Sato, K.
Osaka J. Math.
13 (1976), 631-659

DIFFUSION PROCESSES AND A CLASS OF MARKOV
CHAINS RELATED TO POPULATION GENETICS

KEeN-1T1 SATO*

(Received July 21, 1975)

1. Introduction

We investigate convergence of sequences of Markov chains induced by
direct product branching processes, which are defined by Karlin and McGregor
[7] with the intention of unified treatment of Markov chains in population
genetics. The induced Markov chains that we deal with in this paper have d
types (d>2) with equal fertility (that is, selection does not occur), and mutation
and migration are allowed for. Let R?* be the (d—1)-dimensional Euclidean
space and let K be the set of x=(x,, -, %, ,)ER*™* such that x>0, -,

d-1
xy_,>0, 1— gx,zo. Under some conditions, we prove convergence of the

Markov chains (suitably normalized and interpolated) to the diffusion process on
K with diffusion coefficient a(x)=(a,,(%))s,4-1,...,4—1 and drift coefficient b(x)=
(b,(%)) p=1, ..., a1 of the form

(1.1) a,y(x) = o*xy(1—x,),
(1.2) apq(x) = _a'zxpxq (p*9,

d-1

(1.3) by(x) = gxlaz,,—l—(l— 21 %p)otapt(1=2,) p—%p15’ -

1=
Here o a,, 1y w, are constants satisfying o*>0, a,,>0 (p=+9), a,,<0,
d d
2 Ape=0, 1py=0, p,/=(23 p))—p, In some sense, a,,(p=q) is the intensity
g=1 1=1

of mutation from type p to type g and p, is the intensity of immigration of type
p. Our conditions consist of two sorts. The first is some regularity of the
branching process with immigration, which induces the Markov chain, imposed
on the distributions of the number of offspring and of the number of immigrants.
The second is uniqueness, in the sense of martingale problem, of the diffusion
process on K associated with a(x) and b(x). We conjecture that the uniqueness
always holds, but we do not 'yet have the proof. We give a proof of the
uniqueness in some special cases including the following:
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(1) general one-dimensional case (d—1=1);

(ii) no mutation and no migration (b(x)=0);

(iii) migration allowed, but no mutation (a,,=0);

(iv) a,, (p=q) depends on g alone.

Consequently, the convergence is established in the above cases. Our method
applies also to some Markov chain models involving selection, which will be
treated in another paper.

Our results have connection with diffusion approximation to genetics model
Markov chains, which is not given a rigorous justification but is a powerful tool
in population genetics (see Kimura [8], Crow and Kimura [2]).

In the one-dimensional case, Feller [3] considers convergence of Wright’s
model. Karlin and McGregor [7] make the assertion, without proof, of the
convergence of the induced Markov chains under the condition d—1=1, «a,,>0,
05, >0, p,=p,=0. They prove in [6] convergence to the same diffusion for a
certain birth-and-death process model. Kushner [9] gives an invariance principle
related to Section 3 of this paper and mentions an application to a genetics model,
but he deals with convergence in the space D. As for the convergence of the
corresponding eigenvalues, we give a detailed analysis in [11].

In Section 2 we will formulate our assumptions and results. The proof
will be given in the subsequent three sections. Namely, we establish in Sec-
tion 3 a general invariance principle in a form convenient for us, prove in
Section 4 that the moments of the transition probabilities of the induced Markov
chains have the desired properties and, in Section 5, check the uniqueness of
the solution of the martingale problem in some cases. The most painstaking
part is the derivation of the asymptotic form of the moments of the transition
probabilities in Section 4. Our main tool is the powerful saddle point method,
which is used in [11] in finding asymptotic behavior of the eigenvalues.

I would like to express my hearty thanks to Nobuyuki Ikeda and Shinzo
Watanabe for their valuable advice. The uniqueness proof of Theorem 2.4 in
the case of d—1=2 is due to S. Watanabe.

2. Assumptions and results

Let Z% be the set of d-dimensional lattice points with nonnegative coor-
dinates. For each positive integer N, let {ZN(n)=(Z{(n), -, ZN(n));
n=0,1,2,--} be a d type branching process with stationary immigration.
That is, {Z“V’(n)} is a Markov chain taking values in Z% and there exist generat-
ing functions fx ,(s;, ***, 84), p=1, -++, d, and gn(sy, *+, 57) of distributions in Z%
such that, for any j=(j,, -, j;) and k=(k&,, ---, k;) in Z%,

P(ZM(n+1) = k| ZN(n) = j) = coefficient of sj1-+- 544 in
d .
(s, ooy Sd)pl;IlfN,p(‘sv ey Sa)r .
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We make the following assumptions.

Assumptions 2.1. (i) fy, , 75 of the form

Frslow s = Sel BafPs)y  for N21,1<p<d,
n=0 =1
where ¢, and afy)’ satisfy the following conditions.

(it) {ca} s a probability distribution in Z ,independent of N and p with ¢,>0
and with maximum span 1 (that is, there is no pair of v>1 and § such that

D emrs=1). Leta= ,fi,m” (mean), f(w)= i} c.w™ (generating function), M(w)=
i cqe™ (moment gemerating function), F(w)=M(w)e ™, b=sup {w; M(w)<oo}.
Then one of the following holds:

(3) 1<a<g+oo;

(b) a=1and b>0;

(¢} a<land lirr: F'(w)>0.
wg

(i) {a} is of the form oSy’ =a /N (p=+q) and afy’=14(a,,/N) for all
sufficiently large N, where {a,,} is independent of N and satisfies ot ,,>0 (p=9),

d
<0, E ap=0.

As is remarked in [11], & is positive in the case (c). If a<1, >0 and
lim M(w)=rco, then (c) holds. It is easy to prove that (ii) implies the existence
wAb

of a unique B (— oo, b) such that F/(8)=0. @ is negative, zero, positive in the
cases (a), (b), (c), respectively. Let K(w)=log M(w) for w<b. Then K’'(8)=1
and K”(B8)>0. See [11], Lemma 2.1. Let ¢*=K"(8). If we define an
associated distribution {é,} of {c,} by é,=c,e”/M(B), then {¢,} has mean 1
and variance o®.

Assumption 2.2. gy is independent of N, that is,

gN(sv ) 3,1) = g(sl,---, sd) = 2 kafl'“s:d

rez’
for some distribution {by} in Z%. Moreover, g satisfies g(e***, -, ef**) < oo for
some £>0.

Note that the last condition on g is automatically satisfied in the case (a).
Assumption 2.1 implies that reproduction of offspring by one individual of
type p is made in two steps—first it produces independently a random number of
children of the same type p according to the distribution {c,}, and then, each
child has a chance of mutation to type ¢ (p==¢) with probability «,,/N.
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Assumption 2.2 implies that the immigration probability is independent of N.
Hence dependence of the law of {ZV(n)} on N lies only in {a’}.
Let {b,,} be an associated distribution of {b,} defined by

by = bue kit EOB[g(f ) .. oF) for k= (k, -, k;)EZ.
Let (u,, ***, my) be the mean of {I;,,}, py=23k, b,,, and let p, —(Z} Hg)— Mpe
ez’

These are important characterstics in our discussion.
Let us define the induced Markov chain. Let J(N) be the set of points

j=(j1 > ja)E Z% such that iﬂ j,=N. Forj, ke J(N) let
@2.1) P — PZN(nt1) = k| ZN(n) = j, Z¥(n+1)ed(N)).

