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0. Introduction. Montesinos [8] and Hilden [2] showed that every
closed, orientable 3-manifold is a 3-fold irregular covering space of S® branched
over a link /. And Waldhausen [10] showed that two homotopy equivalent
closed orientable, sufficiently large 3-manifolds are homeomorphic. So we
study that what kind of 3-manifold is irreducible i.e. an embedded 2-sphere in
the 3-manifold bounds a 3-ball. Using the result of Montesinos [8] and the
surgery technique, we obtain the following.

Theorem. Let /=Fk U Uk, be a link in S® such that every component k;
(1=1,2, -+, p) of { is a trivial knot. If M({) is a 2-fold covering space of S*
branched over { and if n,(M({))=0, M({) is irreducible.

And in section 2 we study a method of determining whetbher 7,(M())=0
or not for a given link / whose components are all trivial knots.

1. Proof of Theorem

Lemma 1. Let k be a trivial krot in S3. If B%is a 3-ball in S® such that the
intersection D' of B® with k is homeomorphic to the 1-ball, the pair (B% 9") is a
standard pair (i.e. there is an orientation preserving homeomorphism h:(B* 9))—
(D*x D? D'x {0}) where D" is the standard n-ball.

Proof. Since k is a trivial knot, there is an embedded 2-ball B? in S® with
0B*=k. We may assume that B? meets 0B transversally and so B?N0B%=
{a simple arc} U {simple closed curves}. Let a be a simple closed curve in
B?2N0B® which is innermost in B” with respect to B*N0B% « splits 9B into
two 2-balls. Let B, be one of the two 2-balls such that B, does not contain the
simple arc in B?N0B®. Since « is innermost in B? with respect to B*N 9B,
there is a 2-ball B/ in B? with B, N B*=0B,=a. Then B,U,B,=S? and so
B,U,B’ bounds a 3-ball. Hence there is an ambient isotopy {¢.}: S3—S3
(0=<t=<1) keeping « fixed such that ¢,=1id., ¢(B,)=B.. We may assume
that the support of {¢,} is a small neighborhood of “one of” 3-balls bounded
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by the 2-sphere B,U,B, in S3. Then 0B*N ¢ (B?)S0B*N B2 In fact the
components of B*N0B3 contained in B, can be eliminated. Repeating this pro-
cess, we obtain an ambient isotopy {®,}: S?*—S°® (0=<t=1) such that ® =id.
and 0B*N P (B*=a simple arc v. Then the 1-sphere vU,9" bounds a non-
singular sub-2-ball in B%. Hence (B% 9)") 1s the standard pair.

DerINITION (Equivariant surgery). Let M be a closed orientable 3-mani-
fold and F be a 2-sided closed surface in M. Let 7 be an involution of M. We
may assume that F' meets 7(F) transversally and so FN7(F) is the disjoint
union of simple closed curves. If there is a 2-ball D in 7(F) such that DN
F=0D and 0D splits F into two components, we choose a small product
neighborhood DX [—1,1] of D in M with DX {0}=D, dDx[—1,1]CF. Let
D,=Dx {1}, D_.=Dx{—1} and F—(0Dx(0,1))=F,UF. where Fi,ND,
=0D, and FZ.ND_=0D_. Define F,=F,U,D, and F_=F.U,D_. We
say that F,, F_ have been obtained by equivariant surgery from F using D. If
7 is a free involution or Fix(7) N0D=¢, it is known that (F;N7(F,))<#F N
7(F)) ((=1,2) (see Hempel [1. p. 94]) where #(F N7(F)), #(F;N7(F;)) are the
number of component of F N 7(F), F;N7(F;) respectively.

Theorem. Let {=k,U---Uk, be a link in S® such that every component k;
(1=1,2, -+, ) of { is a trivial knot. If M({) is a 2-fold covering space of S*
branched over { and if m,(M({))=0, M({) is irreducible.

