H -COBORDISM, I; THE GROUPS AMONG THREE DIMENSIONAL HOMOLOGY HANDLES

Akio KAWAUCHI

(Received September 25, 1975)

This paper will introduce a concept of a cobordism theory, called \tilde{H}-cobordism, between 3-dimensional homology handles. The set of the types of distinguished homology orientable handles modulo \tilde{H}-cobordism relation will form an abelian group $\Omega\left(S^{1} \times S^{2}\right)$, called the \tilde{H}-cobordism group of homology orientable handles. As a basic property of the \tilde{H}-cobordism group $\Omega\left(S^{1} \times S^{2}\right)$ the following commutative triangle will be established:

Here, C^{1} is the Fox-Milnor's 1-knot cobordism group (See Fox-Milnor [3].), G_{-}is the Levine's integral matrix cobordism group (See Levine [9].), e is a homomorphism and ϕ, ψ are epimorphisms. In particular the \tilde{H}-cobordism group $\Omega\left(S^{1} \times S^{2}\right)$ will have an infinite rank. Analogously the \tilde{H}-cobordism group $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ of homology non-orientable handles will be also constructed. We shall show that the \mathscr{H}-cobordism group $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ is isomorphic to the direct sum of infinitely many copies of the cyclic group of order two. Furthermore, it will be shown that the assignment $\tau: m \rightarrow m^{\prime}$ of the type m of any distinguished homology non-orientable handle to the type m^{\prime} of its 2 -fold orientation-cover (which is a distinguished homology orientable handle) induces a well-defined homomorphism $\tau^{*}: \Omega\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow T_{2} \subset \Omega\left(S^{1} \times S^{2}\right)$ from $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ to the subgroup T_{2} of $\Omega\left(S^{1} \times S^{2}\right)$ consisting of elements of order two. As one consequence T_{2} will be infinitely generated.

Section 1 will construct the \tilde{H}-cobordism group $\Omega\left(S^{1} \times S^{2}\right)$ of homology orientable handles. In Section 2 we will discuss the properties of the invariants of $\Omega\left(S^{1} \times S^{2}\right)$ and compare $\Omega\left(S^{1} \times S^{2}\right)$ with Fox-Milnor's 1 -knot cobordism group C^{1} and with the Levine's integral matrix cobordism group G_{-}. Section 3 will concern the zero element and the order-two-elements of the \mathcal{H}-cobordism group $\Omega\left(S^{1} \times S^{2}\right)$. It will be shown that the type m of a distinguished homology orientable
handle $M(\alpha, \iota)$ represents the zero element of $\Omega\left(S^{1} \times S^{2}\right)$ (that is, m is null- $\mathcal{H}-$ cobordant) if $M(\alpha, \iota)$ is embeddable to a homology 4-sphere. To consider the order-two-elements of $\Omega\left(S^{1} \times S^{2}\right)$, we will introduce the \tilde{H}-cobordism group $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ of homology non-orientable handles and determine its group structure and discuss the homomorphism $\tau^{*}: \Omega\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow T_{2} \subset \Omega\left(S^{1} \times S^{2}\right)$ in this section.

Throughout this paper, spaces and maps will be considered from the piecewise linear point of view.

1. A construction of the $\tilde{\boldsymbol{H}}$-cobordism group $\Omega\left(\mathbf{S}^{1} \times \boldsymbol{S}^{2}\right)$

A 3-dimensional homology orientable handle M is a compact 3-manifold having the integral homology group of the orientable handle $S^{1} \times S^{2}: H_{*}(M ; Z)$ $\approx H_{*}\left(S^{1} \times S^{2} ; Z\right)$. A homology orientable handle M is said to be distinguished if generators $\alpha \in H_{1}(M ; Z)(\approx Z)$ and $\iota \in H_{3}(M ; Z)(\approx Z)$ are specified. In that case the notation $M(\alpha, \iota)$ will be used. Two distinguished homology orientable handles $M(\alpha, \iota), M^{\prime}\left(\alpha^{\prime}, \iota^{\prime}\right)$ are said to have the same type if there is a piecewiselinear homeomorphism $h: M(\alpha, \iota) \cong M^{\prime}\left(\alpha^{\prime}, \iota^{\prime}\right)$ which induces an isomorphism $h_{*}: H_{*}(M(\alpha, \iota) ; Z) \approx H_{*}\left(M^{\prime}\left(\alpha^{\prime}, \iota^{\prime}\right) ; Z\right)$ with $h_{*}(\alpha)=\alpha^{\prime}$ and $h_{*}(\iota)=\iota^{\prime}$. The class of distinguished homology orientable handles having the same type as $M(\alpha, \iota)$ is called the type of $M(\alpha, t)$. The set of all types is denoted by $\mathbb{C}_{+}\left(S^{1} \times S^{2}\right)$. Let m be a type of $M(\alpha, \imath)$. By $-m$ we denote the type of $M(\alpha,-\imath)$. It is easily checked that the four distinguished handles $S^{1} \times S^{2}(\alpha, \iota), S^{1} \times S^{2}(\alpha,-\iota)$, $S^{1} \times S^{2}(-\alpha,-\imath)$ and $S^{1} \times S^{2}(-\alpha, \iota)$ of the orientable handle $S^{1} \times S^{2}$ have the same type. We denote this type by 0 .

Definition 1.1. Two types m_{1}, m_{2} in $\mathfrak{\Subset}_{+}\left(S^{1} \times S^{2}\right)$ are \tilde{H}-cobordant and denoted by $m_{1} \sim m_{2}$, if for some representatives $M_{1}\left(\alpha_{1}, \iota_{1}\right) \in m_{1}, M_{2}\left(\alpha_{2}, \iota_{2}\right) \in m_{2}$ there exists a pair (W, φ) where W is a compact connected oriented 4-manifold with $\partial W=M_{1}\left(\alpha_{1}, \iota_{1}\right)+M_{2}\left(\alpha_{2},-\iota_{2}\right)$ (disjoint union) and φ is a cohomology class in $H^{1}(W ; Z)$ whose restrictions $\varphi \mid M_{i}\left(\alpha_{i}, \iota_{i}\right) \in H^{1}\left(M_{i}\left(\alpha_{i}, \iota_{i}\right) ; Z\right)$ are dual to α_{i} for $i=1,2$, and such that the infinite cyclic cover W_{φ} associated with φ has a finitely generated rational homology group $H_{*}\left(W_{\varphi} ; Q\right)$ [that is, for each $i, H_{i}\left(W_{\varphi} ; Q\right)$ is a finite dimensional vector space over Q.].

As usual the $\operatorname{triad}\left(W, M_{1}\left(\alpha_{1}, \iota_{1}\right), M_{2}\left(\alpha_{2}, \iota_{2}\right)\right)$ is called an \tilde{H}-cobordism.
It is easily seen that $m \sim 0$ if and only if for some representative $M(\alpha, \iota) \in m$, there exists a pair $\left(W^{+}, \varphi\right)$ where W^{+}is a compact connected oriented 4-manifold with $\partial W^{+}=M(\alpha, \imath)$ and $\varphi \in H^{1}\left(W^{+} ; Z\right)$ with $\varphi \mid M(\alpha, \iota) \in H^{1}(M(\alpha, \iota) ; Z)$ dual to α, and such that the infinite cyclic ocver W_{φ}^{+}associated with φ has a finitely generated rational homology group $H_{*}\left(W_{\varphi}^{+} ; \underset{\sim}{Q}\right)$. In this case the notation ($W^{+}, M(\alpha, \iota), \phi$) may be adopted as an \tilde{H}-cobordism.

Lemma 1.2. The \tilde{H}-cobordism relation \sim is an equivalence relation.

Proof. The relation \sim is reflexive, since the infinite cyclic cover \tilde{M} of any homology orientable handle M has a finitely generated rational homology group $H_{*}(\tilde{M} ; Q)$. [To see this, notice that for any $i, i \neq 2, H_{i}(\tilde{M} ; Q)$ is finitely generated (See for example Kawauchi [6, Proposition 3.4] for $i=1$.). The partial Poincaré duality theorem (See Kawauchi [6].) then asserts a duality $H^{0}(\tilde{M} ; Q) \approx H_{2}(\tilde{M} ; Q)$. So $H_{2}(\tilde{M} ; Q) \approx Q$.] The relation is obviously symmetric. Further the use of the Mayer-Vietoris sequence easily yields that the relation is transitive. This completes the proof.

Definition 1.3. The set $\Omega\left(S^{1} \times S^{2}\right)$ is defined to be the set of $\mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ modulo the \tilde{H}-cobordism relation \sim.

For any $m \in \mathfrak{\nwarrow}_{+}\left(S^{1} \times S^{2}\right)$ the symbol $[m]$ denotes the element of $\Omega\left(S^{1} \times S^{2}\right)$ having m as the representative.

Now we shall introduce a sum oparation, called a circle union, in the set $\Omega\left(S^{1} \times S^{2}\right)$.

Let $m_{0}, m_{1} \in \mathfrak{\sqsubseteq}_{+}\left(S^{1} \times S^{2}\right)$ and $M_{i}\left(\alpha_{i}, \iota_{i}\right) \in m_{i}, i=0,1$. Choose for each i a polygonal oriented simple closed curve ω_{i} in $M_{i}\left(\alpha_{i}, \iota_{i}\right)$ which represents the homology class α_{i}. Then for each i there exists a closed connected orientable surface F_{i} in $M_{i}\left(\alpha_{i}, \iota_{i}\right)$ which intersects ω_{i} in a single point. [To see this, first note that the identity map $\omega_{i} \subset \omega_{i}$ can be extended to a piecewise-linear map $f_{i}: M_{i}\left(\alpha_{i}, \iota_{i}\right) \rightarrow \omega_{i}$ by means of the elementary obstruction theory. Second, note that there is a point $p_{i} \in \omega_{i}$ such that the preimage $f_{i}^{-1}\left(p_{i}\right)$ is a closed (not necessarily connected) orientable surface. Now choose as F_{i} the component of $f_{i}^{-1}\left(p_{i}\right)$ containing p_{i}.]

Consider the solid torus $S^{1} \times B^{2}$ and choose piecewise-linear embeddings

$$
\begin{aligned}
& h_{0}: S^{1} \times B^{2} \times 0 \rightarrow M_{0}\left(\alpha_{0}, \iota_{0}\right) \\
& h_{1}: S^{1} \times B^{2} \times 1 \rightarrow M_{1}\left(\alpha_{1}, \iota_{1}\right)
\end{aligned}
$$

such that
(1) there exist points $s \in S^{1}, b \in \operatorname{Int} B^{2}$ with $h_{0}\left(s \times B^{2} \times 0\right) \subset F_{0}, h_{0}\left(S^{1} \times b \times 0\right)$ $=\omega_{0}, h_{1}\left(s \times B^{2} \times 1\right) \subset F_{1}$ and $h_{1}\left(S^{1} \times b \times 1\right)=\omega_{1}$,
(2) both h_{0} and h_{1} are orientation-reversing with respect to the orientations of $S^{1} \times B^{2} \times 0$ and $S^{1} \times B^{2} \times 1$ induced from some orientation of $S^{1} \times B^{2} \times[0,1]$,
(3) ω_{0} and ω_{1} are homologous in the adjunction space $M_{0}\left(\alpha_{0}, \iota_{0}\right) \cup{ }_{h_{0}} S^{1} \times B^{2}$ $\times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1}, \iota_{1}\right)$.

