ON THE IRREDUCIBILITY OF 2-FOLD BRANCHED COVERS OF \mathbf{S}^{3}

Kazuaki KOBAYASHI

(Received August 2, 1978)
0. Introduction. Montesinos [8] and Hilden [2] showed that every closed, orientable 3 -manifold is a 3 -fold irregular covering space of S^{3} branched over a link ℓ. And Waldhausen [10] showed that two homotopy equivalent closed orientable, sufficiently large 3 -manifolds are homeomorphic. So we study that what kind of 3-manifold is irreducible i.e. an embedded 2 -sphere in the 3-manifold bounds a 3-ball. Using the result of Montesinos [8] and the surgery technique, we obtain the following.

Theorem. Let $\ell=k_{1} \cup \cdots \cup k_{\mu}$ be a link in S^{3} such that every component k_{i} $(i=1,2, \cdots, \mu)$ of ℓ is a trivial knot. If $M(\ell)$ is a 2 -fold covering space of S^{3} branched over ℓ and if $\pi_{2}(M(\ell))=0, M(\ell)$ is irreducible.

And in section 2 we study a method of determining whether $\pi_{2}(M(l))=0$ or not for a given link ℓ whose components are all trivial knots.

1. Proof of Theorem

Lemma 1. Let k be a trivial knot in S^{3}. If B^{3} is a 3-ball in S^{3} such that the intersection \mathscr{D}^{1} of B^{3} with k is homeomorphic to the 1-ball, the pair $\left(B^{3}, \mathscr{D}^{1}\right)$ is a standard pair (i.e. there is an orientation preserving homeomorphism $h:\left(B^{3}, \mathscr{D}_{1}\right) \rightarrow$ ($D^{1} \times D^{2}, D^{1} \times\{0\}$) where D^{n} is the standard n-ball.

Proof. Since k is a trivial knot, there is an embedded 2-ball B^{2} in S^{3} with $\partial B^{2}=k$. We may assume that B^{2} meets ∂B^{3} transversally and so $B^{2} \cap \partial B^{3}=$ $\{$ a simple arc\} $\cup\{$ simple closed curves $\}$. Let α be a simple closed curve in $B^{2} \cap \partial B^{3}$ which is innermost in B^{2} with respect to $B^{2} \cap \partial B^{3} . \alpha$ splits ∂B^{3} into two 2-balls. Let B_{a} be one of the two 2-balls such that B_{α} does not contain the simple are in $B^{2} \cap \partial B^{3}$. Since α is innermost in B^{2} with respect to $B^{2} \cap \partial B^{3}$, there is a 2-ball B_{α}^{\prime} in B^{2} with $B_{\alpha}^{\prime} \cap B^{3}=\partial B_{\alpha}^{\prime}=\alpha$. Then $B_{a} \cup_{\partial} B_{\alpha}^{\prime}=S^{2}$ and so $B_{a} \cup_{\partial} B_{a}^{\prime}$ bounds a 3-ball. Hence there is an ambient isotopy $\left\{\phi_{t}\right\}: S^{3} \rightarrow S^{3}$ $(0 \leqq t \leqq 1)$ keeping α fixed such that $\phi_{0}=i d ., \phi_{1}\left(B_{\alpha}^{\prime}\right)=B_{\alpha}$. We may assume that the support of $\left\{\phi_{t}\right\}$ is a small neighborhood of "one of" 3-balls bounded
by the 2 -sphere $B_{a} \cup_{\partial} B_{\alpha}^{\prime}$ in S^{3}. Then $\partial B^{3} \cap \phi_{1}\left(B^{2}\right) \subsetneq \partial B^{3} \cap B^{2}$. In fact the components of $B^{2} \cap \partial B^{3}$ contained in B_{a} can be eliminated. Repeating this process, we obtain an ambient isotopy $\left\{\Phi_{t}\right\}: S^{3} \rightarrow S^{3}(0 \leqq t \leqq 1)$ such that $\Phi_{0}=i d$. and $\partial B^{3} \cap \Phi_{1}\left(B^{2}\right)=$ a simple arc γ. Then the 1 -sphere $\gamma \cup_{\partial} \mathscr{D}^{1}$ bounds a nonsingular sub-2-ball in B^{2}. Hence $\left(B^{3}, \mathscr{D}^{1}\right)$ is the standard pair.

Definition (Equivariant surgery). Let M be a closed orientable 3-manifold and F be a 2 -sided closed surface in M. Let τ be an involution of M. We may assume that F meets $\tau(F)$ transversally and so $F \cap \tau(F)$ is the disjoint union of simple closed curves. If there is a 2-ball D in $\tau(F)$ such that $D \cap$ $F=\partial D$ and ∂D splits F into two components, we choose a small product neighborhood $D \times[-1,1]$ of D in M with $D \times\{0\}=D, \partial D \times[-1,1] \subset F$. Let $D_{+}=D \times\{1\}, D_{-}=D \times\{-1\}$ and $F-(\partial D \times(0,1))=F_{+}^{\prime} \cup F_{-}^{\prime}$ where $F_{+}^{\prime} \cap D_{+}$ $=\partial D_{+}$and $F_{-}^{\prime} \cap D_{-}=\partial D_{-}$. Define $F_{+}=F_{+}^{\prime} U_{\partial} D_{+}$and $F_{-}=F_{-}^{\prime} U_{\partial} D_{-}$. We say that F_{+}, F_{-}have been obtained by equivariant surgery from F using D. If τ is a free involution or $\operatorname{Fix}(\tau) \cap \partial D=\phi$, it is known that $\#\left(F_{i} \cap \tau\left(F_{i}\right)\right)<\#(F \cap$ $\tau(F))(i=1,2)$ (see Hempel [1. p. 94]) where $\#(F \cap \tau(F)), \#\left(F_{i} \cap \tau\left(F_{i}\right)\right)$ are the number of component of $F \cap \tau(F), F_{i} \cap \tau\left(F_{i}\right)$ respectively.

Theorem. Let $\ell=k_{1} \cup \cdots \cup k_{a}$ be a link in S^{3} such that every component k_{i} $(i=1,2, \cdots, \mu)$ of ℓ is a trivial knot. If $M(t)$ is a 2 -fold covering space of S^{3} branched over ℓ and if $\pi_{2}(M(\downarrow))=0, M(\iota)$ is irreducible.

Remark. If $M(t)$ is a homology 3 -sphere, the theorem follows immediately as follows. If τ is a non-trivial covering translation of $M(\iota), \tau$ is a periodic map of period 2. So the fixed points set of τ is Z_{2}-homology sphere by P.A. Smith [9]. Hence the fixed points set of τ is the 1 -sphere k and so $\ell=p(k)$ is a knot where $p: M(t) \rightarrow S^{3}$ is the 2 -fold covering space branched over ℓ. Since $\ell=p(k)$ is a trivial knot by the assumption, $M(\ell) \cong S^{3}$ and is irreducible.

