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Introduction and statement of results

Let M be an n-dimensional compact smooth manifold. Two Riemannian
metrics g, and g, on M are called to be homothetically equivalent if there exists a
diffeomorphism @ of M onto itself such that ®*g, coincides g, with a constant
multiple.

Let M=G|K be a compact homogeneous space, where G is a compact Lie
group and K is a closed subgroup of G. A Riemannian metric g on M is called
be G-invariant if all the translations 7, by elements x in G on M are isometric
with respect to the metric g (cf. [3]). Let us consider the elementary, but non-
trivial problem: How many G-invariant mutually homothetically inequivalent
Riemannian metrics are there on M=G|K?

If the linear isotropy action of K on the tangent space T,(M) of M at the
origin o={K} &M (cf. [3]) is irreducible over R, then there exists a unique
(up to homothetic equivalence) G-invariant Riemannian metric on M (cf. [9]).
So the above problem is reduced to the case that the linear isotropy action of
K 1s reducible over R, that 1s, the tangent space T,(}) 1s decomposed into two
proper subspaces invariant by the linear isotropy action of K. In this case,
many people would have the following conjecture: If a compact homogeneous
space M=G|K (with some additional assumptions) has the reducible isotropy action
of K over R, then it would have uncountably many mutually homothetically ine-
quivalent G-invariant metrics.

One of the purposes of this paper is to show that the above conjecture is
affirmative.

Now we assume that a compact homogeneous space G/K has the condition
(C): The linear isotropy action of K on the tangent apace T,(M) of M at the
origin o is reducible and includes the identity representation of K on T,(M).
Let g be the Lie algebra of all left invariant vector fields on G and let ¥ be
the subalgebra of g corresponding to the subgroup K. Since G is compact,
there exists an Ad(G)-invariant inner product B on g. Let m be the ortho-
complement of £ in g with respect to B. Then we have the decomposition
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g=f4+m of g such that Ad(k)m=m (k€K). The isomorphism of m onto
T, (M) given by X X, (the tangent vector at o) is K-equivariant, that is
(Ad(k)X),=7,X, (keK), where 7,, is the differentiation of the translation 7,
at 0. So the condition (C) means the following condition (C’):

(C") There exists a non-zero element Z in m such that Ad(k)Z=Z (k€ K).

We notice that every G-invariant Riemannian metric g on M=G/K is
given by an Ad(K)-invariant inner product (,) on m (cf. in 2.2). Thus, to
answer the above conjecture, we may choose a suitable homothetically invariant
ratio which takes continuously different values among the above G-invariant
Riemannian metrics. For this purpose, let us consider the following ratio.
For a Riemannian metric g on M, let —A, be the Laplace-Beltrami operator
acting on smooth functions on M and let A (g) be the least positive eigenvalue of
A,. Then we notice (cf. [1]) that the ratio A(g)vol(M, g)** 1s homothetically
invariant, that is, if two Riemannian metrics g, and g, are homothetically equi-
valent, then it holds that

Ni(gy) vol (M, g)* = \(g,) vol (M, g,)" .
Now, under the above preparations, we can state the following results.

Main Theorem. Let M=G|K be an n-dimensional compact homogeneous
space (n=2), where G is a compact connected Lie group and K is a closed connected
subgroup of G. Let g be the Lie algebra of all left invariant vecter fields on G and
let T be the subalgebra cf g corresponding to K. Let B be an Ad(G)-invariant inner
product on g, and let m be the orthocomplement of t in g with respect to B. We
assume the condition (C'): There exists a mon-zero element Z in m such that
Ad(k)Z=Z (k€K). Then there exists an one-parameter family of G-invariant
Riemannian metrics g, (0<t<<oo) on M such that

(1) vol (M, g,) is constant in t,

(2) lgrg M (g)=0 (if an one-parameter subgroup {exp (sZ); s€ R} is closed in

G),
and
(3) lim y(g)==c0 (if G s semi-simple).

Thus we have immediately the following corollary.

Corollary. Let M=G|K be as in the above Theorem. Assume that the con-
dition (C') holds. If either the one-parameter subgroup {exp (sZ); s€ R} 1s closed
wm G or G is semi-simple, then there exist uncountablely many mutually homothetically
wmequivalent G-invariant Riemannian metrics on M.

