CORRECTIONS AND SUPPLEMENTS TO
 "INDEX OF THE EXPONENTIAL MAP ON A COMPLEX SIMPLE LIE GROUP"

Heng-Lung LaI

(Received April 18, 1979)

In this note, we shall fix up some gaps in my previous papers [2] and [3], and will discuss related topics. Since [2] is a special case of [3], we may restrict our attension to [3] and will retain the notation adopted there throughout the paper.

In [3], the proofs of Lemma 1 and Proposition in Section 3 were incomplete. After some preparations, we will give a detailed proof for each of them in §3. On the way, we can see some relations between the index of a connected complex semisimple Lie group and the index of its Borel subgroup, which will be stated in the last part of this note.

I am indebted to Professor Morikuni Goto who pointed out my mistake and gave me great help to correct it.

1. On a theorem of Kostant concerning three dimensional subalgebras

Let G be a complex semisimple Lie algebra, A a nilpotent element $(\neq 0)$ in G. According to Kostant [1], we can find a semisimple h and a nilpotent B in G so that

$$
\begin{equation*}
[h, A]=A, \quad[h, B]=-B, \quad[A, B]=h . \tag{*}
\end{equation*}
$$

Furthermore, the three dimensional subalgebra $\boldsymbol{S}=\boldsymbol{C h}+\boldsymbol{C} A+\boldsymbol{C B}$ is uniquely determined by A up to conjugacy, i.e. if A is conjugate with A^{\prime}, then a three dimensional subalgebra $S^{\prime}=\boldsymbol{C} h^{\prime}+\boldsymbol{C} A^{\prime}+\boldsymbol{C} B^{\prime}$ corresponding to A^{\prime} is conjugate with S, and so is h^{\prime} to h.

Proposition B. If A is a regular nilpotent element in G (c.f. [4]), then the h satisfying $\left(^{*}\right)$ must be a regular semisimple element.

Proof. By [4], we can suppose that $A=\sum_{j=1}^{l} e_{\alpha_{j}}$. We shall choose $B \in G$

[^0]such that $h=\sum_{j=1}^{k} h_{j}, A$ and B satisfy $\left(^{*}\right)$. Notice that $\alpha_{j}(h)=1$ for $j=1, \cdots$, l, and h is regular.

Let $c_{k j}=-2\left\langle\alpha_{k}, \alpha_{j}\right\rangle \mid\left\langle\alpha_{j}, \alpha_{j}\right\rangle(k, j=1, \cdots, l)$ be Cartan integers. The Cartan matrix $\left(-r_{k j}\right)$ is known to be non-singular and so the system of linear equations

$$
\sum_{k=1}^{l} y_{k} c_{j k}=1 \quad(j=1, \cdots, l)
$$

has a unique solution y_{1}, \cdots, y_{l}. We put

$$
B=\sum_{k=1}^{i} \frac{2}{\left\langle\alpha_{k}, \alpha_{k}\right\rangle} y_{k} e_{-\alpha_{k}}
$$

Then

$$
\begin{aligned}
{[A, B] } & =\sum_{k=1}^{l} \frac{2}{\left\langle\alpha_{k}, \alpha_{k}\right\rangle} y_{k}\left[e_{\alpha_{k}}, e_{-\alpha_{k}}\right]=-\sum_{k=1}^{l} \frac{2}{\left\langle\alpha_{k}, \alpha_{k}\right\rangle} y_{k} h_{\alpha_{k}} \\
& =-\sum_{k=1}^{l} y_{k} h_{\alpha_{k}}^{*}=-\sum_{k=1}^{l} y_{k}\left(-\sum_{j=1}^{l} c_{j k} h_{j}\right) \\
& =\sum_{j=1}^{l} h_{j}=h
\end{aligned}
$$

and it is easy to see that

$$
[h, A]=A, \quad[h, B]=-B
$$

Q.E.D.

2. A key lemma

G still denotes a complex semisimple Lie algebra of rank l.
Lemma C. Let G_{1} be a semisimple subalgebra of G with the same rank l, A a nilpotent element which is regular in G_{1}. Then $z_{G}(A)$ (the centralizer of A in $G=\{x \in G ;[x, A]=0\})$ is composed of nilpotent elements.

Proof. It suffices to prove: for any nonzero semisimple element $x_{0} \in G$, A is not conjugate with any (nilpotent) element in $z_{G}\left(x_{0}\right)$.

