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Let R be an order in a semisimple ring @, and let M be a finite dimensional
torsionless right R-module. Zelmanowitz[15] has shown that k=End M, is
also an order in a semisimple ring End MQ,. Subsequently Cozzens[3] has
shown that & is a maximal order whenever R is a maximal order and M, is finite
dimensional, reflexive and faithful.

On the other hand, Marubayashi[10] has defined Krull orders in simple
Artinian rings as a Krull type generalization of non-commutative Dedekind
rings, and a number of results on Krull orders have been obtained in [6], [7],
[8], [9), [10] and [11].

In this paper, we shall prove the following:

Theorem. Let R=(|R,NS be a Krull order in Q, and let M be a finite
Pep

dimensional reflexive right R-module. Then, k=End M is a Krull order if and
only if MS is projective as a right S-module.

As an easy consequence, we have

Corollary. Let RzPﬂ RN S be a Krull order in Q. Then gl.dim. S<2 if
ep

and only if, for each finite dimensional reflexive right R-module M, k=End M, is
a Krull order.

If R is bounded and if M is a right v-ideal of R, then the theorem is due to
Marubayashi. However, in his proof, it is essential that R is bounded (see
§2 of [7]).

Throughout this paper, all rings are associative with identity and all modules
are unital. We always write homomorphisms on the opposite side of the sca-
lars. Conditions are assumed to hold on the left and right sides unless other-
wise stated. R is an order in a simple Artinian ring Q. M_(resp. ;M) signifies
that M is a right (resp. left) R-module.

Let n be a positive integer. Then, "Q(resp. Q") and @, denote the set of
column(resp. row) vectors and the full #Xn matrix ring over €. Then, we
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can assume that "Q(resp. @") is a right(resp. left) @-module, and that Q"=
Homo("Q, Q), "@=Homy(Q", ), Q,=EndQ"=End "Q, and @=End Q"Q”=
End, "Q. Now, we prepare a Morita context (@,,Q,"@,Q"( , ),[ , ]), where
the mappings (, ):"@XQ"—>Q, and [ , ]: " X"Q—Q are defined as follows:

(%, f)x'=x(fx") and [fx]=fx, where », x'€"Q and f=Q"=Homy("Q,Q).

Since R is an order in @, "Qg(resp. Q") is the injective hull of "Rpy(resp.
#R") and End "Q¢=End "Qg(resp. Endo@"=End;zQ"). Therefore we can as-
sume that R,=End;R"=End "R,CQ,=End,Q"=End "Q,, and R, is an order
in Q,.

We write F,("R) (resp. F,(R")) for the set of essential right(resp. left) R-
submodules M of "Qg(resp. zQ") with M Cb-"R(resp. M C R"+b) for some regular
element b€Q,. If n=1, then F (R) (resp. F,(R)) is the set of right(resp. left)
R-ideals.

0

0
Suppose that M is essential in "Q,. Let e;=i)| 1 |€"Q, and let I,=
0

0
{rER|eyr=M}. Then I; contains a regular element a;ER, because I; is an
a, 0
-, ) is a regular element of @, and a-"R
0 a,

CM. Therefore, MeF,("R) if and only if a-"RC M Cb-"R for some regular
elements a, bEQ,.

If MeF,("R) and NeF/(R"), we put (M)*={f€Q"|[f, M]CR} and
N)*={x€"Q|[N,x]CR}. Then (Mg)*=~HomgM, R) and (xN)*=~Hom,
(N, R).

The following lemma is well known if n=1 (see [6]).

essential right ideal of R. Then a:(

Lemma 1. Let M, N&F,("R), and let a be a regular element of Q,. Then
(1) M+NeEF,("R).

(2) (MR)**<F,("R), and M CN implies (M g)** C(Ng)**.

(3) M=ZXZa,-"R, where a, is a regular element of Q, with a,-"RC M.

4) (Mg)**=Nb\"R, where b, is a regular element of Q, with M Cb\+"R.
(5) (aMe)**=a(M)**.

Proof. (1) Since R, is an order in @,, this follows from the same proof
of the case when n=1.

