ON THE LEAST POSITIVE EIGENVALUE OF LAPLACIAN FOR COMPACT HOMOGENEOUS SPACES

Hideo MUTO and Hajime URAKAWA

(Received May 21, 1979)

Introduction and statement of results

Let M be an n-dimensional compact smooth manifold. Two Riemannian metrics g_{1} and g_{2} on M are called to be homothetically equivalent if there exists a diffeomorphism Φ of M onto itself such that $\Phi^{*} g_{1}$ coincides g_{2} with a constant multiple.

Let $M=G / K$ be a compact homogeneous space, where G is a compact Lie group and K is a closed subgroup of G. A Riemannian metric g on M is called be G-invariant if all the translations τ_{x} by elements x in G on M are isometric with respect to the metric g (cf. [3]). Let us consider the elementary, but nontrivial problem: How many G-invariant mutually homothetically inequivalent Riemannian metrics are there on $M=G / K$?

If the linear isotropy action of K on the tangent space $T_{o}(M)$ of M at the origin $o=\{K\} \in M$ (cf. [3]) is irreducible over \boldsymbol{R}, then there exists a unique (up to homothetic equivalence) G-invariant Riemannian metric on M (cf. [9]). So the above problem is reduced to the case that the linear isotropy action of K is reducible over \boldsymbol{R}, that 1 s , the tangent space $T_{o}(M)$ is decomposed into two proper subspaces invariant by the linear isotropy action of K. In this case, many people would have the following conjecture: If a compact homogeneous space $M=G / K$ (with some additional assumptions) has the reducible isotropy action of K over \boldsymbol{R}, then it would have uncountably many mutually homothetically inequivalent G-invariant metrics.

One of the purposes of this paper is to show that the above conjecture is affirmative.

Now we assume that a compact homogeneous space G / K has the condition (C): The linear isotropy action of K on the tangent apace $T_{o}(M)$ of M at the origin o is reducible and includes the identity representation of K on $T_{o}(M)$. Let g be the Lie algebra of all left invariant vector fields on G and let \mathfrak{f} be the subalgebra of g corresponding to the subgroup K. Since G is compact, there exists an $\operatorname{Ad}(G)$-invariant inner product B on \mathfrak{g}. Let \mathfrak{m} be the orthocomplement of \mathfrak{l} in \mathfrak{g} with respect to B. Then we have the decomposition
$\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ of \mathfrak{g} such that $\operatorname{Ad}(k) \mathfrak{m}=\mathfrak{m}(k \in K)$. The isomorphism of \mathfrak{m} onto $T_{o}(M)$ given by $X \mapsto X_{0}$ (the tangent vector at o) is K-equivariant, that is $(\operatorname{Ad}(k) X)_{o}=\tau_{k *} X_{o}(k \in K)$, where $\tau_{k *}$ is the differentiation of the translation τ_{k} at o. So the condition (C) means the following condition $\left(\mathrm{C}^{\prime}\right)$:
$\left(\mathrm{C}^{\prime}\right)$ There exists a non-zero element Z in \mathfrak{m} such that $\operatorname{Ad}(k) Z=Z(k \in K)$.
We notice that every G-invariant Riemannian metric g on $M=G / K$ is given by an $\operatorname{Ad}(K)$-invariant inner product (,) on \mathfrak{m} (cf. in 2.2). Thus, to answer the above conjecture, we may choose a suitable homothetically invariant ratio which takes continuously different values among the above G-invariant Riemannian metrics. For this purpose, let us consider the following ratio. For a Riemannian metric g on M, let $-\Delta_{g}$ be the Laplace-Beltrami operator acting on smooth functions on M and let $\lambda_{1}(g)$ be the least positive eigenvalue of Δ_{g}. Then we notice (cf. [1]) that the ratio $\lambda_{1}(g) \operatorname{vol}(M, g)^{2 / n}$ is homothetically invariant, that is, if two Riemannian metrics g_{1} and g_{2} are homothetically equivalent, then it holds that

$$
\lambda_{1}\left(g_{1}\right) \operatorname{vol}\left(M, g_{1}\right)^{2 / n}=\lambda_{1}\left(g_{2}\right) \operatorname{vol}\left(M, g_{2}\right)^{2 / n}
$$

Now, under the above preparations, we can state the following results.
Main Theorem. Let $M=G / K$ be an n-dimensional compact homogeneous space ($n \geqq 2$), where G is a compact connected Lie group and K is a closed connected subgroup of G. Let g be the Lie algebra of all left invariant vector fields on G and let \mathfrak{f} be the subalgebra $\circ f \mathfrak{g}$ corresponding to K. Let B be an $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g}, and let m be the orthocomplement of \mathfrak{f} in \mathfrak{g} with respect to B. We assume the condition (C^{\prime}): There exists a non-zero element Z in m such that $\operatorname{Ad}(k) Z=Z(k \in K)$. Then there exists an one-parameter family of G-invariant Riemannian metrics $g_{t}(0<t<\infty)$ on M such that
(1) $\operatorname{vol}\left(M, g_{t}\right)$ is constant in t,
(2) $\lim _{t \rightarrow 0} \lambda_{1}\left(g_{t}\right)=0$ (if an one-parameter subgroup $\{\exp (s Z) ; s \in \boldsymbol{R}\}$ is closed in G),
and
(3) $\lim _{t \rightarrow \infty} \lambda_{1}\left(g_{t}\right)=-\infty($ if $G \iota s$ semi-simple).

Thus we have immediately the following corollary.
Corollary. Let $M=G / K$ be as in the above Theorem. Assume that the condition $\left(C^{\prime}\right)$ hclds. If either the one-parameter subgroup $\{\exp (s Z) ; s \in \boldsymbol{R}\}$ is closed ${ }^{2}$ in or G is semi-simple, then there exist uncountablely many mutually homothetically inequivalent G-invariant Riemannian metrics on M.

Remark 1. For examples, the following ones satisfy the conditions of
the Main Theorem: real Stiefel manifolds $S O(n+p) / S O(n), p \geqq 2, n \geqq 1$; complex Stiefel manifolds $S U(n+p) / S U(n), p \geqq 1, n \geqq 1$; quoternion Stiefel manifolds $S p(n+p) / S p(n), p \geqq 1, n \geqq 1 ; G /\left(H / T_{1}\right)$, where G / H is an irreducible hermitian symmetric space and T_{1} is the connected component of the center of H; and compact connected semi-simple group manifolds. On the other hand, a compact flag manifold G / T, where G is a compact semi-simple Lie group and T is a maximal torus in G, does not satisfy the condition (C^{\prime}) of the above Theorem, but it has the reducible isotropy action.

Remark 2. Main Theorem is an extension of the results obtained by [7] and [8]. The above Corollary is a generalization of the results of [4] and [5].

Finally, we should express our gratitude to Professor M. Takeuchi and also Professor S. Tanno who suggested us this probrem and encouraged us during the preparation for this paper.

1. The Laplace-Beltrami operator on reductive homogeneous spaces

1.1. Let $M=G / K$ be an n-dimensional homogeneous space, where G is a connected Lie group and K is a closed subgroup of G. In this section, we do not assume necessarily the compactness of M. Let g be the Lie algebra of all left invariant vector fields on G and let be the subalgebra of g corresponding to the subgroup K.

