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Recently K.R. Goodearl and D. Handelman [6] have studied simple
regular rings from the point of view of dimension-like functions. They have
shown that there exists a unique dimension function on the lattice of principal
right ideals of a simple, regular and directly finite ring satisfying the compara-
bility axiom. In this note we study some structures of projective modules over
such a ring by making use of the dimension function.

In the section 1 we show that if there exists a dimension function on the
lattice of principal right ideals of a regular ring, then this can be extended to a
function on the set of all projective modules.

In the section 2 we investigate some structures of projective modules over
a simple, regular and directly finite ring satisfying the comparability axiom and
show that a directly finite projective module is isomorphic to a direct sum of
a finitely generated free module and a projective right ideal, and a directly
infinite projective module is a free module.

In the final section directly finite, regular and right self-injective rings are
investigated. We show that this ring is a finite direct product of simple rings
if and only if any non-singular directly finite injective right module is a finitely
generated module.

Throughout this paper a ring R is an associative ring with identity and
modules are unitary right R-modules.

1. Dimension functions

For any (Von Neumann) regular ring R, let L(R) be the lattice of principal
right ideals and P(R) (FP(R)) the set of all projective (finitely generated pro-
jective) R-modules. We denote by M <N the fact that M isisomorphic to a
submodule of IV for two modules M, N. In particular if R is regular, then AP
for A in FP(R) and P in P(R) if and only if 4 is isomorphic to a direct summand
of P {8, Lemma 4].

DeriNITION [6, p. 807]. A dimension function D on L(R) is a function
from L(R) into non-negative real numbers satisfying the following conditions;
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(1) D(J)=0 if and only if J=0
2) DR)=1

3) if J<K, then D(J)<D(K)

4) if JOKeL(R), then D(JHK)=D(J)+D(K).

I. Halperin [7] proved that if a dimension function D exists on L(R), then
D can be uniquely extended to a function on FP(R). We shall show that this
function D can be moreover extended to a function on P(R) by making use of
the following lemma.

Lemma 1.1 [10]. For any projective module P over a regular ring, P is
isomorphic to a direct sum of principal right ideals and any two direct sum decom-
positions of P have an isomorphic refinement.

Let P be in P(R). From now on, by P=@,.qp/ we denote the fact that
there exists a set MM of independent non-zero submodules isomorphic to some
principal right ideal and P is a direct sum of the members of M. We put
D*(P)=sup {3);eqwD(J); any finite subset WM’ of M} for any P in P(R) and
any decomposition P=@;cqp /. If the above supremum is not convergent,
we put D¥(P)=oco. Now we shall prove that D*(P) does not depend on the de-
composition of P. Let P=@ 4K be another decomposition. It is sufficient
to prove that two numbers a, b defined by M and N coincide when N is a re-
finement of M. ‘For any J in M, there exists a finite subset N of N such that
J=@®xegwK. Hence we have a<b. Conversely for any finite subset 9’ of 9t and
any K in 9, there exists some J in I such that K is a direct summand of J.
Therefore there exists a finite subset MM’ of M such that >xeqy D(K)Z DY cqw’
D(J)and so we have b=<a.

Now D* is a function from P(R) into non-negative real numbers or oo, and
from the definition and by Lemma 1.1, we can easily prove the following pro-
perties;

(1) if P=Q in P(R), then D*(P)< D*(Q)

(2) if POOe P(R), then D¥(PPQ)=D*(P)+D*(Q).

2. Projective modules

First we recall some definitions and some results in [6].

DrrFINITION. A ring R is directly finite if xy=1 implies yx=1 for x, y in
R. A module M is directly finite if Endy,(M) is directly finite. A ring R (a
module M) is directly infinite if it is not directly finite. It is easily seen that a
module M is directly finite if and only if }/ is not isomorphic to a proper direct
summand of itself. A regular ring R satisfies the comparability axiom if we
have either /=<K or K] for all /, K in L(R). For a cardinal number « and
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a module M, aM denotes a direct sum of a copies of M.

Note. Throughout this section R is a simple, regular and directly finite
ring satisfying the comparability axiom. In this case, any finitely generated
projective R-module is directly finite by [6, Corollary 3.10].

ExampLE [6, pp. 815, 831 and 832]. Let F be a field and R, the full matrix
ring of degree 2" over F. Let f,: R,—R,,, be a diagonal homomorphism, i.e.,
x—(39), and let R be adirect limitof {R,, f,}. Thisring R is a simple, regular
and directly finite ring which satisfies the comparability axiom and which is
not artinian. Further R is neither left nor right self-injective.