Clearly,

(2.2) P = (coefficients of sfi-+-ska in g(s,, -+, 84) H f(E ah’s,)r)

A,(N)

where

23)  AN) = PZV(n+1)SI(N)| Z¥@) = j)
= coefficient of wV¥ in g(w, ---, w)f(w)V .

Assumption 2.1 guarantees 4,(N)>0 for farge N. See (4.25) in a later section.
Hence we can define P§’ for all j, keJ(N) if N is large. Let {X“(n)=
(X(n), -+, XM(n)); n=0, 1, -} be a Markov chain defined on a probability
space (Q°, O¥°), taking values in J(IN) with one-step transition probability
P>, The initial distribution is given arbitrarily. X®°(n) is the induced Markov
chain of Karlin and McGregor. The fact that this includes various genetics
models as special cases is shown in Karlin [5].

Since the sum of components is N, we can consider the induced Markov
chain as a Markov chain on a (d—1)-dimensional state space. We normalize
and interpolate this chain as follows:

(2.4) Y™(f) = <]_i7_ XM(n), - —X <_1(n)) for t= % ,
25)  YN() = (n+1— Nt)Y<N>( ey 2] s 1)
n n+1
for ﬁé S—N'-.

Then {Y?(#); 0<t< oo} is a continuous process taking values in K (K is
defined in Section 1). Let Q be the space of continuous paths w: [0, 0)—K,
endowed with the topology of uniform convergence on compact subsets of [0, o).
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There is a complete separable metric compatible with this topology. Let
x(t, o)=o0(t). Let JH be the topological s-algebra of Q) and ., be the o-algebra
generatd by x(s), s<t. Let P’ be the probability measure on (Q, ) that
(QM, QN YN(¢); 0<t<oo) induces. That is, P™(B)=0"(¢ '(B)),
Be i, where @ is the measurable mapping from Q¥ into Q defined by @(0V°)=
o, o(t)=YN(t, ). Obviously, PN’ is determined by the initial distribution
of (X*™°(n)) and its transition probability (P{}”). What we would like to prove
is the convergence of the sequence of the probability measures (PV°).

Define a(x)=(apy(*))p, g=1, . a1 and b(x)=(b,(%))p=1,...,a-» by (1.1)—(1.3)
and consider the following martingale problem: given x< K, to find a probability
measure P, on (2, M) such that P,(x(0)=x)=1 and, for each 6 R?™*, (M (2),
My, P,; 0<t< o) is a martingale, where M,(2) is defined by

(26)  Myt) = exp {<6, +(t)—x(0)>— [ <0, b(x(w)>du

—_;_s:@, a(x()) 0> du} .

Here <{,> denotes the inner product. We call this problem the martingale
problem on K for a, b starting from x, or, for short, the martingale problem
(K, a, b, x). Such a problem was originated by Stroock and Varadhan [12],
but the above problem is different from theirs on the point of the restriction of
the state space.

We will prove the following results.

Theorem 2.1. For any set of o, a4, 11, the martingale problem (K, a, b, x)
has a solution for each x= K.

Theorem 2.2. Suppose that the solution P, of the martingale problem
(K, a, b, x) is unique. Let YN’(0)=xN°, which is non-random. If xN’—x,
then the sequence of the measures {P™°} weakly converges to P, that is, for each
bounded, continuous, real function £(w) on Q, we have

(2.7) Sgg(w)P<N>(dm)—>SQg(w)Px(dw), N—>co .

It is well known that the weak convergence of PN’ to P, implies (2.7) for
any bounded, measurable, real function £(w) on Q whose discontinuity is a set of
P, measure 0. Sojourn times and hitting times are included in applications in
many cases. See Billingsley [1].

The above two theorems reduce the point to the uniqueness of the solution
of the martingale problem (K, a, b, x). We conjecture that the uniqueness
holds, and the following theorems give the proof in some cases.
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Theorem 2.3. Let d—1=1. Then, for each x<K, the solution of the
martingale problem (K, a, b, x) is unique, and hence the conclusion of Theorem 2.2
holds.

Theorem 2.4. Suppose that if p>q and p'>q then a,,=ay, Then, for
each xE K, the solution of the martingale problem (K, a, b, x) is unique, and the
conclusion of Theorem 2.2 holds.

Note that Theorem 2.4 covers the cases (ii), (iii), (iv) in Section 1.

If the martingale problem (K, a, b, x) has a unique solution P, for every
x€ K, then (x(¢), M,, P,; xK) is a strong Markov process, to which the
process {Y™(2); 0<t<co} converges as N—>co. In case of d—1=1, it is a
diffusion process on the interval [0, 1] with backward Kolmogorov cquation

) 2 9* 0
(28) o= s(l=x) ot {— b ) (=)t w5 -
If d—1=2, then it is a diffusion process on the triangular region K with back-
ward Kolmogorov equation

Ou
ot

+ {_xl(a12+a13+#z+llfs)+xza21+(1'—x1_xz)a31+(l_x1) l‘x}%:‘

0*u
Ox,0x,

2.9) - _{xl(l—x,)@—lexz
Ox?

o’ 0*u
> +x2(1_x2)6—x§}

-+ {_xz(a21+a23+/1'1+:u'3)+x1a12+(1 —x,—xz)asz-l-(l—xz) 'uz} 66_.:: )

Properties of the boundaries for these diffusion processes will be discussed at the
end of Section 5.

3. An invariance principle

In this section K denotes an arbitrary compact set in R’ and Q denotes
the space of continuous paths w: [0, «0)—>K. The topology of Q and the o-
algebras M, M, are defined as in Secion 2. Let a(x)=(a,,(X))s¢=1,..,1 b 2
continuous, symmetric, nonnegative-definite /X /-matrix defined on K and b(x)=
(8,5(%)) p=1, ..., s be a continuous /-vector defined on K. By the martingale problem
(K, a, b, x) we mean the problem to find a probability measure P, on (Q, )
such that P,(x(0)=x)=1 and, for each 6= R’, (M,(t), M, P,; 0<t<oo) is a
martingale, where M,(t) is defined by (2.6). Suppose that, on a probability
space (Q¥°, O¥); time homogeneous Markov chains {Y¥(n); n=0, 1, ---}
taking values in K are given. Let [I¥’(x, dy) be the one-step transition prob-
ability of {¥™(n)}. Let Y¥(0)=x{" (non-random). Let K(N) be a Borel
subset of K such that Q¥>(Y™(n)e K(N))=1, and suppose that [[¥(x, dy) is
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defined for x& K(N) and dyC K(N). Define Y¥(¢) by

Y®™(t) = Y™(n) for t=mn|N,
YN (1) = (n+1—Nt) TN () (Nt—n) TN (mt-1)
for n/N<t<(n+1)/N.

Let PY° be the probability measure induced on (Q, ) by the process { Y¥(¢);
0<t< o},

We will prove the following theorems. By convergence of measures
we mean weak convergence.

Theorem 3.1. Suppose that the following conditions are satisfied:

(i) lim sup NII¥ (%, {y;ly—x|>E)=0  for every £>0.

N>* *€K(N)
.. li . (o5} _ —
(ii) lim sup [N _(y,~%,) I (5, dy)—by(x)| = O

N> 2eK(N)
for p=1,--1.

. e
i) Jim sup [N (3,=%,)(3—5,) I (s, dy)—apy@)] = 0
for pg=1,w1.

