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Recently K.R. Goodearl and D. Handelman [6] have studied simple
regular rings from the point of view of dimension-like functions. They have
shown that there exists a unique dimension function on the lattice of principal
right ideals of a simple, regular and directly finite ring satisfying the compara-

bility axiom. In this note we study some structures of projective modules over
such a ring by making use of the dimension function.

In the section 1 we show that if there exists a dimension function on the

lattice of principal right ideals of a regular ring, then this can be extended to a
function on the set of all projective modules.

In the section 2 we investigate some structures of projective modules over

a simple, regular and directly finite ring satisfying the comparability axiom and

show that a directly finite projective module is isomorphic to a direct sum of

a finitely generated free module and a projective right ideal, and a directly

infinite projective module is a free module.
In the final section directly finite, regular and right self-injective rings are

investigated. We show that this ring is a finite direct product of simple rings
if and only if any non-singular directly finite injective right module is a finitely
generated module.

Throughout this paper a ring R is an associative ring with identity and

modules are unitary right 12-modules.

1. Dimension functions

For any (Von Neumann) regular ring R, let L(R) be the lattice of principal

right ideals and P(R) (FP(R)) the set of all projective (finitely generated pro-
jective) Λ-modules. We denote by M<N the fact that M is isomorphic to a

submodule of N for two modules M, N. In particular if R is regular, then A<P

for A in FP(R) and P in P(R) if and only if A is isomorphic to a direct summand
of P [8, Lemma 4].

DEFINITION [6, p. 807]. A dimension function D on L(R) is a function

from L(R) into non-negative real numbers satisfying the following conditions;
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(1) D(J)=0 if and only if /=0
(2) D(R)=ί
(3) if J<K, then D(J)^D(K)

(4) if J®KeL(R), then D(J®K)=D(J)+D(K).

I. Halperin [7] proved that if a dimension function D exists on L(R), then
D can be uniquely extended to a function on FP(R). We shall show that this
function D can be moreover extended to a function on P(R) by making use of
the following lemma.

Lemma 1.1 [10]. For any projectile module P over a regular ring, P is
isomorphic to a direct sum of principal right ideals and any two direct sum decom-
positions of P have an isomorphic refinement.

Let P be in P(R). From now on, by P=®j<=mJ we denote the fact that
there exists a set 2Tt of independent non-zero submodules isomorphic to some
principal right ideal and P is a direct sum of the members of 2JΪ. We put

Z)*(P)=sup{Σ/eSDZ/β(y); anY finite subset 2ft' of 2ft} for anY p in P(R} and

any decomposition P=®jemJ ^ tne above supremum is not convergent,
we put D*(P)=°o. Now we shall prove that Z)*(P) does not depend on the de-

composition of P. Let P=®κ<=yιK be another decomposition. It is sufficient
to prove that two numbers α, b defined by 9JI and !JΪ coincide when Sft is a re-
finement of 2JΪ. -For any/ in 9Jί, there exists a finite subset 5K' of 31 such that
J= ξ&κetfK. Hence we have a^b. Conversely for any finite subset 9i' of 9Ϊ and
any K in %l'y there exists some / in 9JI such that K is a direct summand of J.
Therefore there exists a finite subset 3Jί' of SDΪ such that
Z)(/)and so we have

Now Z>* is a function from P(R) into non-negative real numbers or oo y and
from the definition and by Lemma 1.1, we can easily prove the following pro-
perties;

(1) if P<Q in P(R), then Z)*(P)^D*(£)
(2) if PθρeP(Λ), then Z)*(P0ρ)=Z)*(P)+Z)*(ρ).

2. Projective modules

First we recall some definitions and some results in [6].

DEFINITION. A ring R is directly finite if xy=l implies yx=ί for x9 y in
P. A module M is directly finite if EndR(M) is directly finite. A ring J? (a
module M) is directly infinite if it is not directly finite. It is easily seen that a
module M is directly finite if and only if M is not isomorphic to a proper direct
summand of itself. A regular ring R satisfies the comparability axiom if we
have either J^K or K<J for all /, K in L(R). For a cardinal number a and
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a module M, aM denotes a direct sum of a copies of M.

NOTE. Throughout this section R is a simple, regular and directly finite

ring satisfying the comparability axiom. In this case, any finitely generated
projective l?-module is directly finite by [6, Corollary 3.10].

EXAMPLE [6, pp. 815, 831 and 832]. Let F be a field and Rn the full matrix
ring of degree 2n over F. Let/n: Rn— >RM+1 be a diagonal homomorphism, i.e.,

x~>(ox)ί and let R be a direct limit of {RnJfn}. This ring R is a simple, regular
and directly finite ring which satisfies the comparability axiom and which is
not artinian. Further R is neither left nor right self-injective.