ReEMARK 1. For examples, the following ones satisfy the conditions of



LeasT PosiTive EIGENVALUE OF LAPLACIAN 473

the Main Theorem: real Stiefel manifolds SO(n+p)/SO(n), p=2, n=1; com-
plex Stiefel manifolds SU(n-+p)/SU(n), p=1, n=1; quoternion Stiefel mani-
folds Sp(n+p)/Sp(n), p=1, n=1; G/(H|T,), where G/H is an irreducible hermi-
tian symmetric space and T is the connected component of the center of H;
and compact connected semi-simple group manifolds. On the other hand, a
compact flag manifold G/T, where G is a compact semi-simple Lie group and
T is 2 maximal torus in G, does not satisfy the condition (C’) of the above The-
orem, but it has the reducible isotropy action.

REMARK 2. Main Theorem is an extension of the results obtained by [7]
and [8]. The above Corollary is a generalization of the results of [4] and [5].

Finally, we should express our gratitude to Professor M. Takeuchi and
also Professor S. Tanno who suggested us this probrem and encouraged us
during the preparation for this paper.

1. The Laplace-Beltrami operator on reductive homogeneous
spaces

1.1. Let M=G/K be an n-dimensional homogeneous space, where G is
a connected Lie group and K is a closed subgroup of G. In this section, we do
not assume necessarily the compactness of M. Let g be the Lie algebra of
all left invariant vector fields on G and let f be the subalgebra of g corresponding
to the subgroup K.

DerFINITION (cf. [3] p. 200 or [2] p. 389). The coset space M=G/K is
called to be reductwe if there exists a subspace m of g such that g=%f+m
(direct sum) and Ad(k)m=m for all kK.

In this section, we consider a reductive homogeneous space M=G/K.
First, we prepare some notations. (See [2] and [6]).

Let C~(G) be the space of all complex valued C= functions on G, C=(G, K)
the space of all elements f in C~(G) such that f(gk)=f(g) for each g&G and
keK, and C=(M) the space of all complex valued C* functions on M. Let =
be the natural projection of G onto G/K. Put o={K}&M=G|K. Then the
mapping fi— f, where f=for, gives an isomorphism of C*(M) onto C*(G, K).

Let D(G) be the space of all differential operators on G' which are invariant
by left translations L,, (x€G), D,(G) the space of all elements in D(G) which
are invariant by right translations R,, (k€ K), and D(M) the space of all di-
fferential operators on M which are invariant by the translations 7, (*€G) on
M. Then, for every D& D(G), we can define w (D)€ D(M) by

(w(D)f)" = Df, feC~(M).

Let S(m) be the symmetric algebra over m. Then S(m) can be regarded
as a K-module by the adjoint action of K on m. Let S(m), be the set of all
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elements in S(m) which are invariant by the action Ad(k), kK. Let S(m),¢
be the complexification of S(m)x. Then the following theorem holds.

Theorem (cf. [2] or [6]).

(1) The mapting w ; Dy(G)—D(M) is homomorphism of Dy(G) onto D(M).

(2) There exists an isomorphism X of S(m)xC onto D(M) which is given as
follows: Let {Y,, -+, Y,} be a basis of m. Then, for every polynomial P(Y,, -+, Y,)
in S(m)y?,

(1.1)
. ) 0 "
APV, Y0 = [P(2 o, D) fw exp (02700 |0).
ayl ayn
Here, in the right hand side, we regard f(x exp (22i-1y;Y;)-0) as a function in

(¥1++5 ) and P( % LTS %) expresses the differential operator which is given by
1 n

substituting i, <+, —— into the polynomial P(Y,, -, Y,).
N ay n

1.2. Every G-invariant Riemannian metric on a reductive homogeneous
space M=G/|K is given as follows (cf. [3]): Let (,) be an Ad(K)-invariant inner
product on m. Then there exists a unique G-invariant Riemannian metric on

M such that
(g)a(Xo: Ya) = (X, Y) , X, Yem.

Here the tangent vectors X,, Y, € T,(M) of M at the origin o= {K} corre-
spond to elements X, Y in m.