Then the manifold $M=M_{0}\left(\alpha_{0}, \iota_{0}\right) \cup_{h_{0}} S^{1} \times B^{2} \times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1}, \iota_{1}\right)-S^{1} \times$ Int $B^{2} \times[0,1]$ is a homology handle. [Proof. Let $i=0$ or 1 . Consider the manifold $M_{i}^{\prime}=M_{i}-h_{i}\left(S^{1} \times \operatorname{Int} B^{2} \times i\right)$. Let $b^{\prime} \in \partial B^{2}$ and the simple closed curve $\omega_{i}^{\prime}=h_{i}\left(S^{1} \times b^{\prime} \times i\right) \subset \partial M_{i}^{\prime}$ be oriented so that ω_{i}^{\prime} is homologous to ω_{i} in M_{i}. Let $\eta_{i}=h_{i}\left(s \times \partial B^{2} \times i\right) \subset \partial M_{i}^{\prime}$ be oriented suitably. It is easily checked that ω_{i}^{\prime}
represents a generator of $H_{1}\left(M_{i}^{\prime} ; Z\right)(\approx Z)$ and η_{i} represents the zero element of $H_{1}\left(M_{i}^{\prime} ; Z\right)$ (since η_{i} bounds an orientable surface $F_{i}-h_{i}\left(s \times \operatorname{Int} B^{2} \times i\right)$ in $\left.M_{i}^{\prime}\right)$ and that $\omega_{i}^{\prime}, \eta_{i}$ represent a basis for $H_{1}\left(\partial M_{i}^{\prime} ; Z\right)$. Then from consideration of the Mayer-Vietoris sequence we obtain that $H_{1}(M ; Z) \approx Z$. Since M is orientable, $H_{*}(M ; Z) \approx H_{*}\left(S^{1} \times S^{2} ; Z\right)$ by Poincaré duality.]

From construction it can be seen that the homology classes $\alpha_{i} \in$ $H_{1}\left(M_{i}\left(\alpha_{i}, \iota_{i}\right) ; Z\right), i=0,1$, specify a unique homology class $\alpha_{1} \in H_{1}(M ; Z)$ and that the fundamental classes $\iota_{i} \in H_{3}\left(M_{i}\left(\alpha_{i}, \iota_{i}\right) ; Z\right), i=0$, 1 , specify a unique fundamental class $\iota \in H_{3}(M ; Z)$.

Definition 1.4. The distinguished homology orientable handle $M(\alpha, \iota)$ is called a circle union of $M_{0}\left(\alpha_{0}, \iota_{0}\right)$ and $M_{1}\left(\alpha_{1}, \iota_{1}\right)$ and denoted by $M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc$ $M_{1}\left(\alpha_{1}, \iota_{1}\right)$. Also, the type of $M(\alpha, \iota)$ is called a circle union of the types m_{0} and m_{1} and denoted by $m_{0} \bigcirc m_{1}$.

Clearly the type of $M_{0}\left(\alpha_{0},-\iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right)$ is $-\left(m_{0} \bigcirc m_{1}\right)=\left(-m_{0}\right) \bigcirc\left(-m_{1}\right)$.
1.5. Remark to Definition 1.4. It should be remarked that the circle union $m_{0} \bigcirc m_{1}$ depends upon the choices of $\omega_{0}, \omega_{1}, h_{0}$ and h_{1}. Consider for example a distinguished orientable handle $S^{1} \times S^{2}(\alpha, \iota)$. Let $\omega \subset S^{1} \times S^{2}(\alpha, \iota)$ be an oriented simple closed curve representing α of geometrical index*) 1 and $T(\omega)$ be the regular neighborhood of ω in $S^{1} \times S^{2}(\alpha, \iota)$. If the circle union $S^{1} \times S^{2}(\alpha, \iota) \bigcirc S^{1} \times S^{2}(\alpha,-\imath)$ is defined to be the double of $c l\left(S^{1} \times S^{2}\right)(\alpha, \iota)-$ $T(\omega)$), then $S^{1} \times S^{2}(\alpha, \imath) \bigcirc S^{1} \times S^{2}(\alpha,-\imath)$ has the same type as $S^{1} \times S^{2}(\alpha, \imath)$. On the other hand, consider for example an oriented simple closed curve $\omega^{\prime} \subset S^{1} \times S^{2}(\alpha, \iota)$ representing α of geometrical index 3 and algebraic index 1 (See figure 1.) and let $T\left(\omega^{\prime}\right)$ be the regular neighborhood of ω^{\prime} in $S^{1} \times S^{2}(\alpha, \imath)$.

figure 1.

[^0]If the circle union $S^{1} \times S^{2}(\alpha, \iota) \bigcirc^{\prime} S^{1} \times S^{2}(\alpha,-\iota)$ is defined to be the double of $c l\left(S^{1} \times S^{2}(\alpha, \iota)-T\left(\omega^{\prime}\right)\right)$, then $S^{1} \times S^{2}(\alpha, \iota) \bigcirc^{\prime} S^{1} \times S^{2}(\alpha,-\iota)$ does not have the same type as $S^{1} \times S^{2}(\alpha, \iota) \bigcirc S^{1} \times S^{2}(\alpha,-\imath)$, because $\pi_{1}\left(S^{1} \times S^{2}(\alpha, \iota) \bigcirc S^{1} \times S^{2}(\alpha,-\imath)\right)$ $\approx Z$, but $\pi_{1}\left(S^{1} \times S^{2}(\alpha, \iota) \bigcirc^{\prime} S^{1} \times S^{2}(\alpha,-\iota)\right)$ is non-abelian. [In fact, the natural injection $\partial T\left(\omega^{\prime}\right) \rightarrow S^{1} \times S^{2}(\alpha, \iota) \bigcirc^{\prime} S^{1} \times S^{2}(\alpha,-\iota)$ induces a monomorphism $\pi_{1}\left(\partial T\left(\omega^{\prime}\right)\right) \rightarrow \pi_{1}\left(S^{1} \times S^{2}(\alpha, \iota) \bigcirc^{\prime} S^{1} \times S^{2}\left(\alpha,-\iota_{0}\right)\right)$ by the loop theorem.]

In spite of Remark 1.5 we can prove the following for arbitrary two circle unions $m_{0} \bigcirc m_{1}, m_{0} \bigcirc^{\prime} m_{1}$ of given two types m_{0}, m_{1} :

Lemma 1.6. $\quad m_{0} \bigcirc m_{1} \sim m_{0} \bigcirc^{\prime} m_{1}$.
Proof. Let $M_{0}\left(\alpha_{0}, \iota_{0}\right) \in m_{0}$ and $M_{1}\left(\alpha_{1}, \iota_{1}\right) \in m_{1}$. Assume $M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc$ $M_{1}\left(\alpha_{1}, \iota_{1}\right) \in m_{0} \bigcirc m_{1}$ and $M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc^{\prime} M_{1}\left(\alpha_{1}, \iota_{1}\right) \in m_{0} \bigcirc^{\prime} m_{1}$ are given by the following:

$$
\begin{aligned}
& M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1}, \iota_{1}\right) \\
= & M_{0}\left(\alpha_{0}, \iota_{0}\right) \times 0 \cup_{h_{0}} S^{1} \times B^{2} \times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1}, \iota_{1}\right) \times 0-S^{1} \times \operatorname{Int} B^{2} \times[0,1] \\
& M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc^{\prime} M_{1}\left(\alpha_{1}, \iota_{1}\right) \\
= & M_{0}\left(\alpha_{0}, \iota_{0}\right) \times 1 \cup_{h_{0}^{\prime}} S^{1} \times B^{2} \times[0,1]_{h_{1}^{\prime}} M_{1}\left(\alpha_{1}, \iota_{1}\right) \times 1-S^{1} \times \operatorname{Int} B^{2} \times[0,1] .
\end{aligned}
$$

Then we let

$$
W=M_{0}\left(\alpha_{0}, \iota_{0}\right) \times[0,1] \cup_{h_{0}} S^{1} \times B^{2} \times[0,1] \cup_{h_{1}} S^{1} \times B^{2} \times[0,1] \cup_{h_{1}^{\prime}} M_{1}\left(\alpha_{1}, \iota_{1}\right) \times[0,1] .
$$

(See figure 2.)

Clearly we have $\partial W=M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1}, \iota_{1}\right)+M_{0}\left(\alpha_{0},-\iota_{0}\right) \bigcirc^{\prime} M_{1}\left(\alpha_{1},-\iota_{1}\right)$.
Note that α_{0}, α_{1} represent the same element α in $H_{1}(W ; Z)$. Let $\varphi \in$ $H^{1}(W ; Z)$ be dual to α and W_{φ} be the infinite cyclic cover of W associated with φ. Since W_{φ} is the union of $\tilde{M}_{0}\left(\alpha_{v}, \iota_{0}\right) \times[0,1], R^{1} \times B^{2} \times[0,1], R^{1} \times B^{2} \times[0,1]$ and $\widetilde{M}_{1}\left(\alpha_{1}, \iota_{1}\right) \times[0,1]$, each two intersections of which is empty or homeomorphic to $R^{1} \times B^{2}$, it follows from the Mayer-Vietoris sequence that $H_{*}\left(W_{\varphi} ; Q\right)$ is finitely generated over Q, where $\tilde{M}_{i}\left(\alpha_{i}, \iota_{i}\right)$ are the infinite cyclic covers of $M_{i}\left(\alpha_{i}, \iota_{i}\right)$, $i=0,1$. Thus, the $\operatorname{triad}\left(W, M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1}, \iota_{1}\right), M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc^{\prime} M_{1}\left(\alpha_{1}, \iota_{1}\right)\right)$ gives an \widetilde{H}-cobordism and hence $m_{0} \bigcirc m_{1} \sim m_{0} \bigcirc^{\prime} m$. This completes the proof.

Lemma 1.7. $m_{0} \sim m_{1}$ is equivalent to $m_{0} \bigcirc-m_{1} \sim 0$.
Proof. Assume $m_{0} \sim m_{1}$. Then for some representatives $M_{0}\left(\alpha_{0}, \iota_{0}\right) \in m_{0}$, $M_{1}\left(\alpha_{1}, \iota_{1}\right) \in m_{1}$ there is an \tilde{H}-cobordism $\left(W, M_{0}\left(\alpha_{0}, \iota_{0}\right), M_{1}\left(\alpha_{1}, \iota_{1}\right)\right)$. Note that there is a cohomology class $\varphi \in H^{1}(W ; Z)$ such that for each $i \phi \mid M_{i}\left(\alpha_{i}, \iota_{i}\right) \in$ $H^{1}\left(M\left(\alpha_{i}, \iota_{i}\right) ; Z\right)$ is dual to α_{i}. Let $M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right)=M_{0}\left(\alpha_{0}, \iota_{0}\right) \cup_{h_{0}}$ $S^{1} \times B^{2} \times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1},-\iota_{1}\right)-S^{1} \times \operatorname{Int} B^{2} \times[0,1]$ and $W^{\prime}=W \cup_{h_{0}, h_{1}} S^{1} \times B^{2}$ $\times[0,1]$ (See figure 3.). Clearly $\partial W^{\prime}=M_{0}\left(\alpha_{0},-\iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right)$. The cohomology class $\varphi \in H^{1}(W ; Z)$ is easily extended to a cohomology class $\varphi^{\prime} \in H^{1}\left(W^{\prime} ; Z\right)$ such that the restriction $\varphi^{\prime} \mid M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right) \in H^{1}\left(M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1}\right.\right.$, $\left.\left.-\iota_{1}\right) ; Z\right)$ is dual to the specified generator of $H_{1}\left(M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right) ; Z\right)$. By applying the Mayer-Vietoris sequence, it is not difficult to see that the infinite cyclic cover $W_{\varphi^{\prime}}^{\prime}$ of W^{\prime} associated with φ^{\prime} has a finitely generated rational homology group $H_{*}\left(\tilde{W}_{\varphi^{\prime}}^{\prime} ; Q\right)$. [Use that $H_{*}\left(W_{\varphi} ; \underset{\sim}{Q}\right)$ is finitely generated over Q.] So, $m_{0} \bigcirc-m_{1} \sim 0$.

figure 3.
Conversely assume $m_{0} \bigcirc-m_{1} \sim 0$. For $M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right) \in m_{0} \bigcirc-m_{1}$ there is an \tilde{H}-cobordism $\left(W^{\prime \prime}, M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1},-\iota_{1}\right), \phi\right)$. By the definition
of the circle union there is a natural injection $j: S^{1} \times \partial B^{2} \times[0,1] \rightarrow M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc$ $M_{1}\left(\alpha_{1},-\iota_{1}\right)$. Let $W^{\prime \prime \prime}=W^{\prime \prime} \cup_{j} S^{2} \times B^{1} \times[0,1]$. It is easy to see that the boundary $\partial W^{\prime \prime \prime}$ is equal to the disjoint union $M_{0}\left(\alpha_{0}, \iota_{0}\right)+M_{1}\left(\alpha_{1},-\iota_{1}\right)$ and that the triad $\left(W^{\prime \prime \prime}, M_{0}\left(\alpha_{0}, \iota_{0}\right), M_{1}\left(\alpha_{1}, \iota_{1}\right)\right)$ gives an \tilde{H}-cobordism between $M_{0}\left(\alpha_{0}, \iota_{0}\right)$ and $M_{1}\left(\alpha_{1}, \iota_{1}\right)$. This completes the proof.