Proof of Theorem. Let $p: M(t) \rightarrow S^{3}$ be a 2-fold covering of S^{3} branched oves the link t and let $\tau: M(t) \rightarrow M(t)$ be the non-trivial covering translation (so $\tau^{2}=i d$.). Since $\pi_{2}(M(\ell))=0$, any embedded 2 -sphere in $M(\ell)$ bounds a homotopy 3-ball [3] i.e. a compact contractible 3-manifold. So it is sufficiently to show that a homotopy 3-ball \mathscr{B} in $M(\iota)$ is a 3-ball.

Case $(A): \quad \mathscr{B} \cap p^{-1}(t)=\phi$.
Case $(A a): \quad \mathscr{B} \cap \tau(\mathscr{B})=\phi$. Then $p \mid \mathscr{B}$ is a homeomorphism and $p(\mathscr{B})$ is a 3-ball since $p(\mathscr{B}) \subset S^{3}$. So \mathscr{B} is a 3-ball.

Case $(A b): \quad \mathcal{B} \cap \tau(\mathscr{B}) \neq \phi . \quad$ (i) If $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})=\phi$, then we have that (1) $\mathscr{B} \subset \tau(\mathscr{B}),(1)^{\prime} \tau(\mathscr{B}) \subset \mathscr{B}$ or (2) $\mathscr{B} \cup \tau(\mathscr{B})=M(\ell)$. If (2) holds $M(\ell)$ is a homotopy 3 -sphere and so is a 3 -sphere by Remark and so it is irreducible. If (1) or (1)' hold, $\tau \mid \mathscr{B}$ must have fixed points. But the fixed points set of τ is $p^{-1}(\ell)$. It is
a contradiction that $\mathscr{B} \cap p^{-1}(\ell)=\phi$. So the case (Ab) (i) (1) and (1)' can not happen. In this case $(\mathrm{Ab})(\mathrm{i})$ the proof is completed.

Case (ii): $\quad \partial \mathscr{B} \cap \tau(\partial \mathscr{B}) \neq \phi$. We assume that $\partial \mathscr{B}$ meets $\tau(\partial \mathscr{B})$ transversally and so $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})$ is the disjoint union of simple closed curves. Let D be a 2 ball in $\tau(\partial \mathscr{B})$ with $D \cap \partial \mathscr{B}=\partial D$.

If $\tau(\partial D)=\partial D, p(D)$ is a projective 2 -space in S^{3}. It is a contradiction. So $\tau(\partial D) \cap \partial D=\phi$. Then we obtain two 2 -spheres S_{1}, S_{2} by the equivariant surgery from $\partial \mathscr{B}$ using D and $\#\left(S_{i} \cap \tau\left(S_{i}\right)\right)<\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}))(i=1,2)$. And since $\pi_{2}(M(\iota))$ $=0, S_{i}$ bounds a fake 3-ball \mathscr{B}_{i}. Thus in this case we can reduce $\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}))$.

Case (B): $\quad \mathscr{B} \cap p^{-1}(l) \neq \phi$ and $\partial \mathscr{B} \cap p^{-1}(l)=\phi$.
Case (Ba): $\quad \partial \mathscr{B} \cap \tau(\partial \mathscr{B})=\phi$. Since $\tau \mid p^{-1}(\ell)=i d ., \mathscr{B} \supset \tau(\mathscr{B})$ or vice versa. So we may assume $\mathscr{B} \supset \tau(\mathscr{B})$. Put $\mathcal{A}=\mathscr{B}-\tau(\mathscr{B})$. Then $\partial \mathcal{A}=\partial \mathscr{B} \cup \tau(\partial \mathscr{B})$ and $\tau(\partial \mathcal{A})=\partial \mathcal{A}$. On the other hand $\tau(\mathcal{A})=\tau(\mathscr{B}-\tau(\mathscr{B}))=\tau(\mathscr{B})-\mathscr{B}=\phi$. It is a contradiction. So the case (Ba) can not happen.

Case $(\mathrm{Bb}): \quad \partial \mathscr{B} \cap \tau(\partial \mathscr{B}) \neq \phi$. If $\partial \mathscr{B}=\tau(\partial \mathscr{B}), p(\partial \mathscr{B})$ is the projective 2-space in S^{3}. So $\partial \mathscr{B} \neq \tau(\partial \mathscr{B})$. Since we may assume that $\partial \mathscr{B}$ meets $\tau(\partial \mathscr{B})$ transversally, $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})$ is the disjoint union of simple closed curves. By the same way of Case (Ab) (ii), we can eliminate the components of $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})$.

Case (C): $\quad \partial \mathscr{B} \cap p^{-1}(\Lambda) \neq \phi$.
Denote $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})=S \cup T=S_{1} \cup S_{2} \cup T_{1} \cup T_{2}$ where $S=S_{1} \cup S_{2}=(\partial \mathscr{B} \cup \tau(\partial \mathscr{B}))$ $-p^{-1}(\ell), T=T_{1} \cup T_{2}=\partial \mathscr{B} \cap \tau(\partial \mathscr{B}) \cap p^{-1}(\iota)$,
$S_{1}=\{$ simple closed curves $\}$,
$S_{2}=\{$ simple open arcs $\} ;\left(\bar{S}_{2}-S_{2}=T_{1}\right)$,
$T_{1}=\left\{t_{1} \mid t_{1}\right.$ is a boundary point of some elements of $\left.S_{2}\right\}$; a set of finite points,
$T_{2}=\left\{t_{2} \mid t_{2}\right.$ has a small neighborhood $U\left(t_{2}\right)$ in $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})$ such that $U\left(t_{2}\right) \cap$ $\left.(S \cup T)=t_{2}\right\}$; a set of finite points.

Sub-lemma. $\quad T_{2}=\phi$.
We may assume that $\partial \mathscr{B}$ meets $p^{-1}(\ell)$ transversally.
If $T_{2} \neq \phi$, let ω be a point in T_{2}. Take a small neighborhood $U(\omega)$ of ω in $M(\ell)$ with $U(\omega) \cong B^{3}(3$-ball $)$. Put $D_{0}=U(\omega) \cap \partial \mathscr{B}, D_{1}=U(\omega) \cap \tau(\partial \mathscr{B})$, then D_{0}, D_{1} are both 2-balls. We may assume $D_{1}=\tau\left(D_{0}\right)$ since $\tau(\omega)=\omega$. Since ω is an isolated point with respect to $\partial \mathscr{B} \cap \tau(\partial \mathscr{B}), D_{0}$ meets D_{1} non-transversally at ω. At $U(\omega)$ two cases (i.e. $D_{0} \subset \tau(\mathscr{B})$ or $D_{0} \cap \tau(\mathscr{B})=\phi$) will happen. In both cases, there is a point η in $p^{-1}(\ell) \cap U(\omega)$ with the property " $\eta \in \mathscr{B}$ and $\eta \notin \tau(\mathscr{B})$ " or " η $\notin \mathscr{B}$ and $\eta \in \tau(\mathscr{B})^{\prime \prime}$. Since $\tau \mid p^{-1}(\ell)=i d$. , it is a contradiction. So $T_{2}=\phi$.