Any semisimple element $x_{0} \in G$ is conjugate to some element h_{0} in the (fixed) Cartan subalgebra H. Moreover, if $x_{0}=A d g \cdot h_{0}$, then $z_{G}\left(x_{0}\right)=A d g \cdot z_{G}\left(h_{0}\right)$. So we may assume that $x_{0} \neq 0$ lies in H.

Next, any $x_{0} \in H$ can be expressed as $x_{0}=\sum_{j=1}^{l}\left(c_{j}+i d_{j}\right) h_{j}\left(c_{j}, d_{j} \in \boldsymbol{R}\right)$. Denote $x_{1}=\sum_{j=1}^{i} c_{j} h_{j}, x_{2}=\sum_{j=1}^{i} d_{j} h_{j}$, so that $x_{0}=x_{1}+i x_{2}$ with $x_{1}, x_{2} \in H_{0}\left(=\sum_{\alpha \in \Delta} \boldsymbol{R} h_{\alpha}=\sum_{j=1}^{i} \boldsymbol{R} h_{i}\right)$. Notice that $z_{G}\left(x_{0}\right)$ is generated by H and those e_{α} 's with $\alpha \in \Delta$ satisfying $0=\alpha\left(x_{0}\right)$ $=\alpha\left(x_{1}\right)+i \alpha\left(x_{2}\right)$, which implies that the two real numbers $\alpha\left(x_{1}\right)$ and $\alpha\left(x_{2}\right)$ must be zero, i.e. $z_{G}\left(x_{0}\right)=z_{G}\left(x_{1}\right) \cap z_{G}\left(x_{2}\right)$. By assumption, $x_{0} \neq 0$, so $x_{1} \neq 0$ or $x_{2} \neq 0$. Without loss of generality, we may assume that $x_{1} \neq 0$. Since $z_{G}\left(x_{0}\right) \subset z_{G}\left(x_{1}\right)$, to
prove the Lemma, we may replace x_{0} by x_{1}, i.e. we assume that $x_{0} \in H_{0}$.
Denote $W_{0}=\left\{x \in H_{0} ; \alpha_{j}(x)>0 j=1, \cdots, l\right\}$. Since the Weyl group $\operatorname{Ad}(\Delta)$ acts transitively on the set of Weyl chambers, any element x_{0} in H_{0} is conjugate with an element in \bar{W}_{0}. So we reduce our problem to the case that $x_{0} \in \bar{W}_{0}$, i.e. $x_{0}=y_{1} h_{1}+\cdots+y_{l} h_{l}$ with $y_{j} \geq 0(j=1, \cdots, l)$. It is easy to see that $z_{G}\left(x_{0}\right)$ is generated by H and those $e_{\alpha}{ }^{\prime} s$ with $\alpha \in \Delta$ satisfying the following condition: If $\alpha=\sum_{j=1}^{l} n_{j} \alpha_{j}$, then $n_{j}=0$ whenever $y_{j} \neq 0$; i.e. $z_{G}\left(x_{0}\right)=H+\sum_{\beta \in \Delta_{1}} \boldsymbol{C} e_{\beta}$ where $\Delta_{1}=\Delta \cap \sum_{i \in I} Z \alpha_{i}$ with $I=\left\{i ; 1 \leq i \leq l\right.$ and $\left.y_{i}=0\right\}$. The assumption $x_{0} \neq 0$ implies that y_{j} cannot be all zero, say $y_{k} \neq 0$. Thus we have $z_{G}\left(x_{0}\right) \subset z_{G}\left(h_{k}\right)$. Let us prove that a regular nilpotent element A is not conjugate with any nilpotent element in $z_{G}\left(h_{k}\right)$.

Any nilpotent element $A^{\prime} \in z_{G}\left(h_{k}\right)$ lies in $G_{2}=\left[z_{G}\left(h_{k}\right), z_{G}\left(h_{k}\right)\right]$. Let h and B (resp. h^{\prime} and B^{\prime}) be chosen to satisfy relation $\left(^{*}\right)$ for the element A (resp. A^{\prime}) in the last section. We may choose $h, B \in G_{1}$ and $h^{\prime}, B^{\prime} \in G_{2}$ (because G_{1} and G_{2} are semisimple subalgebras). It is easy to see that G_{2} has $\sum_{j \neq k} C h_{j}$ as its Cartan subalgebra, and any element $x \in \sum_{j \neq k} C h_{j}$ satisfies $\alpha_{k}(x)=0$, so x is non-regular when considered as an element in G. Therefore, the semisimple element $h^{\prime} \in G_{2}$ is non-regular in G. On the other hand, Proposition B shows that h is regular in G_{1}, so h is regular in G because $\operatorname{rank} G=\operatorname{rank} G_{1}$. Hence h cannot be conjugate with h^{\prime}. By Kostant's theorem, A cannot be conjugate with A^{\prime}. This finishes our proof.