Lemma 1.8. If $m_{0} \sim 0$ and $m_{1} \sim 0$, then $m_{0} \bigcirc m_{1} \sim 0$.
Proof. For $M_{0}\left(\alpha_{0}, \iota_{0}\right) \in m_{0}, M_{1}\left(\alpha_{1}, \iota_{1}\right) \in m_{1}$, there are \tilde{H}-cobordisms $\left(W_{0}, M_{0}\left(\alpha_{0}, \iota_{0}\right), \phi\right)$ and $\left(W_{1}, M_{1}\left(\alpha_{1}, \iota_{1}\right), \phi\right)$. Let $M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc M_{1}\left(\alpha_{1}, \iota_{1}\right)=$ $M_{0}\left(\alpha_{0}, \iota_{0}\right) \cup_{h_{0}} S^{1} \times B^{2} \times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1}, \iota_{1}\right)-S^{1} \times$ Int $B^{2} \times[0,1]$. If we let $W=$ $W_{0} \cup_{h_{0}} S^{1} \times B^{2} \times[0,1] \cup_{h_{1}} W_{1}$ (See figure 4.), then the $\operatorname{triad}\left(W, M_{0}\left(\alpha_{0}, \iota_{0}\right) \bigcirc\right.$ $\left.M_{1}\left(\alpha_{1}, \iota_{1}\right), \phi\right)$ gives an \tilde{H}-cobordism. So, $m_{0} \bigcirc m_{1} \sim 0$, which completes the proof.

figure 4.
Now we can derive the following theorem which is a main purpose of this section.

Theorem 1.9. The set $\Omega\left(S^{1} \times S^{2}\right)$ forms an abelian group under the sum $\left[m_{0}\right]+\left[m_{1}\right]=\left[m_{0} \bigcirc m_{1}\right]$. The zero element of this group is $[0]$. The inverse of any element $[m]$ is the element $[-m]$.

Proof. To show that the sum $\left[m_{0}\right]+\left[m_{1}\right]=\left[m_{0} \bigcirc m_{1}\right]$ is well-defined, let $m_{0} \sim m_{0}^{\prime}$ and $m_{1} \sim m_{1}^{\prime}$. By Lemma $1.7 m_{0} \bigcirc-m_{0}^{\prime} \sim 0$ and $m_{1} \bigcirc-m_{1}^{\prime} \sim 0$. Then by Lemma $1.8\left(m_{0} \bigcirc-m_{0}^{\prime}\right) \bigcirc\left(m_{1} \bigcirc-m_{1}^{\prime}\right) \sim 0$. Since $\left(m_{0} \bigcirc m_{1}\right) \bigcirc m_{2} \sim m_{0} \bigcirc\left(m_{1} \bigcirc m_{2}\right)$ and $m_{0} \bigcirc m_{1}=m_{1} \bigcirc m_{0}$ for all m_{0}, m_{1} and m_{2}, we obtain $\left(m_{0} \bigcirc m_{1}\right) \bigcirc-\left(m_{0}^{\prime} \bigcirc m_{1}^{\prime}\right) \sim$ $\left(m_{0} \bigcirc-m_{0}^{\prime}\right) \bigcirc\left(m_{1} \bigcirc-m_{1}^{\prime}\right)$. Hence again by Lemma $1.7 m_{0} \bigcirc m_{1} \sim m_{0}^{\prime} \bigcirc m_{1}^{\prime}$. Thus, $\left[m_{0}\right]=\left[m_{0}^{\prime}\right]$ and $\left[m_{1}\right]=\left[m_{1}^{\prime}\right]$ imply $\left[m_{0}\right]+\left[m_{1}\right]=\left[m_{0}^{\prime}\right]+\left[m_{1}^{\prime}\right]$. It is clear that $\left(\left[m_{0}\right]+\left[m_{1}\right]\right)+\left[m_{2}\right]=\left[m_{0}\right]+\left(\left[m_{1}\right]+\left[m_{2}\right]\right)$ and $\left[m_{0}\right]+\left[m_{1}\right]=\left[m_{1}\right]+\left[m_{0}\right]$. Also, we have $[m]+[0]=[m \bigcirc 0]=[m]$ and, by Lemma $1.7,[m]+[-m]=[0]$. This completes the proof.

The group $\Omega\left(S^{1} \times S^{2}\right)$ is called the \tilde{H}-cobordism group of 3-dimensional homology orientable handles. The zero element is denoted by 0 and the inverse of $[m]$ is $-[m]$.

2. Relating the $\tilde{\boldsymbol{H}}$-cobordism group $\Omega\left(\mathbf{S}^{1} \times S^{2}\right)$ to the Fox-Milnor's group \boldsymbol{C} and the Levine's group \boldsymbol{G}_{-}

The purpose of this section is to prove the following theorem.
Theorem 2.1. There is a commutative triangle

of groups and homomorphisms, where the homomorphisms $\phi: C^{1} \rightarrow G_{-}$and $\psi: \Omega\left(S^{1} \times S^{2}\right) \rightarrow G_{-}$are onto.
A knot $k \subset S^{3}$ is a polygonal oriented 1 -sphere k in the oriented piecewiselinear 3-sphere S^{3}. Two knots $k_{1} \subset S^{3}, k_{2} \subset S^{3}$ have the same knot type if there is a piecewise-linear homeomorphism $\left(S^{3}, k_{1}\right) \rightarrow\left(S^{3}, k_{2}\right)$ which is orientationpreserving as both the maps $S^{3} \rightarrow S^{3}$ and $k_{1} \rightarrow k_{2}$. The knot type of a knot $k \subset S^{3}$ will mean the class of knots with the same knot type as $k \subset S^{3}$. The set of knot types is denoted by \mathcal{K}. Let k be a knot type and $\left(k \subset S^{3}\right) \in k$ be a representative knot. By $-k$, we denote the knot type of the knot $\left(-k \subset-S^{3}\right)$, where $-k$ and $-S^{3}$ are the same as k and S^{3} but have the opposite orientations, respectively.

Now we shall construct a function $e: \mathcal{K} \rightarrow \mathfrak{§}_{+}\left(S^{1} \times S^{2}\right)$. Let k be a knot type and $\left(k \subset S^{3}\right) \in k$ be a knot. Consider the regular neighborhood $T(k) \subset S^{3}$ of the knot $k \subset S^{3}$. Then $T(k)$ is clearly piecewise-linear homeomorphic to the solid torus $S^{1} \times B^{2}$. We note that the solid tours $T(k)$ in S^{3} has unique meridian and longitude curves*) (up to isotopies of $\partial T(k)$ and the orientations of curves).

[^1]The orientation of the longitude curve should be chosen so that the longitude curve is homologous to k in $T(k)$. The orientation of the meridian curve should be chosen so that the linking number of the meridian curve and the knot k in S^{3} is +1 . Let $h: S^{1} \times S^{1} \rightarrow \partial T(k)$ be a piecewise-linear homeomorphism such that for some point $\left(s_{1}, s_{2}\right)$ in $S^{1} \times S^{1}$ the curves $h\left(s_{1} \times S^{1}\right)$ and $h\left(S^{1} \times s_{2}\right)$ are the meridian curve and the longitude curve of $T(k)$, respectively. Define M to be the adjunction space S^{3}-Int $(T(k)) \cup_{h} B^{2} \times S^{1} .\left(\partial B^{2}\right.$ is identified with S^{1}.) By applying the Mayer-Vietoris sequence, we have $H_{1}(M ; Z) \approx Z$. Hence M is a homology orientable handle by Poincaré duality. Note that the oriented meridian curve of $T(k)$ represents a generator α of $H_{1}(M ; Z)$. We specify the orientation of M compatible with the orientation of $S^{3}-T(k)$ induced from that of S^{3}. So, a generator $\iota \in H_{3}(M ; Z)$ is specified.

Definition 2.2. The distinguished homology orientable handle $M(\alpha, \iota)$ is called the distinguished homology orientable handle obtained from S^{3} by the elementary surgery along the knot $k \subset S^{3}$.

By using the uniqueness of the meridian curve, the longitude curve and the regular neighborhood, it is easily checked that the type of $M(\alpha, \iota)$ is uniquely determined by the knot type k of $k \subset S^{3}$. So we denote this type by $e(k)$.

Thus, we have the following:
Lemma 2.3. There is a function $e: \mathcal{K} \rightarrow \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$.
For any two knot types k_{1}, k_{2}, one can construct a unique knot type $k_{1} \# k_{2}$ well-known as the knot sum. Two knot types k_{1}, k_{2} are cobordant if for a representative knot $k \subset S^{3}$ of the knot sum $k_{1} \#-k_{2} k$ bounds a locally flat 2-cell in the 4 -cell B^{4}. The set \mathcal{K} modulo this knot cobordism relation forms an abelian group C^{1}, called the knot cobordism group. (See Fox-Milnor [3] for details.) The sum operation of C^{1} is the usual knot sum operation.

Lemma 2.4. The function $e: \mathcal{K} \rightarrow \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ induces a homomorphism $C^{1} \rightarrow \Omega\left(S^{1} \times S^{2}\right)$ also denoted by e.

Proof. For two knot types k_{1}, k_{2}, it is directly checked that $e\left(k_{1} \# k_{2}\right)$ is a circle union of $e\left(k_{1}\right)$ and $e\left(k_{2}\right)$ i.e. $e\left(k_{1} \# k_{2}\right)=e\left(k_{1}\right) \bigcirc e\left(k_{2}\right)$. [Note that for $\left(K_{i} \subset S^{3}\right) \in$ $k_{i}, i=1,2$, the exterior of the knot sum $\left(\mathrm{K}_{1} \subset S^{3}\right) \#\left(K_{2} \subset S^{3}\right)$ is the adjunction

[^2]space of the exteriors of $K_{i} \subset S^{3}$ along uniquely specified annuli on the boundaries] Hence it suffices to show that if a knot type k is cobordant to the trivial knot type, then $e(k) \sim 0$. According to Fox-Milnor [3], this knot type k can be realized as a local knot type of a piecewise linear 2-sphere $S(k)$ in S^{4} with just one locally knotted point. Let $N=N\left(S(k), S^{4}\right)$ be the regular neighborhood of $S(k)$ in S^{4}. Let $W=S^{4}-$ Int N and $M=\partial W$. Notice that $H_{*}(\partial W ; Z) \approx H_{*}\left(S^{1} ; Z\right)$ by the Alex ander duality. By using the MayerVietoris sequence of the triple $\left(S^{4} ; W, N\right)$, we obtain that $H_{1}(M ; Z) \approx Z$. Hence M is a homology orientable handle. M may be a distinguished homology orientable handle obtained from S^{3} by the elementary surgery along a representative knot $\left(k \subset S^{3}\right) \in k: M=M(\alpha, \iota)$. [For N is obtained from a 4-cell by attaching a 2 -handle along a solid torus $T \subset S^{3}$ representing k. Using $H_{1}(M ; Z)=Z$ and the unique longitude curve of $T \subset S^{3}, \mathrm{M}$ with suitably chosen $\alpha \in H_{1}(M ; Z)$ and $\iota \in H_{3}(M ; Z)$ belongs to $\left.e(k)\right]$. Since W has the homology of a circle, it follows from Milnor [11, Assertion 5] that the rational homology group $H_{*}(W ; Q)$ of any infinite cyclic cover W is finitely generated over Q. This shows that the $\operatorname{triad}(W ; M(\alpha, \iota), \phi)$ gives an \tilde{H}-cobordism. Therefore $e(k) \sim 0$. This completes the proof.

Usually any knot type cobordant to the trivial knot type is called a slice knot type.