(2) Since MeF,("R), there exist regular elements @, b=@, such that.
a-"RCMcCb-"R. Therefore R"-b"'C(Mg)*CR"-a™*, hence (My)*eF,(R")
and (Mp)**eF,("R). It follows from the definition that M C N implies (Mz)**
C(Ng)**.
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(3) Since R, is an order in @,, any right R,-ideal is generated by regular
elements which it contains, by Lemma 2.2 of [6]. Let p(M)={g=Q,|q-"RC M}.
Then p(M) is a right R,-ideal, so that p(M)=3a,-R,, where a, is a regular
element of @, with a,-"RCM. Since p(M)"R=M, M=Xa,-"R.

(4) This follows from (3).

(5) This follows from (4).

We now extend a definition and a part of Lemma 1.1 of [11] which are
concerned with right R-sets (i.e. essential right R-submodules of @) to those
concerned with essential right R-submodules of "Q;. Let X be an essential
right R-submodule of "Q,. Then we put X,=U {(M)**|MEF,("R) and
McX}. It follows from (1), (2) of Lemma 1 that X} is a right R-submodule
of "Of. Now, we note the following:

Lemma 2. Let X, Y be essential right R-submodules of "Q,. Then
1) XcX..

(2) If XCY, then X;CY,.

(3) If MEF,("R), then M= (M_p)**.

Proof. (1) Since X, is essential in "Q,, there is a regular element a= @,
with a-"RCX. If x€X, then xR+a-"ReF,("R), xR+a-"RC X and x=(xR
+a-"R)**cC X,.

(2) and (3) are immediate from (2) of Lemma 1.

Two orders R, and R, in @ are equivalent, denoted by R,~R,, if there are
regular elements a, b, ¢, d=Q such that aRb,CR, and cR,dCR,. An order
R in @ is a maximal order provided that RCR'CQ and R~R’ imply that
R=R'. Let X, Y be submodules of . Then we put (X:Y),={g€Q|qY
CX}, (X:Y),={4€Q| YgC X}, O(X)={g=Q|¢XCX}, O(X)={g=Q|Xqg
cX}, X'={yeQ|XqXcX} and X,=X"'"1 A right (left) R-ideal I is
a right(left) v-ideal of R if I=I,. A right (left) R-module M is torsionless
(resp. reflexive) if the natural homomorphism M —Homg(Homg(M,R),R) is a
monomorphism(resp. isomorphism). If R is a maximal order and if /€ F,(R),
then [ is a right v-ideal of R if and only if I is reflexive as a right R-module.
A subring of @ which contains R is called an overring of R. Let R’ be an
overring of R. 'Then, pR’ is flat and R<s R’ is an epimorphism in the category
of rings if and only if F={I|I is a right ideal of R and IR'=R’} is a right
additive topology on R and R’=RF=IQF(R:I), (see §13 of [14]). In this case,

R<, R’ is said to be a right flat eipmorphism.

An overring R’ of R is right essential over R if it satisfies the following
conditions:

(1) R<R’is aright flat epimorphism.
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(2) If Iis a right ideal of R with IR’=R’, then R'I=R’ (see [7]).
A left essential overring is defined in the symmetric way.
An order R in @ is a Krull order if there is a family I{R;};< g of overrings
of R satisfying the following conditions:
(K1) R= ﬂ}’, N S(R), where S(R)={q=@|g4ACR and A’gqCR for some
S

non-zero ideals A, A’ of R}.

(K2) For each i€, R; is an essential overring of R and it is a Neotherian
local Asano order, and S(R) is an essential overring of R and it is a Noetherian
simple ring.

(K3) Each regular element of R is invertible in R; for almost all 7&d.

REMARK. (i) We call S(R) the Asano overring of R. Since a Krull order
is a maximal order from Proposition 2.1 of [10], (R:4),=A"'=(R: A4), for any
non-zero ideal 4 of R. Therefore S(R)= U {47!| 4 is a non-zero ideal of R}.