Lemma 2.1 [6, Theorem 3.13 and Proposition 3.14]. Let J be in L(R).
We put D(J)=sup{mn; m=0,n>0,mR<nJ}. Then D is a unique dimension
function on L(R). Further, for all J, K in L(R), we have J<K if and only if
D(J)=D(K).

From now on, let D* be the extension of the dimension function D as in the
section 1.  We consider projective modules over R from the point of view of D*.

Lemma 2.2 Let A, B in FP(R). A<B if and only if D*(A4)<D*(B).
In particular, A=B if and only if D*(4)=D*(B).

Proof. We have A"B or B=A by [6, Lemma 3.7]. Then the proof of
the first property is easy. If D*(4)=D*(B), then A<B and B=A. Hence
A is isomorphic to a direct summand of itself. Then A=B, because 4 is
directly finite.

The next is a key lemma for Theorem 2.4.

Lemma 2.3. For Pin P(R) and A in FP(R), P<A if and only if D¥(P)<
D*(4).

Proof. By the definition, “only if” part is trivial. We assume D*(P)=
D*(A4) and P=@,-gyJ. First we know M is a countable set, because for each
positive integer n, the set M,={J; D(J)>n"'} is a finite set and M= U,I,.
Now put M={J,;n=1,2,---} and P,=P1J;, then we have P= ,P,. For
each n#, we can choose a monomorphism f,: P,—>A by Lemma 2.2, because
D*(P,)<D*(4). If we construct monomorphism g,: P,—A for each n such
that g,,, is an extension of g,, then we have P=A4. Put g,=f, and assume we
have g, for all k<n. We have decompositions A=g,(P,)PO,=f,+(P,)D
[t (Jur) B0, 4, for some submodules Q,, O,.,, because homomorphism g, f,+1
split. Then we have Q,=f,,,(J,+1)®Q0,.: by [6, Theorem 3.9] and so we choose
a monomorphism &: f,,,(J,+;)—~0,. Consequently g,.,=g,Phf,.,: P, ,—4 is
an extension of g,.
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We shall determine the structures of projective modules over a simple,
regular and directly finite ring satisfying the comparability axiom.

Theorem 2.4. Let R be a simple, regular and directly finite ring satisfying
the comparability axiom. For a projective R-module P, the following conditions
are equivalent.

(1) P is directly finite.

(2) D*¥(P)<oo

(3) P has a decomposition P=nR®D ] for some integer n=0 and some right
ideal J.

(4) P=tR for some integer t>0.

Proof. (1)=(2). We assume D*(P)=co. Put P=@@ gy /, then there exists
a sequence of finite subsets M; (1=1,2,---) of WM such that WM, NM,;=¢ if i3
and D*(®jeqn,J)=1 for each i. Put P;=@ gy, J, then we have RP; by
Lemma 2.2 and so we have P,=R,PQ;, where R,=~R. F=@®7R; is a direct
summand of P and 2F=F. This contradicts that every direct summand of P is
also directly finite.

(2)=(3). We choose non-negative integer n such that n<<D*(P)<n--1.
If n=0, then we have PR by Lemma 2.3. If # is positive, the first inequality
implies that nR=P from the definition of D* and by Lemma 2.2. Then we
have P=P,®P,, where P,=nR. D*(P,)=D*(P)—D*(P,)<1 implies P,<R
by Lemma 2.3.

B)=>#4) Itis trivial.

(4)=(1) If P is directly infinite, then there exists a set {P;}T of inde-
pendent non-zero cyclic submodules of P such that P;=P; for all 7,j. Then
D*(pTP;)=oc. This contradicts D*(P)<t.

RemARk. A right ideal of R is projective if and only if it is countably
generated. Further any right ideal has a projective submodule as an essential
one [4, Lemmas 12 and 13].

The next three results follow to the advice of K. Oshiro.

Lemma 2.5. Let P and Q be countably generated but not finitely generated
projective R-modules. If D*(P)=D*(Q), then P=0.