For this metric g on M, let —A, be the Laplace-Beltrami operator on M,
that is

n iJ 0 n k a
Agf = - 2i,j=1g <6—y,—éf_)—g— 2k=1 Fijé“i) ,

for every f&C=(M). Here (g) is the inverse matrix of (g;;), (g;;) is the com-
ponents of g with respect to the local coordinate (y,, --,y,) of M and T%; is
the Christoffel symbol of the Riemannian connection for g. Since the transla-
tions 7,, ¥&G on M are isometries with respect to g, then the operator A,
belongs to D(M) (cf. [2] p. 387). So we investigate to express A, explicitely in
terms of S(m)g¢, using the above theorem.

Lemma 1.1. Let {Y;}?., be an orthonormal basis of m with respect to the
above Ad(K)-invariant inner product (,). Then the following polynomials belong
to S(m)xC:

(1) 2?=1 Yiz ’
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(2) SV Traces (ad(Y))Y,,
where Traceg(ad(Y)) is the trace of an endomorphism ad (Y) of g for every YEm.

Proof. It is clear that )., Y, belongs to S(m)C, due to the Ad(K)-
invariance of (,). For another orthonormal basis {Y;’}?.; of m, we have

2.1 Traceg (ad (Y)Y, = 3., Traceg (ad (Y)Y .

For k€K, put Y;’=Ad(k)Y;. Then {Y;'}7., is also orthonormal with respect
to (,). So we have
Ad (k) (237-1 Traceg (ad (Y}))Y;) = 33%.; Traceg (ad (Ad (R7") Y)Y,
= 231 Traceg (ad (Y,"))Y,") = 337, Tracey (ad (Y)Y, .
Q.E.D.

Theorem 1. Let M=G|K be a reductive homogeneous space. For every
G-invariant Riemannian metric g on M, we have

Ay = —A-1 YA+A(., Tracey (ad (Y))Y) .
Here {Y.}i., is an orthonormal basis of m with respect to the Ad(K)-invariant

inner product (,) corresponding to g, Traceg(ad(Y)) is the trace of an endomorphism
ad(Y) of g, for every Y &m and A is given by (1.1).

Proof. Since both hand sides of the above equality belong to D(M), we
may prove, at the origin o of M,

Agf(0) = —A(Xta1 Y)f(0)+AM(k-1 Traceg (ad ¥)))Y))f(0),
for all f&C=(M). Take a local coordinate (y,, -+, y,) around the origin o de-
fined by the mapping exp (3.1 ¥;Y;)-0— (¥ -**,¥,). Put Exp=rmoexp, a

mapping m into M. For x=-exp(X), X €m, such that x-0 belongs to the
above local coordinate neighborhood of the origin o, we have (cf. [2])

0
(a_y'_)m = Expy (V) = my,0expy,(Y))

e oL, oS (—2dX)" iy s (—ad (X)) yy

= 7[*’ LZ*‘ Zm=0 (m+1)! (Y,) T’*n 71'*“ Em=0 (m—]—l)! ( z)
Here for a smooth mapping ®, @, denotes its differential at a point p of M.
Then

e =ee((2)., (2).)

= @, (T2 D 9)) (5.0 (T ))

= (- %).!K( v)),, Sheo (—_(ﬁ%)?!):(yf ),
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where, Wy denotes the m-component of an element W in g corresponding to
the decomposition g=f+m. Hence we have

gij(0)=8;;, and

where we put [Y,, Y, ]u=>%.,¢};Y, (1=¢,j<n). In fact,

(1.2)

(6_3—,,)0&1' = [%g ii(exp (sY4)+ o)]

- [ S @,
(B S )]

— %([Y,,, Yim Y)+(Ys [Vi, Y]w)

= — L (chitely).
Therefore we have
T(0) = - (clirtcly),

in partiqular, T'};(0)=ci;. For we have

It = 5 (@220 + 0~ £4()

— (el
by (1.2) and ¢f;+¢/,=0. Thus we have
J— n 62 n n i af
A f(0) = — 21— f0)+ 2Tk-1 (i1 cki) - (0) -
oy; oy,

Notice that 3., ci; = Trace, (ad (Y})), due to the fact ad(Y,)(f)cm and
[V YVim=23i-1¢i;Y;. Therefore the right hand side of the above equation

coincides with
(o1 YA(0)+ (51 Tracey (ad (V) Y)f0).  QE.D.

