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0. Introduction

Let @ be a connected Lie group with Lie algebra G. Following Goto [2],
for g=®, we define the index (of the exponential map) ind(g) to be the smallest
positive integer ¢ such that g exp G, if it exists, otherwise, ind(g)=co. The
index ind(®) of @ is defined to be the least common multiple of all ind(g) (¢€®).

Given a complex simple Lie algebra G with a Cartan subalgebra H, let
—ay=ma,+ ++-+m; be the highest root of G with respect to H expressed in
terms of a simple root system {a, -+, ;}. Consider the center-free Lie group
with Lie algebra G, which can be identified with the adjoint group of (all inner
automorphisms of) G. In Lai [4], we proved the following theorem:

Theorem. {ind(g); g Ad(G)}={1,m,, --,m}=1{d; d is a factor of some
m}.
The main purpose of this paper is to generalize the above result to an arbitrary

(always assumed to be connected) complex simple Lie group @.

Theorem. Let ® be a complex simple Lie group with Lie algebra G. We
can find certain positive integers p,, +--, p/(depending on the center Z(®) of ®, to be
defined in the next section) such that

{ind(g); g=®} = {d; d is a factor of some pm,(0<j<I) with my =1} .

The author would like to express his gratitude to Professor M. Goto for
his generous help during the preparation of this paper.

1. Notation and definition of p’s

Let G be a complex semisimple Lie algebra with a (fixed) Cartan subalgebra
H. Let A be the root system of G with respect to H, I1={a;, -**, a;} a funda-
mental root system of A, and —ay=ma,-+ +--+mx, be the highest root.
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Let B be the Killing form on G. Then for each «=A,we can find A, H
with B(h, h,)=a(h) for all h H, and e,& G such that

G = H+2ueAcea
[A, es] = a(h)e, , [es; €8] = Ny pass if a+B=+0 isin A,

[em e—a] = —h,, [em eﬂ] =0 if OFa+B€EA.
Let H,C H be the real vector space spanned by (¢ A), then 8|y, is real
for any B A. Since [I={ay, ---, a;} is linearly independent, we can choose

hy, -+, lye H, such that a;(h,)=8;; 1<i, j<I. The lattice Q=2Z2mih+-+
Z2mih,CiH, (i=+/—1) is the kernel of exp|z: H—Ad(G). On the other hand,
let ® be the simply connected Lie group with Lie algebra G, denoting
2h,/B (hy, h,) by h¥, the lattice Q* generated by {2zih%; a=A} becomes the
kernel of exp]| ;: H—>@5, Q* is of finite index in Q. For simplicity, we identify
A with a subset of iH, by the map a—h,/2xi, and introduce an inner product in
tH, by (h, K')=—B(h, I')|(2z)*. Then (a, h)=a(h)/2zi for a € A,h<iH,,.

If @ is a connected Lie group with G as its Lie algebra. Let Q' be the
kernel of exp|,: H—@®, then Q*CQ’'C, so that Q' is an additive subgroup of
finite index in Q. For each %, let p; be the smallest positive integer such that
27ip h. eV (j=1,--+,1). Denote by p, the least common multiple of {py, -+, p;},
and m,=1.

REMARK. p, is the smallest positive integer such that g’o=1 for any element
g in the center Z(®) (which is equal to exp(Q)). In case G is simple, computa-
tion shows that p,=p; for some j=1, ---,l. (For this, see, e.g. Goto-Grosshans
[3] Chapter 5.)

Let Ad(A) denote the Weyl group of A. Any element S of Ad(A), regard-
ed as a linear transformation on 7H,, can be extended to an inner automorphism
of the Lie algebra G. Let T(Q*) be the group of translations of the euclidean
space 7H, induced by elements in Q*. Then, if G is simple, the group
Ad(A)-T(Q*) acts transitively on the set of all cells, see Goto-Grosshans [3]
Chapter 5. We summarize as follows:

Proposition. Let G be a complex simple Lie algebra and C, the fundamental
cell: Coy= {heiH,; (ay, h)>0, -+, (o), )>0 and (—at,, )<1}. Let C, denote
the closure of Co. Then for any h in iH,, we can find Uec Ad(A)-T(Q*)=Afd(A)
such that he UC,.

In the following, we assume ® is a connected simple complex Lie group.

2. Upper bound for ind(g)
Theorem. For any g, ind(g) is a factor of pm, for some j=O, -, L
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Any element g in & has a decomposition g=g,-exp N into semisimple part g, and
unipotent part exp N such that g,-exp N=expN-g,. Let G(1, Adg,) denote
the 1-eigenspace of Adg, in G. Then G(1, Adg,) is a subalgebra of G and
NeG(1, Adg,).

By Gantmacher [1], g, is conjugate to some element in exp H. Hence, to
prove our theorem, it suffices to consider elements g whose semisimple part lies
in exp H, i.e., g=exp hy-exp N, hye H and NeG (1, Adexp h,). Let A(h)=
{aeA; Adexp hy-e,=e,} = {a€A; a(h)s27xiZ}. Then G(1, Adexp h))=
H43ueayCeu, and A(hy) is a subsystem of A, we can choose a simple root
system II(ho)= {8, -, B,} for A(h).