Proof. Since P and Q are not finitely generated, we put P=@®7P, and
O0=®70,,, where each P, and Q,, are isomorphic to some non-zero members
of L(R). We prove that there exist two increasing sequences 1=n(1)<n(2)<
e, 1Zm(1)<m(2)< -+, of positive integers and two sets {4;}T, {B;}T of in-
dependent non-zero submodules of P satisfying, for each 7

(1) @:é::i:—l%Pj:Bi@Ai+l

(2) SOntilnnQ=A4,;®B;
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where 4,=P, and m(0)=0.

First we choose integers 1=<m(1), 1<n(2) such that D*(P)<D*(H1"Q,)=<
D¥(Pi®P,). Then, by Lemma 2.2, we have P, X=@P7"Q, and G7VQ,DY
=@7®P,, for some modules X, Y. Then we have XP V= @3»P by [6,
Theorem 3.9]. Put n(1)=1, 4,=P, and B,®A4,=P3*»P,, where B;=X and
A,>=Y. Next we assume that there exist two increasing sequences, 7(1)<C:-
<n(k+1), m(1)<<---<m(k) and two sets {4,};*!, {B;}} of independent non-zero
submodules of P satisfying the properties (1) and (2). Since Pi(A4,PB;)==
@T(k)Qt and D*(P):D*(Q)’ then D*(Ak+l@(@:(k+1)+1Pi)):D*(@o’;(k)‘HQ‘)' We
can take positive integers m(k+-1), n(k+-2) such that m(k)<m(k+1), n(k)<n(k-+2)
and D*(Ak+l)<D*(®ZE”:;¥1%Qt)éD*(Ak+l@(@ZEz:R+lP ).  Then, again by
Lemma 2.2, we obtain A4, PX'=PriE;H0, and @ZEi;‘J}Q,EBY =~A4,.,D
(DrtkiBP,;), for some modules X',Y'. Since A, PX' DY '=4,,,D
(DB P;), then we have a decomposition @yiif).1P;=B;.. DA, where
B,,,=X'and A4,,,=Y’, by [6, Theorem 3.9]. By the above procedure, we can
construct independent non-zero submodules A4,, B, 4,, B,, -+ which satisfy the
properties (1) and (2). Since each P, is contained in B;@BA4;,, for some 7, then
P=®7(4;DB;). On the other hand we have Q= P57 (Dniil1y410,). Therefore
we conclude that P=Q.

RemaRrk. The result obtained by applying Lemma 2.5 for P, Q in P*(R)
means that the Grothendieck group generated by the isomorphism classes of
directly finite projective R-modules is isomorphic to some subgroup of the

additive group of R. (Cf. [2, Corollaries. 10.14 and 10.16]).

Theorem 2.6. Let R be a simple, regular and directly finite ving satisfying

the comparability axiom. Amy directly infinite projective R-modules is a free
R-module.

Proof. By Theorem 2.4 and Lemma 2.5, we already see that every directly
infinite, countably generated projective R-module is isomorphic to 8,R. Thus
we shall show that every directly infinite projective R-module can be expressed
as a direct sum of directly infinite, countably generated submodules. Let P
=® <P, be a directly infinite projective R-module, where each P, is isomorphic
to some non-zero J in L(R). Let B be the set of all countably infinite subsets of
I. We consider the family consisting of all subsets & of B satisfying the follow-
ing properties;

(1) each members of § is pairwise disjoint

(2) D*(PgyexP,)=c° for each K in §F.

Since this family is a inductively ordered set using the inclusion relation, there
exists a maximal member § by Zorn’s Lemma. Put I*= oK. If I*=],
then our proof is complete. Next we consider the case that I*=1. First we
shall show that D*( ¢ mP,)<<oo, where I** is the complement of I*. Other-
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wise we can take a countably infinite subset I' of I** such that D¥*(®D,c,/P,)
=oco. Then theset U {I'} isstrictly greater than §. Thisis a contradiction.
By the proof of Lemma 2.3, we see that J** is a countable set. Choose one
member K’ of ¥, and put F=F—{K’}, and K”"=K'UI**. Then K" is a
countably infinite set and D*(P,cx’P,)=co. The decomposition P=
(Pres’(PuckPs)B(PB,ex’P,) is a desired one.

DEerFINITION [5, p. 174]. Let A be a module. If A=0, define u(A4)=0.
If A=+0, define p(A4) to be the smallest infinite cardinal number « such that
aALA.

Proposition 2.7. Let P and S be projective modules which are not finitely
generated. If P=S and S<P, then P=S.