In the following we will prove the theorem by induction for the number of components of S. Since $T_{2}=\phi$, there is a 2-ball D in $\tau(\partial \mathscr{B})$ such that $D \cap \partial \mathcal{B}=\partial D$.

Case $(\mathrm{Ca}): \quad \partial D \cap p^{-1}(t)=\phi\left(\right.$ i.e. $\left.\partial D \subset S_{1}\right)$. Then $\tau(\partial D)=\partial D$ or $\tau(\partial D) \cap \partial D$ $=\phi . \quad$ If $\tau(\partial D)=\partial D, p(D)$ is the projective 2-space in S^{3}. If $\tau(\partial D) \cap \partial D=\phi$, by
the same way of Case (Ab) (ii) we can reduce the number of components of S. That is, we obtain two 2 -spheres S_{1}, S_{2} by equivariant surgery from $\partial \mathscr{B}$ using D such that $\#\left(S_{i} \cap \tau\left(S_{i}\right)\right)<\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}))(i=1,2)$ and S_{i} bounds a homotopy 3ball in $M(\ell)$.

Case (Cb): $\quad \partial D \cap p^{-1}(\ell) \neq \phi$.
Case (Cba): $\quad \partial D=\tau(\partial D)$. Since $\tau \mid p^{-1}(\ell)=i d ., \partial D \cap p^{-1}(\ell)$ is exactly two points ω_{1}, ω_{2} by Smith's Theorem [9]. We suppose that $\omega_{i}(i=1,2)$ are the boundary of two arcs respectively in the set of the intersection of type S_{2}. (For the case that $\omega_{i}(i=1,2)$ are the boundary of r arcs more than two arcs, see Case (Cbb)).) Then $D \cup_{\partial} \tau(D)$ is a 2-shpere with only two fixed points ω_{1}, ω_{2} of τ. And $p\left(D \cup_{\partial} \tau(D)\right)$ is a 2 -sphere in S^{3}. Since $p^{-1}(\ell)$ meets both $\partial \mathscr{B}$ and $\tau(\partial \mathscr{B})$ transversally at the two points, ω_{1}, ω_{2} belong to the same component, say $p^{-1}\left(k_{i}\right)$, of ℓ. Suppose that S_{1}^{2}, S_{2}^{2} have been obtained by equivariant surgery from $\partial \mathscr{B}$ with $D \cup_{\partial} \tau(D)=S_{1}^{2}$ and $(\partial \mathscr{B}-\tau(D)) \cup D=S_{2}^{2}$. Since $\pi_{2}(M(t))=0, S_{i}^{2}$ bounds a homotopy 3-ball \mathscr{B}_{i} in $M(\ell)$. If $\mathscr{B}_{i} \cup \tau\left(\mathscr{B}_{i}\right)=M(\ell), M(\ell)$ is a homotopy 3-sphere and so $M(t) \cong S^{3}$ is irreducible by Remark. So we assume $\mathscr{B}_{i} \cup \tau\left(\mathscr{B}_{i}\right) \subsetneq M(t)$. If $D \subset \mathscr{B}$, by the same way of (Ab) (ii), S_{1}^{2} and S_{2}^{2} bound homotopy 3-balls $\mathscr{B}_{1}, \mathscr{B}_{2}$ respectively such that $\mathscr{B}=\mathscr{B}_{1} \cup_{D} \mathscr{B}_{2}, \tau\left(\mathscr{B}_{1}\right)=\mathscr{B}_{1}$ and $\#\left(\partial \mathscr{B}_{2} \cap \tau\left(\partial \mathscr{B}_{2}\right)\right)<\#(\partial \mathscr{B} \cap$ $\tau(\partial \mathscr{B}))$. If $D \cap \mathscr{B}=\phi, S_{1}^{2}$ and S_{2}^{2} bound homotopy 3-balls $\mathscr{B}_{1}, \mathscr{B}_{2}$ respectively such that $\mathscr{B}_{2}=\mathscr{B} \cup \mathscr{B}_{1}$ or $\mathscr{B}_{2}=\mathscr{B}_{1}-\mathscr{B}$ and such that $\tau\left(\mathscr{B}_{1}\right)=\mathscr{B}_{1}$ and $\#\left(\partial \mathscr{B}_{2} \cap\right.$ $\left.\tau\left(\partial \mathscr{B}_{2}\right)\right)<\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}))$. We show that \mathscr{B}_{1} is homeomorphic to a 3-ball. Because if \mathscr{B}_{1} does not contain any component of $p^{-1}(\ell)$ except $p^{-1}\left(k_{i}\right) \cap \mathscr{B}_{1}, \mathscr{B}_{1}$ is a 2 -fold covering of a 3-ball D^{3} branched over $\mathscr{D}^{1}=k_{i} \cap p\left(\mathscr{B}_{i}\right)$ where $\left(D^{3}, \mathscr{D}^{1}\right)$ is the standard ball pair by lemma 1 and where D^{3} is the 3-ball in S^{3} containing $k_{i} \cap p\left(\mathscr{B}_{1}\right)$ and bounded by $p\left(S_{1}^{2}\right)$. So \mathscr{B}_{1} is a 3-ball. If \mathscr{B}_{1} contains some components of $p^{-1}(t)$, we take a 3-ball B^{3} and identify ∂B^{3} with $\partial \mathscr{B}_{1}^{3}$ by the natural identification. Then $\Sigma=B^{3} \bigcup_{a} \mathscr{B}_{1}^{3}$ is a homotopy 3 -sphere. We extend $\tau \mid \mathscr{B}_{1}$ to B^{3} naturally. Then the extended involution, say τ^{\prime}, has a μ-component link ($\mu \geqq 2$) as the set of fixed points. It contradicts to Smith's Theorem [9]. So \mathscr{B}_{1} does not contain any other componert of $p^{-1}(t)$ except $p^{-1}\left(k_{i}\right) \cap \mathscr{B}_{1}$.