Definition (cf. [3」 p. 200 or [2] p. 389). The coset space $M=G / K$ is called to be reductive if there exists a subspace \mathfrak{m} of g such that $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ (direct sum) and $\operatorname{Ad}(k) \mathfrak{m}=\mathfrak{m}$ for all $k \in K$.

In this section, we consider a reductive homogeneous space $M=G / K$. First, we prepare some notations. (See [2] and [6]).

Let $C^{\infty}(G)$ be the space of all complex valued C^{∞} functions on $G, C^{\infty}(G, K)$ the space of all elements f in $C^{\infty}(G)$ such that $f(g k)=f(g)$ for each $g \in G$ and $k \in K$, and $C^{\infty}(M)$ the space of all complex valued C^{∞} functions on M. Let π be the natural projection of G onto G / K. Put $o=\{K\} \in M=G / K$. Then the mapping $f \mapsto \tilde{f}$, where $\tilde{f}=f \circ \pi$, gives an isomorphism of $C^{\infty}(M)$ onto $C^{\infty}(G, K)$.

Let $\boldsymbol{D}(G)$ be the space of all differential operators on G which are invariant by left translations $L_{x},(x \in G), \boldsymbol{D}_{0}(G)$ the space of all elements in $\boldsymbol{D}(G)$ which are invariant by right translations $R_{k},(k \in K)$, and $\boldsymbol{D}(M)$ the space of all differential operators on M which are invariant by the translations $\tau_{x}(x \in G)$ on M. Then, for every $D \in \boldsymbol{D}_{0}(G)$, we can define $\tau(D) \in \boldsymbol{D}(M)$ by

$$
(\varpi(D) f)^{\sim}=D \tilde{f}, \quad f \in C^{\infty}(M) .
$$

Let $S(\mathfrak{m})$ be the symmetric algebra over \mathfrak{m}. Then $S(\mathfrak{m})$ can be regarded as a K-module by the adjoint action of K on \mathfrak{m}. Let $S(\mathfrak{m})_{K}$ be the set of all
elements in $S(\mathfrak{m})$ which are invariant by the action $\operatorname{Ad}(k), k \in K$. Let $S(\mathfrak{m})_{K}{ }^{c}$ be the complexification of $S(\mathfrak{m})_{K}$. Then the following theorem holds.

Theorem (cf. [2] or [6]).
(1) The mapting $\approx ; \boldsymbol{D}_{0}(G) \rightarrow \boldsymbol{D}(M)$ is homomorphism of $\boldsymbol{D}_{0}(G)$ onto $\boldsymbol{D}(M)$.
(2) There exists an isomorphism $\dot{\lambda}$ of $S(\mathfrak{m})_{K}{ }^{c}$ onto $\boldsymbol{D}(M)$ which is given as follows: Let $\left\{Y_{1}, \cdots, Y_{n}\right\}$ be a basis of m. Then, for every polynomial $P\left(Y_{1}, \cdots, Y_{n}\right)$ in $S(\mathrm{~m})_{K}{ }^{c}$,

$$
\begin{equation*}
\left[\dot{\lambda}\left(P\left(Y_{1}, \cdots, Y_{n}\right)\right) f\right](x \cdot o)=\left[P\left(\frac{\partial}{\partial y_{1}}, \cdots, \frac{\partial}{\partial y_{n}}\right) f\left(x \exp \left(\sum_{i=1}^{n} y_{i} Y_{i}\right) \cdot o\right)\right](0) \tag{1.1}
\end{equation*}
$$

Here, in the right hand side, we regard $f\left(x \exp \left(\sum_{i=1}^{n} y_{i} Y_{i}\right) \cdot o\right)$ as a function in $\left(y_{1}, \cdots, y_{n}\right)$ and $P\left(\frac{\partial}{\partial y_{1}}, \cdots, \frac{\partial}{\partial y_{n}}\right)$ expresses the differential operator which is given by substituting $\frac{\partial}{\partial y_{1}}, \cdots, \frac{\partial}{\partial y_{n}}$ into the polynomial $P\left(Y_{1}, \cdots, Y_{n}\right)$.
1.2. Every G-invariant Riemannian metric on a reductive homogeneous space $M=G / K$ is given as follows (cf. [3]): Let (,) be an $\operatorname{Ad}(K)$-invariant inner product on \mathfrak{m}. Then there exists a unique G-invariant Riemannian metric on M such that

$$
(g)_{o}\left(X_{o}, Y_{o}\right)=(X, Y), \quad X, Y \in \mathfrak{m}
$$

Here the tangent vectors $X_{o}, Y_{o} \in T_{o}(M)$ of M at the origin $o=\{K\}$ correspond to elements X, Y in \mathfrak{m}.

For this metric g on M, let $-\Delta_{g}$ be the Laplace-Beltrami operator on M, that is

$$
\Delta_{g} f=-\sum_{i, j=1}^{n} g^{i j}\left(\frac{\partial^{2} f}{\partial y_{i} \partial y_{j}}-\sum_{k=1}^{n} \Gamma_{i j}^{k} \frac{\partial f}{\partial y_{k}}\right),
$$

for every $f \in C^{\infty}(M)$. Here $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right),\left(g_{i j}\right)$ is the components of g with respect to the local coordinate (y_{1}, \cdots, y_{n}) of M and $\Gamma_{i j}^{k}$ is the Christoffel symbol of the Riemannian connection for g. Since the translations $\tau_{x}, x \in G$ on M are isometries with respect to g, then the operator Δ_{g} belongs to $\boldsymbol{D}(M)$ (cf. [2] p. 387). So we investigate to express Δ_{g} explicitely in terms of $S(\mathrm{~m})_{K}{ }^{c}$, using the above theorem.

Lemma 1.1. Let $\left\{Y_{i}\right\}^{n}{ }_{i=1}$ be an orthonormal basis of \mathfrak{m} with respect to the above $\operatorname{Ad}(K)$-invariant inner product (,). Then the following polynomials belong to $S(\mathfrak{m})_{K}{ }^{c}$:
(1) $\sum_{i=1}^{n} Y_{i}{ }^{2}$,
(2) $\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}\right)\right) Y_{i}$,
where $\operatorname{Trace}_{\mathfrak{g}}(\operatorname{ad}(Y))$ is the trace of an endomorphism $\operatorname{ad}(Y)$ of \mathfrak{g} for every $Y \in \mathfrak{m}$.
Proof. It is clear that $\sum_{i=1}^{n} Y_{i}{ }^{2}$ belongs to $S(\mathfrak{m})_{K}{ }^{c}$, due to the $\operatorname{Ad}(K)$ invariance of (,). For another orthonormal basis $\left\{Y_{i}^{\prime}\right\}_{i=1}^{n}$ of \mathfrak{m}, we have

$$
\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}^{\prime}\right)\right) Y_{i}^{\prime}=\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}\right)\right) Y_{i}
$$

For $k \in K$, put $Y_{i}{ }^{\prime}=\operatorname{Ad}(k) Y_{i}$. Then $\left.\left\{Y_{i}\right\}^{\prime}\right\}_{i=1}^{n}$ is also orthonormal with respect to (,). So we have

$$
\begin{aligned}
& \operatorname{Ad}(k)\left(\sum_{i=1}^{\left.n=\operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}\right)\right) Y_{i}\right)=\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(\operatorname{Ad}\left(k^{-1}\right) Y_{i}{ }^{\prime}\right)\right) Y_{i}{ }^{\prime}} \quad=\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}^{\prime}\right)\right) Y_{i}^{\prime}\right)=\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}\right)\right) Y_{i} .
\end{aligned}
$$

Q.E.D.