3. Corrections to [3]

Throughout this section, we shall follow the notation used in [3].
First, we give a correct proof for Lemma 1 [3].
Let h_{0} and $\beta_{1}, \cdots, \beta_{l}$ be the same as in p. 563 [3].
The argument in p. 563 [3] proves that we can find a positive integer d and some element $h \in \Omega^{\prime}$ such that $\beta_{j}\left(d h_{0}+h\right)=0$ for $j=1, \cdots, r$, i.e. $\alpha\left(d h_{0}+h\right)=0$ for all $\alpha \in \Delta\left(h_{0}\right)$. Let d be the smallest positive integer tor this to be true, then ind $\left(\exp h_{0} \cdot \exp N\right)$ is a factor of d.

Assume that $\beta_{i}=\sum_{j=1}^{l} q_{i j} \alpha_{j}$. Consider the following system of linear equations in the unknowns y_{1}, \cdots, y_{l} :

$$
\begin{array}{ll}
q_{i 1} y_{1}+\cdots+q_{i l} y_{l}=2 \pi i k_{i} & \\
q_{i 1} y_{1}+\cdots+q_{i l} y_{l}=0 & \\
i=r+1, \cdots, r
\end{array}
$$

Since $\left(q_{i j}\right)$ is a nonsingular matrix (because $\beta_{1}, \cdots, \beta_{l}$ is linearly independent), this has a (unique) solution which is nontrivial because some $k_{i} \neq 0$ by our assumption on h_{0}.

Let $h_{0}{ }^{\prime}=\sum_{j=1}^{l} y_{j} h_{j}$, then $\beta_{1}\left(h_{0}{ }^{\prime}\right)=\beta_{1}\left(h_{0}\right), \cdots, \beta_{r}\left(h_{0}{ }^{\prime}\right)=\beta_{r}\left(h_{0}\right)$ and $\beta_{1}, \cdots, \beta_{l} \in$
$\Delta\left(h_{0}{ }^{\prime}\right)$. Suppose that d^{\prime} is the smallest positive integer for which we can find $h^{\prime} \in \Omega^{\prime}$ satisfying $\beta_{j}\left(d^{\prime} h_{0}{ }^{\prime}+h^{\prime}\right)=0$ for $j=1, \cdots, l$, then $\alpha\left(d^{\prime} h_{0}{ }^{\prime}+h^{\prime}\right)=0$ for any $\alpha \in \Delta$ because α can be written as a rational linear combination of $\beta_{1}, \cdots, \beta_{l}$ (they are linearly independent and $l=\operatorname{rank} G$), this implies that $d^{\prime} h_{0}{ }^{\prime}+h^{\prime}=0$, or $d^{\prime} h_{0}{ }^{\prime} \in \Omega^{\prime}$, and d^{\prime} is the smallest positive integer for this to hold.

On the other hand, $\beta_{j}\left(d^{\prime} h_{0}+h^{\prime}\right)=\beta_{j}\left(d^{\prime} h_{0}\right)+\beta_{j}\left(h^{\prime}\right)=\beta_{j}\left(d^{\prime} h_{0}{ }^{\prime}\right)+\beta_{j}\left(h^{\prime}\right)=$ $\beta_{j}\left(d^{\prime} h_{0}{ }^{\prime}+h^{\prime}\right)=0$ for $j=1, \cdots, r$, so that d^{\prime} must be a multiple of d, and hence a multiple of $\operatorname{ind}\left(\exp h_{0} \cdot \exp N\right)$.

The proof of Lemma 1[3] will be complete after we prove the following lemma.