(iv) lim x{V=x, .
N>

Then, the sequence {PN°} is relatively compact and the limit of amy convergent sub-
sequence s a solution of the martingale problem (K, a, b, x,).

REMARK. An obvious sufficient condition for (i) is

iy i NS x| IV (x, dy) =0 f $>0.
G lim V) g |1 I 3 d) =0 forsome 3>

Theorem 3.2. If (i)—(iv) hold and if, moreover, uniqueness of the solution
P, of the martingale problem (K, a, b, x,) holds, then PN’ converges to P,,.

These theorems are close to results of Stroock and Varadhan [12]. The
difference lies in the following three points. First, the state space is a set K,
not R’. Secondly, a(x) may be degenerate. Thirdly, [T*¥’(x, dy) need not
be defined on the whole of K. The compactness of the state space makes the
proof of the invariance principle easier. But the restriction to K of the state
space gives to Theorem 3.1 applicability to the proof of the existence of the
solution of the martingale problem (K, a, b, x). Note that, while the martingale
problem (R’, a, b, x) is proved to have a solution for general bounded con-
tinuous a, b, the solution of the problem (K, a, b, x) exists only in some special
degenerate cases.
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Theorem 3.2 is an obvious consequence of Theorem 3.1. Theorem 3.1 can
be proved by an appropriate modification of [12]. We give the proof here
for completeness.

Lemma 3.1. {P‘™} is relatively compact if (i) and the following two con-
ditions are satisfied

N *eK(N)

(it)’ sup sup INSK(N)(y,,—x,,) Y (%, dy)| <oo for p=1,-,1,

(i) sup sup |N SK(N)(yp—xp)(yrxq) 1, dy)| <oo
for p,qg=1,-,1.
Proof. For each finite 7, the restriction of P> to M4 can be viewed as
a probability measure on C([0, T], K), the space of continuous paths
[0, T]—K. For T fixed, this restriction of {P*V’} is relatively compact by [12],
Lemma 10.2. Let {P™~»} be a subsequence of {PY’}. Using the diagonal

procedure, one can choose a subsequence {P»} of {P“»} such that if, for
some T, £7(w) is a bounded, continuous, real function on Q determined by the

value x(¢, »), t<T, then g Er(w) PP (dw) is convergent. Let p(w, o')=
e
S127%(1 A max |w(t)—w/(£)|). Then p is a metric compatible with the topology
n=1 o<t
of Q. For each w€Q, let wr(f)=w(tAT). Then we see that sup p(w, wr)—0
Ll=e]

as T—oco. Hence S E(w)Px(dw) is convergent for every bounded, p-uniformly
Q

continuous, real function £(w). This suffices for the convergence of P™»,
Proof of Theorem 3.1. Relative compactness of {P‘“’} follows from

Lemma 3.1. Let P be the limit of a subsequence of {P“}. What we have to

prove is that P is a solution of the martingale problem (K, a, b, x,). For sim-

plicity of notations, we assume that P> converges to P. Since
{w;| %(0)—x,] <€} is a closed set, we have

P(|%(0)—x,| <€)= lim sup PM°(|x(0)—x,| <) =1,
N>oo
and P(x(0)=x,)=1 follows. Fix 6= R’ and write M(t) for My(t). Let

PV = log ], @ IV, &)}
P

K(N

M(N’(n) = exp {<0, Y(N)(n)_ Y(N)(0)>_ ':2;: ¢(N)( Y(N)(m))} ,

MMty = exp {40, x(t)——-x(O)}-Ns:qJW’(x(-[]—VATuJ))a'u} ,
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where [NVu] is the greatest integer not exceeding Nu, and let %/ be the o-algebra
generated by {Y“™(m);m<n}. It follows from the Markov property of
{Y™(m)} that (MM(n), -HN, ON; n=0, 1,.--) is a martingale. Hence
(MN(n|N), Musnry PN°; #=0, 1, --+) is a martingale, because

MW~ ><le> = exp {<0, x<]%>—x(0)>—- Eyf” ’(x(]%))} .

We will prove that
. anf [Ne]+1\\ _ .
@ tim B (g-pron( L))  prie. e

for every bounded, continuous, .%,-measurable functionf (»). Here E¥ and EP o

denote expectation with respect to P and P, respectively. Suppose, for a
moment, that (3.1) is proved. If s<¢ and £ is bounded, continuous, %,-
measurable, then

EP(N)(E.M(N)(LJ_V%_}__I)) — Ep(N)<E.M<N)([N3]v+1)>

by the martingale property, and, letting N— o, we get
ER(E-M(s)) = EF(£-M(2)) -

This is just the martingale property of (M(z), M,, P) and the proof would be
complete.
In order to prove (3.1), we will first show

(3.2) zlvlg-lo xesggn[N(SK(N)(3<""""r> TIY(x, dy)—1)—<0, b(x)>
—%<o, a®)8>| = 0.
We have
Se<"”"“> I (x, dy)—1 = S(G, y—x> TIN(x, dy)

+2[<6 =27 (s, ay)

+S 0, y—x3*§(y—x) II (%, dy)+B-T1V(x, V())

1y-ri<e

where Vi (x)={y; |y—x|>¢&}, 8(y—x)—0 as | y—x|—0, and B is a bounded
function of N, x, &. Let f(N)= sup N II¥ (x, V(x)). Then f(N)—0 as
*€K(N)

N— oo for each fixed €>0 by the assumption (i). Using the assumptions (ii)
and (iii) we see that the absolute value in (3.2) is bounded by
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gN)+C sup |8(y—x)|+Cf(N)

for every £>0 with g(N)—0 and a constant C. Choosing &y which decreases to
zero sufficiently slowly, we get f, ,(IV)—0, and hence (3.2). Noting that

PN (%) = .“e<o'y-x> o (x, dy)—l—f—O(Se(""” I (=, dy)—1),

we get
(3.3) llvlm Sup | No™N(x)—<0, b(x))-——<6 a(x)0>| =0
from (3.2).

Let T'™={w; ®(n/N, o) K(N) for n=0, 1,---}. If A€My and if A is
compact when it is viewed as a subset of C([0, T'], K), then, for any t<T

(34)  lim sup |M‘N’<MT+1, ©)—M(t, o)) =0.

Fae aep@aa

In fact, let us write ([Nt]+1)/N=t, and notice that

My, o) = exp {<6, x(tN)——x(O)>—NS:N¢<N’<x<%u—]))du}
and

NStNga‘N’(x(E%)) du— S:<e, Bx(w))> du—% S:<9, a(x(u)) 0> du

0

~from oS- LolEpra

+$:”{<o, b@(”}%‘ )) —b()+ L, (a( <[]\I$‘]>)—a(x(u)))6>} du

+ {710, be)>+-<6, a(w(u)t>} du

Uniformly in o€ ANT®, the first integral in the right-hand side tends to zero
by (3.3), and so does the second integral by the uniform continuity of a, b, and
also the third integral tends to zero by the boundedness of a, 5. Note that
| %([[Nu]/N, o)—x(u, w)|—0 uniformly in #<T and wEA.

Now let us prove (3.1). Let

A =sup sup |g(w) M(YEL, o) —par, )1,

N wercdd

which is finite by (3.3). Given €>0, choose A€ My compact as a subset of
C([0, T}, K) in such a way that inf P*“’(A)>1—(&/A). This can be done since
N

{P™} is tight by Lemma 3.1. 'Then,
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1B (g (VD) — e M) <a(t—Pe(a))

Il SN | M(N{Ui‘}vﬂ)—mt) | 4P
+ | EP“O(E - M(2))— EP (8 - M(2)) |
<3¢

if N is large. Here we have used P*“’—P in the third term and (3.4) in the
second term. The proof is complete.

