ON THE HOMOTOPY GROUP $\pi_{2 n+9}(\mathbf{U}(\mathbf{n}))$ FOR $n \geqq 6$

Hideaki ŌSHIMA

(Received April 16, 1979)

The homotopy groups $\pi_{2 n+i}(U(n))$ of the unitary group $U(n)$ for $0 \leqq i \leqq 8$, $i=10$ and 12 were determined by Borel and Hirzebruch [2], Bott [3], Kervaire [7], Toda [22, 23], Matsunaga [8-12], Mimura and Toda [13], Mosher [14, 15], and Imanishi [6]. For $n \geqq 5$ and $i=9,11$ or 13 the odd components were determined by [12] and [6], but the 2-component had not been completely determined. Indeed Mosher [15] has not determined some group extensions which appear in case of $i=9$ only if $n \equiv 2,4$ or $6 \bmod (8)$ and $n \geqq 6$. In this note we shall determine these group extensions for $i=9 . \pi_{2 n+9}(U(n))$ for $n \leqq 5$ was determined by [6], [13], [15] and [23]. Therefore we shall complete the computation of $\pi_{2 n+9}(U(n))$. While the group $\pi_{2 n+9}(U(n))$ has been computed by Vastersavendts [24] for $n \equiv 0 \bmod (4), 6 \bmod (8)$ or $2 \bmod (16)$, her results contradict Mosher's [15] and ours for $n \equiv 0 \bmod (16)$ and $n \equiv 6 \bmod (8)$ respectively.

We shall prove
Theorem. The 2-component of $\pi_{2 n+9}(U(n))$ for $n \equiv 2,4$ or $6 \bmod (8)$ and $n \geqq 6$ is given by the following table:

$n \bmod ()$	$\pi_{2 n+9}(U(n))$
$2(16)$	$Z_{2} \oplus Z_{4} \oplus Z_{2}$
$10(32)$	$Z_{2} \oplus Z_{4} \oplus Z_{4}$
$26(64)$	$Z_{2} \oplus Z_{4} \oplus Z_{8}$
$58(64)$	$Z_{2} \oplus Z_{4} \oplus Z_{16}$
$4(8)$	$Z_{2} \oplus Z_{2} \oplus Z_{8}$
$6(8)$	$Z_{2} \oplus Z_{4}$

where $Z_{m}=Z / m Z$ is the cyclic group of order m.
We shall use the notations and terminologies defined in [20] or the book of Toda [23] without any reference.

[^0]
1. Method of computation

By Theorem 4.3 of Toda [22] we know that $\pi_{2 n+9}(U(n))$ is isomorphic to the stable homotopy group $\pi_{2 n+9}^{s}\left(P_{n+6,6}\right)$ of the stunted complex projective space $P_{n+6,6}=P_{n+6} / P_{n}$ if $n \geqq 5$. We shall compute $\pi_{2 n+9}^{s}\left(P_{n+6,6}\right)$.

Consider the canonical cofibration

$$
S^{2(n+k)-3} \xrightarrow{P_{n+k-1, k-1}} P_{n+k-1, k-1} \xrightarrow{i_{1}} P_{n+k, k} \xrightarrow{q_{k-1}} S^{2(n+k)-2}
$$

and the associated exact sequence
$(S)_{k}:$

$$
\begin{aligned}
\cdots \rightarrow & G_{i-2 k+2} \xrightarrow{P_{*}} \pi_{2 n-1+i}^{s}\left(P_{n+k-1, k-1}\right) \xrightarrow{i_{1 *}} \\
& \pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right) \xrightarrow{q_{*}} G_{i-2 k+1} \xrightarrow{P_{*}} \cdots .
\end{aligned}
$$

We set the two steps of computation:
(1) determine the $G_{*-m o d u l e ~ s t r u c t u r e ~ o f ~} \pi_{*}^{s}\left(P_{n+k-1, k-1}\right)$,
(2) describe $p_{n+k-1, k-1} \in \pi_{2(n+k)-3}^{s}\left(P_{n+k-1, k-1}\right)$ explicitly.

If these two are possible, we know $\pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right)$ up to group extension

$$
0 \rightarrow \text { Cokernel of } p_{*} \rightarrow \pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right) \rightarrow \text { Kernel of } p_{*} \rightarrow 0 .
$$

To determine this group extension, we prepare a lemma.
Lemma 1 (cf. Theorem 2.1 of [13]). Let $A \xrightarrow{f} X \xrightarrow{i} C(f)$ be a cofibration and

$$
\cdots \rightarrow \pi_{n}^{s}(X) \xrightarrow{i_{*}} \pi_{n}^{s}(C(f)) \xrightarrow{\Delta} \pi_{n-1}^{s}(A) \xrightarrow{f_{*}} \pi_{n-1}^{s}(X) \rightarrow \cdots
$$

an associated stable exact sequence. Assume that $\alpha \in \pi_{n-1}^{s}(A)$ satisfies $f_{*}(\alpha)=0$, and the order of α is k. For an arbitrary element β of $\langle f, \alpha, k \iota\rangle \subset \pi_{n}^{s}(X)$, there exists an element $[\alpha] \in \pi_{n}^{s}(C(f))$ such that

$$
\Delta([\alpha])=\alpha \quad \text { and } \quad i_{*}(\beta)=-k[\alpha] .
$$

Proof. By definition of Toda bracket, there exists a commutative stable diagram with $\beta=a \circ b$:

Then we may put $[\alpha]=-a^{\prime}$.

For the above (2), we consider $(S)_{k}$ for $i=2 k-2$:

$$
\pi_{2(n+k)-2}^{s}\left(P_{n+k, k}\right) \xrightarrow{q_{*}} G_{0} \xrightarrow{P_{*}} \pi_{2(n+k)-3}^{s}\left(P_{n+k-1, k-1}\right) .
$$

The exactness of this shows that

$$
\# p_{n+k-1, k-1}=\#\left(\text { Cokernel of } q_{*}\right) .
$$

On the other hand by (4.5) of [20] we know that

$$
\begin{aligned}
\#\left(\text { Cokernel of } q_{*}\right) & =Q^{s}\{n+k, k\} \\
& =C\left\{j M_{k}(C)-n-k, k\right\} \quad \text { for large } j
\end{aligned}
$$

and this number was determined for $k \leqq 8$ in (3.1) of [20]. We shall need the 2 -component of this number for $k=5$ and 6 . Let $\nu_{2}(m)$ be the exponent of 2 in the factorization of an integer m into the prime powers.

Lemma $2\left((3.1)\right.$ of [20]). $\nu_{2}\left(\# p_{n+4,4}\right)$ and $\nu_{2}\left(\# p_{n+5,5}\right)$ are given by the following table:

$\nu_{2}\left(\# p_{n+4,4}\right)$	$n \bmod ()$	$\nu_{2}\left(\# p_{n+5,5}\right)$	$n \bmod ()$
4	$4,6(8)$	4	$4,6(8)$
3	$0(8), 2(16)$	3	$0,2(16)$
2	$10(16)$	2	$8(16), 10(32)$
		1	$26(64)$
		0	$58(64)$

Considering the above (1) and (2), we shall compute inductively $\pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right)$ for $k \leqq 6$ and some $i \leqq 10$. Since the suspension $E P_{n+k, k}$ is $2 n$-connected and the pair ($W_{n+k, k}, E P_{n+k, k}$) is ($4 \boldsymbol{n}+3$)-connected, it follows that $\pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right)$ is isomorphic to $\pi_{2 n+i}\left(W_{n+k, k}\right)$ for $i \leqq 2 n$, where $W_{n+k, k}=U(n+k) /$ $U(n)$ is the complex Stiefel manifold. Nomura and Furukawa [16] have computed $\pi_{2 n+i}\left(W_{n+k, k}\right)$ for $k=2,3$ and $i \leqq 21,19$ respectively. Therefore we already know $\pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right) 2 \leqq k \leqq 3$ and $i \leqq 10$. But informations for (1) from [16] are not sufficient for our purpose. So we shall recompute some $\pi_{2 n-1+i}^{s}\left(P_{n+k, k}\right)$ for $k \leqq 3$.