Case (Cbb): $\partial D \neq \tau(\partial D)$. Put $r=\#\left(\partial D \cap p^{-1}(\ell)\right)$. We take three processes $r=1,2$ or $r \geqq 3$ as follows.

When $r=1, \tau(\partial D)$ splits $\tau(\partial \mathscr{B})$ into closed 2-balls. Let E be one of the two 2-balls where E does not contain D. If ∂E is the innermost curve in $\tau(\partial \mathscr{B})$ with respect to $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})(i . e . \dot{E} \cap \partial \mathscr{B}=\phi)$, this process is the finish $\cdots(1)$. If $E \circ \cap$ $\partial \mathscr{B} \neq \phi$, there is an innermost curve in E for $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})$ i.e. there is a 2-ball D_{1} in \dot{E} such that $\check{D}_{1} \cap \partial \mathscr{B}=\phi$. We consider D_{1} instead of D and repeat the processes.

When $r=2$, we denote two 2-balls E, E^{\prime} in $\tau(\partial \mathscr{B})$ bounded by ∂D and $\tau(\partial D)$. If $\dot{E} \cap \partial \mathscr{B}=\phi$ and $\dot{E}^{\prime} \cap \partial \mathscr{B}=\phi$, this process is the finish $\cdots(2)$. If $\dot{E} \cap \partial \mathscr{B} \neq \phi$, there is a 2-ball D_{1} in \dot{E} such that $D_{1} \cap \partial \mathscr{B}=\phi$. We consider D_{1} instead of D
and repeat the processes. It is the same in the case $\dot{E}^{\prime} \cap \partial \mathscr{B}=\phi$.
When $r \geqq 3$, the component of $\partial D \cap S$, say α, is an open arc. Since $\bar{\alpha}-\alpha$ is contained in T_{1} where $\bar{\alpha}$ is the closure of $\alpha, \tau \mid \bar{\alpha}-\alpha=i d$. Let E be a region in $\tau(\partial \mathscr{B})$ bounded by $\bar{\alpha}$ and $\tau(\bar{\alpha})$. If $E \cap \partial \mathscr{B}=\phi$ for any such E, this process is the finish \cdots (3). If $E \cap \cap \mathscr{B} \neq \phi$, there is a 2-ball D_{1} in E with $\check{D}_{1} \cap \partial \mathscr{B}=\phi$. Consider D_{1} instead of D and repeat the processes.

Since $\partial \mathscr{B} \cap \tau(\partial \mathscr{B})=S \cup T=S_{1} \cup S_{2} \cup T_{1}$ and S, T contain finite components, either (1), (2) or (3) of the above happen by repeating the above processes finite times. If the cases from (A) to ($C b a$) happened in the processes, the way of dealing has been done. So we may denote the way of dealing with the following cases (1), (2)' or (3)

Case (1)': There is a 2-ball D in $\tau(\partial \mathscr{B})$ satisfying
(a) $\#\left(\partial D \cap p^{-1}(t)\right)=2, \partial D \neq \tau(\partial D)$ and
(b) if E, E^{\prime} are 2-balls in $\tau(\partial \mathscr{B})$ bounded by ∂D and $\tau(\partial D)$, $\stackrel{\circ}{E} \cap \partial \mathscr{B}=\phi$ and $\stackrel{\circ}{E}^{\prime} \cap \partial \mathscr{B}=\phi$.

Case (2)': There is a 2-ball D in $\tau(\partial \mathscr{B})$ satisfying
(c) $\#\left(\partial D \cap p^{-1}(\ell)\right)=1, \partial D \neq \tau(\partial D)$ and
(d) if E is one of two 2-balls in $\tau(\partial \mathscr{B})$ bounded by $\tau(\partial D)$ such that E does not contain $D, \stackrel{\circ}{E} \cap \partial \mathscr{B}=\phi$.

Case (3)': There is a 2 -ball D in $\tau(\partial \mathscr{B})$ satisying
(e) $\#\left(\partial D \cap p^{-1}(\ell)\right) \geqq 3, \partial D \neq \tau(\partial D)$ and
(f) if E is any one of 2-balls in $\tau(\partial \mathscr{B})$ bounded by ∂D and $\tau(\partial D), \dot{E} \cap \partial \mathscr{B}=\phi$.
When the case (1) ${ }^{\prime}$ happened, put $D \cap E=\alpha, D \cap E^{\prime}=\beta, \partial E-\stackrel{\circ}{\alpha}=\gamma, \partial E^{\prime}-\stackrel{\circ}{\beta}=\delta$ and $\partial D \cap p^{-1}(\ell)=\omega_{1} \cup \omega_{2}$. We may assume that $\partial \mathscr{B}$ meets $\tau(\partial \mathscr{B})$ transversally. If $\tau(\alpha)=\gamma$ and $\tau(\beta)=\delta, \tau(\partial E)=\partial E$ and $\tau\left(\partial E^{\prime}\right)=\partial E^{\prime}$. So if $\dot{E} \subset \mathscr{B}, \dot{E}^{\prime} \cap \mathscr{B}=\phi$. But then $\grave{D} \cap \mathscr{B}=\phi$ from $\stackrel{\circ}{E} \subset \mathscr{B}$ and $\dot{D} \subset \mathscr{B}$ from $\dot{E}^{\prime} \cap \mathscr{B}=\phi$. It is a contradiction. It is the same for $\dot{E} \cap \mathscr{B}=\phi$. Hence the case can not occur. So $\tau(\alpha)=\delta$ and $\tau(\beta)=\gamma$.

