically identified with the complex plane C. But this is impossible,
because B is hyperbolic in the sense of Kobayashi [5]. Thus we have proved
that (@3, @3, -+, D¥)=(0, 0, -+, 0). q.e.d.

We now consider a mapping @; {z€C|Im.2>0} X C"—C"*! defined by

# = (z—V -1 (z+v-1)"

(4.9) P : Ao g =23, mt1
Ve S

where ¢ is the exponent of 9. As we can see easily, @ defines a biholomorphic
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isomorphism of 9 onto the image domain B=¢(J) in C™*.
In the case ¢ 0, 1/2, we know already from the proof of Theorem 1 that

Aut, (9)-(v =1, 0) = {(z, 0)eCx C"|Im. z>0}
and hence
Auty (B)+0 = {(z}, 0, -+, 0)=C"*| |2 | <1}

by (4.9). Moreover, by direct computations as in the proof of Theorem 2 in
[6], the structure of Aut,(B) is explicitly determined as follows. Let SU(1, 1)
be the matrix group defined by

5 la]*—]c]*=1
a
(4.10) SU(1, 1) = (c d)ESL(Z, C)| |b|2—|d|*= —1
ba—dc =0
and K}z € GL(m, C) the identity component of the isotropy subgroup of
Aut(Dv =) at the origin o of C™, where 9. is the circular domain defined in

Lemma 3.2. Then we can verify that the group Aut,(3) consists of all transfor-
mations of the following type (cf. [6], REMARK 3):

{ 8 > (ag+b)-(cg+4d)™"

(4.11) , P
31— K- (c3+d) %3,

where §=2,, 3'—=4(2p *» Zwsr)s (‘c‘ g)eSU(l, 1) and K €K%=, CGL(m, C).
The following lemma is essential to the proof of Theorem 2.

Lemma 4.2. With the notation as above, the domain B is a hyperbolic
circular domain in C™*' containing the origin o. Moreover §(B) contains the

element I of the form I=+/—1 "il z,,—a .
=z 0z

Proof. By using (4.11), the first statement can by verified in exactly the
same way as in the proof of Lemma 1 in [8].

For the second assertion, we recall that Aut,(9) contains the following
global one-parameter subgroup

(4.12) ly: (z,w) (2, w), O0=R.

By way of (4.9), {lo}scr induces the global one-parameter subgroup

(4.13) Iy i (1, 22 00y Bar) o (31, €702, -+, 6" T07,.), OER,

of Auty(B), which defines the desired element I. q.e.d.

We are now prepared to prove Theorem 2.
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Proof of Theorem 2. Since it is trivial that 9 and 9’ are holomorphi-
cally equivalent if they are linearly equivalent, we have only to prove the con-
verse.

Let @: 9— B be the biholomorphic isomorphism of &) onto B defined in
(4.9) and ¢’: 9'— B’ the corresponding isomorphism of 9’ onto the image
domain @’. Suppose that there exists a biholomorphic isomorphism ®: 9—9’
of 9 onto 9'. We put ®=¢'-P-p~'. Then & gives rise to a biholomor-
phic isomorphism of B onto $B’. Now, we know already by Lemma 4.2 that
Band B’ are hyperbolic circular domains in C™** containing the origin 0. More-
over, since B (resp. B’) is holomorphically equivalent to a bounded domain,
B (resp. B’) has the Bergman metric ds (resp. ds%y), which is Aut(3B) (resp.
Aut(B’))-invariant Kahler metric. Hence, it follows immediately from The-
orem 3 that there exists a non-singular linear mapping £: C"*'—>C"*! such that
L(B)=B'. We shall prove that this isomorphism £ induces a linear iso-
morphism L: CXC"—->CXxC" such that L(9)=9'. The proof is divided
into three cases as follows.

Case I: ¢ =0, 1/2.

In this case we know from the proof of Theorem 1 and (4.9) that
(4.14) Aut, (B)-0 = {(2,, 0, ---, 0)=C"*| |2,| <1} .
Since dim¢(Auty(B’)-0)=dim¢(Auty(B)-0)=1, we obtain that
(4.15) L(Aut, (B)-0) = Aut, (B')-0 = {(=1, 0, -+, 0)eC"*| 31| <1},

from which we conclude that _{: C"*'—C"*! is of the form

’

21 a: % 2
(4.16) L %5 = 0 4 % |, la|=1,
é‘:n-i»l 6 g 'ém+1

where A4 is an m X m non-singular matrix. Since the group Aut,(B) contains
the linear transformations