2. Computation

From now on, n means always an even integer $\geqq 6, \pi_{*}^{s}()$ and G_{*} often denote only the 2 -primary component of itself. We work in the stable category of pointed spaces and stable maps between them.

Since $p_{n+1,1}=n \eta=0$, it follows that $P_{n+2,2}=S^{2 n} \vee S^{2 n+2}$. Let $s: S^{2 n+2} \rightarrow$ $p_{n+2,2}$ be an inclusion map which is a right inverse of q_{1}. Then

$$
\begin{equation*}
i_{1 *}+s_{*}: G_{i-1} \oplus G_{i-3} \rightarrow \pi_{2 n-1+i}^{s}\left(P_{n+2,2}\right) \quad \text { is an isomorphism. } \tag{2.1}
\end{equation*}
$$

By the proof of (1.11), (i) of (1.13) and (1.14) of [20], we have

$$
p_{n+2,2}=(n / 2) i_{1 *}\left(\nu+\alpha_{1}\right)+s_{*} \eta: S^{2 n+3} \rightarrow P_{n+2,2}=S^{2 n} \vee S^{2 n+2} .
$$

Put

$$
e_{n}= \begin{cases}1 & \text { if } n \equiv 0 \bmod (4) \\ 2 & \text { if } n \equiv 2 \bmod (4)\end{cases}
$$

Then by (2.1) and $(S)_{3}$ for $i=8$, we have a short exact sequence

$$
0 \rightarrow Z_{16}\left\{i_{2 *} \sigma\right\} \rightarrow \pi_{2 n+7}^{s}\left(P_{n+3,3}\right) \rightarrow Z_{8 / e_{n}}\left\{e_{n} \nu\right\} \rightarrow 0
$$

We have

$$
\begin{aligned}
& \left\langle p_{n+2,2}, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle=\left\langle(n / 2) i_{1 *} \nu, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle+\left\langle s_{*} \eta, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle \\
& \quad \supset i_{1 *}\left\langle(n / 2) \nu, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle+s_{*}\left\langle\eta, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle \\
& \quad \supset i_{1 *}\left\{\left(n e_{n} / 4\right)\left\langle\left(2 / e_{n}\right) \nu, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle\right\} \\
& \quad \ni 0
\end{aligned}
$$

since $\left\langle\eta, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle \subset G_{5}=0$ and $\left\langle\left(2 / e_{n}\right) \nu, e_{n} \nu,\left(8 / e_{n}\right) \iota\right\rangle \ni 0$ (see e.g. [16]). Therefore by Lemma 1 the above short exact sequence splits, that is, there exists $\left[e_{n} \nu\right] \in \pi_{2 n+7}^{s}\left(P_{n+3,3}\right)$ with $q_{2 *}\left[e_{n} \nu\right]=e_{n} \nu$ and

$$
\begin{equation*}
\pi_{2 n+7}^{s}\left(P_{n+3,3}\right)=Z_{16}\left\{i_{2 *} \sigma\right\} \oplus Z_{8 / e_{n}}\left\{\left[e_{n} \nu\right]\right\} \tag{2.2}
\end{equation*}
$$

It follows from $(S)_{3}$ for $i=9$ that $i_{1 *}: \pi_{2 n+8}^{s}\left(P_{n+2,2}\right) \rightarrow \pi_{2 n+8}^{s}\left(P_{n+3,3}\right)$ is an isomorphism. Hence by (2.1) we have

$$
\begin{equation*}
\pi_{2 n+8}^{s}\left(P_{n+3,3}\right)=Z_{2}\left\{i_{2 *} \varepsilon\right\} \oplus Z_{2}\left\{i_{2 *} \bar{\nu}\right\} \oplus Z_{2}\left\{i_{1 *} s_{*} \nu^{2}\right\} \tag{2.3}
\end{equation*}
$$

From (2.1) and $(S)_{3}$ for $i=10$ it follows that

$$
\begin{equation*}
\pi_{2 n+9}^{s}\left(P_{n+3,3}\right)=Z_{16}\left\{i_{1 *} s_{*} \sigma\right\} \oplus Z_{2}\left\{i_{2 *} \mu\right\} \oplus Z_{2}\left\{i_{2 *} \eta \varepsilon\right\} \oplus Z_{2 / e_{n}}\left\{i_{2 *} \nu^{3}\right\} \tag{2.4}
\end{equation*}
$$

Analysing $p_{n+k, k}$ for $k=3,4$ and 5 , we consider the followings. Put

$$
L_{m, k}= \begin{cases}1 & \text { if } m+k \equiv 1 \bmod (2) \\ 2 & \text { if } m+k \equiv 0 \bmod (2)\end{cases}
$$

Then, since $L_{m, k}(m+k-1) \equiv 0 \bmod (2), q_{l-1 *}\left(L_{m, k} p_{m+k, l}\right)=L_{m, k}(m+k-1) \eta=0$ and hence $i_{1 *}^{-1}\left(L_{m, k} p_{m+k, l}\right)$ is not empty for $1<l<m+k$, and
$(T)_{k}$

$$
i_{1 *}^{-1}\left(L_{m, k} p_{m+k, k}\right)=i_{1 *}^{-1}\left(L_{m, k} q_{m-1 *} p_{m+k}\right) \supset q_{m-1 *} i_{1 *}^{-1}\left(L_{m, k} p_{m+k}\right)
$$

and by (1.15) of [20]
$(T)_{k}^{\prime}$

$$
\begin{aligned}
& q_{k-2 *} q_{m-1 *} i_{1 *}^{-1}\left(L_{m, k} p_{m+k}\right) \\
&=q_{m+k-3 *} i_{1 *}^{-1}\left(L_{m, k} p_{m+k}\right) \\
&=\left\{\begin{array}{l}
(m+k-2)\left(\nu+\alpha_{1}\right) \quad \text { if } m+k \equiv 0 \bmod (2) \\
\left\{(1 / 2)(m+k+1)\left(\nu+\alpha_{1}\right),(1 / 2)(m+k+1)\left(\nu+\alpha_{1}\right)+4 \nu\right\}
\end{array}\right. \\
& \text { if } m+k \equiv 1 \bmod (2) .
\end{aligned}
$$

Now $q_{1 *}=s_{*}^{-1}: \pi_{2 n+5}^{s}\left(P_{n+2,2}\right) \Longrightarrow \pi_{2 n+5}^{s}\left(S^{2 n+2}\right)=G_{3}$ by (2.1), since $q_{1} \circ s=1$. Then by $(T)_{3}^{\prime}$

$$
q_{n-1 *} i_{1 *}^{-1}\left(p_{n+3}\right) \ni((n+4) / 2) s_{*}\left(\nu+\alpha_{1}\right)
$$

and by $(T)_{3}$

$$
p_{n+3,3}=((n+4) / 2) i_{1 *} s_{*}\left(\nu+\alpha_{1}\right)
$$

so that $p_{n+3,3} \circ \eta=0$ and

$$
\left\langle p_{n+3,3}, \eta, 2 \iota\right\rangle \supset i_{1 *} s_{*}\langle((n+4) / 2) \nu, \eta, 2 \iota\rangle=0
$$

and by Lemma 1 there exists $[\eta] \in \pi_{2 n+7}^{s}\left(P_{n+4,4}\right)$ with $q_{3 *}[\eta]=\eta$ and

$$
\begin{equation*}
\pi_{2 n+7}^{s}\left(P_{n+4,4}\right)=Z_{16}\left\{i_{3 * \sigma} \sigma\right\} \oplus Z_{8 / e_{n}}\left\{i_{1 *}\left[e_{n} \nu\right]\right\} \oplus Z_{2}\{[\eta]\} \tag{2.5}
\end{equation*}
$$