Lemma 2.1 [6, Theorem 3.13 and Proposition 3.14]. Let ] be in L(R).
We put D(J)=sup{mn~l\ ra^O, /z>0, mR<nJ}. Then D is a unique dimension

function on L(R). Further, for all ], K in L(R), we have J^K if and only if
D(J)<ίD(K).

From now on, let D* be the extension of the dimension function D as in the
section 1. We consider projective modules over R from the point of view

Lemma 2.2 Let A, B in FP(R). A<B if and only if D*(A)^D*(B).
In particular, A^B if and only if D*(A)=D*(B).

Proof. We have A<B or B<A by [6, Lemma 3.7]. Then the proof of
the first property is easy. If D*(A)=D*(B), then A<B and B<A. Hence
A is isomorphic to a direct summand of itself. Then A^B, because A is

directly finite.

The next is a key lemma for Theorem 2.4.

Lemma 2.3. For P in P(R) and A in FP(R), P<A if and only if D*(P) <

D*(A).

Proof. By the definition, "only if" part is trivial. We assume

D*(A) and P=®jG^J- First we know 9Jί is a countable set, because for each
positive integers, the set 9Jίw={/; D(J)>n~1} is a finite set and 3Dΐ= UM2JΪM.
Now put Wl= {/„; n=l, 2, — } and Pn=^n

1Ji) then we have P= (J JPH. For

each n, we can choose a monomorphism fn: Pn-*A by Lemma 2.2, because
D*(Pn)^D*(A). If we construct monomorphism gn\Pn-^A for each n such
that gn+1 is an extension of gn, then we have P<A Put gι=fι and assume we
have gk for all k^n. We have decompositions A=gH(Pn)®QΛ=fH+ί(Pn)®

fn+ι(Jn+ι)®Qn+ι for some submodules QnJ Qn+ly because homomorphism gn,fH+l

split. Then we have QM^fn+ι(Jn+ι)®Qn+ι by [6, Theorem 3.9] and so we choose
a monomorphism h:fn+1(Jn+1)-*Qn. Consequently gn+1=gn®hfn+1: Pn+l-*A is
an extension of gn.
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We shall determine the structures of protective modules over a simple,
regular and directly finite ring satisfying the comparability axiom.

Theorem 2.4. Let R be a simple, regular and directly finite ring satisfying
the comparability axiom. For a projectίve R-module P, the following conditions
are equivalent.

(1) P is directly finite.
(2) Z)*(P)<oo

(3) P has a decomposition P^nRφJ for some integer n^>0 and some right
ideal}.

(4) P<tR for some integer t > 0.

Proof. (1)=K2). We assume Z)*(P)=oo. Put P=®JξΞmJ, then there exists
a sequence of finite subsets 3Jlt (i=l,2, •••) of 3Jί such that $Kf ΓΊ2ίϊy=φ if ίΦj

and Z)*(0/eSKίy)^l for each i. Put Pi=(BjeimiJ> then we have R^pi bY
Lemma 2.2 and so we have Pί=jf2f0j3, , where R{^R. JF==0J'.R|. is a direct
summand of P and 2F^F. This contradicts that every direct summand of P is
also directly finite.

(2)=Φ(3). We choose non-negative integer n such that n<Z)*(P)^n+l.
If fl— 0, then we have P^R by Lemma 2.3. If n is positive, the first inequality
implies that nR<P from the definition of Z)* and by Lemma 2.2. Then we
have P=P1ΘP2, where P^nR. D*(P2)=D*(P)—D*(P1)^l implies P2<#
by Lemma 2.3.

(3)=Φ(4) It is trivial.
(4)==ϊ>(l) If p is directly infinite, then there exists a set {P,}Γ of inde-

pendent non-zero cyclic submodules of P such that P,̂ P;. for all i,j. Then

£>*(0ΓΛ )= °° - τhis contradicts

REMARK. A right ideal of 72 is projective if and only if it is countably
generated. Further any right ideal has a projective submodule as an essential
one [4, Lemmas 12 and 13].

The next three results follow to the advice of K. Oshiro.

Lemma 2.5. Let P and Q be countably generated but not finitely generated
projectίve R-modules. If Z)*(P)=Z>*(0), then P^Q.