Theorem 1. Let $M=G / K$ be a reductive homogeneous space. For every G-invariant Riemannian metric g on M, we have

$$
\Delta_{g}=-\hat{\lambda}\left(\sum_{i=1}^{n} Y_{i}^{2}\right)+\hat{\lambda}\left(\sum_{i=1}^{n} \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{i}\right)\right) Y_{i}\right)
$$

Here $\left\{Y_{i}\right\}_{i=1}^{n}$ is an orthonormal basis of \mathfrak{m} with respect to the $\operatorname{Ad}(K)$-invariant inner product $($,$) corresponding to g, \operatorname{Trace}_{\mathfrak{g}}(\operatorname{ad}(Y))$ is the trace of an endomorphism $\operatorname{ad}(Y)$ of \mathfrak{g}, for every $Y \in \mathfrak{m}$ and $\hat{\lambda}$ is given by (1.1).

Proof. Since both hand sides of the above equality belong to $\boldsymbol{D}(M)$, we may prove, at the origin o of M,

$$
\left.\Delta_{g} f(o)=-\hat{\lambda}\left(\sum_{i=1}^{n} Y_{i}^{2}\right) f(o)+\hat{\lambda}\left(\sum_{i=1}^{n} \quad \operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad} Y_{i}\right)\right) Y_{i}\right) f(o)
$$

for all $f \in C^{\infty}(M)$. Take a local coordinate $\left(y_{1}, \cdots, y_{n}\right)$ around the origin o defined by the mapping $\exp \left(\sum_{i=1}^{n} y_{i} Y_{i}\right) \cdot o \mapsto\left(y_{1}, \cdots, y_{n}\right)$. Put $\operatorname{Exp}=\pi \circ \exp$, a mapping \mathfrak{m} into M. For $x=\exp (X), X \in \mathfrak{m}$, such that $x \cdot o$ belongs to the above local coordinate neighborhood of the origin o, we have (cf. [2])

$$
\begin{aligned}
\left(\frac{\partial}{\partial y_{i}}\right)_{x \cdot 0} & =\operatorname{Exp}_{*_{X}}\left(Y_{i}\right)=\pi_{*_{x} \circ} \circ \exp _{*_{X}}\left(Y_{i}\right) \\
& =\pi_{*_{x} \circ} L_{x_{*_{e}}} \circ \sum_{m=0}^{\infty} \frac{(-\operatorname{ad}(X))^{m}}{(m+1)!}\left(Y_{i}\right)=\tau_{x_{*_{0}}} \circ \pi_{*_{e}} \circ \sum_{m=0}^{\infty} \frac{(-\operatorname{ad}(X))^{m}}{(m+1)!}\left(Y_{i}\right)
\end{aligned}
$$

Here for a smooth mapping $\Phi, \Phi_{*_{p}}$ denotes its differential at a point p of M. Then

$$
\begin{aligned}
g_{i j}(x \cdot o) & =g_{x \cdot 0}\left(\left(\frac{\partial}{\partial y_{i}}\right)_{x \cdot 0}\left(\frac{\partial}{\partial y_{j}}\right)_{x \cdot 0}\right) \\
& \left.=(g)_{0}\left(\pi_{*_{e}}\left(\sum_{m=0}^{\infty} \frac{(-\operatorname{ad}(X))^{m}}{(m+1)!}\left(Y_{i}\right)\right)\right), \pi_{*_{e}}\left(\sum_{m=0}^{\infty} \frac{\left((-\operatorname{ad}(X))^{m}\right.}{(m+1)!}\left(Y_{j}\right)\right)\right) \\
& \left.=\left(\left(\sum_{m=0}^{\infty} \frac{(-\operatorname{ad}(X))^{m}}{(m+1)!}\left(Y_{i}\right)\right)_{\mathfrak{m}}, \quad \sum_{m=0}^{\infty} \frac{(-\operatorname{ad}(X))^{m}}{(m+1)!}\left(Y_{j}\right)\right)_{\mathfrak{m}}\right),
\end{aligned}
$$

where, $W_{\mathfrak{m}}$ denotes the \mathfrak{m}-component of an element W in \mathfrak{g} corresponding to the decomposition $\mathfrak{g}=\boldsymbol{f}+\mathrm{m}$. Hence we have

$$
\left\{\begin{array}{l}
g_{i j}(o)=\delta_{i j}, \quad \text { and } \tag{1.2}\\
\left(\frac{\partial}{\partial y_{k}}\right) g_{0} g_{i j}=-\frac{1}{2}\left(c_{k i}^{j}+c_{k j}^{i}\right)
\end{array}\right.
$$

where we put $\left[Y_{i}, Y_{j}\right]_{\mathfrak{m}}=\sum_{k=1}^{n} c_{i j}^{k} Y_{k}(1 \leqq i, j \leqq n)$. In fact,

$$
\begin{aligned}
\left(\frac{\partial}{\partial y_{k}}\right)_{0} g_{i j}= & {\left[\frac{d}{d s} g_{i j}\left(\exp \left(s Y_{k}\right) \cdot o\right)\right]_{s=0} } \\
= & {\left[\frac { d } { d s } \left(\left(\sum_{m=0}^{\infty} \frac{\left(-s \operatorname{ad}\left(Y_{k}\right)\right)^{m}}{(m+1)!}\left(Y_{i}\right)\right)_{\mathfrak{m}}\right.\right.} \\
& \left.\left.\left(\sum_{m=0}^{\infty} \frac{\left(-s \operatorname{ad}\left(Y_{k}\right)\right)^{m}}{(m+1)!}\left(Y_{j}\right)\right)_{\mathfrak{m}}\right)\right]_{s=0} \\
= & \left.-\frac{1}{2}\left(\left[Y_{k}, Y_{i}\right]_{\mathfrak{m}}, Y_{j}\right)+\left(Y_{i},\left[Y_{k}, Y_{j}\right]_{\mathfrak{m}}\right)\right) \\
= & -\frac{1}{2}\left(c_{k i}^{j}+c_{k j}^{i}\right)
\end{aligned}
$$

Therefore we have

$$
\Gamma_{i j}^{k}(o)=\frac{1}{2}\left(c_{k i}^{j}+c_{k j}^{i}\right)
$$

in partiqular, $\Gamma_{i i}^{k}(o)=c_{k i}^{i}$. For we have

$$
\begin{aligned}
\Gamma_{i j}^{k}(0) & =\frac{1}{2}\left(\frac{\partial g_{k j}}{\partial y_{i}}(0)+\frac{\partial g_{i k}}{\partial y_{j}}(0)-\frac{\partial g_{i j}}{\partial y_{k}}(0)\right) \\
& =\frac{1}{2}\left(c_{k i}^{j}+c_{k j}^{i}\right)
\end{aligned}
$$

by (1.2) and $c_{k i}^{j}+c_{i k}^{j}=0$. Thus we have

$$
\Delta_{g} f(o)=-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial y_{i}^{2}} f(0)+\sum_{k=1}^{n}\left(\sum_{i=1}^{n} c_{k i}^{i}\right) \frac{\partial f}{\partial y_{k}}(0)
$$