We have also the following from (2.3) and $(S)_{4}$ for $i=9$

$$
\begin{equation*}
\pi_{2 n+8}^{s}\left(P_{n+4,4}\right)=Z_{2}\left\{i_{3 *} \varepsilon\right\} \oplus Z_{2}\left\{i_{3 *} \bar{\nabla}\right\} \oplus Z_{2 / e_{n}}\left\{i_{2 *} s_{*} \nu^{2}\right\} \oplus Z_{2}\{[\eta] \eta\} . \tag{2.6}
\end{equation*}
$$

By the same argument as the proof of (2.2) we know that there exists $\left[\left[e_{n} \nu\right]\right] \in \pi_{2 n+9}^{s}\left(P_{n+4,4}\right)$ with $q_{3 *}\left[\left[e_{n} \nu\right]\right]=e_{n} \nu$ and

$$
\begin{align*}
\pi_{2 n+9}^{s}\left(P_{n+4,4}\right)=Z_{16}\left\{i_{2 *} s_{*} \sigma\right\} & \oplus Z_{2}\left\{i_{3 *} \mu\right\} \oplus Z_{2}\left\{i_{3 *} \eta \varepsilon\right\} \tag{2.7}\\
& \oplus Z_{2 / e_{n}}\left\{i_{3 *} \nu^{3}\right\} \oplus Z_{8 / e_{n}}\left\{\left[\left[e_{n} \nu\right]\right]\right\} .
\end{align*}
$$

To compute $\pi_{2 n+9}^{s}\left(P_{n+5,5}\right)$ we shall prepare four lemmas.
Remember that in [20] we used the notations: $H P_{m+k, k}=H P_{m+k} / H P_{m}$, the stunted quaternionic projective space; $\pi: P_{2 m+2 k, 2 k} \rightarrow H P_{m+k, k}$, the canonical quotient map;

$$
\begin{equation*}
S^{2 n+4 k-1} \xrightarrow{p_{(n / 2)+k, k}^{H}} H P_{(n / 2)+k, k} \xrightarrow{i_{1}^{H}} H P_{(n / 2)+k+1, k+1} \tag{2.8}
\end{equation*}
$$

the canonical cofibration.
Lemma 3. We have
(i) $\pi_{2 n+7}^{s}\left(H P_{(n / 2)+2,2}\right)=Z_{16}\left\{i_{1 *}^{H} \sigma\right\} \oplus Z_{8 / e_{n}}\left\{\pi_{*} i_{1 *}\left[e_{n} \nu\right]\right\}$,
(ii) $\pi_{2 n+8}^{s}\left(H P_{(n / 2)+2,2}\right)=Z_{2}\left\{i_{1 *}^{H} \varepsilon\right\} \oplus Z_{2}\left\{i_{1 *}^{H} \bar{\nu}\right\}$,
(iii) $\pi_{2 n+9}^{s}\left(H P_{(n / 2)+2,2}\right)=Z_{2}\left\{i_{1 * \mu}^{H} \mu\right\} \oplus Z_{2}\left\{i_{1 *}^{H} \eta \varepsilon\right\} \oplus Z_{2 / e_{n}}\left\{i_{1 * *}^{H} \nu^{3}\right\}$,
(iv) $p_{(n / 2)+2,2}^{H} \circ \eta= \begin{cases}i_{1 *}^{H} \varepsilon & \text { if } n \equiv 2 \bmod (8) \\ i_{1 *}^{H} & \text { if } n \equiv 4 \bmod (8) \\ i_{1 *}^{H}(\varepsilon+\bar{\nu}) & \text { if } n \equiv 6 \bmod (8) \\ 0 & \text { if } n \equiv 0 \bmod (8) .\end{cases}$

Proof. Considering the stable homotopy exact sequence associated with (2.8) for $k=1$, we obtain (ii) and (iii) immediately since $G_{4}=G_{5}=0$ and $p_{(n / 2)+1,1}^{H}$ $=(n / 2)\left(\nu+\alpha_{1}\right)$ and by Lemma 1 we have a split exact sequence:

$$
0 \rightarrow Z_{16}\left\{i_{1 *}^{H} \sigma\right\} \rightarrow \pi_{2 n+7}^{s}\left(H P_{(n / 2)+2,2}\right) \rightarrow Z_{8 / e_{n}}\left\{e_{n} \nu\right\} \rightarrow 0
$$

Then the following commutative diagram induces (i):

Since $q_{1}^{H} \circ p_{(n / 2)+2,2}^{H} \circ \eta=((n / 2)+1)\left(\nu+\alpha_{1}\right) \eta=0$, there exists a map $f: S^{2 n+8} \rightarrow S^{2 n}$ with $i_{1}^{H} \circ f=p_{(n / 2)+2,2^{\circ}}{ }^{\circ} \eta$. It is easily seen that $i_{1}^{H *}:\left\{H P_{(n / 2)+2,2}, S^{2 n-1}\right\} \rightarrow\left\{S^{2 n}\right.$, $\left.S^{2 n-1}\right\}=Z_{2}\{\eta\}$ is an isomorphism. Let $h \in\left\{H P_{(n / 2)+2}, S^{2 n-1}\right\}$ be the element with $h \circ i_{1}^{H}=\eta$. It follows from (2.7) of [21] that

$$
h \circ p_{(n / 2)+2,2}^{H}= \begin{cases}\varepsilon & \text { if } n \equiv 2 \bmod (8) \\ \bar{\nu} & \text { if } n \equiv 4 \bmod (8) \\ \varepsilon+\bar{\nu} & \text { if } n \equiv 6 \bmod (8) \\ 0 & \text { if } n \equiv 0 \bmod (8)\end{cases}
$$

Since $\eta \circ f=h \circ \rho_{(n / 2)+2,2^{\prime}}^{H} \eta$ and $\eta \circ: G_{8} \rightarrow G_{9}$ is a monomorphism, we obtain (iv). This completes the proof of Lemma 3.

Lemma 4. For suitably chosen $\left[\left[e_{n} \nu\right]\right]$ it holds that $[\eta] \eta^{2}=\left(4 / e_{n}\right)\left[\left[e_{n} \nu\right]\right]$.
Proof. By Proposition 1.4 of Toda [23]

$$
\begin{equation*}
[\eta] \eta^{2}=[\eta] \circ\langle 2 \iota, \eta, 2 \iota\rangle=\langle[\eta], 2 \iota, \eta\rangle \circ 2 \iota . \tag{2.9}
\end{equation*}
$$