Remarx. If M({) is a homology 3-sphere, the theorem follows im-
mediately as follows. If 7 is a non-trivial covering translation of M({), T is
a periodic map of period 2. So the fixed points set of 7 is Z,-homology sphere
by P.A. Smith [9]. Hence the fixed points set of 7 is the 1-sphere & and so
{=p(k) is a knot where p: M({)—S3 is the 2-fold covering spdce branched
over /. Since /=p(k) is a trivial knot by the assumption, M({)==S? and is irre-
ducible.

Proof of Theorem. Let p: M({)— S be a 2-fold covering of S3 branched
ovei the link / and let 7: M({)— M({) be the non-trivial covering translation (so
7?=id.). Since 7,(M({))=0, any embedded 2-spbere in M(¢) bounds a homo-
topy 3-ball [3] i.e. a compact contractible 3-manifold. So it is sufficiently to show
that a homotopy 3-ball B in M(/) is a 3-ball.

Case (A): BNp~'()=¢.

Case (Aa): BNT(B)=¢. Then p|Bis a homeomorphism and p(B) is a
3-ball since p(B)C.S%. So B is a 3-ball.

Case (Ab): BNT(B)*¢. (1) If 0BNT(0PB)=¢, then we have that (1)
BCr(B), (1) 1(B)cBor (2) BUT(B)=M({). If (2) holds M(/) is a homotopy
3-sphere and so is a 3-sphere by Remark and so it is irreducible. If (1) or (1)’
hold, 7|8 must have fixed points. But the fixed points set of 7 1s p71({). Itis
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a contradiction that BN p~(/)=¢. So the case (Ab) (i) (1) and (1)’ can not
happen. In this case (Ab) (i) the proof is completed.

Case (i)): 08BN 7(0B)+¢. We assume that 3B meets 7(0.B) transversally
and so 0B N 7(09P) is the disjoint union of simple closed curves. Let D be a 2-
ball in 7(0.8) with D N03B=0D.

If 7(0D)=0D, p(D) is a projective 2-space in S®. It is a contradiction. So
T7(@D)N8D=¢. Then we obtain two 2-spheres S,,.S, by the equivariant surgery
from 8B using D and #(S; N 7(S;))<# (0B N 7(0B)) (:=1,2). And since z,(M(/))
=0, S; bounds a fake 3-ball B;. Thus in this case we can reduce $(6. 8N 7(0.3)).

Case (B): BNp'(Y)*¢ and 0BN p~())=¢.

Case (Ba): 0BNT(0B)=¢. Since 7|p~()=id., BDOT(B) or vice versa.
So we may assume $57(B). Put A=B—7(H). Then 0 A=0BUr(0B) and
7(@_A)=0A. On the other hand 7(A)=7(B—7(D))=7(B)—B=¢. Itisa
contradiction. So the case (Ba) can not happen.

Case (Bb): 08BN 7(0B)F+¢. If 0.B=7(0.3B), p(0P) is the projective 2-space
in §3. S0 0B=+7(04). Since we may assume that 3.8 meets 7(0.8) transversally,
08BN 7(0B) is the disjoint union of simple closed curves. By the same way of
Case (Ab) (i), we can eliminate the components of 0.8 N 7(0.3).

Case (C): 08Np~ ' (I)*¢.

Denote 08N 7(0B)=SUT=S,US,UT,UT, where S=S,US,=(038U r(0.3))
—p™(), T=T,U T,=08BN (0B) N p~(0),

S,= {szmple closed curves},

S,= {simple open arcs} ; (S,—S,=T),

T,={t,|t, is a boundary point of some elements of S,}; a set of finite points,

T,={t,|t, has a small neighborhood U(ty) in 0 BN 7(0.B) such that U(t,)N
(S U T)=t,}; a set of finite points.

Sub-lemma. 7T,=4¢.

We may assume that 0.8 meets p~'(/) transversally.