Proof. Since P and Q are not finitely generated, we put P=®ΐPn and
Q= ΦΓ0W, where each Pn and Qm are isomorphic to some non-zero members
of L(R). We prove that there exist two increasing sequences l=n(l)<n(2)<
• ••, l^m(l)<m(2)< , of positive integers and two sets {-4f}Γι {#, }Γ of in-
dependent non-zero submodules of P satisfying, for each i

(1)
(2)
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where Al=P1 and m(0)=0.
First we choose integers l£m(l), \<n(2) such that D*(Pύ<D*(@ΐ™Qt)^

£>*(0ϊ(2)Py). Then, by Lemma 2.2, we have P,®X^ 0r(1)ζ?, and 0Γcl)£?ίθ Y
«θϊ(2)Py, for some modules JT, Y. Then we have ^0y^0£c2)P by [6,
Theorem 3.9]. Put w(l) = l, Λ=Λ and Bί®A2=®$2Ψj, where fi^-Y and
A2~Y. Next we assume that there exist two increasing sequences, w(l)<
</*(&+!), ;w(l)< <7/x(&) and two sets {<4f.}*+1, {-B,-}} of independent non-zero

submodules of P satisfying the properties (1) and (2). Since 0ϊ(-4i05f)^

ΘΓ ,̂ and D*(P)=D*(Q), then Z)*(Jί+1Φ(φ~(ί+1)+1P,.))=O*(Φ»(*)«δ(). We
can take positive integers m(k-\-1), #(£+2) such that m(K)<m(k-\~ 1), w(&)<τz(&+2)

and D*(^,+0<^*(ΘSίl)\1ι)ρί)^β*(Λ+ιθ(0w«[^f)

)

+ιP;.)). Then, again by
Lemma 2.2, we obtain Ak+1®X'**®*[i#lQt and ΘS&Ή&ΘF'^+iθ
(θϊίϊίiUiPy), for some modules X', F'. Since Ah+l®X'®Y'e*Ak+ί®
(0;[ίίϊUιPy), then we have a decomposition 0;[ίίfj+1P;.=βΛ+10^Λ+2, where
Bk+1^X' and Ak+2~ Y', by [6, Theorem 3.9]. By the above procedure, we can
construct independent non-zero submodules Aλ, Bly A2, B2, •••• which satisfy the
properties (1) and (2). Since each Pn is contained in B{®Ai+l for some iy then
P= 0~(^.φjS.). On the other hand we have O= 0r(0ϊc(i-iHi(?ί) Therefore
we conclude that P^Q.

REMARK. The result obtained by applying Lemma 2.5 for P, Q in P*(R)
means that the Grothendieck group generated by the isomorphism classes of
directly finite projective .R-modules is isomorphic to some subgroup of the
additive group of R. (Cf. [2, Corollaries. 10.14 and 10.16]).

Theorem 2.6. Let R be a simple, regular and directly finite ring satisfying
the comparability axiom. Any directly infinite projective R-modules is a free
R-module.

Proof. By Theorem 2.4 and Lemma 2.5, we already see that every directly
infinite, countably generated projective Λ-module is isomorphic to ^^R. Thus
we shall show that every directly infinite projective Λ-module can be expressed
as a direct sum of directly infinite, countably generated submodules. Let P
= ®Λς=ιPΛ be a directly infinite projective .R-module, where each PΛ is isomorphic
to some non-zero/ in L(R). Let S3 be the set of all countably infinite subsets of
/. We consider the family consisting of all subsets $ of 35 satisfying the follow-
ing properties;

(1) each members of f? is pairwise disjoint

(2) Z>*(θβ6JΛ)= «> for each K in g.
Since this family is a inductively ordered set using the inclusion relation, there

exists a maximal member g by Zorn's Lemma. Put /*= U^ef^ If /*=/,
then our proof is complete. Next we consider the case that 7*Φ7. First we

shall show that JD*(0αse/**PΛ)<00, where /** is the complement of /*. Other-
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wise we can take a countably infinite subset /' of /** such that D*((&ΛeI'PΛ)
= 00, Then the set § U {/'} is strictly greater than §. This is a contradiction.
By the proof of Lemma 2.3, we see that /** is a countable set. Choose one
member K' of g, and put 8'=g- {K'}> and K"=K'\JI**. Then K" is a
countably infinite set and D^(φΛeκ^PΛ)=oo. The decomposition P=

jr"Pβ) is a desired one.

DEFINITION [5, p. 174]. Let A be a module. If -4=0, define
If ^4ΦO, define μ(^) to be the smallest infinite cardinal number a such that

Proposition 2.7. Let P and S be projectίve modules which are not finitely
generated. If P<S and S<P, then P^S.