Lemma 1 A. There exists a nilpotent element $N^{\prime} \in \sum_{\beta \in \Delta\left(n_{0}\right)^{+}} \boldsymbol{C} e_{\beta}$ so that

$$
\operatorname{ind}\left(\exp h_{0}{ }^{\prime} \cdot \exp N^{\prime}\right)=d^{\prime}
$$

Also, we need a more detailed discussion in the proof of section 3 [3] for that element we chose to have index exactly equal to $p_{j} \boldsymbol{m}_{\boldsymbol{j}}$.

Proof of Lemma 1 A. Recall that $h_{0}{ }^{\prime} \in H$ was chosen so that $\pi\left(h_{0}{ }^{\prime}\right)$ has cardinality $l=\operatorname{rank} G$, i.e. $G_{1}=G\left(1, A d \exp h_{0}{ }^{\prime}\right)$ is a semisimple subalgebra of G with rank l. If \mathscr{E}_{1} is the connected Lie subgroup of \mathfrak{C} with G_{1} as its Lie algebra, then $\exp h_{0}{ }^{\prime}$ is a central element in \mathscr{S}_{1}. Note that d^{\prime} as we have chosen is exactly equal to the order of this central element.

Let $N^{\prime} \in \sum_{\beta \in \Delta\left(h_{0}\right)^{\prime}+} \boldsymbol{C} e_{\beta}$ be a regular nilpotent element in G_{1}, and $g=$ $\exp h_{0}{ }^{\prime} \cdot \exp N^{\prime}$. We claim that $\operatorname{ind}(g)=d^{\prime}$.

Let q be a positive integer so that $g^{q}=\exp x$ for some $x \in G$. Consider the Jordan decomposition of $x: x=x_{0}+N_{0}$, where x_{0} is semisimple, N_{0} is nilpotent and $\left[x_{0}, N_{0}\right]=0$. The equality $\exp x_{0} \cdot \exp N_{0}=\exp x=g^{q}=\exp q h_{0}{ }^{\prime} \cdot \exp q N^{\prime}$ and the uniqueness of decomposition imply that $\exp N_{0}=\exp q N^{\prime}$. But the exponential map is one-one on the nilpotent part, so $N_{0}=q N^{\prime}$. Therefore $x=x_{0}+q N^{\prime}$ with x_{0} semisimple and $\left[x_{0}, N^{\prime}\right]=0$. Since N^{\prime} is a regular nilpotent element in the semisimple subalgebra G_{1}, which has rank $l=\operatorname{rank} G$, we conclude from Lemma C that $x_{0}=0$, i.e. $\left(\exp h_{0}{ }^{\prime}\right)^{q}=\exp x_{0}=1$. This implies that q must be a multiple of d^{\prime} and proves that $\operatorname{ind}(g)=d^{\prime}$.
Q.E.D.

A similar argument can prove the assertion we made in section 3 [3]. Let $h_{0}=2 \pi i h_{j} / m_{j}, N=\sum_{0 \leq i \leq l, i \neq j} e_{\alpha_{i}}, N$ is a regular nilpotent element in the semisimple subalgebra $G_{1}=G\left(1, A d \exp h_{0}\right)$, and rank $G_{1}=l=\operatorname{rank} G$.

Let $g=\exp h_{0} \cdot \exp N$. If q is a positive integer so that $g^{q}=\exp x$ for some $x \in G$, then $x=x_{0}+q N$ with x_{0} semisimple satisfying $\left[x_{0}, N\right]=0$. Apply Lemma C again, we conclude that $x_{0}=0$, so $\left(\exp h_{0}\right)^{q}=\exp x_{0}=1$. This implies that $q h_{0} \in \Omega^{*}$, the smallest q for this to hold is $p_{j} m_{j}$, so that $\operatorname{ind}(g)=p_{j} m_{j}$.

This gives a complete proof for the main theorem in [3].

4. ind $(\mathfrak{F})(\mathfrak{B}$ denotes a Borel subgroup of (\mathbb{E})

In this section, we let $\mathbb{E S}$ be a connected complex semisimple Lie group, \mathfrak{B} a Borel subgroup of $\mathfrak{C S}$ (it is well known that \mathfrak{B} is uniquely determined up to conjugacy). We like to study the relation between $\operatorname{ind}_{\mathfrak{B}}(g)$ and $\operatorname{ind}_{\mathfrak{F}}(g)$ for $g \in \mathfrak{B}$, where ind $\mathfrak{B}(g)$ (resp. ind (g)) denotes the index of g regarded as an element in \mathfrak{B} (resp. in (E)). Clearly, $\operatorname{ind}_{\mathfrak{B}}(g) \geq$ ind $_{\mathfrak{G}}(g)$ for any $g \in \mathfrak{B}$.