Let Indet $\langle\alpha, \beta, \gamma\rangle$ be an indeterminacy of a Toda bracket $\langle\alpha, \beta, \gamma\rangle$. Then

$$
\begin{aligned}
\pi_{2 n+9}^{s}\left(P_{n+4,4}\right) \supset \operatorname{Indet}\langle[\eta], 2 \iota, \eta\rangle & =[\eta] \circ\left\{S^{2 n+9}, S^{2 n+7}\right\}+\pi_{2 n+8}^{s}\left(P_{n+4,4}\right) \circ \eta \\
& =Z_{2}\left\{[\eta] \eta^{2}\right\}+Z_{2}\left\{i_{3 *} \eta \varepsilon\right\}+Z_{2 / e_{n}}\left\{i_{3 *} \nu^{3}\right\}
\end{aligned}
$$

and

$$
q_{3 *} \operatorname{Indet}\langle[\eta], 2 \iota, \eta\rangle=Z_{2}\left\{\eta^{3}\right\}=Z_{2}\{4 \nu\}=\operatorname{Indet}\langle\eta, 2 \iota, \eta\rangle
$$

and, since $q_{3 *}\langle[\eta], 2 \iota, \eta\rangle \subset\left\langle q_{3 *}[\eta], 2 \iota, \eta\right\rangle=\langle\eta, 2 \iota, \eta\rangle$, we have

$$
q_{3 *}\langle[\eta], 2 \iota, \eta\rangle=\langle\eta, 2 \iota, \eta\rangle=\{2 \nu, 6 \nu\} .
$$

Hence there exists an element in $\langle[\eta], 2 \iota, \eta\rangle$ which is mapped to 2ν by $q_{3 *}$. By (2.7) this element has a form as $\left(2 / e_{n}\right)\left[\left[e_{n} \nu\right]\right]+i_{1 *} x$ for some $x \in \pi_{2 n+9}^{s}\left(P_{n+3,3}\right)$, and from (2.9) it follows that $4 i_{1 *} x=0$. Then by (2.7) $2 i_{1 *} x$ is divisible by 8 , that is, $2 i_{1 *} x=8 i_{1 *} y$ for some $y \in \pi_{2 n+9}^{s}\left(P_{n+3,3}\right)$. Then

$$
\begin{aligned}
{[\eta] \eta^{2} } & =2\left\{\left(2 / e_{n}\right)\left[\left[e_{n} \nu\right]\right]+i_{1 *} x\right\} \\
& =\left(4 / e_{n}\right)\left(\left[\left[e_{n} \nu\right]\right]+2 e_{n} i_{1} * y\right) .
\end{aligned}
$$

Since $q_{3 *}\left(\left[\left[e_{n} \nu\right]\right]+2 e_{n} i_{1 *} y\right)=e_{n} \nu$ and the order of $\left[\left[e_{n} \nu\right]\right]+2 e_{n} i_{1 *} y$ is $8 / e_{n}$, we may change $\left[\left[e_{n} \nu\right]\right]$ for $\left[\left[e_{n} \nu\right]\right]+2 e_{n} i_{1 *} y$. So the conclusion follows.

Appointment: From now on we assume that $\left[\left[e_{n} \nu\right]\right]$ satisfies $[\eta] \eta^{2}=$ $\left(4 / e_{n}\right)\left[\left[e_{n} \nu\right]\right]$.

Since $q_{3} \circ{ }_{1} n+4,4=(n+3) \eta=\eta$, by (2.5) we can put

$$
p_{n+4,4}=a_{n} i_{3 *} \sigma+b_{n} i_{1 *}\left[e_{n} \nu\right]+[\eta]+\text { odd torsion }
$$

for some integers a_{n} and b_{n}. By Lemma 2 and (2.5) we have

$$
a_{n} \equiv \begin{cases}1 \bmod (2) & \text { if } n \equiv 4 \text { or } 6 \bmod (8) \tag{2.10}\\ 0 \bmod (2) & \text { if } n \equiv 0 \text { or } 2 \bmod (8)\end{cases}
$$

By $(T)_{4}$, and $(T)_{4}^{\prime}$, for any $p^{\prime} \in q_{n-1 *} i_{1 *}^{-1}\left(2 p_{n+4}\right) \subset \pi_{2 n+7}^{s}\left(P_{n+3,3}\right)$ we have

$$
i_{1} \circ \rho^{\prime}=2 p_{n+4,4} \quad \text { and } \quad q_{2} \circ p^{\prime}=(n+2)\left(\nu+\alpha_{1}\right) .
$$

Then $p^{\prime}=2 a_{n} i_{2 *} \sigma+2 b_{n}\left[e_{n} \nu\right]+$ odd torsion. Applying $q_{2 *}$ to this equation we know that $2 b_{n} e_{n} \equiv n+2 \bmod (8)$, and

$$
b_{n} \equiv \begin{cases}1 \bmod (2) & \text { if } n \equiv 0 \bmod (4) \text { or } 2 \bmod (8) \tag{2.11}\\ 0 \bmod (2) & \text { if } n \equiv 6 \bmod (8)\end{cases}
$$

Lemma 5. We have

$$
\begin{aligned}
& {[2 \nu] \eta=\left\{\begin{array}{ll}
i_{2 *} \varepsilon & \text { if } n \equiv 2 \bmod (8) \\
i_{2 *} \varepsilon \text { or } i_{2 *^{\bar{\nu}}} & \text { if } n \equiv 6 \bmod (8)
\end{array},\right. \text { and }} \\
& {[\nu] \eta=(n / 4) i_{2 *} \varepsilon+i_{1 *} s_{*} \nu^{2}} \\
& \text { if } n \equiv 0 \bmod (4)
\end{aligned}
$$

Proof. By Lemma 1 we can easily construct a commutative diagram:

Then $a \circ b \in\left\langle p_{n+2,2}, e_{n} \nu, \eta\right\rangle$ and this Toda backet is a coset of

$$
\begin{aligned}
& \pi_{2 n+8}^{s}\left(P_{n+2,2}\right) / \pi_{2 n+7}^{s}\left(P_{n+2,2}\right) \circ \eta \\
& \quad=\left[Z_{2}\left\{i_{1 *} \varepsilon\right\} \oplus Z_{2}\left\{i_{1 *} \bar{\nu}\right\} /\left\{0, i_{1 *}(\varepsilon+\bar{\nu})\right\}\right] \oplus Z_{2}\left\{s_{*} \nu^{2}\right\}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left\langle p_{n+2,2}, e_{n} \nu, \eta\right\rangle=\left\langle(n / 2) i_{1 *} \nu, e_{n} \nu, \eta\right\rangle+\left\langle s_{*} \eta, e_{n} \nu, \eta\right\rangle \\
& \quad \supset i_{1 *}\left\{\left(n e_{n} / 4\right)\left\langle\left(2 \mid e_{n}\right) \nu, e_{n} \nu, \eta\right\rangle\right\}+s_{*}\left\langle\eta, e_{n} \nu, \eta\right\rangle \\
& \quad \ni\left(n e_{n} / 4\right) i_{1 *} \varepsilon+e_{n} s_{*} \nu^{2}
\end{aligned}
$$

since $\left\langle\left(2 \mid e_{n}\right) \nu, e_{n} \nu, \eta\right\rangle=\varepsilon+G_{7} \circ \eta$ and $\left\langle\eta, e_{n} \nu, \eta\right\rangle=e_{n} \nu^{2}$ by Toda [23]. Hence

$$
\begin{align*}
{\left[e_{n} \nu\right] \eta } & =i_{1 *}(a \circ b) \tag{2.12}\\
& =\left(n e_{n} / 4\right) i_{2 *} \varepsilon+e_{n} i_{1 *} s_{*} \nu^{2} \text { or }\left(\left(n e_{n} / 4\right)+1\right) i_{2 *} \varepsilon+i_{2 *} \bar{\nu}+e_{n} i_{1 *} s_{*} \nu^{2}
\end{align*}
$$

Thus Lemma 5 follows if $n \equiv 6 \bmod (8)$. By Lemma 4

$$
\begin{equation*}
p_{n+4,4} \circ \eta^{2}=a_{n} i_{3 *}\left(\eta \varepsilon+\nu^{3}\right)+b_{n} i_{1 *}\left[e_{n} \nu\right] \eta^{2}+\left(4 / e_{n}\right)\left[\left[e_{n} \nu\right]\right] \tag{2.13}
\end{equation*}
$$

and by (iii) of Lemma 3 , the fact $4 / e_{n} \equiv 0 \bmod (2)$ and the commutativity of the diagram in the proof of Lemma 3 it follows that

$$
\begin{aligned}
p_{(n / 2)+2,2}^{H} \circ \eta^{2} & =\pi \circ p_{n+4,4} \circ \eta^{2} \\
& =a_{n} i_{1 *}^{H}\left(\eta \varepsilon+\nu^{3}\right)+b_{n} \pi_{*} i_{1 *}\left[e_{n} \nu\right] \eta^{2} .
\end{aligned}
$$

Then the conclusions for $n \neq 6 \bmod (8)$ follow from (iii) and (iv) of Lemma 3, (2.10), (2.11) and (2.12). This completes the proof of Lemma 5.