If T, ¢, let o be a point in T,. Take a small neighborhood U(w) of w
in M(¢) with U(w)=B? (3-ball). Put Dy=U(w)N0B, D;=U(w)N7(0P), then
D,, D, are both 2-balls. We may assume D,=7(D,) since 7(w)=w. Since w is
an isolated point with respect to 0.8 N 7(0.5), D, meets D, non-transversally at w.
At U(w) two cases (i.e. DyC71(9B) or DyN 7(B)==¢) will happen. In both cases,
there is a point 7 in p~!({) N U(w) with the property “nE B and n&7(B)" or “n
& Band ne1(P)"’. Since 7| p~!({)=id., it is a contradiction. So T,=4¢.

In the following we will prove the theorem by induction for the number
of components of S. Since T,=¢, there is a 2-ball D in 7(08) such that
DN0B=0D.

Case (Ca): DN p ' ({)=¢(i.e. 0DCS)). Then 7(0D)==0D or 7(0D)N oD
=¢. If 7(0D)=08D, p(D) is the projective 2-space in S%. If 7(dD) N80D=¢, by
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the same way of Case (Ab) (ii) we can reduce the number of components of S.
That is, we obtain two 2-spheres ), S, by equivariant surgery from 0.8 using D
such that #(S;N7(S,))<#(0BN7(0B)) (i=1, 2) and S; bounds a homotopy 3-
ball in M(?).

Case (Cb): DN p7'())=*¢.

Case (Cba): 9D=7(dD). Since 7|p~}({)=id.,0DNp~'({) is exactly two
points o, », by Smith’s Theorem [9]. We suppose that w, (i=1,2) are the boun-
dary of two arcs respectively in the set of the intersection of type S,. (For the
case that w; (/=1,2) are the boundary of r arcs more than two arcs, see Case
(Cbb)).) Then D U47(D) is a 2-shpere with only two fixed points w,, w, of 7.
And p(DU,7(D)) is a 2-sphere in S° Since p~!(¢) meets both 93 and 7(0.5)
transversally at the two points, w,, », belong to the same component, say p~'(k;),
of /. Suppose that S%, S} have been obtained by equivariant surgery from 0.8
with D U,7(D)=S% and (08—7(D))UD=S}. Since m,(M(¢))=0, S? bounds a
homotopy 3-ball B; in M({). If B, Ur(B;)=M({), M({) is a homotopy 3-sphere
and so M({)==S? is irreducible by Remark. So we assume B; U (B;) S M({). If
DC B, by the same way of (Ab) (ii), S and S} bound homotopy 3-balls B,, B,
respectively such that B=B, U B, 7(B,)=B, and $#(0B,N 7(0.8,))< $(0BN
7(0B)). If DN B=¢, S; and S% bound homotopy 3-balls B,, B, respectively
such that B,=BU B, or B,=B,—B and such that 7(B)=9B, and #(05,N
7(08,))<# (0B N T(0PB)). We show that B, is homeomorphic to a 3-ball. Because
if B, does not contain any component of p~}({) except p~'(k;) N B,, B, is a 2-fold
covering of a 3-ball D® branched over 9'=k; N p(B;) where (D3, 9") is the stan-
dard ball pair by lemma 1 and where D? is the 3-ball in S® containing k; N p(B,)
and bounded by p(S%). So B, is a 3-ball. If B, contains some components of
p7Y(4), we take a 3-ball B® and identify 0B with 8.3} by the natural identification.
Then E=B3L6J.@? is a homotopy 3-sphere. We extend 7|4, to B? naturally.

Then the extended involution, say 7', has a p-component link (£=2) as the set
of fixed points. It contradicts to Smith’s Theorem [9]. So B, does not contain
any other componert of p~(/) except p~}(k;) N B,.

Case (Cbb): 0D=7(dD). Putr=4#(0@DN p~*({)). We take three processes
r=1, 2 or r=3 as follows.