Lemma 1. To find an upper bound for ind(g) (¢=®), it suffices to consider
elements with semisimple part exp hy, where hy=iH, and TI(h,) has cardinality
I=rank of G.

Proof. Assume that hy=x,h,+ +--+xh, for some complex numbers x;. For
each j=1, ---, 7, since (4d exp hy—1)-e5,=0, we have B (ho)=2nik; for some
k,cZ. If k; are all zero, then [h;, N]=0 for any NeG(1, Ad exp h,), so that
exp hy-exp N=exp (h+N), and ind(exp hy-exp N)=1. So we assume that
some k =0, after this.

Since exp A,=exp (h,+- '), if we can find a positive integer d and integers
my, -+, n; such that for h=dh,+33}.\ 2zin;p b, [h, dN]=0, then ind(exp ky-exp N)
divides d. For this, it suffices to choose d and #; with a(h)=0 for all e A(h),
or equivalently, for all ¢=II(h,). Therefore, the problem reduces to finding d
so that 8,(3)}-1 n;p s,)=—dk; has integral solutions n,, -+, ;.

Choose 8,41, ***, B1EA so that {B,, -+, B} is a maximal linearly inde-
pendent subset of A. We write 3;=3Y).,¢;,t; where ¢;;€Z. Consider the
following system of linear equations:

‘1i1P1”1‘|‘"'+9i1P1”1 = —k,- i= 1, ., 7;
qn'1P1”1+‘“+q,-,Pm, =0 1= r—|—1’ ooy l.

Since (g;;p,) is a nonsingular integral matrix with determinant p,---p,-det (g;,)
(which is not zero by the choice of 8;’s and the fact that p; are positive), and &;
are integers, this has a rational solution, say, 7,, -+, 7,.

Let hy=23}-12nir ;p;h;€iH,, then By, ---, B, A(hy). Suppose we can find
a positive integer d’ and integers n,’, -++,n,” such that B(d’hy/ -+ -1 2zin; p h;)=0
for all B A(hy), then (ny, «++, n;)=(n, ++-, n/) is the solution for the following
system of linear equations:

E;=1 qijpjni = _d/k,' i= l, ALEN
par gi;pin; =0 i=r+41, 1.
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Thus we can find #,€Z such that B,33)-1 2zin;p;h))=—2rid’k; (i=1, -+, 7).
Hence for h=d’hy+>)., 2zinp h;, we have By(h)=0 (i=1, ---,7) and so B(k)=0
for all B A(hy). :

We have proved that ind(exp %,-exp N) is a factor of ind(exp 4, -exp N).
Therefore, we may replace 4, by 4,” which satisfies Lemma 1. ||

Let S be in the Weyl group 4d(A). Then S can be extended to an inner
automorphism o of the Lie algebra G, which can be extended to an inner
automorphism of the Lie group ®. Clearly ind(g)=ind(cg). Therefore, to find
an upper bound for ind(g) (¢=®), we may replace g (whose semisimple part is
exp h,) by an element whose semisimple part is exp Sk, (S €4d(4A)).

On the other hand, exp hy=exp (hy+Q*) (because Q*CQ’), so we may
replace h, by T(Q*)h,. We get the following lemma by applying the proposition
we stated at the end of section 1.

Lemma 2. Let —ay=mo,+ - +ma; be the highest root. To find an
upper bound for ind(g) (¢ =®), it suffices to consider elements whose semisimple part
have the form exp h, heiH, with 0<(ay, k), +++, 0<(at;, h) and (—ao, B)<1.

Let I1= {ate, @1, +++, @} be the extended simple root system. The following
two lemmas, proved in [4], being properties of simple Lie algebras, can be

applied in the present case too. For a proof, please see [4] or Goto-Grosshans
[3] Chapter 8.

Lemma 3. Let heC, be an element satisfying Lemma 1, then TI’ =IINA(R)
is a simple root system for A(h) with respect to a suitable ordering.

Since TI(k)=IINA(k) has cardinality I. If II(k)=II, then A(h)=A and
hEQ,in this case, ind(exp A-exp N) is a factor of p, (=pem,) because phreQ’.

Lemma 4. If II(k)+11 has cardinality I, then h=2mih;/m; for some
J=1, -+, l such that m ;> 1.

In the case m;=1, we have II(2zih [m )=II.

Conclusion. Let & be a connected complex simple Lie group. To find
an upper bound for {ind(g); g=®}, it suffices to consider elements g&® whose
semisimple part has the form exp2zih;/m; for some j=0,1,-,L ie.
g=-exp 2mih;[m -exp N. ‘

Clearly, g’"i=exp (p;m;N) because 2ziph, V.

Theorem. For any g=®, ‘there exists j (0<j<I) such that g"’"icexp G.
In other words, ind(g) is a factor of some pm, (0<j<I).