4. Asymptotic estimate of the moments of the induced Markov
chains and proof of Theorems 2.1 and 2.2

All notations in this section are the same as in Section 2. In particular,
{X™(n)} is the induced Markov chain on J(/N). In order to prove Theorems
2.1 and 2.2, we apply Theorems 3.1 and 3.2 with /=d—1 and

TN(m) = (Nl X(n), -, IL\/' ;l_vg(n)) .
Let J°(N) be the set of points j=(j,, -**, j4_.) E Z5* such that dij,SN and let
p=1
K(N)= { y eJ°(N)} For j& JY(N), let

A ky ]p) an
(+1) bs (]V) ]Vbe%) N N P&

(4-2) a;{)(i(f) - Nke.‘l?ﬂ)(%—fv_p <%—j—\;)]"ﬁ” ’

(4.3) ef)(]{[;) — JV,,E.‘??‘N)(_?\; ,J?\;) P

Here we have identified j=(j,, :**, j4_,) EJ(N) with (j;, =, Jg-1» l—lvz_ljﬁ)e
=1
J(N). by(x)and a,,(x) are difined by (1.1)—(1.3).
Lemma 4.1. Suppose that for p, =1, ---,d—1

44)  lim sup ,bw>(A'])-bi,<Nf;)|=o,

N> jeJO(N)

(4.5) lim sup |a”‘”<ﬁ> a,,,,(&)l—o

Na® je o)

4.6)  lim sup e;,m(l) —0.

N> jejou) N



642 K. Sarto

Then Theorems 2.1 and 2.2 follow.

Proof. Clearly (4.4) and (4.5) imply Conditions (ii) and (iii) of Theorem
3.1. Since

(2 o= PP <@ 3 (k=)

(4.6) implies (i)’ for =2. Hence, if Y¥(0)=x§{"—>x,, then {P‘V} is relatively
compact and the limit of any convergent subsequence of {P‘“’} is a solution of
the martingale problem (K, a, b, x,). Now, using any branching process with
immigration satisfying Assumptions 2.1 and 2.2 (given any set of o%, ot g pp We
can find such a process), we see that the martingale problem (K, a, b, x) has at
least one solution. That Theorem 2.2 follows is a consequence of Theorem 3.2.

Our task in this section is to prove the estimate (4.4)—(4.6). We will
prove the following stronger asymptotic formulas :

*.7) b<N>(N) —b( )+0<N) uniformly in jEJ(N) ,

“8)  ap(L ]{/ )= ap,,(l_{]'_)qto%) uniformly in j €J°(N),

(4.9) e;,N>( ) (N) uniformly in j EJ(N) .
What we mean by (4.7) is

o SN 050) <

We use the phrase ‘“‘uniformly in j&J°(N)” in this meaning. In order to prove
(4.7y—(4.9) we have to make many estimations of coefficients of power series.
Our tool for this is Lemma 4.3 below which is proved by the saddle point
method. Naturally the proof of (4.9) is the most complicated. This condition
guarantees that the limit process is a diffusion process (that is, sample func-

tions are continuous).
Given N>1 and jEJ(N), let

(4.10)  G(sy ++» 84) = 2 Pl 5 tesg
(411)  D(w, s,y 84) = gf(wsp)”,
(4.12) ‘I’(‘W, 81y Sd) = CD(w: lé a(lllwsh ) j Ol sl)

1=

(4'-13) ®(w: Syttt sd) = \If(w, S1y Sd)g(wsn R ‘wsd) .
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Since we have

P§P = A,(N)™ (coefficient of w¥s,*1-+-5,% in B(w, §,, -+, 5,))
by (2.2), we see that
4.14)  G(sy, *++, 84) = A,(N)7* (coefficient of w¥ in B(w, s, ***, §,)) .
Let us denote

which operates on functions of (s,, -++, s,) or of (w, s,, **, $4).
Let

Cpl...pm = Dpl...pmG(l, ooty 1), 21“4,’” =ke¥1v')kp1mkp"' (le) .
Lemma 4.2.

Ck=0C, Ch,=Cuy (p*49), C¥, = Cppt-C,p,

C?M = CPPP+3CMI+CIH Cippp = Cpppp+6cppp+7cpp+ Cp .

Proof is easy and omitted.

Functions M(w) and K(w) are defined in Section 2. M(w) extends to an
analytic function M(2) of complex z with Rez<b. K(w) extends to K(z)
analytic in a neighborhood of B. Define «, by

(4.15)  K(z) = 5":: KA(z—B)" .
Note that x,=K(B), ©,=1, k,=ac?/2. Let

(4.16) L(s,, ++, s4) = g(€’, -++, %) .

By Assumption 2.2, L(s,, --*,s;) can be extended to L(z,, -+, 2;) for complex
2y -y Bg With Re z,<B4€ (I=1, ---, d). Similarly D,,l,,,me(sl, -++, $4) can be
extended to D,,..., L(2;, -+, 34).

Lemma 4.3. Let
(4.17) A‘(N):L,S“""M(z)N-'M(z)e-mdz, N>r,
27t JB-in

where the integral is along the line segment from B—in to B-ix, r is a fixed
integer, and MI(2) is a bounded continuous function on the segment. Suppose M(=)
is analytic in a neighborhood of z=p3 and let

M(z)"M(z) = 3 pu(z—B)"
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there. Then,
A(N) = Ay(p,+-N7'a+O(N*)  as N—oo,
where
A . eN(K(B)"B)
¥ eV2zVN '
5 — 5 (3K._ 15¢3 e, 1
a=p -2 p 30 5 L.

Proof is omitted, since this is part of Lemma 3.1 of Sato [11].
Let
A,(N)=coeflicient of %" in a power series &,(w)g(w, -+, w),

where we define A4,(w) as follows:

h(w) = flw)",

hy(w) = f@)" " f(w)w,

h(w) = flw)""*f' (wy'w*,

h(w) = fw)" " f"(w)a’,

hy(w) = flw)" " f (w)'w?,

hi(w) = flw)" " f (w)f"(w)w*,

hi(w) = fw)" " f"(w)w*,

hy(w) = flw)" "' f'(w)'s’,

hy(w) = f(w)" = f (w) " (w)w*

hyo(w) = flw)" ™ f(w) w*

hy(w) = flw)" 7 f(w)f " (w)w*

hoo(w) = flw)¥ = [ (w) .
Note that 4,(N) is the same that is defined in (2.3). Further, let

Ayp,...s,(N) = coefficient of @V in hy(w)Dy,..., g(w, -, w)w™ .

All functions which appear above are power series of w with non-negative
coefficients and the convergence radii are bigger than e¢f. Hence they are
convergent at ¢ with Re 2=g.

Lemma 4.4. For each v, m, p,, -**, p,,, we have
18)  AW) = " (el - e ras,
27t JB-ix

419)  A4yp..p(N) = 1 B+':”hu(e‘)Dpl--~pmg(e’, e, &) N
2 B—in

Tt
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and Lemma 4.3 applies.

Proof. We need only use Fubini’s theorem to get the integral representa-
tion (4.18), (4.19). It is easy to see that they are of the form (4.17) satisfying
the conditions in Lemma 4.3.