Corollary. Let M=G|K be a reductive homogeneous space, where G is a
connected Lie group and K is a closed subgroup of G. Assume that the Lie algebra
g of G is a unimodular Lie algebra, that is, Traceg(ad(X))=0 for every XeEg.
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Then for every G-invariant Riemannian metric g on M, we have
Ag = “7‘\'(2?-1 Yiz) ’

where {Y;}!., is an orthonormal basis of m with respect to the Ad (K)-invariant
inmer product (,) corresponding to g.

RemaArk 3. If K={e}, the above theorem has been obtained in [8].

ReMARk 4. If the Riemannian connection for g is the natural torsion-
free connection on M, that is, its inner product (,) on m satisfies

(X’ [Z’ Y]m)‘l‘([Z: X]m: Y) =0 ’

for every X, Y and Z&m (cf. [3]), then the above Corollary is well-known (cf.
[6))-

2. Proof of Main Theorem. (I)

In this section, the situations of Main Theorem are preserved. Let M=
G/K be a compact homogeneous space, where G is a compact connected Lie
group and K is a closed connected subgroup of G. Let g be the Lie algebra
of all left invariant vector fields on G, t the subalgebra of g corresponding to
the subgroup K. Let B be an Ad(G)-invariant inner product on g. Let m
be the orthocomplement of f in g with respect to B. Then we have the de-
composition g=Ff-+m such that Ad(k) m=m (k=K). We assume the condition
(C"): There exists a non-zero element Z in m such that Ad(k)Z=Z (k € K).
Let m, be the subspace of m spanned by the element Z. Let m, be the
orthocomplement of m, in m with respect to B. Then we have a decompesi-
tion of m such that m=m+m, and Ad(k)m,=m; (keK,i=1, 2).

Now let t; be a maximal abelian subalgebra of . Then ty+m, is ap abelain
subalgebra of g. By Zorn’s lemma, there exists a maximal abelian subalgebra
t of g including ty+m,.

Lemma 2.1. We have
t=ty+m+tNm,.

Proof. First, we have t=ty+tNm. In fact, every element Y &t is written
as Y=Y+ Yy (Yyel, Y;em) corresponding to the decomposition g=Ff4-m.
But Yy belongs to the centrelizer of t; in £.  For, we have [Yy, X]=—[Yy, X]
for every X &ty, where the right hand side belongs to m and the left hand side
belongs to £. Thus [Yy, X]=[Yy, X]=0. Since t; is a maximal abelian sub-
algebra of , Yy belongs to ty Ct.So0 Yy, belongs to t. Next, we have tNm=
m,+tNm, In fact, cach element YEtNm is decomposed as Y==Yu,+ Y,
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(Ym,em,, Ym,em,) corresponding to m=m,+m, Then we have Ym,=Y—

Ym et since Ymem, Ct. Q.E.D.
Let m,” be the orthocomplement of tNm, in m, with respect to B. We

choose an orthonormal basis {X;}7_, of m with respect to B such that X;em,

and {X,, ---, X,} is taken corresponding to the decomposition m,=t N m,+m,’.
Now we define a new inner product B, (0<<¢<o0) on m by

B(X, X,) =",
B(X, X)= 8, (2s<ij<n), and
B(X, X)) =0 (2<isn),

that is, {#~*"2X,, 72X, ---, #/2X,} is an orthonormal basis of m with respect
to B,. Then we have

Lemma 2.2. The above new inner product B, (0<t<<oo) on m is Ad(K)-
invariant.

Proof. Since K is connected, we may prove

B([W, X], Y)+B(X, [W, Y]) =0,
for Wet, X, Yem. It may also be proved that
(2.1) B([W, X]], X;)+B/(X,, [W, X;])=0,

for each 7,j=1, «=-,n. Put [W, X]=>Y_,4a;;X;(2=<j=mn). Since [W, X,]=0
and ad (W)(m,)Cm,, we have

(22) a,-,-—}—a,-,- =0 (2§l, ]én) ,

due to the Ad(K)-invariance of B. We will prove (2.1) in the following three
cases: (1) i=j=1, (2) either i=1 and 2<j=<m, or 2<i=n and j=1,
(3) 2<i,j<mn. Case (1) is clear. Case (2) follows from the fact that m, is
orthogonal to m, by the definition of B,. Case (3). For 2=i,j=mn, we have

B([W, X.], X;)+B(X;, [W, X]) = ta;i+a;) = 0,
due to (2.2) and the definition of B,. Q.E.D.