Lemma 6. We have

$$
p_{n+4,4} \circ \eta^{2}= \begin{cases}i_{3 *} \eta \varepsilon+2[[2 \nu]] & \text { if } n \equiv 2 \bmod (4) \\ (n / 4) i_{3 *} * \nu^{3}+4[[\nu]] & \text { if } n \equiv 0 \bmod (4) .\end{cases}
$$

Proof. The conclusion follows from (2.7), (2.10), (2.11), Lemma 5 and (2.13).

Now we compute $\pi_{2 n+9}^{s}\left(P_{n+5,5}\right)$. Since $p_{n+4,4} \circ \eta=[\eta] \eta+($ other term $)$ is nonzero, it follows from (2.7), Lemma 6 and $(S)_{5}$ for $i=10$ that

$$
\begin{equation*}
\pi_{2 n+9}^{s}\left(P_{n+5,5}\right)=Z_{16}\left\{i_{3 *} s_{*} \sigma\right\} \oplus Z_{2}\left\{i_{4 *} \mu\right\} \oplus H_{n} \tag{2.14}
\end{equation*}
$$

where

$$
H_{n}=\left\{\begin{array}{cc}
Z_{4}\left\{i_{1 *}[[2 \nu]]\right\} \text { with the relations } i_{4 *} \eta \varepsilon= & 2 i_{1 *}[[2 \nu]] \text { and } i_{4 *} \nu^{3}=0 \\
\text { if } n \equiv 2 \bmod (4) \\
Z_{2}\left\{i_{4 *} \eta \varepsilon\right\} \oplus Z_{2}\left\{i_{4 *} \nu^{3}\right\} \oplus Z_{4}\left\{i_{1 *}[[\nu]]\right\} & \text { if } n \equiv 0 \bmod (8) \\
Z_{2}\left\{i_{4 *} \eta \varepsilon\right\} \oplus Z_{8}\left\{i_{1 *}[[\nu]]\right\} \text { with the relation } i_{4 *} \nu^{3}=4 i_{1 *}[[\nu]] \\
\text { if } n \equiv 4 \bmod (8) .
\end{array}\right.
$$

$\mathrm{By}(T)_{5}^{\prime}$

$$
q_{3 *} q_{n-1 *} i_{1 *}^{i_{1}^{1}}\left(p_{n+5}\right)=\left\{((n+6) / 2)\left(\nu+\alpha_{1}\right),((n+6) / 2)\left(\nu+\alpha_{1}\right)+4 \nu\right\}
$$

and hence we can choose a map $\tilde{p} \in q_{n-1 *} i_{1 *}^{-1}\left(p_{n+5}\right) \subset \pi_{2 n+9}^{s}\left(P_{n+4,4}\right)$ with

$$
q_{3} \circ \tilde{p}= \begin{cases}((n+6) / 2)\left(\nu+\alpha_{1}\right)+4 \nu & \text { if } n \equiv 2 \bmod (16) \\ ((n+6) / 2)\left(\nu+\alpha_{1}\right) & \text { otherwise }\end{cases}
$$

and then by $(T)_{5}$

$$
i_{1} \circ \tilde{p}=p_{n+5,5}
$$

By (2.7) we can put
(2.15) $\tilde{p}=a_{n}^{\prime} i_{2 *} s_{*} \sigma+b_{n}^{\prime} i_{3 *} \mu+c_{n} i_{3 *} \eta \varepsilon+d_{n}^{\prime} i_{3 *} \nu^{3}+d_{n}\left[\left[e_{n} \nu\right]\right]+$ odd torsion
for some integers $a_{n}^{\prime}, b_{n}^{\prime}, c_{n}, d_{n}^{\prime}$ and d_{n}. Remark that $i_{3 *} \nu^{3}=0$ if $n \equiv 2 \bmod$ (4). We have

$$
\begin{array}{rlr}
d_{n} e_{n} \nu+\text { odd torsion } & =q_{3} \circ \tilde{p} \\
& = \begin{cases}(((n+6) / 2)+4) \nu+\text { odd torsion } & \text { if } n \equiv 2 \bmod (16) \\
((n+6) / 2) \nu+\text { odd tor sion } & \text { otherwise }\end{cases}
\end{array}
$$

and

$$
d_{n} \equiv \begin{cases}1 \bmod (2) & \text { if } n \equiv 0 \bmod (4) \text { or } 6 \bmod (8) \tag{2.16}\\ 0 \bmod (4) & \text { if } n \equiv 2 \bmod (8)\end{cases}
$$

Put $p_{n+5,5}=a_{n}^{\prime} i_{3 *} s_{*} \sigma+b_{n}^{\prime} i_{4 *} \mu+\check{p}$. Then the 2-primary part of $p \not p$ is contained in H_{n}. Hence by Lemma 2 and (2.14) we have

$$
a_{n}^{\prime} \equiv 1 \bmod (2) \quad \text { if } n \equiv 4 \text { or } 6 \bmod (8)
$$

Then by (2.14), (2.16) and $(S)_{6}$ for $i=10$ we have
(2.17) $\quad \pi_{2 n+9}^{s}\left(P_{n+6,6}\right)=Z_{8 / e_{n}}\left\{i_{4 *} s_{*} \sigma\right\} \oplus Z_{2}\left\{i_{5 *} \mu\right\} \oplus Z_{2 / e_{n}} \quad$ if $n \equiv 4$ or $6 \bmod (8)$ where if $n \equiv 4 \bmod (8), Z_{2 / e_{n}}=Z_{2}$ is generated by $i_{5 *} \eta \varepsilon$.

Next suppose that $n \equiv 2 \bmod (8)$. Let l be the odd component of the order of \tilde{p}. Of course l is an odd integer. Put $\hat{p}=l a_{n}^{\prime} s_{*} \sigma+b_{n}^{\prime} i_{1 *} \mu+c_{n} i_{1 *} \eta \varepsilon$. Then by (2.15) and (2.16)

$$
l \tilde{p}=i_{2 *} \hat{p}
$$

and we have a commutative diagram in which the each horizontal sequences are cofibrations and l denotes a multiplication by l :

We calculate the Adams' e_{C} and e_{R} invariants of $\pi \circ \hat{p} \in G_{9}$.
Lemma 7. We have
(i) $e_{c}(\pi \circ \beta)=0$ and $b_{n}^{\prime} \equiv 0 \bmod (2)$,
(ii) $e_{R}(\pi \circ \hat{p})=\left\{\begin{array}{ll}1 & \text { if } n \equiv 2 \bmod (16) \\ 0 & \text { if } n \equiv 10 \bmod (16)\end{array}\right.$ and

$$
c_{n} \equiv \begin{cases}1 \bmod (2) & \text { if } n \equiv 2 \bmod (16) \\ 0 \bmod (2) & \text { if } n \equiv 10 \bmod (16) .\end{cases}
$$

Proof. Applying \tilde{K} to the above diagram, we can show the first part of (i) by the similar method as the proof of (1.12) of [20]. Then the second part of (i) follows, since $\pi \circ s=\eta^{2}$ or $0, e_{C}\left(\eta^{2} \sigma\right)=e_{C}(\eta \varepsilon)=0$ and $e_{C}(\mu) \neq 0$ by [1].