Notice that $\sum_{i=1}^{n} c_{k i}^{i}=\operatorname{Trace}_{\mathfrak{g}}\left(\operatorname{ad}\left(Y_{k}\right)\right)$, due to the fact $\operatorname{ad}\left(Y_{k}\right)(\mathfrak{f}) \subset \mathfrak{m}$ and $\left[Y_{k}, Y_{i}\right]_{\mathfrak{m}}=\sum_{j=1}^{n} c_{k i}^{j} Y_{j}$. Therefore the right hand side of the above equation coincides with

$$
-\dot{\lambda}\left(\sum_{i=1}^{n} Y_{i}^{2}\right) f(o)+\left(\sum_{k=1}^{n} \operatorname{Trace}_{\mathrm{g}}\left(\operatorname{ad}\left(Y_{k}\right)\right) Y_{k}\right) f(o) . \quad \text { Q.E.D. }
$$

Corollary. Let $M=G / K$ be a reductive homogeneous space, where G is a connected Lie group and K is a closed subgroup of G. Assume that the Lie algebra g of G is a unimodular Lie algebra, that is, $\operatorname{Trace}_{\mathfrak{g}}(\operatorname{ad}(X))=0$ for every $X \in \mathrm{~g}$.

Then for every G-invariant Riemannian metric g on M, we have

$$
\Delta_{\mathfrak{g}}=-\dot{\lambda}\left(\sum_{i=1}^{n} Y_{i}{ }^{2}\right)
$$

where $\left\{Y_{i}\right\}_{i=1}^{n}$ is an orthonormal basis of m with respect to the $\operatorname{Ad}(K)$-invariant inner product (,) corresponding to g.

Remark 3. If $K=\{e\}$, the above theorem has been obtained in [8].
Remark 4. If the Riemannian connection for g is the natural torsionfree connection on M, that is, its inner product (,) on \mathfrak{m} satisfies

$$
\left(X,[Z, Y]_{\mathfrak{m}}\right)+\left([Z, X]_{\mathfrak{m}}, Y\right)=0
$$

for every X, Y and $Z \in \mathrm{~m}$ (cf. [3]), then the above Corollary is well-known (cf. [6]).

2. Proof of Main Theorem. (I)

In this section, the situations of Main Theorem are preserved. Let $M=$ G / K be a compact homogeneous space, where G is a compact connected Lie group and K is a closed connected subgroup of G. Let g be the Lie algebra of all left invariant vector fields on G, \mathfrak{l} the subalgebra of g corresponding to the subgroup K. Let B be an $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g}. Let m be the orthocomplement of \mathfrak{f} in g with respect to B. Then we have the decomposition $\mathfrak{g}=\mathfrak{d}+\mathfrak{m}$ such that $\operatorname{Ad}(k) \mathfrak{m}=\mathfrak{m}(k \in K)$. We assume the condition $\left(C^{\prime}\right)$: There exists a non-zero element Z in \mathfrak{m} such that $\operatorname{Ad}(k) Z=Z(k \in K)$. Let \mathfrak{m}_{1} be the subspace of \mathfrak{m} spanned by the element Z. Let \mathfrak{m}_{2} be the orthocomplement of \mathfrak{m}_{1} in \mathfrak{m} with respect to B. Then we have a decomposition of \mathfrak{m} such that $\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}_{2}$ and $\operatorname{Ad}(k) \mathfrak{m}_{i}=\mathfrak{m}_{i}(k \in K, i=1,2)$.

Now let t_{f} be a maximd abelian subalgebra of \mathfrak{f}. Then $t_{\mathfrak{f}}+\mathfrak{m}_{1}$ is an abelain subalgebra of \mathfrak{g}. By Zorn's lemma, there exists a maximal abelian subalgebra t of g including $t_{t}+m_{1}$.

Lemma 2.1. We have

$$
\mathfrak{t}=\mathrm{t}_{\mathrm{t}}+\mathfrak{m}_{1}+\mathrm{t} \cap \mathfrak{m}_{2}
$$

Proof. First, we have $\mathrm{t}=\mathrm{t}_{\mathrm{t}}+\mathrm{t} \cap \mathrm{m}$. In fact, every element $Y \in \mathrm{t}$ is written as $Y=Y_{\mathfrak{t}}+Y_{\mathfrak{m}}\left(Y_{\mathfrak{f}} \in \mathfrak{l}, Y_{\mathfrak{m}} \in \mathfrak{m}\right)$ corresponding to the decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$. But $Y_{\mathfrak{f}}$ belongs to the centralizer of $\mathrm{t}_{\mathfrak{f}}$ in \mathfrak{f}. For, we have $\left[Y_{\mathfrak{f}}, X\right]=-\left[Y_{\mathfrak{m}}, X\right]$ for every $X \in \mathrm{t}_{\mathrm{f}}$, where the right hand side belongs to \mathfrak{m} and the left hand side
 algebra of $\mathfrak{f}, Y_{\mathfrak{t}}$ belongs to $\mathrm{t}_{\mathfrak{t}} \subset \mathrm{t}$.So $Y_{\mathfrak{m}}$ belongs to t . Next, we have $\mathrm{t} \cap \mathfrak{m}=$ $\mathfrak{m}_{1}+\mathfrak{t} \cap \mathfrak{m}_{2}$. In fact, each element $Y \in \mathfrak{t} \cap \mathfrak{m}$ is decomposed as $Y=Y_{\mathfrak{m}_{1}}+Y_{\mathfrak{m}_{2}}$,
($Y_{\mathfrak{m}_{1}} \in \mathfrak{m}_{1}, Y_{\mathfrak{m}_{2}} \in \mathfrak{m}_{2}$) corresponding to $\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}_{2}$. Then we have $Y_{\mathfrak{m}_{2}}=Y$ $Y_{\mathfrak{m}_{1}} \in \mathrm{t}$ since $Y_{\mathrm{m}_{1}} \in \mathfrak{m}_{1} \subset \mathrm{t}$.
Q.E.D.

Let $\mathfrak{m}_{2}{ }^{\prime}$ be the orthocomplement of $\mathfrak{t} \cap \mathfrak{m}_{2}$ in \mathfrak{m}_{2} with respect to B. We choose an orthonormal basis $\left\{X_{i}\right\}_{i=1}^{n}$ of \mathfrak{m} with respect to B such that $X_{1} \in \mathfrak{m}_{1}$ and $\left\{X_{2}, \cdots, X_{n}\right\}$ is taken corresponding to the decomposition $\mathfrak{m}_{2}=\mathrm{t} \cap \mathfrak{m}_{2}+\mathfrak{m}_{2}{ }^{\prime}$.