Proof. Since D*(P)=D*(S) by the definition of D*, then they are both
directly finite or both directly infinite by Theorem 2.4. If P and S are directly
finite, then they are countably generated by the proof of Lemma 2.3. Thus we
have P=<S by Lemma 2.5. If P and S are directly infinite, then P=~aR and S
=R for some infinite cardinal numbers «, B by Theorem 2.6. We can assume
a<B. Let O be the maximal ring of quotients of R and we use the notation
E(A) to stand for an injective hull of a module 4. Since P<<S and S<P, then
E(P)=E(S) by [1, Corollary]. On the other hand, E(P)=E(aQ) and E(S)
=F(B0Q) and also Q is a prime ring because it satisfies the comparability. There-
fore, by [5, Theorem 6.32], max{a’, £(Q)} = p(E(P))=p(E(S))=max{B’, u(Q)},
where o’ and B’ are the successores of ¢ and 3. Thus, if <<, then it must
hold that (R,<)a’<B'=<u(Q). Since 8, <u(0), 8,00. Therefore let {4.},c,
be a independent set of principal right ideals of Q such that 4,=Q for each 7 in
I and the cardinality of 7is X;. Then {4,N R}, is a independent set of non-
zero right ideals of R. This contradicts the fact that there is no uncountable
direct sum of non-zero right ideals of R. Consequently we must have a=_ and
hence P=S.

3. Directly finite, regular and right self-injective ring

Lemma 3.1 [3, Lemma 5’ and 6, Proposition 1.4]. A4 prime, directly finite,
regular and right self-injective ring is a simple ring satisfying the comparability
axiom.

Proposition 3.2. Let R be a directly finite, regular and right self-injective

ring. Then R is a finite direct product of simple rings if and only if any non-singular
directly finite injective R-module s finitely generated.

Proof. First we shall prove that ‘“only if”’ part. There exists a set {e;}]
of orthogonal central idempotents such that >je,=1 and each ¢;R is a simple
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ring. Let M be a non-singular directly finite injective R-module. There exists
a projective R-module P such that P is an essential submodule of M, because
any non-singular finitely generated R-module is a projective and injective module
(cf. [9, Theorem 2.7]). M is directly finite, and so P is also directly finite. Put
P,=Pe, for each 7, then each P, is also a directly finite projective module as an
e;R-module. Therefore there exists a positive integer ¢ such that P;<Jt(e;R)
for all 7 by Lemma 3.1 and Theorem 2.4. Thus P<tR, because P=@®1P;.
This monomorphism can be extended to be monomorphism from M into tR.
Then M is isomorphic to a direct summand of tR. Conversely we assume
that R can be decomposed into no finite direct product of prime rings. Then
R itself is not prime. Hence there exist non-zero two-sided ideals 4, B such
that AB=0. Let A’, B’ be the injective hull of 4, B in R, then they are also
two-sided ideals and generated by central idempotents by [3, Lemma 1]. Since
R is semi-prime, ANB=0. Then 4’'NB’'=0. Hence there exist orthogonal
central idempotents {e;}] such that >lie;=1. By the assumption, at least one
of ;R, say e;R, is not prime. Use the same argument for the ring e;R, then
there exists another set {e/}} of orthogonal central idempotents of R such that

te/=1. Repeating these procedures, we obtain a countably infinite set {e,} T
of orthogonal non-zero central idempotents. If @7e,R is not essential in R, we
choose some central idempotent f which generates the injective hull of ®7e,R
and we consider {e,, 1—f}7. Therefore we may assume that @7e,R is essential
in Ry. Since Ry is injective and Pre,R is a two-sided ideal, R=End,(P7e,R).
End(P7e,R)=1I,Endg(e,R)=1],e,R, because Homy(e,R, e,,R)=0 for n==m and
each e, is a central idempotent. Consequently R=T]],e,R by the mapping: »—
(e,r). We put M,=n(e,R) for each n and we consider the R-module M=T1],M,,.
This is obviously a non-singular injective R-module. We also know that it is
directly finite, because Endy(M)==11,Endy(M,) and Endy(M,) is directly finite
for all . By the assumption, there exists a positive integer ¢ such that M <_tR.
Now we choose an integer m which is larger than ¢. That M, <<tR=]] t,R)
implies that M, <t(e, R), because Homg(M,, t(e,R))=0 for all n==m. This con-
tradicts that M,, is directly finite. Hence R is a finite direct product of prime
rings. Prime directly finite regular right self-injective rings are simple by Lemma
3.1, and so we have proved.
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