In the proof of Lemma 2.4, we have also proved the following:
Corollary 2.5 (Kato [5]). If a knot type k is a slice knot type, then any representative homology orientable handle of $e(k)$ is embeddable to the 4 -sphere S^{4}.

A Seifert matrix A (with sign -1) is an integral square matrix with $\operatorname{det}\left(A-A^{\prime}\right)= \pm 1$. (A^{\prime} is the transpose of A.) Two Seifert matrices A_{1}, A_{2} are said to be cobordant if the block sum $A_{1} \oplus-A_{2}$ is congruent (over Z) to a matrix of the form $\left(\begin{array}{ll}O & B \\ C & D\end{array}\right)(B, C, D$ are square matrices of the same size.) The set of Seifert matrices modulo this cobordism relation forms an abelian group G_{-}, called the matrix cobordism group. (See Levine [9] for details. Note that only Seifert matrices with sign -1 are considered here.) In [10] Levine calculated that G_{-}is isomorphic to the direst sum $\sum_{i=1}^{\infty} Z^{i}+\sum_{i=1}^{\infty}(Z / 2 Z)^{i}+\sum_{i=1}^{\infty}(Z / 4 Z)^{i}$.

For a while we would like to spare time for describing familiar algebraic invariants of a polygonal oriented 1 -sphere in a piecewise linear oriented homology 3 -sphere, called a homological knot. The arguments may proceed in the same way as the usual knot theory. Let $k \subset \bar{S}^{3}$ be a homological knot. k bounds an oriented connected surface F, called a Seifert surface for k, by using a notion of the transverse regularity. We define a pairing $\theta: H_{1}(F ; Z) \otimes H_{1}(F ; Z) \rightarrow Z$ such that $\theta(\alpha \otimes \beta)=L\left(\alpha, i_{*}(\beta)\right)$, where L denotes the homological linking number in \bar{S}^{3} and $i_{*}(\beta)$ denotes the translate of the cycle β off F in the positive normal direction. With a basis for $H_{1}(F ; Z), \theta$ represents an integral square matrix A,
called a Seifert matrix for $k \subset \bar{S}^{3}$ associated with surface F. Using a formula $\theta(\alpha \otimes \beta)-\theta(\beta \otimes \alpha)=\alpha \cdot \beta$, where $\alpha \cdot \beta$ is the intersection number, we obtain $\operatorname{det}\left(A-A^{\prime}\right)= \pm 1$. (See for example Levine [8].) So, A is in fact a Seifert matrix. The integral polynomial $A(t)=\operatorname{det}\left(t A-A^{\prime}\right)$ is called the Alexander polynomial of $k \subset \bar{S}^{3}$. Let $X=\bar{S}^{3}-$ Int $T(k)$ for the regular neighborhood $T(k)$ of k in \bar{S}^{3} and \tilde{X} be the infinite cyclic cover of X associated with the Hurewicz homomorphism $\pi_{1}(X) \rightarrow H_{1}(X ; Z)$. We choose an orientation of \tilde{X} induced by that of X and a generator t of the covering transformation group of \tilde{X} associated with a generator α of $H_{1}(X ; Z)$ with linking number $L(\alpha, k)=+1$. By using the Mayer-Vietoris sequence, the matrix $t A-A^{\prime}$ is a relation matrix of $H_{1}(\tilde{X} ; Z)$ as a $Z[t]$-module. The Seifert surface F induces a generaotr μ of $H_{2}(\tilde{X}, \partial \tilde{X} ; Z)(\approx Z)$, called a finite fundametnal class of \tilde{X}. (See Kawauchi [6, Theorem 2.3] and also Erle [1].) By Kawauchi [6, Theorem 2.3] (See also Milnor [11, p 127].) there is a duality $\cap \mu: H^{q}(\tilde{X} ; Q) \approx H_{2-q}(\tilde{X}, \partial \tilde{X} ; Q)$ for all q, since $H_{*}(\tilde{X} ; Q)$ is finitely generated over Q. Hence using a canonical isomorphism $H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \approx H^{1}(\tilde{X} ; Q)$, the cup product $H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \times H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \rightarrow H^{2}(\tilde{X}, \partial \tilde{X} ; Q)$ is a non-singular skew-symmetric bilinear form. Define a symmetric bilinear form

$$
\langle,\rangle: H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \times H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \rightarrow H^{2}(\tilde{X}, \partial \tilde{X} ; Q) \stackrel{\cap}{\approx}{ }^{\mu} H_{0}(\tilde{X} ; Q)=Q
$$

by the equality $\langle x, y\rangle=(x \cup t y) \cap \mu+(y \cup t x) \cap \mu$. This bilinear form is isometric on $t:\langle t x, t y\rangle=\langle x, y\rangle$ and non-singular.

Definition 2.6. The pair $(\langle\rangle, t$,$) is called the quadratic form of the$ homological knot $k \subset S^{3}$. (See Erle [1] and Milnor [11].)

The signature of $k \subset \bar{S}^{3}$ is the signature of this form \langle,$\rangle .$
The following proposition is essentially proved by Erle [1].
Proposition 2.7. Let A be any Seifert matrix for a homological knot $k \subset \bar{S}^{3}$ associated with a Seifert surface. A is S-equivalent to a non-singular Seifert matrix A_{*} such that, with a suitable basis for $H^{1}(\tilde{X}, \partial \tilde{X} ; Q)$, the linear isomorphism $t: H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \rightarrow H^{1}(\tilde{X}, \partial \tilde{X} ; Q)$ and the form $\langle\rangle:, H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \times$ $H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \rightarrow Q$ represent the matrices $A_{*}^{\prime-1} A_{*}$ and $A_{*}+A_{*}^{\prime}$, respectively. (In fact, Erle [1] proved this proposition for any usual knot $k \subset \bar{S}^{3}$. Without difficulty, Erle's proof may be applied for homological knot $k \subset \bar{S}^{3}$. See Trotter [13] for a concept of S-equivalences.)

By Proposition 2.7, the signature of $k \subset \bar{S}^{3}$ is equal to the signature $\sigma\left(A_{*}+A_{*}^{\prime}\right)=\sigma\left(A+A^{\prime}\right)$.

Let $m \in \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ and $M(\alpha, \imath) \in m$. We choose a polygonal oriented simple closed curve ω in $M(\alpha, \iota)$ representing α and let $T(\omega)$ be the regular neighborhood of ω in $M(\alpha, \iota)$. Also we choose polygonal oriented simple closed curves k and l in $\partial T(\omega)$ intersecting in a single point such that k is oriented so as to be
$L(k, \omega)=+1$ and bounds a 2 -cell in $T(\omega)$ and such that l is homologous to ω in $T(\omega)$. (Note that in any case the choice of l is not unique.) Let $\left(s_{1}, s_{2}\right) \in S^{1} \times S^{1}$ and define a piecewise-linear homeomorphism $h: S^{1} \times S^{1} \rightarrow \partial T(\omega)$ such that $h\left(s_{1} \times S^{1}\right)=k$ and $h\left(S^{1} \times s_{2}\right)=l$. Let $\bar{S}^{3}=M(\alpha, \iota)-$ Int $T(\omega) \cup_{h} B^{2} \times S^{1}$. It is easy to see that \bar{S}^{3} is a homology 3 -sphere. (Notice that k is homologous to 0 in $M(\alpha, \iota)$-Int $T(\omega)$.) The orientation of \bar{S}^{3} is chosen so as to coincide with that of $M(\alpha, \iota)-$ Int $T(\omega)$. Thus, we obtain a homological knot $k \subset \bar{S}^{3}$ from $M(\alpha, \imath)\left(\right.$, although the homeomorphism type of the pair $\left(\bar{S}^{3}, k\right)$ is never uniquely determined by the type of $M(\alpha, \iota))$.

Definition 2.8. A Seifert matrix for the homological knot $k \subset \bar{S}^{3}$ associated with a Seifert surface is called a Seifert matrix for $M(\alpha, \iota)$ (or the type m).

Accordingly if A is a Seifert matrix for a knot type k, then A is also a Seifert matrix for the type $e(k)$.

Definition 2.9. The Alexander polynomial $A(t)=\operatorname{det}\left(t A-A^{\prime}\right)$ of $k \subset \bar{S}^{3}$ is called the Alexander polynomial of $M(\alpha, \iota)$ (or the type m).

This definition coincides with that of Kawauchi [7, Definition 1.3], because the matrix $t A-A^{\prime}$ is a relation matrix of $H_{1}(\tilde{M}(\alpha, \iota) ; Z)$ by the canonical isomorphism $H_{1}(\tilde{X} ; Z) \approx H_{1}(\tilde{M}(\alpha, \iota) ; Z)$. Here \tilde{X} denotes the infinite cyclic cover of $X=M(\alpha, \iota)-\operatorname{Int} T(\omega)$ with the uniquely specified generator t of the covering transformation group and with the associated orientation. $\tilde{M}(\alpha, \imath)$ denotes the infinite cyclic cover of $M(\alpha, \iota)$ such that the covering projection $\tilde{M}(\alpha, \iota) \rightarrow M(\alpha, \iota)$ is an extension of the covering projection $\tilde{X} \rightarrow X . \tilde{M}(\alpha, \iota)$ has an orientation compatible with that of \tilde{X}. The generator of the covering transformation group of $\tilde{M}(\alpha, \iota)$ is an extension of $t: \widetilde{X} \rightarrow \tilde{X}$, also denoted by t. Note that the finite fundamental class $\mu \in H_{2}(\tilde{X}, \partial \tilde{X} ; Z)$ determined by a Seifert surface specifies a unique generator of $H_{2}(\tilde{M}(\alpha, \iota) ; Z)$, also denoted by μ by the canonical isomorphism $H_{2}(\tilde{X}, \partial \tilde{X} ; Z) \approx H_{2}(\tilde{M}(\alpha, \iota) ; Z)$. This $\mu \in H_{2}(\tilde{M}(\alpha, \iota) ; Z)$ is called the finite fundamental class of $\tilde{M}(\alpha, \imath)$. By using the canonical isomorphisms $H^{i}(\tilde{X}, \partial \tilde{X} ; Q) \approx H^{i}(\tilde{M}(\alpha, \iota) ; Q), i=1,2$, the bilinear form $\langle\rangle:, H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \times H^{1}(\tilde{X}, \partial \tilde{X} ; Q) \rightarrow Q$ passes to the form $():, H^{1}(\tilde{M}(\alpha, \iota) ; Q) \times H^{1}(\tilde{M}(\alpha, \iota) ; Q) \rightarrow Q$ defined by the equality $(x, y)=$ $(x \cup t y) \cap \mu+(y \cup t x) \cap \mu$ for all x, y in $H^{1}(\tilde{M}(\alpha, l) ; Q)$.

Definition 2.10. The pair $((), t$,$) is called the quadratic form of M(\alpha, \iota)$ (or the type m).

The signature of $M(\alpha, \iota)$ (or the type m), denoted by $\sigma(M(\alpha, \iota)$) (or $\sigma(m)$) is the signature of the homological knot $k \subset \bar{S}^{3}$. So, the signature of $M(\alpha, \iota)$ coincides with the signature of the bilinear form (,). Easily $\sigma(M(\alpha, \imath))=$ $\sigma(M(-\alpha, \iota))$ and $\sigma(M(\alpha,-\iota))=-\sigma(M(\alpha, \iota))$.

From Proposition 2.7, the following is immediately obtained:

Lemma 2.11. Let A be a Seifert matrix for $M(\alpha, \iota) . \quad A$ is S-equivalent to a non-singular Seifert matrix A_{*} such that, with a suitable basis for $H^{1}(\tilde{M}(\alpha, \iota) ; Q)$, the linear isomorphism $t: H^{1}(\tilde{M}(\alpha, \iota) ; Q) \rightarrow H^{1}(\tilde{M}(\alpha, \iota) ; Q)$ and the form $():, H^{1}(\tilde{M}(\alpha, \iota) ; Q) \times H^{1}(\tilde{M}(\alpha, \iota) ; Q) \rightarrow Q$ represent the matrices $A_{*}^{\prime-1} A_{*}$ and $A_{*}+A_{*}^{\prime}$, respectively.