When r=1, 7(0D) splits 7(0.5) into closed 2-balls. Let E be one of the two
2-balls where E does not contain D. If 9E is the innermost curve in 7(0.8) with
respect to 0B N 7(0B) (i.e. ENOB=4), this process is the finish---(1). If EN
0B+ ¢, there is an innermost curve in E for 0B8N 7(8B) i.e. there is a 2-ball D,
in E such that D,N8B=¢. We consider D, instead of D and repeat the pro-
cesses.

When r=2, we denote two 2-balls E, E’ in 7(0.8) bounded by 8D and 7(8D).
If EN0B-=¢ and E'N 0B=¢, this process is the finish---(2). If EN0B=+¢,
there is a 2-ball D, in E such that D, N0PB=¢. We consider D, instead of D
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and repeat the processes. It is the same in the case £’ N0.B=¢.

When r=3, the component of 0D NS, say «, is an open arc. Since a—a
is contained in T, where & is the closure of @, 7|@—a==id. Let E be a region
in 7(08) bounded by @ and 7(a). If EN0PB=4¢ for any such E, this process is
the finish -+ (3). If EN0B+¢, there is a 2-ball D, in E with D,N0B=4.
Consider D, instead of D and repeat the processes.

Since 0BN1(0B)=S U T=S,US,UT, and S,T contain finite components,
either (1), (2) or (3) of the above happen by repeating the above processes finite
times. If the cases from (4) to (Cba) happened in the processes, the way of
dealing has been done. So we may denote the way of dealing with the following
cases @', @' or ®’

Case ©': There is a 2-ball D in 7(0.9) satisfying

(a) #(0@DNp~Y({)=2, 0D=+7(0D) and
(b) if E,E’ are 2-balls in 7(0.8) bounded by 0D and 7(0D),
EN0B=¢ and E'N0B=4.
Case @': 'There is a 2-ball D in 7(8.9) satisfying
(c) #@DNp'({))=1, 0D=7(dD) and
(d) 1if E is one of two 2-balls in 7(0.8) bounded by 7(dD) such
that E does not contain D, E N8 B=¢.

Case ®': There is a 2-ball D in 7(0.8) satisying

(e) #(ODNp~Y{)=3, 0D=+7(0D) and

(f) if E is any one of 2-balls in 7(0.8) bounded by 9D and
7(8D), EN0B=4.
When the case @’ happened, put DN E=q, DNE'=p, dE—d&=r, 0E'— =3
and 0D N p7'({)=w,Uw,. We may assume that 0.8 meets 7(0.5) transversally.
If 7(c)=" and 7(8)=3, 7(0E)=0E and 7(0E')=0E’. Soif EC B, E'N B=¢.
But then DN B=¢ from EC B and DC B from E'N B=¢. It is a contradic-
tion. It is the same for E N B=¢. Hence the case can not occur. So 7(ct)=3
and 7(B)="v.

Then 7(0E)=0E’ and 7(0E')=0E. Let F be a region in 0.8 bounded by
o and v such that F does not contain (D) and F’ be a region in 0.8 bounded
by @ and § such that F’ does not contain (D). Then F,F’ are both 2-balls and
F=1(E"), F'=7(E). Put Z;=EU7(E')=E UF, then %, is a 2-sphere and 7(%,)
=7(E)UE'=E’'UF’. Since EN0B=E'N3B=¢, Z,N7(S)=0w,Uw, and so
P12,:2,—p(Z,)) is a homeomorphism. Hence p(Z,) is a 2-sphere. p(Z)) bognds
a 3-ball B} in S? and so =, bounds a 3-manifold W,=p~(B3) in M({). If W,N
PO xS, WiNT(W)Ed. So W, sr(W,) or 7(W)) S W, since W, N (0W,)=
S NTE)=w,Uw,. If WSt(W), put W=W,—7(W)). Then 7(W")=7(W,)
—W,=¢. Itisacontradiction. Itisthesame for W,S7(W,). Hence W,N p7'())
=¢ and W;=B?, the 3-ball.