Proof. Since D*(P)=D*(S) by the definition of £>*, then they are both
directly finite or both directly infinite by Theorem 2.4. If P and S are directly
finite, then they are countably generated by the proof of Lemma 2.3. Thus we
have P^S by Lemma 2.5. If P and S are directly infinite, then P^aR and S
^βR for some infinite cardinal numbers α, β by Theorem 2.6. We can assume
a<β. Let Q be the maximal ring of quotients of R and we use the notation
E(A) to stand for an injective hull of a module A. Since P<S and 5<P, then
E(P)&E(S) by [1, Corollary]. On the other hand, E(P)^E(aQ) and E(S)
^E(βQ) and also Q is a prime ring because it satisfies the comparability. There-
fore, by [5, Theorem 6.32], max{α', μ(Q)}=μ(E(P))=μ(E(S))=maxiβ', μ(Q)},
where a' and β' are the successor es of a and β. Thus, if α</3, then it must
hold that (»1^)a'<β'^μ(Q). Since »1<μ(Q)y ^Q<Q. Therefore let {Aτ}τel

be a independent set of principal right ideals of Q such that Ar~Q for each r in
/ and the cardinality of 7 is K:. Then {Aτ Π Λ}τe/ is a independent set of non-
zero right ideals of R. This contradicts the fact that there is no uncountable
direct sum of non-zero right ideals of R. Consequently we must have a=β and
hence P^S.

3. Directly finite, regular and right self-injective ring

Lemma 3.1 [3, Lemma 5' and 6, Proposition 1.4]. A prime, directly finite,
regular and right self-injective ring is a simple ring satisfying the comparability
axiom.

Proposition 3.2. Let R be a directly finite, regular and right self-injective
ring. Then R is a finite direct product of simple rings if and only if any non-singular
directly finite injective R-module is finitely generated.

Proof. First we shall prove that "only if" part. There exists a set {e{}ι

of orthogonal central idempotents such that Σfo—1 anc^ each efi ^s a
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ring. Let M be a non-singular directly finite injective Λ-module. There exists

a projective jR-module P such that P is an essential submodule of M, because
any non-singular finitely generated Λ-module is a projective and injective module

(cf. [9, Theorem 2.7]). M is directly finite, and so P is also directly finite. Put

Pi=Pei for each i, then each P, is also a directly finite projective module as an
^72-module. Therefore there exists a positive integer t such that Pj^tfaR)

for all ί by Lemma 3.1 and Theorem 2.4. Thus P<tR, because P=θϊP, .
This monomorphism can be extended to be monomorphism from M into tR.

Then M is isomorphic to a direct summand of tR. Conversely we assume

that R can be decomposed into no finite direct product of prime rings. Then
R itself is not prime. Hence there exist non-zero two-sided ideals A, B such
that AB=0. Let A'y B' be the injective hull of A, B in R, then they are also
two-sided ideals and generated by central idempotents by [3, Lemma 1]. Since

R is semi-prime, AΓ\B=Q. Then ^'Π-B^O. Hence there exist orthogonal

central idempotents {£,}? such that Σfe—l ^Y tne assumption, at least one
of eft, say βjRy is not prime. Use the same argument for the ring βjR, then
there exists another set {e£} i of orthogonal central idempotents of R such that

2ι£i = l Repeating these procedures, we obtain a countably infinite set {en}™
of orthogonal non-zero central idempotents. If (&TenR is not essential in RR, we
choose some central idempotent / which generates the injective hull of @™enR

and we consider {en, 1—/}Γ Therefore we may assume that (&ΐenR is essential
in RR. Since RR is injective and ®TenR is a two-sided ideal, R^EndR(®ιenR).
Ends(@ΐeΛR)£s*HnEndR(enR)^ΐ[nenR, because HomR(enRt emR)=0 for n^m and

each en is a central idempotent. Consequently R^ΠnenR by the mapping: r->

(enr). We put Mn=n(enR) for each n and we consider the P-module M=Πw^w
This is obviously a non-singular injective P-module. We also know that it is
directly finite, because EndR(M)^f[nEndR(Mn) and EndR(Mn) is directly finite
for all n. By the assumption, there exists a positive integer t such that M<tR.

Now we choose an integer m which is larger than t. That Mm<tR^ΐ[nt(enR)
implies-that Mm<t(emR), because HomR(Mm, t(enR))=0 for all n^m. This con-
tradicts that Mm is directly finite. Hence R is a finite direct product of prime
rings. Prime directly finite regular right self-injective rings are simple by Lemma
3.1, and so we have proved.
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