Now we define a new inner product $B_{t}(0<t<\infty)$ on \mathfrak{m} by

$$
\begin{cases}B_{t}\left(X_{1}, X_{1}\right)=t^{n-1} \\ B_{t}\left(X_{i}, X_{j}\right)=\delta_{i j} t^{-1} & (2 \leqq i, j \leqq n), \quad \text { and } \\ B_{t}\left(X_{1}, X_{i}\right)=0 & (2 \leqq i \leqq n)\end{cases}
$$

that is, $\left\{t^{-(n-1) / 2} X_{1}, t^{1 / 2} X_{2}, \cdots, t^{1 / 2} X_{n}\right\}$ is an orthonormal basis of m with respect to B_{t}. Then we have

Lemma 2.2. The above new inner product $B_{t}(0<t<\infty)$ on \mathfrak{m} is $\operatorname{Ad}(K)$ invariant.

Proof. Since K is connected, we may prove

$$
B_{t}([W, X], Y)+B_{t}(X,[W, Y])=0
$$

for $W \in \mathcal{A}, X, Y \in \mathfrak{m}$. It may also be proved that

$$
\begin{equation*}
B_{t}\left(\left[W, X_{i}\right], X_{j}\right)+B_{t}\left(X_{i},\left[W, X_{j}\right]\right)=0 \tag{2.1}
\end{equation*}
$$

for each $i, j=1, \cdots, n$. Put $\left[W, X_{j}\right]=\sum_{i=2}^{n} a_{i j} X_{i}(2 \leqq j \leqq n)$. Since $\left[W, X_{1}\right]=0$ and $\operatorname{ad}(W)\left(\mathfrak{m}_{2}\right) \subset \mathfrak{m}_{2}$, we have

$$
\begin{equation*}
a_{i j}+a_{j i}=0 \quad(2 \leqq i, j \leqq n) \tag{2.2}
\end{equation*}
$$

due to the $\operatorname{Ad}(K)$-invariance of B. We will prove (2.1) in the following three cases: (1) $i=j=1$, (2) either $i=1$ and $2 \leqq j \leqq n$, or $2 \leqq i \leqq n$ and $j=1$, (3) $2 \leqq i, j \leqq n$. Case (1) is clear. Case (2) follows from the fact that \mathfrak{m}_{1} is orthogonal to \mathfrak{m}_{2} by the definition of B_{t}. Case (3). For $2 \leqq i, j \leqq n$, we have

$$
B_{t}\left(\left[W, X_{i}\right], X_{j}\right)+B_{t}\left(X_{i},\left[W, X_{j}\right]\right)=t^{-1}\left(a_{j i}+a_{i j}\right)=0
$$

due to (2.2) and the definition of B_{t}.
Q.E.D.

Due to Lemma 2.2, there exists a unique G-invariant Riemannian metric $g_{t}(0<t<\infty)$ on M suth that

$$
\left(g_{t}\right)_{o}\left(X_{o}, Y_{o}\right)=B_{t}(X, Y)
$$

for $X, Y \in \mathfrak{m}$ (cf. [3] p. 200, Cor. 3.2). A Riemannian metric g_{1} on M corresponds to the inner product B on \mathfrak{m}. We will show that the above g_{t} $(0<t<\infty)$ are desired in Main Theorem.

Lemma 2.3. We have

$$
\operatorname{vol}\left(M, g_{t}\right)=\operatorname{vol}\left(M, g_{1}\right), \quad(0<t<\infty)
$$

Proof. Since K is connected and compact, the homogeneous space $M=$ G / K is orientable. Since G is connected, the translations τ_{x} by $x \in G$ on M preserve the volume element $v_{g_{t}}$ of $\left(M, g_{t}\right)$. So we may see $\left(v_{g_{t}}\right)_{o}=$ $\left(v_{g_{1}}\right)_{o} \in \bigwedge^{n} T_{o}^{*} M$, where $T_{o}^{*} M$ is the cotangent space of M at the origin o. But it is valid due to the definition of $g_{t}(0<t<\infty)$.
Q.E.D.

Lemma 2.4. We have

$$
\Delta_{g t}=\left(t^{-(n-1)}-t\right)\left(-\hat{\lambda}\left(X_{1}^{2}\right)\right)+t \Delta_{g_{1}},
$$

where the polynomial X_{1}^{2} belongs to $S(\mathfrak{m})_{K}{ }^{c}$.
Proof. By the condition $\left(C^{\prime}\right)$, the polynomial $X_{1}{ }^{2}$ belongs to $S(\mathfrak{m})_{K}{ }^{c}$. Due to Corollary of Theorem 1 and the definition of g_{t}, we have

$$
\begin{aligned}
\Delta_{g} & =-\hat{\lambda}\left(t^{-(n-1)} X_{1}^{2}+t \sum_{i=2}^{n} X_{i}^{2}\right) \\
& =\left(t^{-(n-1)}-t\right)\left(-\dot{\lambda}\left(X_{1}^{2}\right)\right)-t \dot{\lambda}\left(\sum_{i=1}^{n} X_{i}^{2}\right) \\
& =\left(t^{-(n-1)}-t\right)\left(-\dot{\lambda}\left(X_{1}^{2}\right)\right)+t \Delta_{g_{1}} \quad \text { Q.E.D. }
\end{aligned}
$$

3. Proof of Main Theorem. (II)

3.1. In this section, we preserve the situations in $\S \S 1,2$. In this part 3.1, we prepare, (cf. [6]), the Peter-Weyl theorem for a compact homogeneous space $M=G / K$, where G is a compact connected Lie group and K is a closed connected subgroup of G. We do not necessarily assume the condition (C^{\prime}).

Let $\boldsymbol{D}(G)$ be a complete set of finite dimensional inequivalent unitary representations of G. For a representation (ρ, V_{ρ}) belonging to $\boldsymbol{D}(G)$, put $d_{\rho}=\operatorname{dim} V_{\rho}$ and $V_{\rho}{ }^{K}=\left\{w \in V_{\rho} ; \rho(k) w=w\right.$ for every $\left.k \in K\right\}$.

Definition (cf. [6]). A representation $\left(\rho, V_{\rho}\right) \in \boldsymbol{D}(G)$ is called to be a spherical representation for a pair (G, K) if $V_{\rho}{ }^{K} \neq(0)$.

Let $\boldsymbol{D}(G, K)$ be the set of all spherical representations in $\boldsymbol{D}(G)$ for a pair (G, K). For $\rho \in \boldsymbol{D}(G, K)$, let $(()$,$) be an \rho(G)$-invariant inner product on V_{ρ} and put $m_{\rho}=\operatorname{dim} V_{\rho}{ }^{K}$. We choose an orthonormal basis $\left\{V_{i}\right\}_{i=1}^{d_{\rho}}$ of V_{ρ} such that $\left\{v_{i}\right\}_{i=1}^{m_{\rho}}$ is a basis of $V_{\rho}{ }^{K}$. Let $\rho_{i j}(x)=\left(\left(\rho(x) v_{j}, v_{i}\right)\right), x \in G$ and let $\bar{\rho}_{i j}(x)$ be the complex conjugate of $\rho_{i j}(x)$. Since $\bar{\rho}_{i j}\left(1 \leqq i \leqq d_{\rho}, 1 \leqq j \leqq m_{\rho}\right)$ belongs to $C^{\infty}(G, K)$, if can be regarded as a function on M. We denote it by the same letter $\bar{\rho}_{i j}$. As in $\S 2$, let B be an $\operatorname{Ad}(K)$-invariant inner product on \mathfrak{m}, g_{1} be the corresponding G-invariant Riemannian metric on M, and $v_{g_{1}}$ the volume element of $\left(M, g_{1}\right)$. We define a hermitian inner product $(()$,$) on C^{\infty}(M)$ by

$$
\left(\left(f_{1}, f_{2}\right)\right)=\operatorname{vol}\left(M, g_{1}\right)^{-1} \int_{M} f_{1}(x \cdot o) \overline{f_{2}(x \cdot o)} v_{g_{1}}(x \cdot o)
$$