Due to Lemma 2.2, there exists a unique G-invariant Riemannian metric
2:(0<t<o0) on M suth that

(gt)o(Xm Yo) = Bt(X) Y) ’

for X, Yem (cf. [3] p. 200, Cor. 3.2). A Riemannian metric g, on M cor-
responds to the inner product B on m. We will show that the above g,
(0<t<< o) are desired in Main Theorem.
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Lemma 2.3. We have

vol (M, g;) = vol (M, g,), (0<t<<o0).

Proof. Since K is connected and compact, the homogeneous space M=
G/K is orientable. Since G is connected, the translations 7, by x€G on M
preserve the volume element v,, of (M,g). So we may see (v,,),=
(900 E/\"T¥M, where T*¥M is the cotangent space of M at the origin 0. But
it is valid due to the definition of g, (0<t<<oo). Q.E.D.

Lemma 2.4. We have
A, = (=) (=MXP)+14,
where the polynomial X2 belongs to S(m)gC.

Proof. By the condition (C’), the polynomial X,?> belongs to S(m),C.
Due to Corollary of Theorem 1 and the definition of g,, we have

A, = =Mt~ UX2 43N, X))
= (70— 1) (—RX )~ (o XD
= (D) (—MXD) A, Q.ED.

3. Proof of Main Theorem. (II)

3.1. In this section, we preserve the situations in §§1, 2. In this part
3.1, we prepare, (cf. [6]), the Peter-Weyl theorem for a compact homogeneous
space M=G/|K, where G is a compact connected Lie group and K is a closed
connected subgroup of G. We do not necessarily assume the condition (C’).

Let D(G) be a complete set of finite dimensional inequivalent unitary
representations of G. For a representation (p, V,) belonging to D(G), put
d,=dimV, and V k= {weV,; p(k) w=w for every ke K}.

DerINITION (cf. [6]). A representation (p, V,)eD(G) is called to be a
spherical representation for a pair (G, K) if V,X=(0).

Let D(G, K) be the set of all spherical representations in D(G) for a pair
(G,K). For peD(G, K), let ((,)) be an p(G)-invarant inner product on V,
and put m,=dimV,X. We choose an orthonormal basis {V;};,_{¢ of V, such
that {v;};.7» is a basis of V,X. Let p;;(x)=((p(x)v}, v;)), xEG and let p;;(x)
be the complex conjugate of p,;(x). Since p;; (1=i=d,, 1 <j=<m,) belongs to
C~(G, K), 1t can be regarded as a function on M. We denote it by the same
letter p;;. As in §2, let B be an Ad(K)-invariant inner product on m, g; be
the corresponding G-invariant Riemannian metric on M, and v, the volume
element of (M, g,). We define a hermitian inner product ((,)) on C*(M) by
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(o F) = vol (M, 2)™* | fi(w+0)fil-0)p, (x-0) .
Then we have (cf. [6])

Theorem (Peter-Weyl). 1) For every pe D(G, K), {\/d,p;;; 1=i=d,,
1=<j<m,} is an orthonormal system of C=(M) with respect to ((,)). Let 6,(M)
be the subspace of C=(M) spanned by {\/d.p:;; 1=i=d,, 1=j<m,} over C.
2) If p, p’eD(G,K) are mutually inequivalent, then 0,(M) and 0y(M) are
mutually orthogonal with respect to ((,)). Moreover we have the following de-
composition: C“(M)Tengx)ﬂp(M), that is, each f € C~(M) can be expanned by

PED(F K) 1S5i<
1Py

f= 2\ 4, Ea,,((f’ Pii))Pis »

in the sense of the uniform convergence on M or the L’-convergence with respect to