Given N>1 and jE€J(N), we write x=N"'j. Hence x,=N"'j, for
1<p<d and é x,=1. Sometimes we write y,= é x;0;,. We use the nota-
p=1 I=1
tion (m),=m(m—1)---(m—n--1).

Lemma 4.5.

d d
(4.20) C,=j,+ 1=21 Xyt ppy—X, IZ‘I, pi+O(N ™) uniformly in j€J(N) ,
and

421)  bV(x) = fj XUyt 1 y—2, z pi+O(N ") uniformly in jEJ(N)

that is, (4.7) holds.
Proof. It follows from (4.14) that
C,=D,G1, -+, 1) = A,(N)™* (coefficient of " in

D, 8w, 1, -, 1)).
From (4.11)—(4.13) we have

D B(w, s, -+, $4) = D W(w, s,, -+, $5)g(Ws,, ***, WS,)
+W(w, §;y +++, $4) D pg(wsy, -+, wsg)w ,

D, ¥(w, sy, «+, 84) = 2 D, ®(w, :2, O Sy *** Zm] afRs,)asy’

Dy®(w, s, -+, $4) = flws,y - {ju flwss)r ™ f(wsi) w} -« flwsa) e .
Noting that

Y(w, 1, -, 1) = d(w, 1, -, 1) = flw)V,

i = s t9ss
we have

D,@(w, 1, -+, 1) = jih(w), D,¥(w, 1, -, 1)= (jp+yﬁ)hz(w) ’

D 8w, 1, -+, 1) = (j ,+¥ p) h(w)g(w, -+, w)+h(w) D pg(w, -+, w)w .

Hence

(429 C,=(jyty) iR L)

A(N)  A(N)
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Let us estimate A(N), A,N), 4,,(N). By Lemma 4.4,

1 (F+

o=

7Tl

"”M(z)” L(z, -, 2)e N dz.

B—in

Define p, by the expansion
(4.23)  L(z, -, 2) = f;o pa(z—B)" in a neighborhood of 3.
We have p,=g(e?, -+, ¢#)>0 and

d
(424)  pi=po3lmi-
Thus

(4.25) A(N)= An(po+N"'a,+O(N™?)),

2
(4.26) a, = Po( 3“‘—%)4—91 S _p, L

2
o 20° o' o’

by Lemma 4.3. Similarly,
1 (B
A(N) = —S M(z)¥ " M/(2) L(z, -+, 2)e"¥*dz
27t JB-in

since f/(¢°)e’=M"(z). We have
M(2)*M'(2) L(z, -+, 2) = K'(2) L(z, -+, )
= PoH(0°potp1)(3—B)+(Brepot’pi+p,)(z— B+
by (4.15) and (4.23), and hence
(427)  AN) = Ay(p+N"'a, - O(N), a, = a,—p,
by Lemma 4.3 and (4.26). Further,

1 B+in Nz
A, N) = 5[ ME DLz, -, 2)e N s

since D L(s,, -+, $;)=D,g(e’, -+, e’¢)e’». Noting that D, L(B, -+, B)=pott
we get

(428) A, (N) = An(pou,+ON™) .

Using (4.25), (4.27), (4.28) in (4.22), we obtain

C, = (j,+y,)1+N"pgY(a,—a,)+O(N %)+ u,+O(N ") uniformly,
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from which (4.20) follows since p5'(a,—a,)=— é ws. Note that j, is at most
=1
N and y, is bounded. Since b;"’(x)=C,—j ,, we get (4.21) from (4.20),.
Lemma 4.6.
. -1 . 2 d . d . d
(429) Cpq = jﬁ]q'—N ]P]q(o' +2 ; ll'l)—l_fp ;1 xlalq+]q f?-ll X101y
Fiptgtin,+0Q1)  for pq,
d d
(430) €= j3+ifo"— 142,42 3wty = (0" +2 32 ) +O(1)
(431)  a(x) = —o*x,x, FONT)  for peq,
(4.32) a7 (x) = o’xy(1—x,)+O(NT).
All O signs here are uniform in jJ(N).

Proof. We can prove

a d
(433)  Cpo= Uty iaty)— D} BN 51 oy gp A4N)

A,(N) 4,(N)
- As(N) | - Ap(N) | Ay p(N)
+(]p+yp)z(“]\—/-)*+(]q+yq) A:EN)+ AI:(N) .

where p=¢q is not excluded. In fact,
C e = A,(N)™* (coefficient of %" in D, 8(w, 1, -++, 1)),
and D,,0(w, 1, -+, 1) is obtained as follows:

DPtI\P(‘w) Sy sd) = ,Zm Dlmq)(w) E aglnsm Tty ; Olfzﬁ)-?,)a%)a%) )
D, ®(w, sy, =+, $q) = flws,) 1+ {j, f(ws;) ™ f'(ws;) w} -
{Jmf(wsm)m " fl(ws ) w} -« flwsgye  if  I<m,
Dllq)(w’ S1y *% sd) zf(wsl)jl"' {(jl)zf(wsl)j'_zf/(wsl)zwz
+jaf(wsy 7 [ (wsg) w'} -+ flwsg)a
and hence
D;®(w, 1, -, 1) = J;],,h(w) if lEm
Dy@(w, 1, -+, 1) = (j),h(w)+j th(w) -

Thus,

Dﬁqw(w’ Ly 1)= { ,mezjmaﬂ’a%’— leza%’a%”} hs(w)

+ S asPhe)

Since
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D,Ow,1,-,1)=D,¥(w, 1, -, 1)g(w, -+, w)
+D,¥(w, 1, -+, 1)Dyg(w, -+, w)w+D¥(w, 1, -+, 1) Dyg(w, -+, w)w
+¥(w, 1, -+, 1)D,,g(w, -+, w)w®

and the terms except the first in the right-hand side are treated in the proof of

Lemma 4.5, (4.33) follows.
Having

. o(1) if p=*gqg
4.34 Doy =1 ,
3 Qe ={ 70 LT

in mind, let us estimate the right-hand side of (4.33). We have

A(N) =L

_sﬁ“”M(z)N—ZM'(z)ZL(z, o, B)e Ve s
27iJB-i

Boin
and, in a neighborhood of 3,
M(2)*M'(2)°L(, -, 2) = K'(2)’L(z, **+, 2)

= pot(20°po+p:)(3—B)+(6rsps+0'pyt-20°py+p,) (3 —B)'+ -+ .
Hence
(435)  AN) = Ay(pet N0, O(N™), @, = a,—ap,—2p,
by Lemma 4.3 and (4.26). Next,

ANy = L[ M) - ML, -, 2)e N ds

27ti B—in
by f/(e*)e** = M"(2)—M’'(z), and
M(z)"(M"(2)—M'(2))L(z, -+, 2)
= (K'(2)'+K"(2)—K'(2))L(3, -+, 2) = a’p,
at 2=0. Hence
(4.36) A(N) = An(a?p,+O(NTY)).