(i) Let R= ﬂJRi NS(R) be a Krull order in @, and let P! be the unique

e

maximal ideal of R; for each i&J. Then P,=P!NR is a prime v-ideal of R,
and R satisfies the Ore condition with respect to C(P,)={c€ER|c+P; is a
regular element of R/P;} and R,=R,, (see Proposition 1.1 of [6] and Pro-
position 2.1 of [10]). Therefore we write R:PQ PRPﬂS for a Krull order in

@ with the overrings {Rj},cp and S=S(R), and P’ for the unique maximal
ideal of R, for each P P.

In what follows, R=[|R,N S is a Krull order in @.
Pep

We now prove the next lemma that is well-known in the case of maximal
orders, Asano orders and so on (see e.g. [4], [6], [12] and [13]).

Lemma 3. If R,De=¢*=0, then eR,e is a Krull order in eQ,e.

Proof. It follows from Lemma 1.7 of [4] that eR,e is a maximal order in

e0,e.
First, we shall prove that R, is a Krull order in @,. Clearly, R,,———P(;] (Rp),
P

NS,. Let B beanon-zeroideal of R,. Then B=A, for some non-zero ideal
A of R, and B'=(4""),. Therefore S(R,)=S,. By Proposition 2.1 of [10],
BS(R,))=4,S,=(485),=8,=S(R,)=S(R,)B. 1t follows from Lemma 2.2 of
[10] that S(R,) is an essential overring of R,. It is clear from well known facts
(see e.g. p. 37 of [2]) that S(R,)=S, is a Noetherian simple ring and (Rjp), is a
Noetherian, local Asano order in @,. Since R is the partial quotient ring of
R with respect to C(P), (R;), is also the partial quotient ring of R, with respect

c 0
to {( )ER,,ICEC(P)}. Therefore (Rjp), is an essential overring of R,.
0 ¢
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Let (c;;) be a regular element of R,. Then there is (g;;)=(a;,d ) €Q, such
1 0
that (c;;) (9:))= ( 1)- Then (¢;;)(Rp),D(¢;;)(@i;)(Rp),=(dRp),. Therefore R,
0

satisfies the condition (K3), so that R, is a Krull order in Q,.
It is sufficient, now, to consider the case when n=1. Clearly, eRe=
PQPeRPe NeSe. Let B be anon-zero ideal of eRe. Then RBR is a non-zero ideal

of R, and B~'=¢(RBR) . Therefore S(eRe)=eSe. It is easy to check that
S(eRe)=eSe is a Noetherian simple ring and eRpe is a Noetherian ring with a
unique maximal ideal eP’e. It follows from Lemma 4.2 of [12] that eRpe is an
Asano order in eQe. Since eRpefeP'e=(e++P’)(Rp/P’')(e+P’) is simple Artinian,
eRpe is a local ring.

It follows from Theorem 3 of [13] that eRpe/eP’e=(e-+P)(R,/P")(e+P)
is the quotient ring of eRe/ePe=(e+ P)(R/P)(e-+P). Hence any element C(ePe)
is invertible in eRpe. Let F={I|I is a right ideal of R and IR,=R,}. Then,
by the proof of Proposition 1.1,(4) of [6], IEF if and only if I+ P/P is an es-
sential right ideal of R/P. Therefore if I €F, then ele-+-ePe/ePe is an essential
right ideal of eRe/ePe, by the similar proof of Lemma 4 of [13]. Thus, eleN
C(ePe)+¢ if IEF.

Let rceRe, c€C(ePe). Then c'reeRpeCRp, hence ¢™'rICR for some
I€F. Then ¢ 'releCeRe. Since there is d cele N C(ePe), c'rd=s&eRe. Thus
eRe satisfies the Ore condition with respect to C(ePe).

It follows from the similar proof of Lemma 3 of [13] that ece+1—es C(P)
whenever ececC(ePe). This implies that eRe,,,CeRpe. Conversely if g€
eRpe, then there is IEF such that gJCR. Then geleCeRe. Since there is
ceeleNC(ePe), gqc=rceRe. Then g=rc™'€eRe,p,, so that eRe=eRe,, is 2
right essential overring of eRe. In the symmetric way, we obtain that eRe is
a left essential overring of eRe.