Put $n=8 m+2$. Applying $\widetilde{K O}^{-4}$ to the above diagram, we have the following commutative diagram in which the horizontal sequences are exact:

By Theorem 2 of Fujii [4] it is easily seen that

$$
\begin{aligned}
& \widetilde{K O}^{-4}\left(P_{8 m+8,6}\right)=Z\left\{z_{2} z_{0}^{4 m}, z_{2} z_{0}^{4 m+1}, z_{2} z_{0}^{4 m+2}\right\} \oplus Z_{2}\left\{z_{2} z_{0}^{4 m+3}\right\} \\
& \widetilde{K O}^{-4}\left(P_{8 m+7,5}\right)=Z\left\{z_{2} z_{0}^{4 m}, z_{2} z_{0}^{4 m+1}, z_{2} z_{0}^{m+2}\right\} \\
& \widetilde{K O}^{-4}\left(P_{8 m+6,4}\right)=Z\left\{z_{2} z_{0}^{4 m}, z_{2} z_{0}^{4 m+1}\right\} \\
& \widetilde{K O}^{-4}\left(P_{8 m+4,2}\right)=Z\left\{z_{2} z_{0}^{4 m}\right\} \oplus Z_{2}\left\{z_{2} z_{0}^{4 m+1}\right\} .
\end{aligned}
$$

Also note that a generator d of $\widetilde{K O^{-4}}\left(S^{16 m+4}\right)=Z$ satisfies

$$
\pi^{*} d=z_{2} z_{0}^{4 m}+x z_{2} z_{0}^{4 m+1}
$$

for some integer x. We shall not need the explicit value of x. Here we regard $\widetilde{K O^{-4}}(X \mid A)$ as a subgroup of $\widetilde{K O^{-4}}(X)$ if the quotient map $X \rightarrow X / A$ induces a monomorphism. Similar remarks shall hold in the forthcoming proof of (A). By chasing diagram, we know that there exist elements $\left[z_{2} z_{0}^{4 m}\right]$ and $\left[z_{2} z_{0}^{4 m+1}\right]$ in $\widetilde{K O^{-4}}(C(l \tilde{p}))$ such that

$$
\bar{l}^{*}\left[z_{2} z_{0}^{4 m}\right]=l_{1}^{*} z_{2} z_{0}^{4 m} \quad \text { and } \quad \bar{l} *\left[z_{2} z_{0}^{4 m+1}\right]=l i_{1}^{*} z_{2} z_{0}^{4 m+1}
$$

Put $a^{\prime}=\left[z_{2} z_{0}^{4 m}\right]+x\left[z_{2} z_{0}^{4 m+1}\right]$. Then there exists an element $a \in \widetilde{K O^{-4}}(C(\pi \circ \hat{p}))$ such that

$$
\bar{\pi}^{*} a=\bar{i}_{2}^{*} a^{\prime} \quad \text { and } \quad j^{*} a=d
$$

Let $b \in \widetilde{K O^{-4}}(C(\pi \circ \hat{p}))$ and $b^{\prime} \in \widetilde{K O^{-4}}(C(l \tilde{p}))$ be the images of the generator of $\widetilde{K O^{-4}}\left(S^{16 m+14}\right)=Z_{2}$.

Now we assume the followings which shall be proved later:
(A) $i_{1}^{*} z_{2} z_{0}^{4 m+2}=e_{2 m}{ }^{\top}{ }^{*} b^{\prime}$,
(B) the order of $i_{2}^{*}\left[z_{2} z_{0}^{4 m+1}\right]$ is 2 .

Remark that $e_{2 m}=1$ if $m \equiv 0 \bmod (2)$, or 2 if $m \equiv 1 \bmod (2)$, and $\bar{l}^{*} b^{\prime}$ is the generator of the 2-torsion of $\widetilde{K O^{-4}}(C(\tilde{p}))$. We have

$$
\psi^{3} a=3^{8 m+4} a+\lambda b
$$

for some $\lambda \in Z_{2}$, and

$$
e_{R}(\pi \circ \hat{p})=\lambda
$$

and

$$
\bar{\pi}^{*} \psi^{3} a=\bar{\pi}^{*}\left(3^{8 m+4} a+\lambda b\right)=\bar{i}_{2}^{*}\left(3^{8 m+4} a^{\prime}+\lambda b^{\prime}\right) .
$$

On the other hand

$$
\bar{\pi}^{*} \psi^{3} a=\psi^{3} \bar{\pi}^{*} a=\psi^{3} i_{2}^{*} a^{\prime}=\bar{i}_{2}^{*} \psi^{3} a^{\prime}
$$

and

$$
\begin{equation*}
i_{2}^{*}\left(3^{8 m+4} a^{\prime}+\lambda b^{\prime}\right)=\bar{i}_{2}^{*} \psi^{3} a^{\prime} \tag{2.19}
\end{equation*}
$$

Since the order of $\bar{i}_{1}^{*} z_{2} z_{0}^{4 m+3}$ is 2 and $i_{1}^{*} z_{2} z_{0}^{4 m+2}=e_{2 m}{ }^{*} * b^{\prime}$ by (A), we have

$$
\begin{aligned}
\bar{l}^{*} \psi^{3} a^{\prime}= & \psi^{3} \bar{l}^{*} a^{\prime} \\
= & \psi^{3}\left\{\bar{l}_{1}^{*}\left(z_{2} z_{0}^{4 m}+x z_{2} z_{0}^{4 m+1}\right)\right\} \\
= & \bar{l}_{1}^{*} \psi^{3}\left(z_{2} z_{0}^{4 m}+x z_{2} z_{0}^{4 m+1}\right) \\
= & \bar{i}_{1}^{*}\left\{3^{8 m+4} z_{2} z_{0}^{4 m}+\left((8 m+2) 3^{8 m+3}+x 3^{8 m+6}\right) z_{2} z_{0}^{4 m+1}\right. \\
& +\left((4 m+1)(8 m+1) 3^{8 m+2}+x(8 m+4) 3^{8 m+5}\right) z_{2} z_{0}^{4 m+2} \\
& \left.+\left((4 m+1)(8 m+1) 8 m 3^{8 m}+x(4 m+2)(8 m+3) 3^{8 m+4}\right) z_{2} z_{0}^{4 m+3}\right\} \\
= & \bar{l}^{*}\left\{3^{8 m+4}\left[z_{2} z_{0}^{4 m}\right]+\left((8 m+2) 3^{8 m+3}+x 3^{8 m+6}\right)\left[z_{2} z_{0}^{4 m+1}\right]+e_{2 m} b^{\prime}\right\} .
\end{aligned}
$$