Then we have (cf. [6])
Theorem (Peter-Weyl). 1) For every $\rho \in \boldsymbol{D}(G, K),\left\{\sqrt{d_{\rho}} \bar{\rho}_{i j} ; 1 \leqq i \leqq d_{\rho}\right.$, $\left.1 \leqq j \leqq m_{\rho}\right\}$ is an orthonormal system of $C^{\infty}(M)$ with respect to $(()$,$) . Let \theta_{\rho}(M)$ be the subspace of $C^{\infty}(M)$ spanned by $\left\{\sqrt{d_{\rho}} \bar{\rho}_{i j} ; 1 \leqq i \leqq d_{\rho}, 1 \leqq j \leqq m_{\rho}\right\}$ over \boldsymbol{C}. 2) If $\rho, \rho^{\prime} \in \boldsymbol{D}(G, K)$ are mutually inequivalent, then $\theta_{\rho}(M)$ and $\theta_{\rho^{\prime}}(M)$ are mutually orthogonal with respect to ((,)). Moreover we have the following decomposition: $C^{\infty}(M)=\underset{p \in D G, K)}{ } \theta_{\rho}(M)$, that is, each $f \in C^{\infty}(M)$ can be expanned by

$$
f=\sum_{\rho \in D(\xi, K)} d_{\rho} \sum_{\substack{1 \leq i \leq d_{\rho} \\ 1 \leq j \leq d_{\rho}}}\left(\left(f, \bar{\rho}_{i j}\right)\right) \bar{\rho}_{i j}
$$

in the sense of the uniform convergence on M or the L^{2}-convergence with respect to ((,)).
3.2. In this part, we assume the condition $\left(\mathrm{C}^{\prime}\right)$ and let t be a maximal abelian subalgebra of \mathfrak{g} in Lemma 2.1.

Let Δ be the root system of the complexification g^{c} of g with respect to t, that is, the set of non-zero elements α of the dual space t^{*} of t such that $\mathrm{g}_{\alpha}^{C}=$ $\left\{E \in \mathrm{~g}^{c} ;[H, E]=\sqrt{-1} \alpha(H) E\right.$, for any $\left.H \in \mathrm{t}\right\}$ is not zero. We introduce a lexicographic order $>$ on t^{*} and fix it once and for all. Let Δ^{+}be the set of all positive roots with respect to this order. Let p be the dimension of the commutator subalgebra of g . Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{p}\right\}$ be the fundamental system of Δ with respect to the order $>$. For $\lambda \in t^{*}$, let H_{λ} be an element in t defined by $B\left(H, H_{\lambda}\right)=\lambda(H)$ for all $H \in \mathrm{t}$. Here the inner product B is an $\operatorname{ad}(G)$ invariant inner product on g as in $\S 2$. We define an inner product $(,)_{0}$ on t^{*} by $\left(\lambda, \lambda^{\prime}\right)_{0}=B\left(H_{\lambda}, H_{\lambda}{ }^{\prime}\right)$ for $\lambda, \lambda^{\prime} \in t^{*}$. Let $\Gamma=\{H \in \mathfrak{t}$; $\exp (H)=e\}$. Let

$$
I=\left\{\lambda \in t^{*} ; \lambda(H) \in 2 \pi \boldsymbol{Z} \quad \text { for all } \quad H \in \Gamma\right\}
$$

Put

$$
D(G)=\left\{\lambda \in I ;\left(\lambda, \alpha_{i}\right)_{0} \geqq 0 \quad(1 \leqq i \leqq p)\right\}
$$

Then the set I coincides with the set of all the weights of the representations of G. The maximal element among the weights of a representation $\left(\rho, V_{\rho}\right)$ in the order $>$ in t^{*} is called the highest weight of $\left(\rho, V_{\rho}\right)$. The set $D(G)$ comcides with the set of all highest weights of the representations of G. There exists a bijection (cf. [6]) from $D(G)$ onto $\boldsymbol{D}(G)$.
3.3. For $X_{1} \in \mathfrak{m}_{1}$ as in $\S 2$, the polynomials X_{1} and $X_{1}{ }^{2}$ belong to $S(\mathfrak{m})_{K}{ }^{c}$, so we have

$$
\begin{equation*}
\hat{\lambda}\left(X_{1}^{2}\right) \bar{\rho}_{i j}(x \cdot o)=\overline{\left(\left(\rho(x) \rho\left(X_{1}\right)^{2} v_{j}, v_{i}\right)\right)}, \tag{3.1}
\end{equation*}
$$

for every $x \in G$ and $\rho \in \boldsymbol{D}(G, K)$. Let $D_{1}=\rho\left(X_{1}\right)^{2}$ be an endomorphism of V_{ρ} for every $\rho \in \boldsymbol{D}(G, K)$. Then we have

Lemma 3.1. The endomorphism D_{1} of V_{ρ} has the following properties: (1) $D_{1} V_{\rho}{ }^{K} \subset V_{\rho}{ }^{K}$,
(2) D_{1} is self-adjoint on V_{ρ}, that is, $\left(\left(D_{1} u, v\right)\right)=\left(\left(u, D_{1} v\right)\right)$ for every $u, v \in V_{\rho}$, and
(3) $D_{1}\left(V_{\rho}{ }^{K}\right)^{\perp} \subset\left(V_{\rho}{ }^{K}\right)^{\perp}$,
where $\left(V_{\rho}{ }^{K}\right)^{\perp}$ is the orthocomplement of $V_{\rho}{ }^{K}$ in V_{ρ} with respect to $(()$,$) .$
Proof. (1) Since $\operatorname{Ad}(k) X_{1}=X_{1}(k \in K)$, we have

$$
\rho\left(X_{1}\right) v=\rho\left(\operatorname{Ad}(k) X_{1}\right) v=\rho(k) \rho\left(X_{1}\right) \rho\left(k^{-1}\right) v=\rho(k) \rho\left(X_{1}\right) v
$$

for $v \in V_{\rho}{ }^{K}$. (2) follows from the equality $((\rho(X) u, v))+((u, \rho(X) v))=0$, for all $X \in \mathfrak{g}, u$ and $v \in V_{\rho}$. (3) is clear from (1) and (2). \quad Q.E.D.