If ece is a regular element of eRe, then ece+1—e is a regular element of R.
Therefore eRe satisfies (K3), so that eRe is a Krull order in eQe. This com-
pletes the proof.

Let M be a finite dimensional torsionless right R-module, and let (End M@Q,,
Q,MQ, Homo(MQ,Q),( , ),[ , ]) be the Morita context derived from M@Qq,
i.e. the mappings ( , ): MQ x Homo(MQ,Q)—End MQq and [ , ]: Homg(MQ,
Q)X MQ — Q are defined as follows:

(x, f)x'=x(fx") and [f,x]=fx, where x,x’€MQ and f&Hom(MQ,Q).
Then we put (Mp)*={f EHomo(MQ,Q)|[f,M]CR}. Through the natural
isomorphism we identify MQ with Homg(Homg(MQ,Q), Q). Then (Mg)**=
{x€eMQ|[(My)*, x]C R}, and M, is reflexive if and only if M=(Mg)**. If
M €F,("R), then we identify (End MQq,Q, MQ,Homo(M®Q,Q),( , ),[ , 1) with



444 H. Fujita

(Q,,,Q,”Q,Q”,( ’ )’[ ’ ])‘

Let R’ be a flat epimorphic overring of R. If M’ is a right R’-submodule
of "R’y (M'N"R)R'=M'. If M, N are right R-submodules of "R, with
MNN=0, (M®N)R'=MR'@NR’. We now prove the following:

Lemma 4. Let R’ be an overring, and let R R’ be a flat epimorphism.
Suppose that M is a finite dimensional torsionless right R-module. Then

(MR'y)* = R'(Mg)* and (MR'g)** = (M)**R’.

Proof. Since [R'(Mz)*, MR'|=R'[M*, M]R'CR’, R'(Mp)*C(MR'y)*.

In order to show the converse inclusion, we take four cases.

Case 1. MeF,("R) and My, is finitely generated.

Let g(MR'y)*. Since My is finitely generated, there exists JEF, such
that J[g, M]CR, where F,={J|J is a left ideal of R and R'J=R'}. Then
JeC M*, so that geR'g=R’JgC R'M*.

Case 2. Me&F,("R) and M=M**,

From Lemma 3, R, is a Krull order in @,. For N&F,("R), let p(IN)=
{9€@,|¢-"RCN}. Then p induces a lattice isomorphism between integeral
right v-ideals of R, and essential reflexive right R-submodules of "R, by Lemma
1. Therefore "R satisfies the asceding chain condition on essential reflexive
right R-submodules. Hence there exists a finitely generated right R-submodule
M,C M such that M, F,("R) and M*=M¥. Then R'"M*=R'M§=(M,R’'¢’)*
C (MR’ )*, by case 1.

Case 3. MeF,("R).

By Lemma 2, M**=M,c MR';. Let xMR’;. Then there exists
M,eF,("R) such that M,C MR’ and x&(M,)**. Since "R satisfies the as-
cending chain condition on essential reflexive right R-submodules, we can
choose M, to be finitely generated. By cases 1 and 2, x& M **C M **R'=
(xR’ M*)* = (MR’ )**C(MR')**. Thus, MR'yC(MR'g)** and hence
M**R'C(MR'y)**. Consequently, (MR'y)*C(M**R'y)*=R'M*, by case 2.

Case 4. M is a finite dimensional torsionless right R-module.

By Proposition 2.4 of [5], we can assume that M C"R for some integer
n=1. Then there is a right R-submodule N of "Ry such that (M@ N) is es-
sential in "R;. Then M@Ne&F,("R). Since (MR'p)*P(NR'y)* =(MR'P
NR)*=((M®BN)R')*=R'(MPN)* =R'M*PR'N*, (MR'p")* = R'(Mpy)*.
This completes the proof.

The next lemma plays a key role in the discussion of the Asano overring of
k=End M,.

Lemma 5. Let M be a finite dimensional reflexive right R-module, and
let k=End M. Then
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End MS;2DS(k)D(MS, (MSg)*)==0.