Note that by Lemma $2.11 \sigma(M(\alpha, \iota))=\sigma\left(A_{*}+A_{*}^{\prime}\right)=\sigma\left(A+A^{\prime}\right)$.
For the quadratic form $((), t$,$) of the type m$ of $M(\alpha, \iota)$, if $H^{1}(\tilde{M}(\alpha, \iota) ; Q)$ contains a half-dimensional vector subspace V with $t V=V$ and such that $(x, y)=0$ for all x, y in V, then the quadratic form $((), t$,$) is said to be null-$ cobordant (See Levine [10].).

The following theorem is a basically important result.
Theorem 2.12. If $m \sim 0$, then the quadratic form $((), t$,$) of m$ is nullcobordant.

Proof. Since $m \sim 0$, for $M(\alpha, \iota) \in m$ there exists an \tilde{H}-cobrodism $(W, M(\alpha, \iota), \phi)$. Hence for some $\varphi \in H^{1}(W ; Z)$ with $\varphi \mid M(\alpha, \iota) \in H^{1}(M(\alpha, \iota) ; Z)$ dual to α, the infinite cyclic cover W_{φ} associated with φ has a finitely generated rational homology group $H_{*}\left(W_{\varphi} ; Q\right)$. Note that by Kawauchi [6, Theorem 2.3], the Poincare dualities $\cap \bar{\mu}: H^{*}\left(W_{\varphi}: Q\right) \approx H_{3-*}\left(W_{\varphi}, \tilde{M}(\alpha, \iota) ; Q\right)$ and $\cap \bar{\mu}$: $H^{*}\left(W_{\varphi}, \tilde{M}(\alpha, \iota) ; Q\right) \approx H_{3-*}\left(W_{\varphi} ; Q\right)$ hold, where $\tilde{\mu} \in H_{3}\left(W_{\varphi}, \tilde{M}(\alpha, \iota) ; Z\right)$ is a finite fundamental class determined from μ by the boundary-isomorphism $\partial: H_{3}\left(W_{\varphi}, \tilde{M}(\alpha, \iota) ; Z\right) \approx H_{2}(\tilde{M}(\alpha, \iota) ; Z)$.

Now we consider the following commutative (up to sign) diagram:

Here the top and bottom sequences are exact and the vertical homomorphisms are isomorphisms.

For all $u \in H^{1}\left(W_{\varphi} ; Q\right)$, suppose $\left(i^{*}(u), y\right)=0$. This situation is equivalent to $\delta\left(t-t^{-1}\right) y=0$ i.e. $\left(t-t^{-1}\right) y \in \operatorname{Im} i^{*}$, because $\left(i^{*} u, y\right)=\left[i^{*}(u) \cap\left(t-t^{-1}\right) y\right] \cap \mu=$ $\left[u \cup \delta\left(t-t^{-1}\right) y\right] \cap \bar{\mu} . \quad$ Using $\left(t-t^{-1}\right) \operatorname{Im} i^{*} \subset \operatorname{Im} i^{*}$ and the isomorphism*) $t-t^{-1}$: $H^{1}(\tilde{M}(\alpha, \iota) ; Q) \approx H^{1}(\tilde{M}(\alpha, \iota) ; Q),\left(t-t^{-1}\right) y \in \operatorname{Im} i^{*}$ is equivalent to $y \in \operatorname{Im} i^{*}$. Thus we showed that the orthogonal complement of $\operatorname{Im} i^{*}$ is $\operatorname{Im} i^{*}$ itself. In particular, $\operatorname{dim}_{Q} \operatorname{Im} i^{*}=\frac{1}{2} \operatorname{dim}_{Q} H^{1}(\tilde{M}(\alpha, \iota) ; Q)$. Since $t \operatorname{Im} i^{*} \subset \operatorname{Im} i^{*}$, the quad-

[^3]ratic form $((), t$,$) is null-cobordant. This completes the proof.$
Lemma 2.13. There is a homomorphism $\psi: \Omega\left(S^{1} \times S^{2}\right) \rightarrow G_{-}$.

Proof. Let $m \in \mathbb{C}_{+}\left(S^{1} \times S^{2}\right)$ and A a Seifert matrix for m. We define $\psi[m]=$ $[A]$. To prove the well-definedness, first we shall show that if $m \sim 0$, then A is null-cobordant. By Lemma 2.11, A is S-equivalent to a non-singular Seifert matrix A_{*} such that t represents $A_{*}^{\prime-1} A_{*}$ and the form (,) represents $A_{*}+A_{*}^{\prime}$. Since by Thoerem 2.13 the quadratic form ($(), t$,$) is null-cobordant, there$ exists a symplectic basis $e_{1}, e_{2}, \cdots, e_{s}, e_{1}^{*}, e_{2}^{*}, \cdots, e_{s}^{*}$ of $H^{1}(\tilde{M}(\alpha, \iota) ; Q):\left(e_{i}, e_{j}\right)=$ $\left(e_{i}^{*}, e_{j}^{*}\right)=0,\left(e_{i}, e_{j}^{*}\right)=\delta_{i j}$ such that the vector subspace V spanned by $e_{1}, e_{2}, \cdots, e_{s}$ is invariant under t. (See for example Milnor-Husemoller [12, p 13].) Then there is a non-singular rational matrix P such that the matrix $P^{-1} A_{*}^{\prime-1} A_{*} P$ is of the form $\left(\begin{array}{cc}Q & R \\ O & S\end{array}\right)$ (, since $\left.t V=V\right)$, where Q, R, S are rational square matrices of the same size, and such that $P^{\prime}\left(A_{*}+A_{*}^{\prime}\right) P=\left(\begin{array}{cc}O & I \\ I & O\end{array}\right), I=\left(\begin{array}{cc}O & 1 \\ \therefore & 1 \\ 1 & O\end{array}\right)$.

Using the equality $P^{\prime} A_{*} P=\left[P^{\prime}\left(A_{*}+A_{*}^{\prime}\right) P\left(E+P^{-1} A_{*}^{\prime-1} A_{*} P\right)^{-1}\right]^{\prime}(E$ is the unit matrix.), it is not difficult to see that the matrix $P^{\prime} A_{*} P$ is of the form $\left(\begin{array}{ll}O & B \\ C & D\end{array}\right) .(B, C, D$ are rational square matrices of the same size.) [Note that $\left(\begin{array}{ll}C & D\end{array}\right)$
$\operatorname{det}\left(E+P^{-1} A_{*}^{-1} A_{*} P\right) \neq 0$, since the Alexander polynomial $A(t)$ satisfies $A(-1) \neq 0$.] Then by Levine [9, Lemma 8] A_{*} is null-cobordant. Since A is S-equivalent to A_{*}, it follows that A is cobordant to A_{*}. Hence A is nullcobordant. Let $m_{1}, m_{2} \in \mathbb{C}_{+}\left(S^{1} \times S^{2}\right)$. Notice that if A_{1}, A_{2} are Seifert matrices for m_{1}, m_{2}, respectively, then the block sum $A_{1} \oplus A_{2}$ is a Seifert matirx for a circle union $m_{1} \bigcirc m_{2}$. [To see this, let $M_{i}\left(\alpha_{i}, \iota_{i}\right) \in m, i=1,2$, and consider homological knots $k_{i} \subset \bar{S}_{i}^{3}$ obtained from $M\left(\alpha_{i}, \iota_{i}\right), i=1,2$. Then one can verify that the homological knot sum $\left(k_{1} \subset \bar{S}_{1}^{3}\right) \#\left(k_{2} \subset \bar{S}_{2}^{3}\right)$, defined to be analogous to the usual knot sum, is a homological knot obtained from some circle union $M_{1}\left(\alpha_{1}, t_{1}\right) \bigcirc M_{2}\left(\alpha_{2}, t_{2}\right)$. Now the desired result easily follows.] If $m_{1} \sim m_{2}$, then $m_{1} \bigcirc-m_{2} \sim 0$. Hence the block sum $A_{1} \oplus-A_{2}$ is null-cobordant, since $A_{1} \oplus-A_{2}$ is a Seifert matrix for $m_{1} \bigcirc-m_{2}$. Thus, $\left[m_{1}\right]=\left[m_{2}\right]$ implies $\left[A_{1}\right]=\left[A_{2}\right]$; that is, $\psi[m]=[A]$ is well-defined. Further, ψ is a homomorphism, since for any $m_{1}, m_{2} \in \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$

$$
\begin{aligned}
\psi\left(\left[m_{1}\right]+\left[m_{2}\right]\right) & =\psi\left[m_{1} \bigcirc m_{2}\right] \\
& =\left[A_{1} \oplus A_{2}\right] \\
& =\left[A_{1}\right]+\left[A_{2}\right] \\
& =\psi\left[m_{1}\right]+\psi\left[m_{2}\right]
\end{aligned}
$$

This completes the proof.
2.14. Proof of Theorem 2.1. Levine [9] defined the homolorphism $\dot{\phi}: C^{1} \rightarrow G_{-}$sending any knot cobordism class to the matrix cobordism class of the corresponding Seifert matices. By Lemma 2.4, the homomorphism $e: C^{1} \rightarrow \Omega\left(S^{1} \times S^{2}\right)$ is obtained and by Lemma 2.13, the homomorphism $\psi: \Omega\left(S^{1} \times S^{2}\right) \rightarrow G_{-}$is obtained. From construction, we have $\psi e=\phi$. Since ϕ is onto (See for example Levine [9].), ψ is onto. This proves Theorem 2.1.

Here are four corollaries to Theorem 2.1.
Corollarly 2.15. The \tilde{H}-cobordism group $\Omega\left(S^{1} \times S^{2}\right)$ has the free part of infinite rank.

This follows from the facts that G_{-}has the free part of infinite rank and that the homomorphism ψ is onto.

The reduced Alexander polynomial $\tilde{A}(t)$ of a type $m \in \mathfrak{\nwarrow}_{+}\left(S^{1} \times S^{2}\right)$ is the integral polynomial obtained from the Alexander polynomial $A(t)$ of m by cancelling the factors of the type $f(t) f\left(t^{-1}\right)$.

Corollary 2.16. If $m \sim 0$, then the Alexander polynomial $A(t)$ splits as follows: $A(t) \doteq f(t) f\left(t^{-1}\right)$ for some integral polynomial $f(t)$ and the signature $\sigma(m)$ is 0 . More generally, if $m_{1} \sim m_{2}$, then the reduced Alexander polynomils $\tilde{A}_{1}(t), \tilde{A}_{2}(t)$ are the same polynomial $\left(u p\right.$ to $\left.\pm t^{i}\right): \tilde{A}_{1}(t) \doteq \tilde{I}_{2}(t)$ and the signatures $\sigma\left(m_{1}\right), \sigma\left(m_{2}\right)$ are equal: $\sigma\left(m_{1}\right)=\sigma\left(m_{2}\right)$.

Corollary 2.17. For any $[k] \in C^{1}$, the equalities $\sigma[k]=\sigma([e(k)])$ and $\tilde{A}_{[k]}(t)=$ $\tilde{A}_{[e(k)]}(t)$ hold.