Then $\tau(\partial E)=\partial E^{\prime}$ and $\tau\left(\partial E^{\prime}\right)=\partial E$. Let F be a region in $\partial \mathscr{B}$ bounded by α and γ such that F does not contain $\tau(\dot{D})$ and F^{\prime} be a region in $\partial \mathscr{B}$ bounded by β and δ such that F^{\prime} does not contain $\tau(\grave{D})$. Then F, F^{\prime} are both 2-balls and $F=\tau\left(E^{\prime}\right), F^{\prime}=\tau(E)$. Put $\Sigma_{1}=E \cup \tau\left(E^{\prime}\right)=E \cup F$, then Σ_{1} is a 2-sphere and $\tau\left(\Sigma_{1}\right)$ $=\tau(E) \cup E^{\prime}=E^{\prime} \cup F^{\prime}$. Since $\dot{E} \cap \partial \mathscr{B}=\dot{E}^{\prime} \cap \partial \mathscr{B}=\phi, \Sigma_{1} \cap \tau\left(\Sigma_{1}\right)=\omega_{1} \cup \omega_{2}$ and so $p \mid \Sigma_{1}: \Sigma_{1} \rightarrow p\left(\Sigma_{1}\right)$ is a homeomorphism. Hence $p\left(\Sigma_{1}\right)$ is a 2 -sphere. $p\left(\Sigma_{1}\right)$ bounds a 3-ball B_{0}^{3} in S^{3} and so Σ_{1} bounds a 3-manifold $W_{1}=p^{-1}\left(B_{0}^{3}\right)$ in $M(\ell)$. If $W_{1} \cap$ $p^{-1}(\ell) \neq \phi, \stackrel{W}{W}_{1} \cap \tau\left(W_{1}\right) \neq \phi . \quad$ So $W_{1} \subsetneq \tau\left(W_{1}\right)$ or $\tau\left(W_{1}\right) \subsetneq W_{1}$ since $\partial W_{1} \cap \tau\left(\partial W_{1}\right)=$ $\Sigma_{1} \cap \tau\left(\Sigma_{1}\right)=\omega_{1} \cup \omega_{2}$. If $W_{1} \subsetneq \tau\left(W_{1}\right)$, put $W^{\prime}=W_{1}-\tau\left(W_{1}\right)$. Then $\tau\left(W^{\prime}\right)=\tau\left(W_{1}\right)$ $-W_{1}=\phi$. It is a contradiction. It is the same for $W_{1} \subsetneq \tau\left(W_{1}\right)$. Hence $\stackrel{\circ}{W}_{1} \cap p^{-1}(\iota)$ $=\phi$ and $W_{1} \cong B^{3}$, the 3-ball.

Case (2-1): When $D \subset \mathscr{B},\left(E \cup E^{\prime}\right) \cap \mathscr{B}=\phi(*)$. And $\left(F \cup F^{\prime}\right) \cap \tau(\mathscr{\mathscr { A }})=\phi(* *)$.

Let $\mathscr{B}=\mathscr{B}_{1} \cup \mathscr{B}_{2}\left(\mathscr{B}_{i}:\right.$ homotopy 3-ball) and $\overline{\partial \mathscr{B}-\left(\tau(D) \cup F \cup F^{\prime}\right)} \subset \mathscr{B}_{1}$, then $(\dot{\gamma} \cup \delta) \cap \partial \mathscr{B}_{1}=\phi$ and $(\gamma \cup \delta) \cap \partial \mathscr{B}_{1}=\omega_{1} \cup \omega_{2}$. So the region $\overline{\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)}$ bounded by $\gamma \cup \delta$ in $\tau(\partial \mathscr{B})$ which does not contain D is contained in \mathscr{B}_{2}. Put $\Sigma_{2}=D \cup F \cup F^{\prime} \cup \tau(D)$, then Σ_{2} is a 2-sphere and it is contained in \mathscr{B}. Furthermore $\Sigma_{2}=\partial \mathscr{B}_{2}$ and $\Sigma_{2}=\cap \tau\left(\Sigma_{2}\right)=D \cup \tau(D)$. So $\overline{\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)} \cap \partial \mathscr{B} \subset \mathscr{B}_{2}$ $\cap \partial \mathscr{B}=\tau(D) \cup F \cup F^{\prime}$. On the other hand $\overline{\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)} \cap\left(\tau(D) \cup F \cup F^{\prime}\right)$ $=\gamma \cup \delta$, so $\left(\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)\right) \cap \partial \mathscr{B}=\phi(* * *)$. From $(*),(* *)$ and $(* * *)$, the region \mathscr{B}^{\prime} in \mathscr{B} bounded by $D \cup F \cup F^{\prime} \cup \overline{\left(\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)\right)}$ satisfies $\mathscr{A}^{\prime} \cap$ $\tau(\mathscr{B})=\phi . \quad$ So $\partial \mathscr{B}$ intersects $p^{-1}(\ell)$ transversally at ω_{1} and ω_{2}. It is a contradiction the same as the proof of $T_{2}=\phi$. So this case cannot happen.

Case (2-2): When $D \cap \mathscr{\mathscr { B }}=\phi, E \cup E^{\prime} \subset \mathscr{B}(*)^{\prime}$. So $\tau(D) \cap \tau(\mathscr{A})=\phi$ and $F \cup F^{\prime} \subset \tau(\mathscr{B})(* *)^{\prime}$. Put $\Sigma_{3}=D \bigcup_{\infty \cup \beta}\left(F \cup F^{\prime} \cup \tau(D)\right)$, then Σ_{3} is a 2 -sphere. And $\Sigma_{4}=\left(D \cup E \cup E^{\prime} \bigcup_{\gamma \cup \delta} \tau(D)\right.$ is also a 2-sphere. $E \cup_{\partial} F$ bounds a 3-ball W_{1} and $E^{\prime} \cup_{\partial} F^{\prime}=\tau(E) \cup_{\partial} \tau(F)$ bounds a 3-ball $\tau\left(W_{1}\right)$. Denote $\Sigma_{3} \dot{\times}[-1,1], \Sigma_{4} \dot{\times}[-1,1]$ small product neighborhood $\bmod \omega_{1} \cup \omega_{2}$, i.e. $\quad \Sigma_{3} \dot{\times}[-1,1]=\Sigma_{3} \times[-1,1] / \omega_{i} \times\{t\}$ $\sim \omega_{i} \times\{0\}(i=1,2), t \in[-11] \Sigma_{4} \dot{\times}[-11]=\Sigma_{4} \times[-11] / \omega_{i} \times\{t\} \sim \omega_{i} \times\{0\}$ where $\Sigma_{3} \times\{0\}=\Sigma_{3}, \Sigma_{4} \times\{0\}=\Sigma_{4},\left(\Sigma_{3} \times\{1\}\right) \cap\left(W_{1} \cup \tau\left(W_{1}\right)\right)=\phi$ and $\left(\Sigma_{4} \times\{-1\}\right) \cap\left(W_{1}\right.$ $\left.\cup \tau\left(W_{1}\right)\right)=\phi$. By $(*)^{\prime}$ and $(* *)^{\prime}, \tau\left(\Sigma_{3} \times\{1\}\right)=\Sigma_{4} \times\{-1\}$. So $\tilde{\Sigma} \cap \tau(\tilde{\Sigma})=\omega_{1} \cup \omega_{2}$ where $\tilde{\Sigma}=\Sigma_{3} \times\{1\}$. Hence $p \mid \tilde{\Sigma}: \widetilde{\Sigma} \rightarrow p(\tilde{\Sigma})$ is a homeomorphism and $\tilde{\Sigma}$ bounds a 3-manifold, say W_{2}, since $p(\widetilde{\Sigma})$ bounds a 3-ball, say B_{0}. We may suppose $W \supset$ \mathscr{B}. Then $\left(\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)\right) \cap \stackrel{\circ}{W}=\phi$ and $\left(\tau(\partial \mathscr{B})-\left(D \cup E \cup E^{\prime}\right)\right) \cap \partial \mathscr{B}=$ $\phi(* * *)^{\prime}$. By $(*)^{\prime},(* *)$ and $(* *)^{\prime}$, for a region $\mathscr{B}^{\prime \prime}$ in \mathscr{B} bounded by $\tau(D) \cup E \cup$ $E^{\prime} \cup \overline{\partial \mathscr{B}-\left(\tau(D) \cup F \cup F^{\prime}\right)}, \tau(\mathscr{B}) \cap \mathscr{B}=\phi$ and $\partial \mathscr{B}^{\prime \prime} \rightarrow \omega_{1} \cup \omega_{2}$. So $\partial \mathscr{B}$ intersect transversally $p^{-1}(\ell)$ at ω_{1}, ω_{2}. It is a contradiction. This case can not also happen. Therefore the case 2 of ${ }^{(1)}{ }^{\prime}$ can not happen.