Case(2-1): When DC B,(EUE")N B=¢ (*). And (FUF')N7(B)=¢ (+*).
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Let 3=3,U B, (B;: homotopy 3-ball) and 08— (+(D)UFUF')C B, then
(YU8)N0B,=¢ and (v U8) N0B,=w,Uw,. So the region 7(08)—(DUEUE)
bounded by v US$§ in 7(8.8) which does not contain D is contained in B,. Put
2,=DUF UF'U7(D), then 3, is a 2-sphere and it is contained in B. Further-
more %,=038, and =,=N7(Z,)=DUr(D). So 71(0B)—(DUEUE)NOBC P,
N0B=7(D)UFUF’'. On the other hand 7(08)—(DUEUE")N(T(D)UF UF’)
=9 U3, so (1(0B)—(DUE UE"))N0B=¢ (+*x). From (%), (**) and (¥*x), the
region B’ in B bounded by DUF UF’'U(r(0B)—(DUE UE)) satisfies B'N
T(B)=¢. So 0B intersects p~'({) transversally at o, and w,. It is a contradic-
tion the same as the proof of T,=¢. So this case cannot happen.

Case (2-2): When DNB=¢, EUE'CB (x). So 7(D)N ’T(Q)=¢ and
FUF' ct(9) (%%)'. Put =,=D UB(F UF’'U7(D)), then =, is a 2-sphere. And

@y

2=(DUEUE")J7(D) is also a 2-sphere. E U,F bounds a 3-ball W, and
Yus

E’"UoF'=7(E)U47(F) bounds a 3-ball 7(I#,). Denote ;% [—1,1], 2, X [—1,1]
small product neighborhood mod w,U w,, i.e. =X [—1,11=2;x [—1,1]/0; X {t}
~w; X {0} ((=1,2), te[—11] =, % [~ 11]=3, X [~ 11]/w; X {t} ~w; X {0} where
X {0} =3, 3, x {0} ==, G x (1) N(W,Ur(Wy))=¢ and (2,x {—1})N(W,
UT(W))=¢. By () and (x2)’, 7(x {1})=Z,x {~1}. So EN7(D=a,U0,
where S=3,% {1}. Hence p|S: $—p(5) is a homeomorphism and 5 bounds
a 3-manifold, say ¥, since p(=) bounds a 3-ball, say B,. We may suppose W D
B. Then (1(0B)—(DUEUE)NW=¢ and (r(0B)—(DUEUE")NIB=
@(#xx)". By (*)’, () and (x*)’, for a region B” in B bounded by 7(D)UE U
E'U8B—(1(D)UFUF), 7(P)ND=¢ and 0B"—>w,Uw, So 9B intersect
transversally p~!({) at w,, w,. Itisa contradiction. This case can not also happen.
Therefore the case 2 of @’ can not happen.