Corollary 2.18. For any $m \in \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$, the signature $\sigma(m)$ is even. For any integer i, there exists $m \in \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ with $\sigma(m)=2 i$.
2.19. Addendum. Re-examination of the Seifert matrices. Let $m \in$ $\mathfrak{c}_{+}\left(S^{1} \times S^{2}\right)$ and $M(\alpha, \imath) \in m$. A Seifert matrix for $M(\alpha, \imath)$ (or m) may be also defined as follows: Let $f: M(\alpha, \iota) \rightarrow S^{1}$ be a piecewise-linear map with $f_{*}: H_{1}(M(\alpha, \iota) ; Z) \approx H_{1}\left(S^{1} ; Z\right)$ and such that for some point $0 \in S^{1}, F=f^{-1}(0)$ is a closed orientable connected surface (See Kawauchi [6, Corollary 1.3].). Using that $[F] \in H_{2}(M(\alpha, \iota) ; Z)$ is a generator, we may orient F so that $[F]=\varphi \cap \iota$, where $\varphi \in H^{1}(M(\alpha, \iota) ; Z)$ is a dual element of $\alpha \in H_{1}(M(\alpha, \iota) ; Z)$. Let M^{*} be the oriented manifold (with orientation induced by that of $M(\alpha, \imath)$) obtained from $M(\alpha, \iota)$ by splitting along F. Let $\partial M^{*}=F \cup F^{\prime}$. Here the component of ∂M^{*} with orientation coinciding with that of F is identified with $F . \quad F^{\prime}$ denotes the copy of F but with the oposite orientation. Let $i^{\prime}: F \rightarrow F^{\prime} \subset \partial M^{*} \subset M^{*}$ be the natural injection. If $a \in H_{1}(F ; Z)$, let $a^{\prime} \in H_{2}(M(\alpha, \iota), M(\alpha, \iota)-F ; Z)$ be the image of a under the composite
$H_{1}(F ; Z) \xrightarrow{i_{*}^{\prime}} H_{1}\left(M^{*} ; Z\right) \underset{\sim}{\approx} H_{1}(M(\alpha, \iota)-F ; Z) \xrightarrow{\stackrel{\partial^{-1}}{\approx} H_{2}(M(\alpha, \iota), M(\alpha, \iota) F ; Z) .}$
By using a duality $\gamma_{U}: H_{2}(M(\alpha, \iota), M(\alpha, \iota)-F ; Z) \approx H^{1}(F ; Z)$, relating a slant product, where U is the Thom class of $M(\alpha, \iota)$ corresponding to the fundamental class ι, define a pairing

$$
\theta^{\prime}: H_{1}(F ; Z) \otimes H_{1}(F ; Z) \rightarrow Z
$$

by the equality $\theta^{\prime}(a \otimes b)=\gamma_{U}\left(a^{\prime}\right) \cap b \in H_{0}(F ; Z)=Z$.
It is checked that with a basis for $H_{1}(F ; Z) \theta^{\prime}$ represents a Seifert matrix for $M(\alpha, \iota)$. The formula $\theta^{\prime}(a \otimes b)-\theta^{\prime}(b \otimes a)=a \cdot b$ is also obtained.
3. Elements of $\Omega\left(S^{1} \times S^{2}\right)$ of order zero and two and the \tilde{H}-cobordism group $\Omega\left(S^{1} \times{ }_{\tau} S^{3}\right)$ of homology non-orientable handles

A general problem of bringing about a better understanding of \tilde{H}-cobordism between the types of distinguished homology orientable handles seems still difficult, but a partial answer is presented here.

Theorem 3.1. If a representative homology orientable handle $M(\alpha, \iota)$ of a type $m \in \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ is embeddable in a homology 4-sphere \bar{S}^{4}, then $m \sim 0$.

Proof. Assume $M(\alpha, \imath) \subset \bar{S}^{4}$. Then $M(\alpha, \imath)$ separates \bar{S}^{4} into two manifolds, say, W_{1}, W_{2} and, by easy computation of the homology, one of W_{1}, W_{2} has the homology of a circle, say, $H_{*}\left(W_{1} ; Z\right) \approx H_{*}\left(S^{1} ; Z\right)$. Then the triad ($\left.W_{1}, M(\alpha, \iota), \phi\right)$ gives an \tilde{H}-cobordism. This completes the proof of Theorem 3.1.

Here are a few examples, whose somewhat analogous properties were also noticed by Kato [5, Theorems 5.1 and 5.5] in higher dimensions.

Examples 3.2. First we consider a (suitably oriented) trefoil 3_{1}. (See fiugre 5.)

figure 5.

Using that $\sigma\left(e\left(3_{1}\right)\right)=\sigma\left(3_{1}\right)= \pm 2 \neq 0$ or that $A(t)=t^{2}-t+1$ is irreducible, $e\left(3_{1}\right) \nsim 0$. Hence by Theorem 3.1, $e\left(3_{1}\right)$ is not embeddable to the 4 -sphere S^{4}. Note that $e\left(3_{1}\right)$ is locally-flatly embeddable to the 5 -sphere S^{5}, since according to Hirsch [4] every compact orientable 3-manifold is locally-flatly embeddable to S^{5}.

On the other hand, consider the stevedore's knot 6 . (See figure 6.)

figure 6.
Since this knot is a slice knot, by Corollary 2.5, e(6_{1}) is embeddable to S^{4}.
Similar arguments also apply for the granny knot $3_{1} \# 3_{1}$ and the square knot $3_{1} \#-3_{1}^{*}$. (See figure 7.)

figure 7.
In fact, $e\left(3_{1} \# 3_{1}\right)$ is not embeddable to S^{4}, although $e\left(3_{1} \#-3_{1}^{*}\right)$ is embeddable to S^{4}, since $\sigma\left(e\left(3_{1} \# 3_{1}\right)\right)=2 \sigma\left(3_{1}\right)= \pm 4 \neq 0$ and $3_{1} \#-3_{1}^{*}$ is a slice knot.

Next we would like to discuss order-two-elements of $\Omega\left(S^{1} \times S^{2}\right)$. To do
this, we shall introduce the \tilde{H}-cobordism group of homology non-orientable handles.

A homology non-orientable handle M is a compact 3-manifold having the homology of the non-orientable handle $S^{1} \times{ }_{\tau} S^{2}: H_{*}(M ; Z) \approx H_{*}\left(S^{1} \times{ }_{\tau} S^{2} ; Z\right)$, and is said to be distinguished if a generator $\alpha \in H_{1}(M ; Z)$ is specified. If a homology non-orientable handle M is distinguished, then the notation $M(\alpha)$ will be used. Two distinguished homology non-orientable handles $M_{1}\left(\alpha_{1}\right)$, $M_{2}\left(\alpha_{2}\right)$ have the same type if there is a piecewise-linear homeomorphism $h: M_{1}\left(\alpha_{1}\right) \rightarrow M_{2}\left(\alpha_{2}\right)$ such that $h_{*}\left(\alpha_{1}\right)=\alpha_{2}$. The type of $M(\alpha)$ is the class of distinguished homology non-orientable handles with the same type as $M(\alpha)$. The set of the types is denoted by $\complement_{+}\left(S^{1} \times_{\tau} S^{2}\right)$.

In $\bigodot_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right)$ an \tilde{H}-cobordism relation is defined as an analogy of Definition 1.1.

Definition 3.3. Two types m_{1}, m_{2} in $\mathfrak{C}_{+}\left(S^{1} \times_{\tau} S^{2}\right)$ are \tilde{H}-cobordant and denoted by $m_{1} \sim m_{2}$ if for $M_{1}\left(\alpha_{1}\right) \in m_{1}, M_{2}\left(\alpha_{2}\right) \in m_{2}$ there exists a pair (W, φ), where W is a compact connected 4-manifold with $\partial W=M_{1}\left(\alpha_{1}\right)+M_{2}\left(\alpha_{2}\right)$ (disjoint union) and $\varphi \in H^{1}(W ; Z)$ whose restrictions $\varphi \mid M_{i}\left(\alpha_{i}\right) \in H^{1}\left(M_{i}\left(\alpha_{i}\right) ; Z\right)$ are dual to $\alpha_{i}, i=1,2$, such that the infinite cyclic cover \tilde{W}_{φ} associated with φ is orientable and has a finitely generated rational homology group $H_{*}\left(W_{\varphi} ; Q\right)$. [Note that any infinite cyclic cover $\tilde{M}(\alpha)$ is always orientable (See Kawauchi [7].).]

Let $m_{0}, m_{1} \in \mathfrak{C}_{+}\left(S^{1} \times_{\tau} S^{2}\right)$ and $M_{0}\left(\alpha_{0}\right) \in m_{0}, M_{1}\left(\alpha_{1}\right) \in m_{1}$. Choose polygonal oriented simple closed curves $\omega_{0} \subset M_{0}\left(\alpha_{0}\right), \omega_{1} \subset M_{1}\left(\alpha_{1}\right)$ which represent α_{0}, α_{1}, respectively. It is not difficult to see that the regular neighborhoods $T\left(\omega_{0}\right) \subset$ $M_{0}\left(\alpha_{0}\right)$ of ω_{0} and $T\left(\omega_{1}\right) \subset M_{1}\left(\alpha_{1}\right)$ of ω_{1} are both peicewise-linearly homeomorphic to the solid Kliein bottle $S^{1} \times{ }_{\tau} B^{2}$. Note that there exists closed connected orientable surfaces $F_{0} \subset M_{0}\left(\alpha_{0}\right), F_{1} \subset M_{1}\left(\alpha_{1}\right)$ transversally intersecting ω_{0}, ω_{1}, in single points, respectively.

Consider two piecewise-linear embeddings

$$
\begin{aligned}
& h_{0}: S^{1} \times{ }_{\tau} B^{2} \times 0 \rightarrow M_{0}\left(\alpha_{0}\right) \\
& h_{1}: S^{1} \times{ }_{\tau} B^{2} \times 1 \rightarrow M_{1}\left(\alpha_{1}\right)
\end{aligned}
$$

such that there exist points $s \in S^{1}, \quad b \in \operatorname{Int} B^{2}$ with $h_{0}\left(S^{1} \times{ }_{\tau} b \times 0\right)=\omega_{0}$, $h_{0}\left(s \times{ }_{\tau} B^{2} \times 0\right) \subset F_{0}, h_{1}\left(S^{1} \times{ }_{\tau} b \times 1\right)=\omega_{1}$ and $h_{1}\left(s \times{ }_{\tau} B^{2} \times 1\right) \subset F_{1}$ and such that ω_{0} and ω_{1} are homologous in the adjunction space $M_{0}\left(\alpha_{0}\right) \cup_{h_{0}} S^{1} \times{ }_{\tau} B^{2} \times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1}\right)$.

As an analogy of Definition 1.4, we may have Definition 3.4.
Definition 3.4. The homology non-orientable handle

$$
M_{0}\left(\alpha_{0}\right) \bigcirc M_{1}\left(\alpha_{1}\right)=M_{0}\left(\alpha_{0}\right) \cup_{h_{0}} S^{1} \times_{\tau} B^{2} \times[0,1] \cup_{h_{1}} M_{1}\left(\alpha_{1}\right)-S^{1} \times_{\tau} \operatorname{Int} B^{2} \times[0,1]
$$

distinguished naturally is called a circle union of $M_{0}\left(\alpha_{0}\right)$ and $M_{1}\left(\alpha_{1}\right)$. The type of $M_{0}\left(\alpha_{0}\right) \bigcirc M_{1}\left(\alpha_{1}\right)$ is denoted by $m_{0} \bigcirc m_{1}$.

It is not difficult to check that for two circle unions $m_{0} \bigcirc m_{1}, m_{0} \bigcirc^{\prime} m_{1}$, $m_{0} \bigcirc m_{1} \sim m_{0} \bigcirc^{\prime} m_{1}$. Further, we can prove that $m_{0} \sim m_{1}$ if and only if $m_{0} \bigcirc m_{1} \sim 0$ as an analogy of Lemma 1.7, where 0 is the type of $S^{1} \times{ }_{\tau} S^{2}$. [Note that $S^{1} \times_{\tau} S^{2}(\alpha)$ has the same type as $S^{1} \times_{T} S^{2}(-\alpha)$.] As a result, the set $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)=\coprod_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right) / \sim$ forms an abelian group under the sum $\left[m_{0}\right]+\left[m_{1}\right]=$ [$m_{0} \bigcirc m_{1}$], called the \tilde{H}-cobordism group of homology non-orientable handles. Every non-zero element of $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ has order 2, since $m \sim m$ implies $m \bigcirc m \sim 1$ The zero element of $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ is the \tilde{H}-cobordism class containing the type 0 of $S^{1} \times_{\tau} S^{2}$.

Theorem 3.5. $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$ is the direct sum of infinite copies of the cyclic group of order 2 .