7! : (2’1, R zm+1) = (e‘/—_ltzl, ) e‘/—_ltzm+1) ) tER ’

changing L by a suitable linear transformation L1, if necessary, we may as-
sume that a=1. Then, as a consequence of Lemmas 4.2 and 4.1, .L is reduced

to the following form
2] 1: 0 2

(4.17) L |3 . |22

’ :
Bm+1 : Bm+1/ -
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Recalling the definitions of the isomorphisms @: 9—B and ¢': D'—>F’,

we put L=¢' . L+@. Then it is easily checked that £ is a biholomorphic
isomorphism of 9 onto 9’ of the following form

’

8 =23

40-0' m
W= —-—— 214 lsasm),
v e (15 azn
where we put A=(Aap)isa p<m- Once it is shown that the exponents ¢ and ¢’
are identical, we may conclude from (4.18) that the mapping .L: 9—9)’ gives a
desired linear equivalence between 9 and 9’. Now, we start out to prove
c=c'. Let {®p/},cr be the global one-parameter subgroup

(4.18) L

(4.19) Pl (2, w') - (e'z, €'w'), tER

of Aut(9’). By direct computations, we can show that the global one-parameter
subgroup {@,},cr of Aut(9) defined by @,=.L7'-p}-_L is given by
e

ot
(e‘z—l—\/__1)2(”"¢)(z—|—\/._—1)2(”‘c’) -w) ,

so that the complete holomorphic vector field X on 9 induced by {@;},cr is of
the following form

(4.20) Py (2, w) (e‘z,

_ 0 2 2 —o)=z 0
21 =2+ DV "= T Vg, — .
(4.21) X zaz+~=1 (C z—l—\/——l)w 0w,

On the other hand, we know from [3] that every complete holomorphic vector
field on 9 is a polynomial vector field. By (4.21), it is clear that X is a polynomial
vector field only if c=c’, as desired. '

Case II: ¢=0.

By Lemma 3.2 9 is the direct product D=9 X D, = so that B=UX D, =,
where © is the upper half plane and U is the unit disk {z,€C||z,|<1}. We
have two cases to consider. Consider first the case where dim¢(Aut,(B)-0)=1.
In this case we have

(4.22) Auty (B):0 = {(2}, 0, -+, 0)=C"| |2, | <1}
and
(2.23)  L(Aut,(B)-0) = Auty(B')-0 = {(21, 0, -+, 0)€C™*| |2{| <1} .

From this, repeating the same arguments as in the Case I, we can see that
9 and 9’ are linearly equivalent and ¢=c¢’. Consider next the case where
dim¢(Aut,(B)-0)>1. We first claim that the exponent ¢’ is also zero. It is
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evident that ¢'=0 or 1/2, since dim¢(Auty($’)-0)=1 in the case ¢’ +0, 1/2.
Suppose that ¢'=1/2. Then, as we have observed in the previous paper [6], the
orbit Auty(B’)+0 is a unit ball. In particular, Aut,($’)-0 is irreducible in the
sense of Kihler geometry. On the other hand, by Theorem 3 and the fact that
B is the direct product B="U X 9. —;, we see that the orbit Aut,(B)-ois also the
direct product Aut,(B)-0=U X S, where S is a positive dimensional Hermitian
symmetric space of non-compact type. Since Aut,(B)-0 and Auty(B’)-0 are
holomorphically equivalent, this is a contradiction. Thus we have proved
that ¢’=0, and hence 9’ is also the direct product 9'=9x D= by Lemma
3.2. Since ®: D=9PXDv5-D'=9XD{=; is a biholomorphic isomor-
phism and the upper half plane O is of course a hyperbolic complex manifold
in the sense of Kobayashi [5], it follows immediately from Theorem U in section
1 that 9v=; and 91 =; are also holomorphically equivalent. Now, being isomor-
phic to a complex submanifold of 9 (resp. 9’), the domain Di = (resp. D7 1)
a hyperbolic circular domain in C™ containing the origin. Moreover, noting
the fact Do =PX Dy (resp. D' =X Di=) in our case, the domain Dv=
(resp. 9i=) has the Aut(D.=;) (resp. Aut(Di=))-invariant Kahler metric
induced from the Bergman metric of 9 (resp. 9’). Hence, it follows from
Theorem 3 that 9.—; and i = are linearly equivalent. It is now trivial that
D=9 X Dv=; and P'=9 X P’ = are linearly equivalent.

Case III: ¢ = 1/2.

In the case where dim¢(Auty(B)-0)=1, our assertion can be proved in the
same way as Case I. Next, consider the case where dim¢(Auty(B)-0)>1. We
assert that the exponent ¢’ of 9’ is also 1/2. In fact, replacing 9 by 9’ in
the second case of the Case II, this can be verified easily. As a result, two
domains 9 and 9’ are generalized Siegel domains in Cx C™ with exponent
1/2. 'Therefore, our assertion follows from the previous paper [8]. q.e.d.
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