Also 4,,(N) and 4, ,,(N) have analogous expression by Lemma 4.4.
Thus

1
27t

= An(por+O(N ™))
since M(2)"'M’'(2) D, L(z, -+, 2)=K'(2) D ,L(z, -+, 2)=p,u , at 2=/, and

(437) A, (N)= VH:“M(z)N“M’(z) D,L(z, -+ )eN"dz

B-in



DirrusioN PrRocesses AND A CLass oF MARKOV CHAINS 649

(4.38) A, (N)= ANO(1).
It follows from (4.25), (4.33)—(4.38) that
Che= (jqu+jﬁyq+qup)(1_N—1(02+2p0_1p1))+jp/"“q+jqru'p+O(l)
for p=gq,
Cop = (1525357 JA—N"(0*+2p5"p1)) +j 10" +2) o ,+0(1) .
Hence we get (4.29), (4.30) by (4.24). Since
450’ (*) = NCpe=sCa=JCrtinis)  for p*gq,
@55 (%) = N7Y(C,p+C,—2,C p+j3)
(4.31) and (4.32) follow from (4.20), (4.29), (4.30).

Lemma 4.7.
(439)  Cppp = j2+33o"— 11yt 3y miats— 0™+ 3 ) +O(N)
uniformly in J(N).

Proof. Clearly
(4.40) C,,,=U,+3U,+3U+U,

where U,, U,, U, and U, are 4,(N)™* times coefficients of #" in D,,, ¥(w, 1,
ey Dg(w, o, w), D, py¥W(w, 1, -+, 1)D,g(w, -+, w)w, D,¥(w, 1, -, 1)D, g(w,
<, w)w?, and W(w, 1, -+, 1)D,, 8w, -+, w)w’, respectively. We have

D,y (@, 515+, Sa) 2,;,.1) mn (W, 23 05778, 0y 20 agy’s,)

() (N o (N
Ay Omp Onp ~ »

Dy, w®(w, 1, -+, 1) = j1jpmjahs(w) if I, m, n are all different,
Dypu®@(w, 1, -+, 1) = (jija—jrjm) h(@) Fjijnbe(w)  if I%n
and
Dy ®@(w, 1, -, 1) = (73 =353+2/1) A(w)+3(j T —j 1) A(w)+j ih(w) ,
because
Dy @(w, 815 +++5 $a) = f(ws,) 1+ A(j)af(ws2) 7 f (wss)’w®
+3(j 1) f(s2)? ™ f(wsy) f " (wsr) '+ 1 floss) 7 7 (wsr) '} -+~ f(wsa) e
Hence,
U, = A,(N)™* (coefficient of @/ in 3} Dy, ®(w, 1, +++, 1)
1,m.n
g(ﬂ’, T w)a%f) asnl;) as»er)

= (Sl—3S2+2S3)%+(332_3S3)j6g ;Jr s, jﬁz; ,
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where
Sy = S juiminas VAP = (43,0 = j3+3j3,+ON),
S, = Sty ail’ = j5+OW),
S = 2jaiy)y = OW).

As in the proof of Lemmas 4.5 and 4.6, U,, U, and U, are expressed as follows:

U= Wt SV 00+ Sidatyy 2,

Hence

(441)  C,,p= (fz+3fzyr3;‘z>jsg\v,§+s ':js§%§+sjz‘§fz%)+0<zv>

by (4.40) and Lemma 4.4. We have

B+i

(4.42) AS(N)=2_1;_S :M(z)N—sM'(zyL(z, v, B)e N dz

1Je-i
= AN(P0+N—1‘15+O(N_2)) , as= a,—30"p,—3p,
by Lemma 4.3 and (4.26), since
M= ML = K"L = p,+(35*,+p)(5—B)+ (30 s+ Iisp,
+30%p, P )z —B) + -

in a neighborhood of 8. Similarly
(443)  A(N) = 51_ SZ“" M(z)¥*M/(2)(M"(2)— M'(2)) L(z, -, 2)e"¥*dz
wldBin

= An(o’p+O(N ™))
since M*M'(M"”—M')L=K'(K"+K"—K') L=q"p, at z=p, and

1 (f*
4.44 A y(N) = —
() A, =

" M(2)VMY(2) D L(z, -+, 2)e N dz
— APy ON™)
as in (4.37). Tt follows from (4.25), (4.41)—(4.44) that
C oo = (15 +355,—35)(1—=3N"(c"+p5p.))+ 350"+ 331 ,+O(N) ,

which is (4.39).
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Lemma 4.8.
(4.45)  Cpps =j$+2j2(3a2~3+2pp+212 x,0,—%5(30°+2 :2_—‘{,“,))+O(NZ)
uniformly tn j& J(N).
Proof. This time we have
Coppp = Vi+4V,+6V,+4V +V,

where V,, -+, V, are A,(N)™" times coefficients of w" in D,,,, ¥(w, 1, --+, 1)
g(w, "‘,‘ZU), Dppp‘y(w! 1, ey 1)Dﬁg(w’ ...,w)w’Dpp\Il(w’ 1, eeey 1)Dpﬁg(w’ ...,w)wZ’
D, ¥(w, 1, -, 1)D,,,g(w, -+, w)w’, ¥(w, 1, -, 1)D,,,,g(w, -+, w)w', respec-
tively. 'The most involved part is

(446)  D,upp¥(w, 1, -4, 1) = g ’Dlmnr(b(wy 1, - DafP @ ad ol

and we have

Dipe®(w, 1, -, 1) = J1mjuf, hs(w) if [, m, n, r, are all different,
Dy ®@(w, 1, -+, 1) = (j3jnjr—j1inir) h(w)+j1i nfr ho(w)
if Inkrl,
Dyus®(w, 1, -+, 1) = (jija—7ijw—Jsjat7sjn) hs(w)
+(j?j’x+jlj12=_2jljn) hg(w)—l—j,j,,hm(w) if I=n ’
Dy, ®(w, 1, -+, 1) = (721, — 3721, +2j1j,) ho(w)+3(52 1 —7 1] ) o)
Higrha(w) i I,
Dyy®(w, 1, -+, 1) = (j1— 673+ 1153 —6/,) hy(w) +6(j3 — 373 +2j,) ()
+3(7E—j 1) o) +-4(j T —7 1) () +j s Fryy(w0)

The last one cames from the expression

Dy ®(w, 8y, $4) = flws,)? 1+ {(j 1) flooss) 71~ f(ws, ) w
+6(51)s f(ws2) 717> f (208,)" f(wss) w'+3(j s ), flwss) i f (wosy )
+4(72). f(wsy) 17 f(ws,) [ (ws ) w5 s flws) 17 177 (ws) '} -+ flawsg) e
Let 3, 3%, S mnery 2itemem, 21 denote the summations over
{({, my n, ); I, m,n,r are different from each other}, {(, m, n,r);
I=m=+nktrl}, {(I, m,n,r); I=mEn=r}, {({({, m, n,r); l=m=n=£r}, {{l, m,n,r);
I=m=n=r}, respectively. Decompose the right-hand side of (4.46) so that
2 = (e e+ 2 R D 2

[’Y", ",'
+(Zé§)=m,n=r)+22?)=n,m=r)+28)=r,m=n)
H(E et Zemert Tyt L Bner )+ 2
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and use the above formulas. Then, by Lemma 4.4, we get

V= () G0+ 6N ety
A(N)—Ay(N) 2
amy o)

ity e AN) L s AN) | o
(Jrt+45Ys 6]p)A1(N)+6]p A!(N)J[—O( )

after some reflection. By argument quite similar to the proof of Lemmas

4.5, 4.6, 4.7, we get

o 4,(N) 2o Aa(N) | o A (N)
vV, = (S,1 382_{_233)_A_IIE]V_)-—{—(382 38,) AiN) +S, A:ZN)
.3A51,(N)

=JPA—1('AT)“+O(N2) )

V,=O(N?), V,=ON), V,=0(1).
Hence,

gy ey AdN) | s A(N) | ges Asy(N) .
A7) Cpppp = (ji+42y,— 67 165 34y .
(4.47) pors = (Jo+455,—6 )Al(N) o Al(N)+4] A(N) +O(IV?)