Then, since \bar{l}^{*} is a monomorphism,

$$
\psi^{3} a^{\prime}=3^{8 m+4}\left[z_{2} z_{0}^{4}{ }^{4}\right]+\left((8 m+2) 3^{8 m+3}+x 3^{8 m+6}\right)\left[z_{2} z_{0}^{4 m+1}\right]+e_{2 m} b^{\prime}
$$

and by (B)

$$
i_{2}^{*} \psi^{3} a^{\prime}=3^{8 m+4} i_{2}^{*}\left[z_{2} z_{0}^{4 m}\right]+x i_{2}^{*}\left[z_{2} z^{4 m+1}\right]+e_{2 m} i_{2}^{*} b^{\prime}
$$

also by (2.19) this equals to

$$
\begin{aligned}
i_{2}^{*}\left(3^{8 m+4} a^{\prime}+\lambda b^{\prime}\right) & =i_{2}^{*}\left\{3^{8 m+4}\left(\left[z_{2} z_{0}^{4 m}\right]+x\left[z_{2} z_{0}^{4 m+1}\right]\right)+\lambda b^{\prime}\right\} \\
& =3^{8 m+4} i_{2}^{7}\left[z_{2} z_{0}^{4 m}\right]+x i_{2}^{i}\left[z_{2} z_{0}^{4 m+1}\right]+\lambda i_{2}^{*} b^{\prime}
\end{aligned}
$$

and, since $i_{2}^{*} b^{\prime}$ is non-zero,

$$
\lambda=e_{2 m} \quad \text { in } Z_{2}
$$

and this implies the first part of (ii). Since $\pi \circ s=0$ or η^{2}, and $a_{n}^{\prime} \equiv 0 \bmod (2)$ by Lemma 2, it follows that by the second part of (i) we have

$$
\pi \circ \hat{p}=c_{n} \eta \varepsilon
$$

and the above proof of the first part of (ii) shows that

$$
c_{n} \equiv \begin{cases}1 \bmod (2) & \text { if } n \equiv 2 \bmod (16) \\ 0 \bmod (2) & \text { if } n \equiv 10 \bmod (16)\end{cases}
$$

This implies the second part of (ii).
We shall give the proofs of (A) and (B).
The proof of (A) : We have the following commutative diagram:

We have

$$
\begin{aligned}
& \widetilde{K O}{ }^{-4}\left(P_{8 m+8,3}\right)=Z\left\{z_{2} z_{0}^{4 m+2}\right\} \oplus Z_{2}\left\{z_{2} z_{0}^{4 m+3}\right\} \\
& q_{3}^{*} z_{2} z_{0}^{4 m+2}=z_{2} z_{0}^{4 m+2}
\end{aligned}
$$

It suffices for our purpose to compute $\hat{i}_{1}^{*} z_{2} z_{0}^{4 m+2}$, since $\hat{i}_{1}^{*} z_{2} z_{0}^{4 m+2}$ is contained in the image of $\widetilde{K O^{-4}}\left(S^{16 m+14}\right)$, and \bar{q}_{3}^{*} induces an isomorphism between the images of $\widetilde{K O^{-4}}\left(S^{16 m+14}\right)$. We have chosen \tilde{p} such that $q_{3} \circ \tilde{p}=(m+1) \alpha_{1}$. Let u_{m} be the order of $q_{3} \circ \tilde{p}$. Then $u_{m}=1$ or 3 . Applying $\pi_{16 m+14}^{s}()$ to the above diagram, we know easily that there exists uniquely an element $u \in \pi_{16 m+14}^{s}\left(P_{8 m+8,3}\right)$ such that $q_{2}{ }^{\circ} u=u_{m} \iota$, moreover there exists $\hat{u} \in \pi_{16 m+14}^{s}\left(C\left(q_{3} \circ \tilde{p}\right)\right)$ such that $\hat{q}_{2} \circ \hat{u}=u_{m} \iota$ and $u=\hat{i}_{1} \circ \hat{u}$, where ι is the identity map of $S^{16 m+14}$. Since \hat{q}_{2}^{*} : $\widetilde{K O}^{-4}\left(S^{16 m+14}\right) \rightarrow \widetilde{K O^{-4}}\left(C\left(q_{3} \circ \tilde{p}\right)\right)$ is an isomorphism, and $\hat{u}^{*} \hat{q}_{2}^{*}$ is the multiplication by u_{m} which is the identity homomorphism of $\widetilde{K O^{-4}}\left(S^{16 m+14}\right)=Z_{2}$, it follows that $\hat{u}^{*}: \widetilde{K O^{-4}}\left(C\left(q_{3} \circ \tilde{p}\right)\right) \rightarrow \widetilde{K O}\left(S^{16 m+14}\right)$ is the inverse of \hat{q}_{2}^{*}. Thus

$$
\begin{equation*}
\hat{i}_{1}^{*} z_{2} z_{0}^{4 m+2}=\hat{q}_{2}^{*} \hat{u}^{*} \hat{i}_{1}^{*} z_{2} z_{0}^{4 m+2}=\hat{q}_{2}^{*} u^{*} z_{2} z_{0}^{4 m+2} . \tag{2.20}
\end{equation*}
$$

Next we determine $u^{*} z_{2} z_{0}^{4 m+2}$. Consider the commutative diagram:

Recall that $\tilde{K}\left(P_{8 m+8,3}\right)=Z\left\{z^{8 m+5}, z^{8 m+6}, z^{8 m+7}\right\}$ and the real restriction homomorphism r in the right hand side is an epimorphism. We can prove the followings:

$$
\begin{align*}
& \left\{\begin{array}{l}
r\left(g_{C}^{2} z^{8 m+5}\right)=z_{2} z^{4 m+3}+(8 m+5) z_{2} z_{0}^{4 m+2} \\
r\left(g_{C}^{2} z^{8 m+6}\right)=z_{2} z_{0}^{4 m+3}+2 z_{2} z_{0}^{4 m+2} \\
r\left(g_{C}^{2} z^{8 m+7}\right)=z_{2} z_{0}^{4 m+3},
\end{array}\right. \tag{2.21}\\
& r\left(g_{C}^{2}\left(z^{8 m+5}-(4 m+2) z^{8 m+6}+z^{8 m+7}\right)\right)=z_{2} z_{0}^{4 m+2}, \tag{2.22}\\
& \left\{\begin{array}{l}
u^{*} z^{8 m+5}=(1 / 3)(8 m+5)(3 m+2) u_{m} \beta \\
u^{*} z^{8 m+6}=(4 m+3) u_{m} \beta \\
u^{*} z^{8 m+7}=u_{m} \beta
\end{array}\right. \tag{2.23}
\end{align*}
$$

where $\beta \in \widetilde{K}\left(S^{16 m+14}\right)=Z$ is the generator such that $q_{2}^{*} \beta=z^{8 m+7}$. (2.23) follows from the relation $\psi^{2} u^{*}=u^{*} \psi^{2}$. For (2.21) we consider the following commutative diagram:

Since $\widetilde{K O}{ }^{-4}\left(P_{8 m+9}\right)=Z\left\{z_{2}, z_{2} z_{0}, \cdots, z_{2} z_{0}^{4 m+3}\right\}$ is torsion free (see [4]), by the aid of the complexification homomorphism we can describe r in the right hand side explicitly. In particular we have

$$
\begin{aligned}
& r\left(g_{C}^{2} z^{8 m+5}\right)=(1 / 3)(8 m+5)\left(8 m^{2}+10 m+3\right) z_{2} z_{0}^{4 m+3}+(8 m+5) z_{2} z_{0}^{4 m+2} \\
& r\left(g_{C}^{2} z^{8 m+6}\right)=(4 m+3)^{2} z_{2} z_{0}^{4 m+3}+2 z_{2} z_{0}^{4 m+2}, \\
& r\left(g_{c}^{2} z^{8 m+7}\right)=(8 m+7) z_{2} z_{0}^{4 m+3} .
\end{aligned}
$$

Hence r in the left hand side satisfies (2.21). Then (2.22) follows from (2.21). By (2.22) and (2.23)

$$
\begin{aligned}
u^{*} z_{2} z_{0}^{4 m+2} & =r\left(g_{c}^{2} u^{*}\left(z^{8 m+5}-(4 m+2) z^{8 m+6}+z^{8 m+7}\right)\right) \\
& =v_{m} r\left(g_{c}^{2} \beta\right)
\end{aligned}
$$

where $v_{m}=((1 / 3)(8 m+5)(3 m+2)-(4 m+2)(4 m+3)+1) u_{m}$.