The case @'. Let Dx[—1,1] be a small product neighborhood of D in M(/)
such that DX {0} =D, 0D x {1} c7(E) and 0D x {—1} c0B—7(E). Letk, be a
component of p~*({) which intersects 0D with only one point and w=0DN
p'()=0DNk;. Put =D U,7(E), then = 1s a 2-shpere and SN 7(Z)=(DU
7(E)) U(r(D)NE). On the other hand since DN0B=¢ and EN0B=¢, it
follows that DN 7(D)=0D Nk;=w, ENT(E)=0E N T(0E)=7(0D)N0D=w, DN
E=0DN7(0D)=w and 7(E)N7T(D)=7(DNE)=7(0)=w. So ZN7(2)=o.
Hence p|=: = —p(Z) is a homeomorphism and p(=) bounds a 3-ball B} in S3,
We take B} so that Bj contains p(D x [0,1]). Then 3 bounds a 3-manifold W=
p7Y(B3) in M(Y) and WNk,=¢ because SNk;=w. If WNpi(H)=¢, p|W isa
homeomorphism and W is a 3-ball since W N +(W)=w. If WnN P+ (i.e.
W contains some other components of p~Y(4)), Wn 7( W)=l=¢. So Wer(W) or
T(W)S W since W N7(0W)=3N7(Z)=0w. If 7(W)SW, let W =W—1(W).
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Then 7(W')=7(W)—W=¢. Itisa contradiction. The case W S (W) is also
the same as the above. So WN P7'(Y)=¢. Put Z,=E,U,Dx {1} and 3,=(0B
—7(E))UD. (Be careful of 3, (08— (T(E)UBD X [—1,0]) U (@D x {—1}))).
Since 7(2,) N Z,=¢, p|=, is a homeomorphism. And since WN p ()=, 3,
bounds a 3-ball W, where W, is contained in W. 3, bounds the homotopy 3-ball
B—W provided DC B and it bounds the homotopy 3-ball BUW provided
DNB=¢. Take a 2-ball D’ near D containing in DX [0,1] (as Fig.) and let E’

be a region bounded by 7(8D’) which contains E. Put 3j=(8B—7(E')UD".

Then by the same way of =,, = bounds the homotopy 3-ball 3— W’ provided
D'C B and it bounds the homotopy 3-ball BU W' provided D’'N B=¢ where
W’ 1s a 3-ball bounded by 7(E')UD’. (Existence of W’ and W’'=B? are the
same as W.)

And

SN T(SH) = (0B—7(E")) UD') N ((T(0B)—E") UT(D"))
= 0 U(0B—7(EY) N (+(0B)—E").

So
£(ENT(EHNS)<#(0BNT(0B)NS) and
21ENTEHNT)=40BNT(OB)NT).

Hence #(Z5N7(25)) < #(0BN7(0P)) and the induction for the number of the
components of S proceeds.

The case ®'. Let E,, -+, E, (r=3) be 2-balls in 7(0.8) bounded by 9D and
7(dD). Then 0E,=a;U7(a;) and 7|0@,=id. where ¢; is an open arc in the in-
tersection of type S,. We may assume that 0.8 meets 7(8_@) transversally So
if E,c B, E,N B=¢. But then DN B=¢ from E,C B and Dhc B from E,N B
=¢. Itisa contradiction. It is the same for E,NB=¢. Hence the case @’
can not occur.
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The proof of Theorem is completed.
REMARK. TE)NT(B) = ¢ = Dx {—1} C7(D)
4

ENB=¢=1D)x{—1}C3B.
T(E)CT(B) = (DX {—1})N7(B) = ¢
L
EcB= (TD)x{—1HnDd=¢.

By the above facts and that 08— T meets 7(0B)—T transversally, there are
odd components of S through  other than 8D and 7(8D). So after doing the
surgery above, w is not the isolated point although the intersection 9D and
7(8D) can be eliminated.

2. Deciding of =,(M({)). In this section we study a method of deter-
mining whether 7,(M({))=0 or not for a given link / whose components are all
trivial knots.

Lemma 2. Let p: M({)— S® be a 2-fold covering of S* branched over a
link ! in S3. If 3% is a 2-sphere embedded in S® such that (! is exactly two
points.  Then p~Y(Z?) is homeomorphic to the 2-sphere.

Proof. Since p is a 2-fold covering and Z*N{ is two points, p|p ' (Z?)
is also a 2-fold covering i.e. p~(Z?) is connected. So the Euler characteristic
X(p~'(2%)=2 and hence p~!(=?) is homeomorphic to the 2-sphere.