We have
1 B+ir
(448)  AN) = L[ MEr M) Lz, -, 5)e N s
2midB-in
= An(po+N""a;+O(N™?)), a;= a,—65°p,—4p,
since

M™M"L = K"L = p,+(45°po+p1)(3—B)+ (12130, 160" po+4a’p,
+p)(z—B)+

in a neighborhood of 3,
(449)  A(N) =
27t

= An(op-O(N™)
since M~*M"*(M"—M’)L=K"*(K"+-K"—K') L=o’p, at f3, and

gﬂ+::" M(z)N_aM’(z)Z(M”(z)—M’(z))L(z, . z)e—dez

B-in

(4.50)  A,,(N) = ZL S:““M(z)N-aM'(z)SDpL(z, e, 5)e N dz
7LV B-in

= An(por,+O(N™))
as in (4.37). By (4.25), (4.47)—(4.50) we have
Crorr= (jg"l_"'jzyp—6j2)(1_N_1(6°'2+4'PO—1P1))+6j2°'2+4'jgﬂp+ O(N?),
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and the proof of (4.45) is complete.
Lemma 4.9.

(4.51) e (x)= O(N) uniformly in j € J(N).
Proof. We have

e (%) = N7(C3 o= 4 sClopt 013CH—42C 5 +73)
= N"{C pppst (=4, 1+6) C 1yt (67— 12, +7)C
‘|‘(_4j2+6j§“4jp+1)cp+j:}
by Lemma 4.2. Use Lemmas 4.5—4.8 and substitute (4.20), (4.30), (4.39), (4.45)

for Cpy Cppy Cpppr Cppppr Then, all terms cancel except terms of magnitude

O(N™), and (4.51) follows.

Now Lemmas 4.5, 4.6 and 4.9 say that (4.7), (4.8) and (4.9) hold. Hence
the proof of Theorems 2.1 and 2.2 is complete.

5. Uniqueness of the solution of the martingale problem and proof
of Theorems 2.3 and 2.4

All notations in this section are the same as in Section 2. By Theorems
2.1 and 2.2, convergence of the interpolated normalization of the induced Mar-
kov chains is proved if the solution of the martingale problem (K, a, b, x) is
unique. This uniqueness problem is a problem on some stochastic differential
equations, as the following lemma says.

Lemma 5.1.  Let ¢(x)=(c,, (%)) be a bounded, Borel measurable (d—1)x
(d—1)-matrix on K satisfying
(5.1 c(x)c(xy = a(x),

where c(x)’ is the transpose of c¢(x). Consider a stochastic differential equation

4X (1) = 33 ¢, X)) dB () +b(X(@)dt, p=1,-,d—1

(5.2) { X0 »

where X(t)=(X,(t), ---, X 4_.(2)) is a process taking values in K and B(t)=(B,(t),
ooy By_.(8)) is a (d—1)-dimensional Brownian motion. Then, uniqueness of the
solution of the martingale problem (K, a, b, x) is equivalent to uniqueness, in the
sense of probability measure induced in (Q, M), of the solution of (5.2).

Proof. This is proved essentially by Stroock and Varadhan [13]. Priouret
[10] contains a detailed account.
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We choose ¢(x)=(c,(%)) p,g=1..., a-1 3s a lower triangular matrix. Let K°and
0K be the interior and the boundary of K and let, for x& K°,

Cpul®)=0  for g>p
cy(®)=ox1*(1—x)'",
Cu(%)=—cx,x1*(1—x,)7"7, ¢, (x)=0cxy*(1—x,—x,)"*(1—x,)""*,
Ca(%)=—0axx1%(1—2x,)""",  ¢y(%)=—oxxy*(1—x,)"*(1—x, ——x) v
(5.3) Caa(®)=0ns (1 —a,—x,—x,) (1 —x,—x,) 7/ |
cu(®)=—oxxi(1—x,)""*, c,(x)=—0x xz/z(l x,) (1=, —x,) 72,
Ca(®)=—ox 252 (1 —x,—x,) " *(1—x,—x,—x,) 7',
cu(®)=axi*(1—x,—x,—x,—x,) (1 —x,— x,—x,) "/,

Lemma 5.2. ¢(x) defined above on K° extends continuously to K. Denote
the extension by the same c¢(x). Then

A9
(5'4) apq(x) = ';1 Cpr(x)cqr(x) ’
that is, (5.1) holds.

Proof. Let x€0K. We define c,,(x) by the formulas in (5.3) when nega-
tive powers of 0 do not appear, and define ¢,,(x)=0 when negative powers of 0
appear. Then all ¢,, are continuous on K, since we have

02621(30)2 _o'x%/z(l_xl)l/z’ 03622("0)3‘7(1_""1)‘/2 ’
0> ¢, (x) = —ox1?(1—2x,)"%, 0> cy() > —o(1—x,—x,)'7
0<cp(w) <o (1—ax,— ),

.........

(5.5)

for x€ K°. In order to show (5.4), we may assume x& K°. Let

l—x, =y, l—x—x,=y, 1—x,—x,—%=7y; .
Then,
€ = O'(xly )1/2

/2 1/2
= —O'xz(x1> = —oX (——- l) Cop = a_(«”zj’z) R
Y1 N2
/2
€y = —ax3<ﬁ>l = —o-x3<l~ 1) ,
.yl y1

1/2 1/2 1/
Cyp = —o'xs(j“z"> = ~“a'xa(l_-_l‘> y C33 = 0<M) :
Y1Y2 Y: N Y2

.........

~
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and (5.4) is obtained by direct calculation.
Henceforth c(x) denotes the one defined by (5.3) and Lemma 5.2.

Lemma 5.3. Let d—1=1. Then the solution of the stochastic differential
equation (5.2) is pathwise unique. That is, if X(t) and X(t) are solutions of (5.2)
with a common one-dimensional Brownian motion B(t), then X(t)=X(t) almost
surely.

Proof. In this case (5.2) is a single stochastic differential equation
dX(t) = ¢,,(X(2))dB(t)+b,(X(2))dt, X(0)=x.

¢, is extended on R' to a Holder continuous function with exponent 1/2 and
b, is extended to a Lipschitz continuous function on R'. Hence the theorem
of Yamada and S. Watanabe [15] applies.

Lemma 54. Ifx, ye K and x,=y, for =1, .-+, p—1, then

(5.6) ’cpq(x)'—cpq(y)[ Sza'lxp‘”ypl Ve,

Proof. Let ¢g=1<p. If 1—€<«x,<1, then 0>c,(x)>—0c€”* and 0>
ep(9)= —cE by (5.5). If 1—&>x,>0, then

[ep(®)—cp(¥)| = a[xp—yt,Ix{/z(l—xl)'lfzgo-e"/z|xp—y1,] .
Hence

! cpl(x)_cpl(y) l SC7(‘9_1/2 I xp_ypl +Ex/2)

in any case. Since € is arbitrary we may choose é=|x,—y,|*/* and get (5.6) for
g=1<p. The proof for 1<g<p is similar. In case p=q, we let 1—x,— - —
%y =1—y,—+—y, ,=E and have

[€pp(%)—Cpp(¥)| STET(| 23/ (E—2,) "=y (E—2,)""|
+ 1y (E—x,) "=y "(E—y »)"*])
SEVH(E—x,)"" |0y | P332 [2,—9, 1) <20 | x,— Y| 2,
since
=g < =
Lemma 5.5. Let d—1>1 and suppose that b(x) satisfies the condition in

Theorem 2.4. Then the solution of the stochastic differential equation (5.2) is
pathwise unique.