The case (2)'. Let $D \times[-1,1]$ be a small product neighborhood of D in $M(t)$ such that $D \times\{0\}=D, \partial D \times\{1\} \subset \tau(E)$ and $\partial D \times\{-1\} \subset \partial \mathscr{B}-\tau(E)$. Let k_{i} be a component of $p^{-1}(\ell)$ which intersects ∂D with only one point and $\omega=\partial D \cap$ $p^{-1}(l)=\partial D \cap k_{i}$. Put $\Sigma=D \cup_{\partial} \tau(E)$, then Σ is a 2 -shpere and $\Sigma \cap \tau(\Sigma)=(D \cup$ $\tau(E)) \cup(\tau(D) \cap E)$. On the other hand since $\stackrel{D}{D} \cap \partial \mathscr{B}=\phi$ and $E \cap \cap \partial \mathscr{B}=\phi$, it follows that $D \cap \tau(D)=\partial D \cap k_{i}=\omega, E \cap \tau(E)=\partial E \cap \tau(\partial E)=\tau(\partial D) \cap \partial D=\omega, D \cap$ $E=\partial D \cap \tau(\partial D)=\omega \quad$ and $\quad \tau(E) \cap \tau(D)=\tau(D \cap E)=\tau(\omega)=\omega$. So $\quad \Sigma \cap \tau(\Sigma)=\omega$. Hence $p \mid \Sigma: \Sigma \rightarrow p(\Sigma)$ is a homeomorphism and $p(\Sigma)$ bounds a 3-ball B_{0}^{3} in S^{3}. We take B_{0}^{3} so that B_{0}^{3} contains $p(D \times[0,1])$. Then Σ bounds a 3-manifold $W=$ $p^{-1}\left(B_{0}^{3}\right)$ in $M(\ell)$ and $\dot{W} \cap k_{i}=\phi$ because $\Sigma \cap k_{i}=\omega$. If $W \circ \cap p^{-1}(\ell)=\phi, p \mid W$ is a homeomorphism and W is a 3-ball since $W \cap \tau(W)=\omega$. If $W \cap p^{-1}(t) \neq \phi$ (i.e. $\stackrel{\circ}{W}$ contains some other components of $\left.p^{-1}(\ell)\right), \dot{W} \cap \tau(\dot{W}) \neq \phi . \quad$ So $W \subsetneq \tau(W)$ or $\tau(W) \subsetneq W$ since $\partial W \cap \tau(\partial W)=\Sigma \cap \tau(\Sigma)=\omega$. If $\tau(W) \subsetneq W$, let $W^{\prime}=W-\tau(W)$.

Then $\tau\left(W^{\prime}\right)=\tau(W)-W=\phi$. It is a contradiction. The case $W \subsetneq \tau(W)$ is also the same as the above. So $W \circ \cap p^{-1}(\Lambda)=\phi$. Put $\Sigma_{1}=E_{1} \cup_{\partial} D \times\{1\}$ and $\Sigma_{2}=(\partial \mathscr{B}$ $-\tau(E)) \cup D$. (Be careful of $\left.\Sigma_{2} \neq(\partial \mathscr{B}-(\tau(E) \cup \partial D \times[-1,0]) \cup(\partial D \times\{-1\}))\right)$. Since $\tau\left(\Sigma_{1}\right) \cap \Sigma_{1}=\phi, p \mid \Sigma_{1}$ is a homeomorphism. And since $W \cap p^{-1}(t)=\phi, \Sigma_{1}$ bounds a 3-ball W_{1} where W_{1} is contained in $W . \Sigma_{2}$ bounds the homotopy 3-ball $\overline{\mathcal{B}}-W$ provided $D \subset \mathscr{B}$ and it bounds the homotopy 3-ball $\mathscr{B} \cup W$ provided $D \cap \mathscr{B}=\phi . \quad$ Take a 2-ball D^{\prime} near D containing in $D \times[0,1]$ (as Fig.) and let E^{\prime}

(Fig.)
be a region bounded by $\tau\left(\partial D^{\prime}\right)$ which contains E. Put $\Sigma_{2}^{\prime}=\left(\partial \mathscr{B}-\tau\left(\dot{E}^{\prime}\right)\right) \cup D^{\prime}$. Then by the same way of $\Sigma_{2}, \Sigma_{2}^{\prime}$ bounds the homotopy 3-ball $\overline{\mathcal{B}}-W^{\prime}$ provided $D^{\prime} \subset \mathscr{B}$ and it bounds the homotopy 3-ball $\mathscr{B} \cup W^{\prime}$ provided $\mathscr{D}^{\prime} \cap \mathscr{B}=\phi$ where W^{\prime} is a 3-ball bounded by $\tau\left(E^{\prime}\right) \cup D^{\prime}$. (Existence of W^{\prime} and $W^{\prime} \cong B^{3}$ are the same as W.)
And

$$
\begin{aligned}
\Sigma_{2}^{\prime} \cap \tau\left(\Sigma_{2}^{\prime}\right) & =\left(\left(\partial \mathscr{B}-\tau\left(\dot{E}^{\prime}\right)\right) \cup D^{\prime}\right) \cap\left(\left(\tau(\partial \mathscr{B})-\dot{E}^{\prime}\right) \cup \tau\left(D^{\prime}\right)\right) \\
& =\omega \cup\left(\left(\partial \mathscr{B}-\tau\left(\dot{E}^{\prime}\right)\right) \cap\left(\tau(\partial \mathscr{B})-\dot{E}^{\prime}\right)\right.
\end{aligned}
$$

So

$$
\begin{aligned}
& \#\left(\Sigma_{2}^{\prime} \cap \tau\left(\Sigma_{2}^{\prime}\right) \cap S\right)<\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}) \cap S) \text { and } \\
& \#\left(\Sigma_{2}^{\prime} \cap \tau\left(\Sigma_{2}^{\prime}\right) \cap T\right)=\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}) \cap T) .
\end{aligned}
$$

Hence $\#\left(\Sigma_{2}^{\prime} \cap \tau\left(\Sigma_{2}^{\prime}\right)\right)<\#(\partial \mathscr{B} \cap \tau(\partial \mathscr{B}))$ and the induction for the number of the components of S proceeds.