Proof. Since MS;s is torsionless and faithful, (MS, (MSs)*)MS=MS
[(MSs)*, MS]+0. Hence (MS, (MSs)*)=0.

It follows from Lemma 4 that (MS, (MSs)*)=(MS, M*). Let A be a
non-zero ideal of R. Then (MA™!, M*)(MA, M*)=((MA™, M*)MA, M*)=
(MA™'[M*, M)A, M*)c(M,M*)Ck. Since k is a maximal order from Theorem
2.8 of [3], (MA™, M*)C(MA, M*)*C S(k).

Let B be a non-zero ideal of k. Since [[M*,BM]M*,B*M]=[M*B(M,
M*), B"*M]c[M*, M]CR, B*M C(z[M*, BM]M*)*. By Lemma 2.1 of [10]
and Lemma 4, (;[M*, BM|M*)*S=(sS[M*, BM]M*)*=(;SM*)*=MS, for
My is reflexive. Therefore B*MS CMS, and hence B-*CEnd MS;. Thus,
S(k)CEnd MSs. This completes the proof.

The following lemma is modeled on and generalizes Lemmas in §2 of [7]
so that we exclude the hypothesis that R is bounded.

Lemma 6. Let I be a right v-ideal of R. Then
€)) 0,(I)=Pﬂ O,(IRp) N O(IS) is a maximal order in Q.
ep

(2) OJ(IRp)=IRpI™" is a Noetherian local Asano order in Q, and it is an
essential overring of O/(I), where PE P.

Moreover, suppose that 1S is projective. Then

(3) O(IS)=ISI'=S8(0(I)) is a Noetherian simple ring, and it is an es-
sential overring of O,(I).

4) O(I)is a Krull order in Q.

Proof. (1) Since I is a right v-ideal, O,(J) is a maximal order from Satz.
1.3 of [1] (or Theorem 2.8 of [3]), and ([} O,(IR;)N O,(IS))ICPﬂ IR, NIS=1I.
rep P

Hence O,()=() O(IRy) N O(IS).

(2) Since R, is hereditary, O,(IRp)=(IRp) (IRp)'=IR,I"' by Theorem
1.5 of [12] and Lemma 4. It follows from Lemma 2.3 of [12] that O/(IR;) is
a Noetherian local Asano order.

Since R; is a principal ideal ring, IRp=aR, for some regular element a< 1.
Then IR I '=aRpa'. Let F={X|X is a right ideal of R and XR,=R;},
and let Y be a right ideal of O,(I). If YIR,I'=IRpI"!, then a™'YIR,=R,.
Hence a'YINC(P)#*¢, and hence a'YINREF and a(a'YINR)['CY.
Conversely if Xe&F, aXI ' IR, I'=aXRpI'=aRpl'=IRpI"'. Therefore,
YIR,I'=IR,I" if and ouly if Y DaXI™" for some X EF.

Let F,={Y|Y is a right ideal of O,(I) and YIR,I"'=IR,I"'}. Then
F, is a right additive topology on O,(I). In fact, (i) if x€O,(I) and if YEF,,
then Y DaXI' for some Xe&F. Since a‘xacR;, (a”'xa) ' XEF. Since
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a((a™xa) ' X)['cx'Y, x'YEF,. (i) If YEF, and if Z is a right ideal of
O,(I) such that x'Z& F | for each x€ Y, then Z& F (see e.g. the proof of Lemma
1.1 of [7]).
Ifq€0,(I) FI:YQF(O'(I ):Y),, then gaXI'CO,(I) for some X € F. Therefore
I

gEqIR, I '=qaXI IR, I'CIR,I™*. Conversely if gIR,I!, then g=ata™
for some t&R,. Then tX CR for some X&F. Hence gaXI '=atXI'CO(I).
Thus O/(I)z,=IRpI"'. Furthermore, for each X&F, IR,I'DIRpI'aX]'=
IR, XI'=IRpI"'. Consequently, O,(IRy;)=IR,I™" is a right essential overring
of O,I). Since I is a right v-ideal, O,(I)=0,(I"?). Therefore we obtain that
O,(IRp)=0,(RpI")is a left essential overring of O,(I)=0,(I™"), in the symmetric
way as the above.