Thus, due to Lemma 3.1, there exists an orthonormal basis $\left\{u_{j}\right\}_{j=1}^{d_{\rho} \rho}$ of V_{ρ} with respect to $(()$,$) such that \left\{u_{j}\right\}_{j=1}^{m_{\rho}}$ is a basis of $V_{\rho}{ }^{K}$ and

$$
\begin{equation*}
D_{1} u_{j}=\mu_{j} u_{j} \quad\left(j=1, \cdots, d_{\rho}\right) \tag{3.2}
\end{equation*}
$$

for some real numbers $\mu_{j}\left(j=1, \cdots, d_{\rho}\right)$. For each $\rho \in \boldsymbol{D}(G, K)$, choose such a basis on V_{ρ} and let $\bar{\rho}_{i j}$ be a function in $\theta_{\rho}(M)$, as in 3.1 with respect to this basis. Then, for each $\rho \in \boldsymbol{D}(G, K)$, we have

$$
\begin{equation*}
\Delta_{g_{1}} \bar{\rho}_{i j}=\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0} \bar{\rho}_{i j} \tag{3.3}
\end{equation*}
$$

where $\delta=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$ and $\mu_{\rho} \in D(G)$ is the highest weight for $\rho \in \boldsymbol{D}(G, K) \subset \boldsymbol{D}(G)$. Because

$$
\begin{aligned}
\Delta_{g_{1}} \bar{\rho}_{i j} & =-\hat{\lambda}\left(\sum_{k=1}^{n} X_{k}{ }^{2}\right) \bar{\rho}_{i j} & (\text { by Corollary } 1) \\
& =-\hat{\lambda}(C) \bar{\rho}_{i j}, & \\
& =\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0} \bar{\rho}_{i j} & (\text { cf. }[6])
\end{aligned}
$$

where the operator $\dot{\lambda}(C)$ is the Casimir operator (cf. [6]) of g with respect to the $\operatorname{Ad}(G)$-invariant inner product B on g for $\rho \in \boldsymbol{D}(G, K) \subset \boldsymbol{D}(G)$. The second equality follows from that $\bar{\rho}_{i j} \in C^{\infty}(M)$, the decomposition $\mathfrak{g}=\mathfrak{m}$ is orthogonal, and $\left\{X_{k}\right\}_{k=1}^{n}$ is an orthonormal basis of \mathfrak{m} with respect to B. Therefore we have

$$
\begin{equation*}
\Delta_{g t} \bar{\rho}_{i j}=\left[\left(t^{-(n-1)}-t\right)\left(-\mu_{j}\right)+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0}\right] \bar{\rho}_{i j} \tag{3.4}
\end{equation*}
$$

due to Lemma 2.4, (3.1), (3.2) and (3.3). Also we have

$$
\Delta_{g t} \theta_{\rho}(M) \subset \theta_{\rho}(M)
$$

for each $\rho \in \boldsymbol{D}(G, K)$ and $0<t<\infty$. So we put $\lambda_{1}\left(g_{t}, \rho\right)$ the least positive eigenvalue of $\Delta_{g t}$ on $\theta_{\rho}(M)(0<t<\infty)$. Then we have

$$
\begin{equation*}
\lambda_{1}\left(g_{t}\right)=\min _{\rho \in D(\theta, K)^{-(0)}} \lambda_{1}\left(g_{t}, \rho\right) \tag{3.5}
\end{equation*}
$$

by the Peter-Weyl theorem. Moreover we have

$$
\begin{equation*}
\lambda_{1}\left(g_{t}, \rho\right)=\min _{1 \leqq j \leq m_{\rho}}\left[\left(t^{-(n-1)}-t\right)\left(-\mu_{j}\right)+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0}\right] \tag{3.6}
\end{equation*}
$$

by (3.4).
3.4. We will prove our Main Theorem due to the above preparations. Our claims are divided into two cases.

Case (1). $t \leqq 1$, that is, $t^{-(n-1)}-t \geqq 0$. In this case, we have

$$
\begin{equation*}
\lambda_{1}\left(g_{t}, \rho\right)=\left(t^{-(n-1)}-t\right)\left[\min _{1 \leqq j \leq m_{\rho}}\left(-\mu_{j}\right)\right]+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0} \tag{3.7}
\end{equation*}
$$

Case (2). $t \geqq 1$, that is $t^{-(n-1)}-t \leqq 0$. In this case, we have

$$
\begin{equation*}
\lambda_{1}\left(g_{t}, \rho\right)=\left(t^{-(n-1)}-t\right)\left[\max _{1 \leqq j \leq m_{\rho}}\left(-\mu_{j}\right)\right]+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0} \tag{3.8}
\end{equation*}
$$

Lemma 3.2. We have
(1) $\min _{1 \leqq j \leq m_{\rho}}\left(-\mu_{j}\right)=\min _{v \in V_{\rho} K_{,}((v, v))=1}\left(\left(-D_{1} v, v\right)\right)$, and
(2) $\max _{1 \leqq j \leq^{m_{\rho}}}\left(-\mu_{j}\right)=\max _{v \in V_{\rho} K^{K},((v, v)=1}\left(\left(-D_{1} v, v\right)\right)$

$$
\leqq \max \left\{\left(\mu_{1}, \mu_{1}\right)_{0} ; \mu \text { is a weight of } V_{\rho}\right\}
$$

where μ_{1} is the restriction of $\mu \in \mathfrak{t}^{*}$ onto \mathfrak{m}_{1}.
Proof. For $v=\sum_{j=1} m_{\rho} x_{j} u_{j} \in V_{\rho}{ }^{K}\left(x_{j} \in \boldsymbol{C}, 1 \leqq j \leqq m_{\rho}, \quad\right.$ and $\quad((v, v))=$ $\sum_{j=1}{ }^{m} \rho\left|x_{j}\right|^{2}=1$), we have

$$
\left(\left(D_{1} v, v\right)\right)=\sum_{j=1}^{m_{\rho}} \mu_{j}\left|x_{j}\right|^{2} .
$$

Then we obtain

$$
\begin{aligned}
\min _{1 \leqq j \leq m_{\rho}}\left(-\mu_{j}\right) & =\min _{\left.\Sigma_{j=1}^{m \rho}\right)^{\prime}\left|x_{j}\right|^{2}=1} \sum_{j=1}^{m} \rho\left(-\mu_{j}\right)\left|x_{j}\right|^{2} \\
& =\min _{\left.v \in V_{\rho} K_{,},(v, v)\right)=1}\left(\left(-D_{1} v, v\right)\right)
\end{aligned}
$$

In the same manner, we have,

$$
\begin{aligned}
\max _{1 \leqq j \leq m_{\rho}}\left(-\mu_{j}\right) & =\max _{\left.v \in V_{\rho} K_{,}(v, v)\right)=1}\left(\left(-D_{1} v, v\right)\right), \\
& \leqq \max _{\left.v \in V_{\rho},(c, v)\right)=1}^{K_{,}}\left(\left(-D_{1} v, v\right)\right) .
\end{aligned}
$$

The right hand side coincides with $\max \left\{\left(\mu_{1}, \mu_{1}\right)_{0} ; \mu\right.$ is a weight of $\left.V_{p}\right\}$. For, let $V_{\rho}=\sum_{\mu \in I} V_{\mu}$ (the decomposition of V_{ρ} into weight spaces). Then $\rho(H) v_{\mu}=$ $\sqrt{-1} \mu(H) v_{\mu}, H \in \mathrm{t}, v_{\mu} \in V_{\mu}(\mu \in I)$ and V_{μ} and $V_{\mu^{\prime}}$ are mutually orthogonal with respect to $(()$,$) if \mu \neq \mu^{\prime}\left(\mu, \mu^{\prime} \in I\right)$. Due to Lemma 2.1, we have

$$
D_{1} v_{\mu}=-\mu\left(X_{1}\right)^{2} v_{\mu}=-\left(\mu_{1}, \mu_{1}\right)_{0} v_{\mu}
$$

by $B\left(X_{1}, X_{1}\right)=1$. Lemma 3.2 is proved completely.
Now, firstly, we treat Case (1). In this case, due to the above Lemma 3.2, we have

$$
\begin{equation*}
\lambda_{1}\left(g_{t}, \rho\right)=\left(t^{-(n-1)}-t\right) \min _{v \in V_{\rho} K_{,(c, v, v))}=1}\left(\left(-D_{1} v, v\right)\right)+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0} . \tag{3.7}
\end{equation*}
$$

Lemma 3.3. If the one-parameter subgroup $T_{1}=\left\{\exp \left(s X_{1}\right) ; s \in \boldsymbol{R}\right\}$ is closed in G, then there exists an element $\rho_{0} \in D(G, K)-(0)$ such that $\min _{\substack{v \in V_{K} K_{0} \\((v, v))=1}}\left(\left(-D_{1} v, v\right)\right)=0$.