3. Existence of elements with index exactly equal to p,m,

An element x in a semisimple Lie algebra G is said to be regular if the
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centralizer 24(x)={y<G; [*, y]=0} of x has minimal dimension. If H is a
Cartan subalgebra of G with root system A and U=>],.,Ce,, then B=H+U
is a Borel subalgebra (i.e. a maximal solvable subalgebra). The following pro-
position is a consequence of the Lie algebra analogous of Theorem 1 and its
corollary in Steinberg [5] (pp. 110-112).

Proposition. If =345 ¢saE U (¢, €C) is a nilpotent element in G, then
x 15 regular if and only if c, =0 for any simple root oc. In such case, 25(x)C U, in
particular, z;(x) consists only of nilpotent elements.

Retaining the notation used in the previous sections, consider hy=2zih [m,
(1<j<Il). Then H=M—{a ;} is a simple root system for A(h,) and
G(1, Adexphy)=H+>4cau, Ces is a semisimple subalgebra of G. Let
N=33i-0,...1:i+fap then N is a regular element in G(1, Ad exp k), so that any
element of G(1, Ad exp h,) which commutes with /N must be nilpotent.

Let g=exp hy-exp N, and &, be the connected subgroup of & correspond-
ing to the subalgebra G,=G(1, Ad g)=G(1, Ad exp h,). Clearly, g&®, because
hyy NEG,. Therefore g?®, for any positive integer g.

If for certain g, g’=expx for some xG, then x lies in G, (because
Gi={yeG;expys®,}). We know that x has a decomposition x=x,+N,
where x, is semisimple and [x,, N]=0. Since x, NEG,, we have x,G,=
G(1, Adexp h;). But [x, N]=0, the above argument implies that x, is
nilpotent. Thus x,=0 because x, is also semisimple. This implies that
exp x,=exp ghy=1, or gh,&€’. This cannot happen if ¢<p m.

Therefore ind(g)=pm;.

In case j=0, let he=>1}., 27zth,, then gh,éQ’ unless ¢ is a multiple of p,.
Let N=31}., e,,, which is regular in G. The same argument as above proves
that ind(exp £y exp N)=po=7Po",. Q.E.D.

The results in sections 2 and 3 give the following:

Theorem. Let® be a connected complex simple Lie group. Retaining the above
notation. Then {ind(g); gE®}={q; q is a factor of some pm,0<j<Il}={q; q
is a factor of some pm, 1<j<lI}.

Corollary. ind(®) is the least common multiple of {pym,, -+, pm,}.

4, List of ind(g) when @ is simply connected

In this case, p; can be found by using the inverse matrix of Cartan matrix
of G, please see e.g. Goto-Grosshans [3] Chapter 5.
(a) G is of type 4,
The highest root is —ay=0a;,+ -+ +a;. ~
pr="+=p,=I+1. o a, a;

L)
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Hence {ind(g); g8} ={g; ¢ divides /4-1} and ind(®)=1/+1.
In fact, for any connected complex simple Lie group of type 4, ind(®)=
order of the center Z(S).
(b) G'is of type B,
Ay

O——0==2>0
a 2 a; a;
The highest root is —ay=a,+2(a,+ - +a,)).
;=2 when j is odd, p,=1 when j is even.
Hence {ind(g); g=®}={1,2,4} in case />3 and ind(®)=4. And
{ind(g); €@} ={1, 2} in case /=2 and ind(®)=2.
(c) Gis of type C,

o—0 O . O<<—0

(24 ay 429 a;_, a;

The highest root is —ay=2(a;+--*+a,_))+a,;.
pi=2 and p,=1 when j<I.
Hence {ind(g); g€®}={1,2} and ind(®)=2.

(d) G isof type D,
aoz jal—l
o ® @12 a;

The highest root is —a,=a,+2(a+ ***+a,-2)+ a1 +a;.

Case 1. When /is even, p,=2 if j<I—2is odd or j=I—1, [; p,=1 other-
wise. Hence {ind(g); g€®}={1, 2} and ind(®)=2.

Case 2. When lis odd, p,=2if j<I—2 is odd, p,.;=p,=4; p,=1 other-
wise. Hence {ind(g); g€®}={1, 2, 4} and ind(®)=4.

(e) Gis of type E;
(24}

oy

a a; a; as Qg

The highest root is —a,=a,-+2a,~+ 305+ 204+ 205+ .

Pi=p=ps=ps=3 and p=p,=1.
Hence {ind(g); g=®}={1, 2, 3, 6} and ind(®)=6.

(f) G is of type E;



(11

(21
B3]

(4]
(5]
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The highest root is —a,=a;+ 20,4303+ 4a,+ 205+ 3051+ 2a;.
Pr=p;=ps=2 and p,=1 otherwise.

Hence {ind(g); g=®} = {factors of 12} and ind(®)=12.

Note that p,=1 for any j in case G is of type E,, F,, or G,.
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