(3) Since IS is projective, O,(IS)=(IS)(IS)'=ISI'=S(0O(I)) by
Theorem 1.5 of [12] and Lemmas 4 and 5. Since S is a simple ring, IS is a
progenerator. Hence S(O,(I))=0/(IS) is a Noetherian simple ring. Let B
be a non-zero ideal of O((I). Since ISI'DBISI'DI(I'BI)SI'=ISI7,
S(O,I))=BS(0,(I)). In the symmetric way, we get S(O,I))=S(0/(1))B.
Therefore S(O,(I)) is an essential overring of O,(I), by Lemma 2.2 of [10].

(4) Since a is a regular element, O/(IRp)=aRpa™ =R, for almost all P&
P. 1If x is a regular element of O/(I), x is invertitle in R, for almost all PEP.
Thus O/() satisfies (K3). Therefore O, (1) is a Krull order in @ from (1), (2)
and (3).

We are now in a position to prove the following theorem that is the ob-
ject of this paper.

Theorem 7. Let R={\R,N S be a Krull order in Q, and let M be a finite
Pep

dimensional reflexive right R-module. Then, k=End My is a Krull order if and
only if MS is projective as a right S-module.

Proof. First, assume that k=End M is a Krull order. Then S(k) is a
simple ring. Since (MS,(MS;)*) is a non-zero ideal of S(k) by Lemma 5,
1€ S(k)=(MS,(MS;)*). Therefore MS; is projective.

Conversely, assume that MS; is projective. Since MS; is finite dimen-
sional torsionless, it is isomorphic with a submodule of a finitely generated
free right S-module from Proposition 2.4 of [5]. Since S is Noetherian, MSs
is finitely generated. Hence there exist an integer #=1 and a right S-submodule
N’ of "Ss such that MS@PN’'="S. Let N=N'N"R. Then (Ng)**C("Rp)**
="R and (NR)**C(Np)**S=(NSs)**=(N'g)**=N’ from Lemma 4, so that
(Np)**cN'N"R=N. Hence Ny is reflexive. Thus M@N is an essential
reflexive right R-submodule of "Q; and (MPN)S="S. Since (MPBN); is
reflexive, there exist an integer m=1 and a right R-submodule X of "R such
that MPNPX is isomorphic with an essential reflexive submodule of "Ry, by
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Proposition 2.4 of [5]. As stated in the proof of Lemma 4, "R, satisfies the
ascending chain condition on essential reflexive submodules. Hence, for some
2y, HEMOBNDX, MON DX=(2,R+ -+ R)**. Write z,=y,+x; where
Y:€EM®N and x;€X for i=1, ---,I. Then MANPX=(z,R+---+z,R)**C
R+ +y R*PXCcMPNPX. Hence MPN=(y,R+---+y,R)**. Since
YR+ -4y, ReF,("R), MPN F,("R) by Lemma 1. Therefore, it follows from
the similar proof when n=1 that End (M @N);~R,. Since End(M®N); is a
maximal order by Theorem 2.8 of [3], there is a right v-ideal I of R, such that
End(M®N),=0,(I). Since S, is a simple ring, S,=End(MPN)Ss=S(End
(M®N)g)=S(0,I))=8S,)(IS,)* by Lemma 5. Therefore IS, is projective as
a right S,-module. It follows from Lemma 6 that End(M@N),=0,) is a
Krull order in @,. Consequently, by Lemma 3, k=e(End(M P N),)e is a Krull
order in eQ,e, where e is the projection from M@N onto M. This completes
the proof.

Corollary 8. Let R=(|R,NS be a Krull order in Q. Then gl.dim. S=<2
rPep

if and only if, for each finite dimensional reflexive right R-module M,k=End M,
1s a Krull order.

Proof. If M is a finite dimensional reflexive right R-module, then MS is a
finitely generated reflexive right S-module. Conversely if M’ is a finitely
generated right S-module, then there is a finite dimensional reflexive right
R-module M such that M'=MS. It is now easy to complete the proof using
Proposition 3.2 of [3] and the theorem.
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