The case (3'. Let $E_{1}, \cdots, E_{r}(r \geqq 3)$ be 2-balls in $\tau(\partial \mathscr{B})$ bounded by ∂D and $\tau(\partial D)$. Then $\partial E_{i}=\bar{\alpha}_{i} \cup \tau\left(\bar{\alpha}_{i}\right)$ and $\tau \mid \partial \bar{\alpha}_{i}=i d$. where α_{i} is an open arc in the intersection of type S_{2}. We may assume that $\partial \mathscr{B}$ meets $\tau(\partial \mathscr{B})$ transversally. So if $\stackrel{\circ}{E}_{1} \subset \mathscr{B}, \stackrel{\circ}{E}_{2} \cap \mathscr{B}=\phi$. But then $\stackrel{\circ}{D} \cap \mathscr{B}=\phi$ from $\stackrel{\circ}{E}_{E_{1} \subset \mathscr{B}}$ and $\stackrel{\circ}{D} \subset \mathscr{B}$ from $\stackrel{\circ}{E}_{2} \cap \mathscr{B}$ $=\phi . \quad$ It is a contradiction. It is the same for $\dot{E}_{1} \cap \mathscr{B}=\phi$. Hence the case (3) can not occur.

The proof of Theorem is completed.
Remark. $\quad \tau(E) \cap \tau(\mathscr{\mathscr { B }})=\phi \Rightarrow D \times\{-1\} \subset \tau(\mathscr{B})$』
$E \cap \mathscr{B}=\phi \Rightarrow \tau(D) \times\{-1\} \subset \mathscr{B}$. $\tau(E) \subset \tau(\mathscr{B}) \Rightarrow(D \times\{-1\}) \cap \tau(\mathscr{B})=\phi$』 $E \subset \mathscr{B} \Rightarrow(\tau(D) \times\{-1\}) \cap \mathscr{B}=\phi$.

By the above facts and that $\partial \mathscr{B}-T$ meets $\tau(\partial \mathscr{B})-T$ transversally, there are odd components of S through ω other than ∂D and $\tau(\partial D)$. So after doing the surgery above, ω is not the isolated point although the intersection ∂D and $\tau(\partial D)$ can be eliminated.
2. Deciding of $\boldsymbol{\pi}_{2}(\boldsymbol{M}(\ell))$. In this section we study a method of determining whether $\pi_{2}(M(\ell))=0$ or not for a given link ℓ whose components are all trivial knots.

Lemma 2. Let $p: M(\downarrow) \rightarrow S^{3}$ be a 2-fold covering of S^{3} branched over a link \downarrow in S^{3}. If Σ^{2} is a 2 -sphere embedded in S^{3} such that $\Sigma^{2} \cap 1$ is exactly two points. Then $p^{-1}\left(\Sigma^{2}\right)$ is homeomorphic to the 2 -sphere.

Proof. Since p is a 2 -fold covering and $\Sigma^{2} \cap \ell$ is two points, $p \mid p^{-1}\left(\Sigma^{2}\right)$ is also a 2 -fold covering i.e. $p^{-1}\left(\Sigma^{2}\right)$ is connected. So the Euler characteristic $\chi\left(p^{-1}\left(\Sigma^{2}\right)\right)=2$ and hence $p^{-1}\left(\Sigma^{2}\right)$ is homeomorphic to the 2 -sphere.

Proposition 1. Let $p: M(\ell) \rightarrow S^{3}$ be a 2-fold covering of S^{3} branched over a link 1. If there is a 2-sphere Σ^{2} in S^{3} satisfying that
(1) $\Sigma^{2} \cap$ t is exactly twc points and
(2) $B_{i}^{3} \cap \downarrow$ is not homeomorphic to the 1 -ball for $i=1,2$ where $S^{3}=B_{1}^{3} \cup_{\Sigma} B_{2}^{3}$, then $p^{-1}\left(\Sigma^{2}\right)$ is not homotopic to 0 in $M(\ell)$.

Proof. Let $\tau: M(\iota) \rightarrow M(\iota)$ be the non-trivial covering translation and Fix (τ) be the set of fixed points of τ, then $\operatorname{Fix}(\tau)=p^{-1}(t)$. Then $p^{-1}\left(\Sigma^{2}\right) \cong S^{2}$ by lemma 2 and $\tilde{\Sigma}^{2}$ splits $M(\ell)$ where $\tilde{\Sigma}^{2}=p^{-1}\left(\Sigma^{2}\right)$. So we can denote $M(\ell)$ $=M_{1} \cup \tilde{\Sigma} M_{2}$. If neither M_{1} nor M_{2} is homoemorphic to a homotopy 3-ball, $\tilde{\Sigma}^{2} \neq 0$ in $M(\ell)$. So we can show the contradiction by assuming $M_{i}(i=1$ or 2$)$ a homotopy 3-ball. Since $\tau(\tilde{\Sigma})=\tilde{\Sigma}$, it happens that $\tau\left(M_{i}\right)=M_{i}(i=1,2)$ or $\tau\left(M_{1}\right)$ $=M_{2}$. If $\tau\left(M_{1}\right)=M_{2}, M(\ell)$ is a homotopy 3 -sphere. So $p^{-1}(\ell)$ is a 1 -sphere by Smith's Theorem [9] and ℓ is a 1 -component link ($=\mathrm{knot}$). It contradicts to (1) and (2). And if $\tau\left(M_{i}\right)=M_{i}, p \mid M_{i}: M_{i} \rightarrow B_{i}^{3}$ is a 2 -fold covering of B_{i}^{3} branched over $B_{i}^{3} \cap \ell$. And if M_{i} is a homotopy 3-ball, $p^{-1}\left(B_{i}^{3} \cap \ell\right)=F i x\left(\tau \mid M_{i}\right)$ is 1 -ball by Smith's Theorem [9]. Hence $B_{i}^{3} \cap \ell \cong D^{1}$. It contradicts to (2). So $\tilde{\Sigma}^{2}=p^{-1}\left(\Sigma^{2}\right) \neq 0$ in $M(l)$.