We may assume that the Lie subalgebra B corresponding to \mathfrak{B} is given by $B=H+\sum_{\omega \in \Delta}+\boldsymbol{C} e_{\alpha}$.

Any element in \mathfrak{B} can be $\operatorname{expressed}$ as $\exp h_{0} \cdot \exp N$ with $\exp h_{0} \cdot \exp N=$ $\exp N \cdot \exp h_{0}$. In the proof of Lemma 1[3], we may choose $\beta_{1}, \cdots, \beta_{l}$ from Δ^{+}, so that the discussion can be restricted on B. We have proved that ind (g) is a factor of d^{\prime}. Moreover, for the particular element $h_{0}{ }^{\prime}$ we chose and the corresponding regular nilpotent element N^{\prime} in $\sum_{\beta \in \Delta\left(h_{0}\right)^{+}} \boldsymbol{C} e_{\beta}\left(\subset \sum_{\alpha \in \Delta}+\boldsymbol{C} e_{\alpha}\right)$, $\operatorname{ind}_{\mathfrak{G}}\left(\exp h_{0}{ }^{\prime} \cdot \exp N^{\prime}\right)=d^{\prime}$. But it is clear that

$$
\left(\exp h_{0} \cdot \cdot \exp N^{\prime}\right)^{d^{\prime}}=\exp d^{\prime} N^{\prime} \in \mathfrak{B}
$$

and $\left(\exp h_{0} \cdot \exp N\right)^{d}=\exp \left(d h_{0}+h+d N\right) \in \mathfrak{B} \quad$ (for some $\left.h \in \Omega^{\prime}\right)$. Therefore ind $\left(\exp h_{0} \cdot \exp N\right)$ is also a factor of d^{\prime} and $\operatorname{ind} \mathfrak{B}\left(\exp h_{0}^{\prime} \cdot \exp N^{\prime}\right)=d^{\prime}$. We have proved the following:

For any $g \in \mathfrak{B}$, we can find $g^{\prime} \in \mathfrak{B}$, so that ind $\mathfrak{B}(g)$, as well as ind $\mathfrak{G}(g)$ is a factor of ind $\mathfrak{B}\left(g^{\prime}\right)=\operatorname{ind} \mathfrak{s}\left(g^{\prime}\right)$.

If ind $\mathfrak{B}\left(g^{\prime}\right)=\operatorname{ind} \mathfrak{G}\left(g^{\prime}\right)=d=q r$, then c^{\prime} early $\operatorname{ind} \mathfrak{B}\left(g^{\prime q}\right)=$ ind $\mathfrak{G}\left(g^{\prime q}\right)=r$. We conclude that:

Proposition. If \mathbb{C} is a connected complex semisimple Lie group, \mathfrak{B} its Borel subgroup, then $\{$ ind $\mathfrak{B}(g) ; g \in \mathfrak{B}\}=\{$ ind $(g) ; g \in \mathfrak{B}\}=\{$ ind $(g)(g) ; g \in \mathscr{C}\}$. In particular ind $(\mathfrak{B})=$ ind (\mathbb{S}).

This is also true for a connected complex reductive Lie group.
Remark. It is not clear to me whether ind $\mathfrak{B}(g)=\operatorname{ind} \mathfrak{s}(g)$ for any $g \in \mathfrak{B}$.

Bibliography

[1] B. Kostant: The principal three dimensional subgroups and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.
[2] H.L. Lai: Index of the exponential map of a center-free complex simple Lie group, Osaka J. Math. 15 (1978), 553-560.
[3] H.L. Lai: Index of the exponential map on a complex simple Lie group, Osaka J. Math. 15 (1978), 561-567.
[4] T.A. Springer \& R. Steinberg: Conjugacy classes. In: Seminar on Algebraic Groups and Related Finite Groups, ed. A. Borel, Lecture Notes in Math. 131, pp. 167-266, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[5] R. Steinberg: Conjugacy classes in algebraic groups, Lecture Notes in Math. 366, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

Department of Mathematics
National Tsing Hua University
Hsinchu, Taiwan 300
Republic of China

[^0]: Partially supported by the National Science Council, Republic of China.