Proof. Let $K^{\prime}=\left\{k t ; k \in K, t \in T_{1}\right\}$. Then K^{\prime} is a closed Lie subgroup of G with the Lie subalgebra $\mathfrak{k}+\mathfrak{m}_{1}$ of \mathfrak{g}, due to the closedness of T_{1}. Moreover it includes K as a closed subgroup. Let $M^{\prime}=G / K^{\prime}$ be a coset space of G by K^{\prime}. We can apply the Peter-Weyl theorem for this coset space. Let $V_{\rho}{ }^{K^{\prime}}=$ $\left\{v \in V_{\rho} ; \rho\left(k^{\prime}\right) v=v\right.$ for all $\left.k^{\prime} \in K^{\prime}\right\}$. Then we have

$$
\begin{aligned}
V_{\rho}{ }^{K^{\prime}} & =\left\{v \in V_{\rho}{ }^{K} ; \rho(t) v=v \text { for all } t \in T_{1}\right\}, \\
& =\left\{v \in V_{\rho}{ }^{K} ; \rho\left(X_{1}\right) v=0\right\}
\end{aligned}
$$

Since $\operatorname{dim}\left(M^{\prime}\right) \geqq 1$, there exists a non-zero element ρ_{0} in $\boldsymbol{D}\left(G, K^{\prime}\right)$ by the Peter-Weyl theorem. Since $\boldsymbol{D}\left(G, K^{\prime}\right)=\left\{\rho \in \boldsymbol{D}(G) ; V_{\rho}{ }^{K^{\prime}} \neq(0)\right\}$, we have a non-zero element ρ_{0} in $\boldsymbol{D}(G, K)$ such that $\left\{v \in V_{\rho_{0}}{ }^{K} ; \rho_{0}\left(X_{1}\right) v=0\right\} \neq(0)$, that is, there exists a non-zero element $v_{0} \in V_{\rho_{0}}{ }^{K}$ satisfying $\rho_{0}\left(X_{1}\right) v_{0}=0$. Then, by the definition of D_{1}, we have $\left(\left(-D_{1} v_{0}, v_{0}\right)\right)=0$, for $\rho_{0} \in \boldsymbol{D}(G, K)$. Since $\left(\left(-D_{1} v, v\right)\right)=\left(\left(\rho_{0}\left(X_{1}\right) v, \rho_{0}\left(X_{1}\right) v\right)\right) \geqq 0$ for every $v \in V_{\rho_{0}}{ }^{K}$, we have the desired result.
Q.E.D.

Due to Lemma 3.3, we obtain

$$
\lambda_{1}\left(g_{t}\right) \leqq \lambda_{1}\left(g_{t}, \rho_{0}\right)=t\left(\mu_{\rho_{0}}+2 \delta, \mu_{\rho_{0}}\right)_{0}
$$

Thus we obtain $\lim _{t \rightarrow 0} \lambda_{1}\left(g_{t}\right)=0$.
Case (2). $\quad t \geqq 1$, that is $\left(t^{-(n-1)}--t\right) \leqq 0 . \quad$ By Lemma 3.2 and (3.8), we have

$$
\lambda_{1}\left(g_{t}, \rho\right) \geqq\left(t^{-(n-1)}-t\right) \max \left\{\left(\mu_{1}, \mu_{1}\right)_{0} ; \mu \text { is a weight of } V_{\rho}\right\}+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0}
$$

Notice that for each weight μ of V_{ρ}, we have

$$
\left(\mu_{1}, \mu_{1}\right)_{0} \leqq(\mu, \mu)_{0} \leqq\left(\mu_{\rho}, \mu_{\rho}\right)_{0},
$$

(cf. [8] p. 221). The first inequality follows due to the definition of μ_{1} for $\mu \in \mathrm{t}^{*}$. Thus we have, for each $\rho \in \boldsymbol{D}(G, K)$,

$$
\begin{aligned}
\lambda_{1}\left(g_{t}, \rho\right) & \geqq\left(t^{-(n-1)}-t\right)\left(\mu_{\rho}, \mu_{\rho}\right)_{0}+t\left(\mu_{\rho}+2 \delta, \mu_{\rho}\right)_{0} \\
& =t^{-(n-1)}\left(\mu_{\rho}, \mu_{\rho}\right)_{0}+t\left(2 \delta, \mu_{\rho}\right)_{0} \geqq t\left(2 \delta, \mu_{\rho}\right)_{0} .
\end{aligned}
$$

Thus we have

$$
\lambda_{1}\left(g_{t}\right) \geqq t \min _{\left.\rho \in \boldsymbol{D}^{(\theta, K}, \overline{)}\right)-(0)}\left(2 \delta, \mu_{\rho}\right)_{0} \geqq t \min _{\rho \in \boldsymbol{D}^{(\theta)}-(0)}\left(2 \delta, \mu_{\theta}\right)_{0} .
$$

By the assumption of the semi-simplicity of G, we have $\min _{\rho \in D(G)-(0)}\left(2 \delta, \mu_{\rho}\right)_{0}>0$. Therefore we obtain $\lim _{t \rightarrow \infty} \lambda_{1}\left(g_{t}\right)=\infty$. Main Theorem is proved completely.

References

[1] M. Berger, P. Gauduchon and E. Mazet: Le spectre d'une variété riemannienne, Lecture note in Math., 194, Springer, Berlin, 1971.
[2] S. Helgason: Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[3] S. Kobayashi and K. Nomizu: Foundations of differential geometry II, Interscience, New York, 1969.
[4] G.W. Lukesh: Compact homogeneous Riemannian manifolds, Geometriae Dedicata 7 (1978) 131-137.
[5] G.W. Lukesh: Variations of metrics on homogeneous space (a preprint), 1978.
[6] M. Takeuchi: Modern theory of spherical functions (in Japanese), Iwanami, Tokyo, 1975.
[7] S. Tanno: The first eigevnalue of the Laplacian on spheres, to appear in Tohoku Math. J.
[8] H. Urakawa: On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226.
[9] J. Wolf: The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math. 120 (1968), 59-148.

Hideo Muto
Department of Mathematics
Tohoku University
Sendai 980, Japan
Hajime Urakawa
Department of Mathematics
College of General Education
Tohoku University
Sendai 980, Japan