((5))-

3.2. In this part, we assume the condition (C’) and let t be a maximal
abelian subalgebra of g in Lemma 2.1.

Let A be the root system of the complexification g€ of g with respect to t,
that is, the set of non-zero elements a of the dual space t* of t such that g§=
{E€gC; [H, E]=+/—1a(H)E, for any H &t} is not zero. We introduce a
lexicographic order > on t* and fix it once and for all. Let A* be the set of
all positive roots with respect to this order. Let p be the dimension of the
commutator subalgebra of g. Let II={a,, -, @,} be the fundamental system
of A with respect to the order >. For A&t*, let H, be an element in t defined
by B(H, H,)=(H) for all H=t. Here the inner product B is an ad(G)-
invariant inner product on g as in §2. We define an inner product (, ), on t*
by (A, M)e=B(H,, H,') for A, M'Et*. Let I'={H t; exp(H)=e}. Let

I= {\et*; NH)E22Z forall HeT}.
Put

D(G) = {r&I; (N, @), 20 (1=i=p)}.
Then the set I coincides with the set of all the weights of the representations
of G. The maximal element among the weights of a representation (p, V;) 1n
the order > in t* is called the highest weight of (p, V;). The set D(G) con-

cides with the set of all highest weights of the representations of G. There
exists a bijection (cf. [6]) from D(G) onto D(G).

3.3. For X,em, as in §2, the polynomials X, and X% belong to S(m),¢, so
we have
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(3.1) MX 2)pis(a-0) = (p(x)p(X)0;, v)) ,

for every x€G and pe D(G, K). Let D,=p(X,)? be an endomorphism of V,
for every pe D(G, K). Then we have

Lemma 3.1. The endomorphism D, of V, has the following properties:
(1) DV, CV,k,
(2) D, is self-adjoint on V,, that is, (D, v))=((u, Dv)) for every u,vEV,,
and
@) DV Sy (VA
where (VX)L is the orthocomplement of VX in V, with respect to ((,)).

Proof. (1) Since Ad(k)X,=X,(kK), we have
p(X1)v = p(Ad (k) X))o = p(k)p(X))p(k™)o = p(k)p(X))o,

for veV k. (2) follows from the equality ((p(X)u, v))+((%, p(X)v))=0, for all
Xeg,uand veV,. (3)is clear from (1) and (2). Q.E.D.

Thus, due to Lemma 3.1, there exists an orthonormal basis {u;};_{» of V,
with respect to ((, )) such that {u;};_T» 1s a basis of VX and

(3:2) Duy; = pu;  (j=1,-,d,)

for some real numbers p;(j=1, ---,d,). For each peD(G, K), choose such
a basis on V, and let p;; be a function in §,(M), as in 3.1 with respect to this
basis. Then, for each pe D(G, K), we have

(3.3) A, Pij = (o t28, wo)oPij

where a:% SV o and p,&D(G) is the highest weight for p& D(G, K)< D(G).
acat
Because
Agpij = — A1 XD)pi (by Corollary 1),

= —X(C)pu ’

= (l‘p‘*‘za: ll/p)opij (cf. [6]),
where the operator A(C) is the Casimir operator (cf. [6]) of g with respect to
the Ad(G)-invariant inner product B on g for p€ D(G, K)< D(G). The
second equality follows from that p,;&C~(M), the decomposition g=Ef+m is
orthogonal, and {X,};., is an orthonormal basis of m with respect to B.

Therefore we have
(3'4) Agzpij = [(t_(”_1)_t)(_l‘j)+t(l’*p+28, .U«p)o]Pii ’

due to Lemma 2.4, (3.1), (3.2) and (3.3). Also we have
A0 (M)CO(M),
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for each peD(G, K) and 0<t<oco. So we put Ay (g, p) the least positive
eigenvalue of A,, on 0,(M)(0<t<co). Then we have

(3.5) M(g)= min  A(gs, P),

pe D, K>~ (0)
by the Peter-Weyl theorem. Moreover we have

(36)  M(gw p) = min [0 —O)(— )+ 125, ]
by (3.4).

3.4. We will prove our Main Theorem due to the above preparations.
Our claims are divided into two cases.
Case (1). t=1, thatis, £ ®*"Y—¢=0. In this case, we have

(D) Nlgn p) = (=0 min (—p)+ e t25, -

Case (2). t=1, that is t*®V—¢=<0. In this case, we have
(38)  Mlgn p) = (=] max (— )]+t 25, ).