To prove Theorem 3.5, the Alexander polynomial seems to be usefull.
The Alexander polynomial $A(t)$ of $m \in \mathfrak{C}_{+}\left(S^{1} \times_{\tau} S^{2}\right)$ is the integral polynomial which is a generator of the smallest principal ideal containing the ideal associated with a relation matrix of $H_{1}(\tilde{M}(\alpha) ; Z)$ as a $Z[t]$-module (See Kawauchi [7] for details.). Here, $\tilde{M}(\alpha)$ denotes the infinite cyclic cover of $M(\alpha) \in m$ and t denotes a generator of the covering transformation group of $\tilde{M}(\alpha)$, related to the generator $\alpha \in H_{1}(M(\alpha) ; Z) . \quad A(t)$ is the complete invariant of $M(\alpha)$ or the type m up to units $\pm t^{s} \in Z(t) \cdot A(t)$ satisfies the properties that $A(t) \doteq$ $A\left(-t^{-1}\right)$ and $A|(1)|=1$; and, conversely, any integral polynomial with these properties is the Alexander polynomial of some $m \in \mathfrak{๒}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right)$. (See [7].) For characteristic polynomial $A^{\prime}(t)$ of the linear isomorphism $t: H_{1}(\tilde{M}(\alpha) ; Q) \rightarrow$ $H_{1}(\tilde{M}(\alpha) ; Q)$ we have $A(t) \doteq A^{\prime}(t)$, that is, $A(t), A^{\prime}(t)$ are equal up to units $q t^{s} \in Q[t]$.

The following is an analogous result to Corollary 2.16.
Lemma 3.6. Let $m \in \mathfrak{C}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right)$. If $m \sim 0$, then the Alexander polynomial $A(t)$ of m has a type of $f(t) f\left(-t^{-1}\right)$ for some integral polynomial $f(t)$.

Before showing Lemma 3.6 we shall show Theorem 3.5.
3.7. Proof of Theorem 3.5. Consider for example the irreducible integral polynomials $A_{n}(t)=n t^{2}+t-n, n=1,2,3, \cdots$. These $A_{n}(t)$ are realized as the Alexander polynomials of some $m_{n} \in \mathfrak{C}_{+}\left(S^{1} \times_{\tau} S^{2}\right), n=1,2,3, \cdots$. Then it is easy to see that $m_{1}, m_{2}, m_{3}, \cdots$ represent a set of linearly independent elements of $\Omega\left(S^{1} \times{ }_{\tau} S^{2}\right)$. [Notice that if $A_{1}(t), A_{2}(t)$ are the Alexander polynomials of m_{1}, m_{2}, respectively, then the product $A_{1}(t) A_{2}(t)$ is the Alxeander polynomial of any circle union $m \bigcirc m_{2}$.] This completes the proof.
3.8. Proof of Lemma 3.6. Since $m \sim 0$, for $M(\alpha) \in m$ there exists a pair (W, φ), where W is a compact connected 4-manifold with $\partial W=M(\alpha)$ and $\varphi \in H^{1}(W ; Z)$ with $\varphi \mid M(\alpha) \in H^{1}(M(\alpha) ; Z)$ dual to α, such that the infinite cyclic cover W_{φ} is orientable and has a finitely generated rational homology group $H_{*}\left(W_{\varphi} ; Q\right)$. Then from the exact sequence $H^{1}\left(W_{\varphi} ; Q\right) \xrightarrow{i^{*}} H^{1}(\tilde{M}(\alpha) ; Q)$ $\xrightarrow{\delta} H^{2}\left(W_{\varphi}, \tilde{M}(\alpha) ; Q\right)$ we obtain the short exact sequence $0 \rightarrow \operatorname{Im} i^{*} \rightarrow H^{1}(\tilde{M}(\alpha) ; Q)$ $\rightarrow \operatorname{Im} \delta \rightarrow 0$. Then we have $A(t) \doteq B(t) C(t)$, where $B(t), C(t)$ are the characteristic poylnomials of $t: \operatorname{Im} i^{*} \rightarrow \operatorname{Im} i^{*}, t: \operatorname{Im} \delta \rightarrow \operatorname{Im} \delta$, respectively. Since the square

is commutative, we obtain the Poincare dual isomorphism $\cap \bar{\mu}: \operatorname{Im} \delta \approx \operatorname{Im} \imath_{*}$, where $\mu \in H_{2}(\tilde{M}(\alpha) ; Z)$ and $\bar{\mu} \in H_{3}\left(W_{\varphi}, \tilde{M}(\alpha) ; Z\right)$ are the finite fundamental classes such that $\bar{\mu}$ is mapped to μ by the boundary isomorphism $\partial: H_{3}\left(W_{\varphi}, \tilde{M}(\alpha) ; Z\right) \approx$ $H_{2}(\tilde{M}(\alpha) ; Z)(\approx Z)$. (See Kawauchi [6, Theorem 2.3].) Notice that $t \bar{\mu}=-\bar{\mu}$. Using the identity $\operatorname{Im} i^{*}=\operatorname{Hom}\left(\operatorname{Im} i_{*}, Q\right)$ and the equality $(t u) \cap \bar{\mu}=-t^{-1}(u \cap \bar{\mu})$, the Poincare dual isomorphism $\cap \bar{\mu}: \operatorname{Im} \delta \approx \operatorname{Im} i_{*}$ gives the equality $C\left(-t^{-1}\right) \doteq$ $B(t)$. This proves Lemma 3.6.

Lemma 3.9. This is a well-defined function

$$
\tau: \mathfrak{c}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow \mathfrak{c}_{+}\left(S^{1} \times S^{2}\right)
$$

induced by the 2 -fold orientation covering.
Proof. Let $m \ni \bigoplus_{+}\left(S^{1} \times{ }_{\top} S^{2}\right)$ and $M(\alpha) \in m$. Consider the infinite cyclic covering $p: \tilde{M}(\alpha) \rightarrow M(\alpha)$ associated with the Hurewicz homomorphism. Let t be the generator of the covering transformation group of $\tilde{M}(\alpha)$ related to α. The 2 -fold covering $\tau^{\prime}: M^{\prime} \rightarrow M(\alpha)$ from the orbits space $M^{\prime}=\tilde{M}(\alpha) / t^{2}$ to $M(\alpha)$ induced by the projection $p: \tilde{M}(\alpha) \rightarrow M(\alpha)$ is the 2 -fold orientation covering, since $\tilde{M}(\alpha)$ is orientable.

We must prove that M^{\prime} is a homology orientable handle. Let $p^{\prime}: \tilde{M}(\alpha) \rightarrow M^{\prime}$ be the natural projection. The short exact sequence $0 \rightarrow C_{\sharp}(\tilde{M}(\alpha)) \xrightarrow{t^{2}-1} C_{\sharp}(\tilde{M}(\alpha))$ $\xrightarrow{p^{\prime}} C_{\sharp}\left(M^{\prime}\right) \rightarrow 0$ of simplicial chain $Z\left[t^{2}\right]$-modules induces the following exact sequence

$$
H_{1}(\tilde{M}(\alpha) ; Z) \xrightarrow{p_{*}^{\prime}} H_{1}\left(M^{\prime} ; Z\right) \rightarrow \underset{甘}{H_{0}(\tilde{M}(\alpha) ; Z) \rightarrow 0}
$$

of $Z\left[t^{2}\right]$-modules, where $H_{1}\left(M^{\prime} ; Z\right)$ and $H_{0}(\tilde{M}(\alpha) ; Z)$ are regarded as trivial $Z\left[t^{2}\right]$-modules. Let $\varepsilon: Z\left[t^{2}\right] \rightarrow Z$ be the augmentation homomorphism such that $\varepsilon\left(t^{2}\right)=1$. By taking a tensor product, we obtain an exact sequence

$$
\begin{array}{cc}
H_{1}(\tilde{M}(\alpha) ; Z) \otimes_{\varepsilon} Z \xrightarrow{p_{*}^{\prime} \otimes 1} & H_{1}\left(M_{\|}^{\prime} ; Z\right) \otimes_{\varepsilon} Z \rightarrow H_{0}(\tilde{M}(\alpha) ; Z) \otimes_{\varepsilon} Z \rightarrow 0 . \\
H_{1}\left(M^{\prime} ; Z\right)
\end{array}
$$

Sublemma 3.9.1. $\quad H_{1}(\tilde{M}(\alpha) ; Z) \otimes_{\varepsilon} Z=0$.
By assuming this sublemma, we obtain that $H_{1}\left(M^{\prime} ; Z\right) \approx Z$. By the Poincaré duality, M^{\prime} is a homology orientable handle. Let $\alpha^{\prime} \in H_{1}\left(M^{\prime} ; Z\right)$ be a generator determined by α under the 2 -fold orientation covering $\tau: M^{\prime} \rightarrow M(\alpha)$. Let $\iota \in H_{3}\left(M^{\prime} ; Z\right)$ be any generator. The distinguished homology orientable handles $M^{\prime}\left(\alpha^{\prime}, \iota\right), M^{\prime}\left(\alpha^{\prime},-\imath\right)$ have the same type, because t of $\tilde{M}(\alpha)$ induces a homeomorphism $t^{\prime}: M^{\prime} \rightarrow M^{\prime}$ with $t_{*}^{\prime}\left(\alpha^{\prime}\right)=\alpha^{\prime}$ and $t_{*}^{\prime}(\iota)=-\iota$. This type is denoted by $\tau(m)$. Thus the function $\tau: \mathfrak{§}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow \mathbb{§}_{+}\left(S^{1} \times S^{2}\right)$ is obtained. This completes the proof.
3.10. Proof of Sublemma 3.9.1. Note that there exists a presentation square matrix $S(t)$ of $H_{1}(\tilde{M}(\alpha) ; Z)$ as a $Z[t]$-module i.e. $Z[t]^{2 g} \xrightarrow{S(t)} Z[t]^{2 g} \rightarrow$ $H_{1}(\tilde{M}(\alpha) ; Z) \rightarrow 0$ is exact for some integer $g \geq 0$. [To see this, let $F \subset M(\alpha)$ be a closed orientable connected 2 -sided surface in $M(\alpha)$ intersecting a simple closed curve representing α in a single ponit, and M^{*} be the manifold obtained from $M(\alpha)$ by splitting along F. Since M^{*} is orientable, we have an isomorphism $H_{1}\left(M^{*} ; Z\right) \approx H_{1}(F ; Z)$. Let $i_{1}, i_{2}: F \rightarrow F_{1} \cup F_{2}=\partial M^{*} \subset M^{*}$ be two natural identifications. With suitable bases of $H_{1}(F ; Z), H_{1}\left(M^{*} ; Z\right), i_{1^{*}}, i_{2^{*}}$: $H_{1}(F ; Z) \rightarrow H_{1}\left(M^{*} ; Z\right)$ represent square integral matrices S_{1}, S_{2}, respectively. By applying the Mayer-Vietoris sequence, we obtain an exact sequence

$$
H_{1}(F ; Z) \otimes Z[t] \xrightarrow{i_{*}} H_{1}\left(M^{*} ; Z\right) \otimes Z[t] \rightarrow H_{1}(\tilde{M}(\alpha) ; Z) \rightarrow 0,
$$

where $i_{*}(x)=t i_{1} *(x)-i_{2^{*}}(x)$. Thus, we can obtain an exact sequence

$$
Z[t]^{2 g} \xrightarrow{S(t)} Z[t]^{2 g} \rightarrow H_{1}(\tilde{M}(\alpha): Z) \rightarrow 0,
$$

where $S(t)=t S_{1}-S_{2}$.] By taking a tensor product, we obtain an exact sequence

$$
\begin{aligned}
& Z[t]^{2 g} \otimes_{\mathrm{s}} Z \xrightarrow{S^{\varepsilon}(t)} Z[t]^{2 g} \otimes_{\mathrm{s}} Z \rightarrow H_{1}(\tilde{M}(\alpha) ; Z) \otimes_{\mathrm{s}} Z \rightarrow 0 . \\
& \| \\
& {\left[Z[t] /\left(t^{2}-1\right)\right]^{2 g}} \\
& {\left[Z[t] /\left(t^{2}-1\right)\right]^{2 g}}
\end{aligned}
$$

We shall show that $A^{\varepsilon}(t)=\operatorname{det} S^{\varepsilon}(t)$ is a unit in the quotient ring $Z[t] /\left(t^{2}-1\right)$. Note that $A(t)=\operatorname{det} S(t)$ is the Alexander polynomial of $M(\alpha)$. So, $A(t)$ satisfies $A(t) \doteq A\left(-t^{-1}\right)$ and $|A(1)|=1$. We can write $t^{-s} A(t)=\sum_{i=-s}^{s} a_{i} t^{i}, a_{i}=(-1)^{i} a_{-i}$ $(s>0)$. Then $t^{\eta(s)} A^{\varepsilon}(t)=A^{\varepsilon}(1)$ and $A^{\varepsilon}(t)=t^{\eta(s)} A^{\varepsilon}(1)$ is a unit in $Z[t] /\left(t^{2}-1\right)$, where $\eta(s)=0$ if s is even, 1 if s is odd. This implies that the homomorphism $S^{\varepsilon}(t): Z[t]^{2 g} \otimes_{\varepsilon} Z \rightarrow Z[t]^{2 g} \otimes_{\varepsilon} Z$ is an isomorphism. Therefore $H_{1}(\tilde{M}(\alpha) ; Z) \otimes_{\varepsilon} Z$ $=0$. This proves Sublemma 3.9.1.