Proof. By the assumption b,(x) is a linear function only of x,, -+, x,,.
As is seen from (5.3), c,,(x) is also a function of «x, -, x,. Suppose that
X()=(X,(2), -+, X4_4(2)) and X(#)=(X,(?), -, X,_.,(t)) are solutions of (5.2)
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taking values in K with a common Brownian motion B(#)=(B(?), :**, B4_.(t)).
First, we get X,(#)=X,(¢) a.s. asin Lemma 5.3, since the equation for X,(¢) does
not involve X,(¢), -+, X,_,(t). Let us prove X ,(£)=X,(t) a.s. foriall p by in-
duction. Suppose X,(f)=X,(t) a.s. for I=1, ---,p—1. The following proof is
essentially the same as part of Yamada and S. Watanabe [15]. Choose nonnegative
C? functions @,(£) on R* such that ¢,(£) increases to |£| as n—o0, @,(£)=0 in
a neighborhood of 0, ¢,/(¢) is bounded, and 0<¢,”(£)<2n"'|E|™". Since

X 0)=Xf0) = 23 [ {0 X6~ po KON} dB,(9)
+{ (s Xt XN} 5,

we get
Pu(X ,(t)—X,(2)) = stochastic integral—l—% St P (X 4(5)— X (5))

2 enlXO) e RO s | 2 (X )~ X ) o XO) (K} ds

by the Ito formula. We have {c,,(X(s))—c,(X(s))}2<40?| X ,(s)—X ()| by
Lemma 5.4 and hence

ElpuX )= X<~ | 2 4pods +CEL | X)X ,(0) ],
C = const.

Going to the limit as n—oco we get
=~ t 2
E|X () —X )] gCgOE] X ()—X(s)] ds .

By iteration it follows that E|X ,(£)—X ()| =0. Hence X ,(£)=X(?), a.s.
Proof of Theorems 2.3 and 2.4. Yamada and S. Watanabe [15] prove that
pathwise uniqueness of the solution of a stochastic differential equation im-
plies uniqueness in the sense of probability measure induced in (Q, ). Hence
Theorems 2.3 and 2.4 follow from Lemmas 5.3 and 5.5, respectively.

Properties of the limiting diffusions

Let d—1=1. We have proved that the martingale problem (K, a, b, x) has
a unique solution (Theorem 2.3). It is a one-dimensional diffusion process
on [0, 1] with backward Kolmogorov equation (2.8). Let \,=a,,+pu, and
A,=a;;+p,. In Feller’s boundary classification into four types (regular, pure
exit, pure entrance, natural), the boundary 0 is pure exit, regular, pure entrance
according as A, =0, 0 <\, <o?[2, N\, =672, respectively. Similarly, the boundary
1 is pure exit, regular, pure entrance according as A,=0, 0 <A, <o?(2, N, >067/2,
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respectively. The proof is a standard argument. In case the boundary is pure
exist, it is a trap. 'This is a consequence of the general theory, but this is clear
also from the uniqueness of the solution since in case A,=0 the process standing
still at 0 is a solution. If A,>0, it is shown by the method of S. Watanabe [14],

p- 459, that Ex[SNX(O)(x(t)) dt]=0 for every x=[0, 1], where X, is the indicator
0 .

function of the set {0}. Therefore, in case the boundary is regular, the limiting
diffusion has reflecting boundary condition there, while, in case of pure entrance
boundary, the limiting diffusion starting from there immediately enters the
interior and never returns.

Let d—1=2 and suppose that the uniqueness holds for the martingale
problem (K, a, b, x) for every x. 'Thus (x(¢), M,, P,;x< K) is a diffusion process
on the triangular region K= {(x,, x,); ,>0, x,>0, 1—x,—x,>0} and its back-
ward equation is (2.9). Let us examine its boundary properties. Since all the
three sides of K are similar, we examine I'={(x,, 0); 0<x,<1}. Following
Hasminsky [4] and S. Watanabe [14], we define regular and repulsive boundary
points and unattainable and pure entrance boundary segments as follows. Let
x€T and let U be a neighborhood in K of x having positive distance with
0K—T. For >0, let U,=UnN {(x,, x,); x,>7}, T,(w)=first leaving time of
U,, and T(0)= 11,1?01 T,(»). Let I'(w) be the set of all limit points of x(¢, )

when ¢ 1 T(w). x is called regular if, for every U and for every neighborhood V'
in K of x, we have

lim PyTiw)cVNT)=1.

YEKO,y>*

x is called repulsive, if, for some U and for some >0, we have
liminf P ,(T'7(0)c (0U),)<1.
yeKO,y»%

Here (0U),=0U N {y=(1, ¥.); y.<7}, U being the boundary in R* of U.
Let 3} be an open interval in T". ) is called unattainable if for every x>
there exists a neighborhood U in K of x such that

P,(T7(0)NT is empty) = 1 for every ye UN K°.

>\ is called a pure entrance boundary segment if 3 is unattainable and if every
x€ 3] has a neighborhood U such that P (T, <oo)=1 for every y U. Here
Ty is the first leaving time of U.

Define 37, and >7, as follows:

21 = {(xp O)EF; xl(a1z_asz)+aaz+ﬂz<0'2/2} ’
22 = {(xl’ O)EP; xl(aIZ_a32)+a32+”’2>o-2/2} .

>3 and 37, are open intervals or empty.
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Theorem 5.1. (i) Every point in 3, is regular. If at,,=ot;,=p,=0, then
2u=T and, after hitting T, the process moves in {(x;, 0); 0<%, <1} following
the backward equation

D

ou
0x,

v __ o U _
E‘* 2 xl(l xl)ax%‘l_{ xl(a13+ﬂa)+(1 xl)(ai‘)1 +'ul)}

with the behavior at (0, 0) and (1, 0) described in the case d—1=1. If at least one
of ays, Ay, and u, is positive, then

(5.7) S:le(x(t))dtzO as.

and, for any open subinterval ) of >),, the process starting from K° hits 3 in a
finite time with positive probability.
(if) 33, is a pure entrance boundary segment and every point in >, is repulsive.

Proof. Regularity of the points in >3,, repulsiveness of the points in 37,
and unattainability of 37, are applications of Hasminsky’s tests [4]. The prop-
erty described in (i) in case «,,=a;,=u,=0 is a consequence of the assumed
uniqueness of the solution of the martingale problem. The proof jof the other
properties is similar to the discussion by S. Watanabe [14] of two-dimensional
diffusion processes with branching property. In proving (5.7) we use the
expression

[dX,(t) = cH(X(2)) dB¥(t)+cio(X(2)) dBE(£)+b,(X(2)) dt

| dX(2) = c%(X(2)) dB¥(t)+b,(X(2))dt
where B*(t) = (B¥ (¢), B¥(t)) is a two-dimensional Brownian motion and

cfi(®) = ox*(1—x,—x,)*(1—x,)7",  cy(%) = —oxr*(1—x,) 7,

ch(x) = oxz/?(1—ux,)' 7.
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