Proposition 2. In Proposition 1, assume that Σ^{2} satisfies the following conditions (3), (4) instead of (1), (2) in Proposition 1;
(3) $\Sigma^{2} \cap$ is exactly two points and
(4) $\left(B_{i}^{3}, B_{i}^{3} \cap \ell\right) \cong\left(D^{1} \times D^{2}, D^{1} \times\{0\}\right)($ standard ball pair) for $i=1$ or 2 where $S^{3}=B_{1}^{3} \cup_{\Sigma} B_{2}^{3}$.
Then $p^{-1}\left(\Sigma^{2}\right) \simeq 0$ in $M(\ell)$.
Proof. By lemma 2, $p^{-1}\left(\Sigma^{2}\right)$ is homeomorphic to a 2 -sphere. Since ($B_{i}^{3}, B_{i}^{3} \cap \ell$) is the standard ball pair, $p^{-1}\left(B_{i}^{3}\right)$ is a 3-ball. Since $\partial\left(p^{-1}\left(B_{i}^{3}\right)\right)=$ $p^{-1}\left(\partial B_{i}^{3}\right)=p^{-1}\left(\Sigma^{2}\right), p^{-1}\left(\Sigma^{2}\right) \simeq 0$ in $M(t)$.

Remark. Let $p: M(\ell) \rightarrow S^{3}$ be a 2 -fold covering of S^{3} branched over ℓ and $\tilde{\Sigma}^{2}$ be a 2 -sphere embedded in $M(\iota)$. By doing equivariant surgeries, $\tilde{\Sigma}^{2}$ splits into some 2 -spheres $\left\{\tilde{\Sigma}_{i}^{2}\right\}$ and each 2 -sphere satisfies that $\tilde{\Sigma}_{i}^{2} \cap \tau\left(\widetilde{\Sigma}_{i}^{2}\right)=\phi$ or $\tilde{\Sigma}_{i}^{2}=\tau\left(\tilde{\Sigma}_{i}^{2}\right)$. And $p\left(\tilde{\Sigma}_{i}^{2}\right) \cong S^{2}$. So we denote again $\tilde{\Sigma}^{2}$ a 2 -sphere embedded in $M(\ell)$ such that $\tilde{\Sigma}^{2} \cap \tau\left(\tilde{\Sigma}^{2}\right)=\phi$ or $\tilde{\Sigma}^{2}=\tau\left(\tilde{\Sigma}^{2}\right)$. Put $\Sigma^{2}=p\left(\tilde{\Sigma}^{2}\right)$. Now if $p^{-1}\left(\Sigma^{2}\right)$ $=\tilde{\Sigma}^{2} \cup \tau\left(\tilde{\Sigma}^{2}\right)$ and $\tilde{\Sigma}^{2} \cap \tau\left(\tilde{\Sigma}^{2}\right)=\phi, \Sigma^{2} \cap \ell=\phi$. If $\quad \ell \cap B_{1}^{3}=\phi, p^{-1}\left(B_{1}^{3}\right)=B_{11}^{3} \cup B_{12}^{3}$ (disjoint union of 3-balls) and $\partial B_{11}^{3}=\tilde{\Sigma}^{2}, \partial B_{12}^{3}=\tau\left(\tilde{\Sigma}^{2}\right)$. So $\tilde{\Sigma}^{2} \simeq 0$ in $M(\ell)$. It is the same for the case $\ell \cap B_{2}^{3}=\phi$. If $B_{i}^{3} \supset \ell_{i}(i=1,2)$ where $\ell_{i}(i=1,2)$ are non-empty sublinks of ℓ with $\ell=\ell_{1} \cup \ell_{2}, p^{-1}\left(B_{i}^{3}\right)$ are both connected 3-manifolds with $\partial p^{-1}\left(B_{i}^{3}\right)$ $=\tilde{\Sigma}^{2} \cup \tau\left(\tilde{\Sigma}^{2}\right)$. So $\tilde{\Sigma}^{2} \neq 0$ and $\tau\left(\tilde{\Sigma}^{2}\right) \neq 0$ in $M(\ell)$. Because if $\tilde{\Sigma}^{2} \simeq 0$ in $M(\ell), \tilde{\Sigma}^{2}$ bounds a homotopy 3 -ball in $M(\ell)$ [3]. Hence $\partial p^{-1}\left(B_{1}^{3}\right) \cong S^{2}$ or $\partial p^{-1}\left(B_{2}^{3}\right) \cong S^{3}$. It is a contradiction. Now the case $p^{-1}\left(\Sigma^{2}\right)=\tilde{\Sigma}^{2}$ and $\tilde{\Sigma}^{2}=\tau\left(\tilde{\Sigma}^{2}\right)$ hold. In general $\Sigma^{2} \cap \ell=\phi$ or even points. But it does not happen that $\Sigma^{2} \cap \ell=\phi$ under the above conditions. And if $\#\left(\Sigma^{2} \cap \ell\right) \geqq 4, p^{-1}\left(\Sigma^{2}\right) \nsupseteq S^{2}$. So we may consider the case $\#\left(\Sigma^{2} \cap \ell\right)=2$. (In the case $p^{-1}\left(\Sigma^{2}\right) \cong S^{2}$ by lemma 2.) So we can decide whether $\tilde{\Sigma}^{2}=p^{-1}\left(\Sigma^{2}\right)$ is homotopic to 0 or not except the next case by using Proposition 1 and 2 ;
i.e. (5) $\#\left(\Sigma^{2}\right) \cap \ell=2$ and
(6) $\left(B_{i}^{3}, B_{i}^{3} \cap \ell\right)$ is a non-standard ball pair.

So if ℓ is a link whose components are all trivial knot, we can easily decide $\pi_{2}(M(\ell))=0$ or not by observing ℓ and by lemma 1.

References

[1] J. Hempel: 3-manifolds, Ann. of Math. Studies 86, Princeton Univ. Press.
[2] H.M. Hilden: Every closed, orientable 3-manifold is a 3-fold branched covering space of S^{3}, Bull. Amer. Math. Soc. 80 (1974) 1243-1244.
[3] F. Laudenbach: Topologie de la dimension trois homotopie et isotopie, Societe Math. de France. Astérisque 12.
[4] W.B.R. Lickorish: A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962) 531-540.
[5] -: A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964) 769-778.
[6] -: On the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 62, (1966) 679-681.
[7] J.M. Montesions: Surgery on links and double branched covers of S^{3}, Ann. of Math. Studies 84, Princeton Univ. Press, 227-258.
[8] ——: Three manifolds as 3-fold branched covers of S^{3}, Quart. J. Math. Oxford (2) 27 (1976) 85-94.
[9] P.A. Smith: Transformations of finite period, Ann. of Math. 39 (1938) 127-164.
[10] F. Waldhausen: On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

Department of Mathematics
College of General Education
Hokkaido University
Sapporo 060, Japan