Lemma 3.2. We have
(1) min (—g;)= min ((—Dpw, ), and
1<jsm, vev K «o,m)=1

(2) max (—p;)= max ((—Dyp,v))

1<jsm, vev K (v.on=1

= max {(py, wa)o; 1 25 @ weight of Vi},
where y, is the restriction of pEt* onto m,.

Proof. For o= Teau,V,5(x,€C, 1<j<m, and ((v,0))=
2)-Telx;|2=1), we have

(D, v)) = 23,-T° pj|%;1%.
Then we obtain

min (—p;) = min 33T (—p;) %)%,
1=is" ;. elxs=1
= min ((—Dy,v)).

vev K (@,on=1
In the same manner, we have,
max (—p)= max  (—Dp,v),
1<ismp vev K, (w,03)=1

= max ((—Dp,v)).
veVpK,((v,v))=1
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The right hand side coincides with max {(zy, p1,)o; g is a weight of V,}. For,
let VP=ZE}I Vy (the decomposition of V, into weight spaces). Then p(H)v,=
£

VvV —1p(H)ow, HeEt, v,€Vy(ne€l) and V, and V, are mutually orthogonal
with respect to ((,)) if p#p'(u, p'€I). Due to Lemma 2.1, we have

Dwu = —p(X ) vp = — (11, 11)o%

by B(X,, X;) = 1. Lemma 3.2 is proved completely.
Now, firstly, we treat Case (1). In this case, due to the above Lemma
3.2, we have

GBI M P)=(t""V—f) min (—Dw, )+ t(ue+25, e, -

vev K w,0)=1

Lemma 3.3. If the one-parameter subgroup T\= {exp(sX,); s€ R} is closed
in G, then there exists an element p,& D(G, K)—(0) such that min_((—Dy, v))=0.
vev_ K,
((”,00)())=1
Proof. Let K'={kt; keK, teT}. Then K'is a closed Lie subgroup
of G with the Lie subalgebra f-+m; of g, due to the closedness of ;. Moreover
it includes K as a closed subgroup. Let M'=G/K' be a coset space of G by
K'. We can apply the Peter-Weyl theorem for this coset space. Let VX' =
{veV,; p(k')o=v for all K’€K'}. Then we have

VX = {veVX; p(tyv = for all tT},
— eV p(X)o =0} .
Since dim(M')=1, there exists a non-zero element p, in D(G, K’) by the
Peter-Weyl theorem. Since D(G, K')= {p € D(G); VX %+ (0)}, we have a
non-zero element p, in D(G, K) such that {v€V,*; py(X,)v=0} #(0), that
is, there exists a non-zero element v,&V, ¥ satisfying py(X,)v,=0. Then, by
the definition of D,, we have ((— Dy, v,)) =0, for p,e D(G, K). Since
((— Dy, v)) = ((po(X )7, po(X1)?)) =0 for every vEV, ¥, we have the desired

result. Q.E.D.
Due to Lemma 3.3, we obtain

7\'l(gt)éy\'l(gu Po) = t(/.Lpo—l—ZS, I»Lpo)o .

Thus we obtain lim A,(g,)=0.
Case (2). tt_;_ol, that is (¢~ * V--#)<0. By Lemma 3.2 and (3.8), we have
Mlgn p)= (" V—1t) max {(py, pi)o; w is a weight of Vo}+#(po+28, pe)o -
Notice that for each weight u of V,, we have

(/1’11 I—‘q)oé(#: l")oé(l"p» I"p)o ’
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(cf. [8] p- 221). 'The first inequality follows due to the definition of u, for pet*.
Thus we have, for each pe D(G, K),

M(ge PYZ (V=) (1o, po)ot- (o238, Ha)o
= 7D (p, prp)o+H(28, pp)o =128, po)o -

Thus we have
M(g)=t  min (28, pp)o=t min  (23,u,), -
D

PE PG, K- (0 pPE PG (0)

By the assumption of the semi-simplicity of G, we have mi}n (28, wo)e=>0.
pE PG~ (0)

Therefore we obtain lim A (g,)=cc. Main Theorem is proved completely.
t-poo
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