Now

$$
\begin{aligned}
i_{1}^{*} z_{2} z_{0}^{4 m+2} & =i_{1}^{*} q_{3}^{*} z_{2} z_{0}^{4 m+2} \\
& =\bar{q}_{3}^{*} i_{1}^{*} z_{2} z_{0}^{4 m+2} \\
& =\bar{q}_{3}^{*} \hat{q}_{2}^{*} u^{*} z_{2} z_{0}^{4 m+2} \\
& =v_{m} \bar{q}_{3}^{*} \hat{q}_{2}^{*} r\left(g_{C}^{2} \beta\right) \\
& =v_{m} \bar{l}^{*} b^{\prime}
\end{aligned}
$$

where the third equality follows from (2.20). Therefore (A) follows since $v_{m} \equiv e_{2 m} \bmod (2)$.

The proof of (B) : It suffices to show that the second short exact sequence from the bottom on the diagram (2.18) splits. Naturally we have a commutative diagram in which the horizontal sequences are exact:

It is easily seen that q_{1}^{*} is a monomorphism. By Propositions 3.3 and 7.1 of Adams [1] we have a homomorphism

$$
e: G_{7}=\pi_{16 m+13}\left(S^{16 m+6}\right) \rightarrow \operatorname{Ext}^{1}\left(\widetilde{K O^{-4}}\left(S^{16 m+6}\right), \widetilde{K O^{-4}}\left(S^{16 m+14}\right)\right)=Z_{2} .
$$

Since $q_{1} \circ \hat{p}=l a_{n}^{\prime} \sigma$, and $a_{n}^{\prime} \equiv 0 \bmod$ (2) by Lemma 2, it follows that $q_{1} \circ \hat{p}$ is divisible by 2 , and $e\left(q_{1} \circ \hat{p}\right)=0$. This implies that the above lower sequence splits (see [1]), and also the upper one does. Then (B) follows and the proof of Lemma 7 is completed.

Now we proceed the computation of $\pi_{2 n+9}^{s}\left(P_{n+6,6}\right)$ for $n \equiv 2 \bmod (8)$. By (2.15), (2.16) and Lemma 7

$$
p_{n+5,5}=i_{1} \circ \tilde{p}=a_{n}^{\prime} i_{3} s_{*} \sigma+c_{n} i_{4 *} \eta \varepsilon+\text { odd torsion }
$$

Then we obtain the following table by Lemma 2

$n \bmod ()$	$\nu_{2}\left(\# p_{n+5,5}\right)$	a_{n}^{\prime}
$2(16)$	3	$2(4)$
$10(32)$	2	$4(8)$
$26(64)$	1	$8(16)$
$58(64)$	0	$0(16)$

Put

$$
e_{n}^{\prime}= \begin{cases}2 & \text { if } n \equiv 2 \bmod (16) \\ 2^{2} & \text { if } n \equiv 10 \bmod (32) \\ 2^{3} & \text { if } n \equiv 26 \bmod (64) \\ 2^{4} & \text { if } n \equiv 58 \bmod (64) .\end{cases}
$$

Then from (2.14) and $(S)_{6}$ for $i=10$ it follows

$$
\begin{equation*}
\pi_{2 n+9}^{s}\left(P_{n+6,6}\right)=Z_{e_{n}^{\prime}} \oplus Z_{2}\left\{i_{5 * \mu}\right\} \oplus Z_{4}\left\{i_{2 *}[[2 \nu]]\right\} \quad \text { if } n \equiv 2 \bmod (8) \tag{2.24}
\end{equation*}
$$

where $Z_{e_{n}^{\prime}}$ is generated by $i_{4 *} s_{*} \sigma$ if $n \equiv 10 \bmod (16)$, or $i_{4 *} s_{*} \sigma+i_{2 *}[[2 \nu]]$ if $n \equiv 2 \bmod (16)$.
(2.17) and (2.24) give the proof of Theorem.

Added in proof. Professor Y. Furukawa has pointed out to the author that in [5], [17], [18] and [19] the stable homotopy groups $\pi_{2 n+i}\left(W_{n+k, k}\right)$ have been calculated for $k \leqq 4$ and $i \leqq 36$, and K. Oguchi [19] partly treated them for $k=5$.

References

[1] J.F. Adams: On the groups $J(X)-I V$, Topology 5 (1966), 21-71.
[2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces II, Amer. J. Math. 81 (1959), 315-382.
[3] R. Bott: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[4] M. Fujii: K_{0}-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[5] Y. Furukawa: Homotopy groups of complex Stiefel manifold $W_{n, 4}$, preprint.
[6] H. Imanishi: Unstable homotopy groups of classical groups (odd primary components), J. Math. Kyoto Univ. 7 (1967), 221-243.
[7] M.A. Kervaire: Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.
[8] H. Matsunaga: The homotopy groups $\pi_{2 n+i}(U(n)), i=3,4$ and 5, Mem. Fac. Sci. Kyushu Univ. 15 (1961), 72-81.
[9] --: Correction to the preceding paper and note on the James number, ibid. 16 (1962), 60-61.
[10] -: On the group $\pi_{2 n+7}(U(n))$, odd primary components, ibid. 16 (1962), 66-74.
[11] -: Applications of functional cohomology operations to the calculus of $\pi_{2 n+i}(U(n))$ for $i=6$ and $7, n \geqq 4$, ibid. 17 (1963), 29-62.
[12] -: Unstable homotopy groups of unitary groups (odd primary components), Osaka J. Math. 1 (1964), 15-24.
[13] M. Mimura and H. Toda: Homotopy groups of $S U(3), S U(4)$ and $S p(2)$, J. Math. Kyoto Univ. 3 (1964), 217-250.
[14] R.E. Mosher: Some stable homotopy of complex projective space, Topology 7 (1968), 179-193.
[15] -: Some homotopy of stunted complex projective space, Illinois J. Math. 13 (1969), 192-197.
[16] Y. Nomura and Y. Furukawa: Some homotopy groups of complex Stiefel manifolds $W_{n, 2}$ and $W_{n, 3}$, Sci. Rep. Coll. Gen. Ed. Osaka Univ. 25 (1976), 1-17.
[17] -_ and -_ Some homotopy groups of complex Stiefel manifolds $W_{n, 2}$ and $W_{n, 3}(I I)$, ibid. 27 (1978), 33-48.
[18] K. Oguchi: Stable homotopy groups of some complexes, unpublished note 1972.
[19] -: Meta-stable homotopy of some complex Stiefel manifolds, unpublished note 1972.
[20] H. Ōshima: On stable James numbrs of stunted complex or quaternionic projective spaces, Osaka J. Math. 16 (1979), 479-504.
[21] -: On F-projective stable stems, ibid. 16 (1979), 505-528.
[22] H. Toda: A topological proof of theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Kyoto Univ. 32 (1959), 109-119.
[23] -: Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton 1962.
[24] M.L. Vastersavendts: Sur les groupes d'homotopie de $\operatorname{SU}(\mathrm{n})$, thèse, Univ. Libre de Bruxelles, 1967.

Department of Mathematics Osaka City University
Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan

[^0]: Supported by Grant-in-Aid for Scienitfic Research, No. 454017