Proposition 1. Let p: M({)— S® be a 2-fold covering of S* branched over
a link L. If there is a 2-sphere 3% in S* satisfying that

(1) =2NZis exactly twe points and

(2) BiN{is not homeomorphic to the 1-ball for i=1,2 where S°=B}U 3B3,
then p~'(2?) is not homotopic to 0 in M(/).

Proof. Let 7: M({)—M({) be the non-trivial covering translation and
Fix(7) be the set of fixed points of 7, then Fix(t)=p~'({). Then p~}(Z%)=S?
by lemma 2 and 57 splits M(/) where 3?=p~'(2%). So we can denote M(’)
=M,UsM,. If neither M, nor M, is homoemorphic to a homotopy 3-ball,
2?0 in M(4). So we can show the contradiction by assuming M; (=1 or 2)
a homotopy 3-ball. Since 7(2)=Z%, it happens that 7(M,)=M;(i=1,2) or 7(M,)
=M, If 7(M,)=M,, M({) is a homotopy 3-sphere. So p~!({) is a 1-sphere
by Smith’s Theorem [9] and / is a 1-component link (=knot). It contradicts
to (1) and (2). And if 7(M,)=M,, p|M;: M;— B} is a 2-fold covering of B}
branched over BiNZ And if M, is a homotopy 3-ball, p~¥(BiN{)=Fix(T|M,)
is 1-ball by Smith’s Theorem [9]. Hence BiN/=D'. It contradicts to (2).
So S2=p~H(Z%)#£0 in M(7).
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Proposition 2. In Proposition 1, assume that =* satisfies the following
conditions (3), (4) instead of (1), (2) in Proposition 1;

(3) =2N{is exactly two points and

4) (B} Bin{)=(D'x D? D'x {0}) (standard ball pair) for i=1 or 2 where
S3= ? U ng.
Then p~'(=?)=0 in M({).

~ Proof. By lemma 2, p7}(2?) is homeomorphic to a 2-sphere. Since
(B}, BIn{) is the standard ball pair, p™(B}) is a 3-ball. Since 9(p~'(B})=
p7(0BY)=p~}(Z?), p7H(2)=0 in M()).

Remark. Let p: M({)—S® be a 2-fold covering of S® branched over /
and 3? be a 2-sphere embedded in M({). By doing equivariant surgeries, 32
splits into some 2-spheres {Z}} and each 2-sphere satisfies that S} N7(S¥)=¢
or $¥=7(5%). And p(5})=S% So we denote again 3? a 2-sphere embedded
in M(/) such that $2N7(53)=¢ or 32=7(2?. Put Z2=p(2?). Now if p~(Z?)
=32Ur(3?) and 32NT(E)=¢, Z*Ni=¢. If /NBi=¢, p~(B})=B} UBi,
(disjoint union of 3-balls) and 0B3,=5?, 0B},=7(2%). So 2?=0 in M({). Itis
the same for the case /N Bi=¢. If B}D/(1=1,2) where /,(i=1,2) are non-empty
sublinks of £ with /=/, U/, p~*(B}) are both connected 3-manifolds with 8p~*(B})
=3?2UT(3?). So 5240 and 7(3?)70 in M({). Because if 52=~0 in M(/), 52
bounds a homotopy 3-ball in M(¢) [3]. Hence 0p~(B})=S? or 0p~(B3)=S>.
It is a contradiction. Now the case p~(Z?)=5? and S?=7(2?% hold. In general
S2N{=¢ or even points. But it does not happen that Z* /=¢ under the above
conditions. And if #(2*N{)=4, p~(Z)=S% So we may consider the case
#(Z?N<4)=2. (In the case p~*(Z?)==S? by lemma 2.) So we can decide whether
32=p~Y(=?) is homotopic to 0 or not except the next case by using Proposition 1
and 2;

ie. (5) #(E)N/=2and

(6) (B}, Bin{)is a non-standard ball pair.

So if / is a link whose components are all trivial knot, we can easily decide
7(M(£))=0 or not by observing ¢ and by lemma 1.
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