Lemma 3.11. The function τ : $\mathfrak{C}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ carries the Alexander polynomial $A(t)$ of any $m \in \bigvee_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right)$ to the Alexander polynomial $A^{\tau}(t)$ of $\tau(m) \in \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ such that $A^{\tau}\left(t^{2}\right) \doteq A(t) A(-t)$.

Proof. Let $M(\alpha) \in m$. With a basis for $H_{1}(\tilde{M}(\alpha) ; Q), t: H_{1}(\tilde{M}(\alpha) ; Q) \rightarrow$ $H_{1}(\tilde{M}(\alpha) ; Q)$ represents a matrix B. Then $A(t) \doteq \operatorname{det}(t E-B)$. For the linear isomorphism $t^{\prime}=t^{2}: H_{1}(\tilde{M}(\alpha) ; Q) \rightarrow H_{1}(\tilde{M}(\alpha) ; Q)$ representing B^{2}, we have $A^{\tau}\left(t^{\prime}\right) \doteq \operatorname{det}\left(t^{\prime} E-B^{2}\right)$. Hence,

$$
\begin{aligned}
A^{\tau}\left(t^{2}\right) & \doteq \operatorname{det}\left(t^{2} E-B^{2}\right) \\
& \doteq \operatorname{det}(t E-B) \operatorname{det}(t E+B) \\
& \doteq A(t) A(-t)
\end{aligned}
$$

This completes the proof.
The reduced Alexander polynomial $\tilde{A}(t)$ of $m \in \mathfrak{G}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right)$ is the integral polynomial obtained from the Alexander polynomial $A(t)$ of m by cancelling the factors of the type $f(t) f\left(-t^{-1}\right)$.

Theorem 3.12. The function $\tau: \mathfrak{C}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow \mathfrak{C}_{+}\left(S^{1} \times S^{2}\right)$ induces a homomorphism $\tau^{*}: \Omega\left(S^{1} \times{ }_{\tau} S^{2}\right) \rightarrow T_{2} \subset \Omega\left(S^{1} \times S^{2}\right)$ carrying the reduced Alexander polynomial $\tilde{A}(t)$ to the reduced Alexander polynomial $\tilde{A}^{\tau}(t)$ such that $A^{\tau}\left(t^{2}\right) \doteq A(t) A(-t)$, where T_{2} is the subgroup of $\Omega\left(S^{1} \times S^{2}\right)$ consisting of elements of order 2 .

Proof. For $m_{1}, m_{2} \in \mathfrak{C}_{+}\left(S^{1} \times_{\tau} S^{2}\right)$, the equality $\tau\left(m_{1} \bigcirc m_{2}\right)=\tau\left(m_{1}\right) \bigcirc \tau\left(m_{2}\right)$ is easily obtained. For $m \in \mathfrak{C}_{+}\left(S^{1} \times{ }_{\tau} S^{2}\right)$, assume $m \sim 0$. Then for $M(\alpha) \in m$ there exists an \tilde{H}-cobordism $\left(W, M(\alpha), S^{1} \times{ }_{\tau} S^{2}\right)$. The 2 -fold orientation cover ($W^{\prime}, M^{\prime}, S^{1} \times S^{2}$) of ($W, M(\alpha), S^{1} \times{ }_{\tau} S^{2}$) gives an \tilde{H}-cobordism. So, $\tau(m) \sim 0$. Therefore τ^{*} is a homomorphism to T_{2}. The remainder follows from Corollary 2.16 and Lemmas 3.6 and 3.11. This completes the proof.

Corollary 3.13. T_{2} is infinitely generated .
Proof. Consider for example $m_{n} \in \mathfrak{C}_{+}\left(S^{1} \times_{\tau} S^{2}\right)$ with Alexander polynomial $A_{n}(t)=n t^{2}+t-n, n=1,2,3, \cdots$, as in 3.7. Then the Alexander polynomial of the 2 -fold orientation cover $\tau\left(m_{n}\right)$ is $A_{n}(t)=n^{2} t^{2}-\left(2 n^{2}+1\right) t+n^{2}$. Since for
$n=1,2,3, \cdots$ these Alexander polynomials $A_{n}(t)$ are irreducible and mutually distinct, the set $\left\{\tau\left(m_{1}\right), \tau\left(m_{2}\right), \tau\left(m_{3}\right), \cdots\right\}$ gives a linearly independent subset of T_{2}, which completes the proof.

One may ask whether the subgroup T_{2}^{\prime} of order-2-elements of the FoxMilnor's knot cobordism group C^{1} is infinitely generated.

As a matter of fact, T_{2}^{\prime} is also infinitely generated, although it seems to be difficult to set up a general argument.

Claim. $\quad T_{2}^{\prime}$ is infinitely generated.
In fact, consider the knot $k_{n} \subset S^{3}$ with the numbers of crossings $2 n, 2 n$, illustrated in figure 8^{n}. In the case $n=1$, this knot k_{1} is called the figure eight knot: $k_{1}=4_{1}$ (See figure 8^{1}.).

figure 8^{n}.

figure 8^{1}.

One can easily shown*) that each knot $k_{n} \subset S^{3}$ is -amphicheiral ${ }^{* *)}$ by an analogy of the method which is used for showing that the figure eight knot is -amphicheiral. Since the Alexander polynomial of $k_{n} \subset S^{3}$ is $A_{n}(t)=n^{2} t^{2}-$ $\left(2 n^{2}+1\right) t+n^{2}$, which is irreducible, it follows that T_{2}^{\prime} is infinitely generated.

One can also derive the conclusion of Corollary 3.13 by using these knots.
In concluding this paper, the author would like to propose a few questions and one interesting conjecture.

Question. Is $\operatorname{Im} \tau^{*}=T_{2}$?

[^4]This question seems closely related to a question due to Fox and Milnor: Is an element of order 2 of C^{1} necessarily determined by a -amphicheiral knot?

One may also ask whether τ^{*} is injective, although the author expects a negative answer.

The following conjecture seems to be justified by Lemma 3.11.
Conjecture. The Alexander polynomial $A(t)$ of a -amphicheiral knot necessarily satisfies $A\left(t^{2}\right) \doteq f(t) f(-t)$ for some integral polynomial $f(t)$ with $f(t) \doteq f\left(-t^{-1}\right)$.

One can easily checked that any -amphicheiral knot in the Alexander and Briggs knot table satisfies this assertion.

For example, the Alexander polynomial of the knot 8_{12} which is known to be -amphicheiral is $A(t)=t^{4}-7 t^{3}+13 t^{2}-7 t+1$. Then,

$$
A\left(t^{2}\right)=\left(t^{4}+t^{3}-3 t^{2}-t+1\right)\left(t^{4}-t^{3}-3 t^{2}+t+1\right) .
$$

Osaka City University

References

[1] D. Erle: Die quadratische Form eines Knotens und ein Satz uiber Knotenmanigfaltigkeiten, J. Reine Angew. Math. 236 (1969), 174-218.
[2] R.H. Fox: A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, M.K. Fort, Jr., Perntice-Hall 1962.
[3] _ and J.W. Milnor: Singularties of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[4] M.W. Hirsch: The imbedding of bounding manifolds in Euclidean space, Ann. of Math. 74 (1961), 494-497.
[5] M. Kato: Higher dimensional PL knotes and knot manifolds, J. Math. Soc. Japan 21 (1969), 458-480.
[6] A. Kawauchi: A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. 26 (1975), 437-458.
[7] -: Three dimensional homology handles and circles, Osaka J. Math. 12 (1975), 565-581.
[8] J. Levine: Polynomial invariants of knots of codimension two, Ann. of Math. 84 (1966), 537-554.
[9] -: Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
[10] -: Invariants of knot cobordism, Invent. math. 8 (1969), 98-110.
[11] J.W. Milnor: Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston Mass. 1968.
[12] -_ and D. Husemoller: Symmetric Bilinear Forms, Springer, 1973.
[13] H.F. Trotter: On S-eqnivalences of Seifert marrices, Invent. math. 20 (1973) 173-207.

[^0]: *) A simple closed curve ω in $S^{1} \times S^{2}$ has geometric index λ, if λ is the least number of intersections that a curve ambient isotopic to ω can have with $s_{1} \times S^{2}$ and has algebraic index λ^{\prime}, if λ^{\prime} is the unique integer such that ω is homologous to λ^{\prime} times $S^{\mathbf{1}} \times s_{2}$ for a point $\left(s_{1}, s_{2}\right) \in S^{\mathbf{1}} \times S^{2}$.

[^1]: *) A meridian curve of a solid (knotted) torus T in S^{3} is a simple closed curve ω in ∂T such that ω is homologous to 0 in T but not in ∂T. A longitude curve of T in S^{3} is a simple closed curve ω in ∂T such that ω is homologous to 0 in S^{3}-Int T but not in ∂T. The uniqueness of the meridian and longitude curves follows from a more general principle: Let X be a homology orientable circle i.e. X is a compact 3 -manifold with $H_{*}(X ; Z) \approx H_{*}\left(S^{1} ; Z\right)$ and $H_{*}(\partial X ; Z) \approx H_{*}\left(S^{1} \times S^{1} ; Z\right)$. If $\omega, \omega^{\prime} \subset \partial X$ are homologous to 0 in X but not in ∂X, then with suitable orientations of $\omega, \omega^{\prime}, \omega$ is isotopic to ω^{\prime} in ∂X. [Proof. Take a simple closed curve ω^{*} in ∂X intersecting ω in single point. Using that ω represents the zero element of $H_{1}(X ; Z)$ and that the natural homomorphism $H_{1}(\partial X ; Z) \rightarrow H_{1}(X ; Z)$ is onto, it follows that ω^{*} represents a generator of $H_{1}(X ; Z)$. Let $f: \partial X \rightarrow \omega^{*}$ be a natural projection such that for some point $p^{*} \in \omega^{*}, f^{-1}\left(p^{*}\right)=\omega$. Then we may find an extension $f^{\prime}: X \rightarrow \omega^{*}$ of f such that $\left(f^{\prime}\right)^{-1}\left(p^{*}\right)=F$ is a connected surface with $\partial F=\omega$. Since the infinite cyclic covering

[^2]: $p: \tilde{X} \rightarrow X$ associated with the Hurewicz homomorphism can be constructed by using f^{\prime}, we may regard $F \subset \tilde{X}$. Note that $[F] \in H_{2}(X, \partial X ; Z)$ is a generator (See [7, Lemma 2.5].). By using the isomorphism $p_{*}: H_{2}(\tilde{X}, \partial \tilde{X} ; Z) \approx H_{2}(X, \partial X ; Z)$ (See [7, Remark 2.4].), [F] \in $H_{2}(\widetilde{X}, \partial \tilde{X} ; Z)$ is a generator i.e. a finite fundamental class (See [6].). Similarly, we can find a surface $F^{\prime} \subset \tilde{X}$ with $\partial F^{\prime}=\omega^{\prime}$ and such that $\left[F^{\prime}\right]$ is a finite fundamental class of \tilde{X}. The boundary-isomorphism $\partial: H_{2}(\tilde{X}, \partial \tilde{X} ; Z) \approx H_{1}(\partial \tilde{X} ; Z)$, then, implies that [ω] and [ω^{\prime}] are equal up to sign. That is, with suitable orientations of $\omega, \omega^{\prime}, \omega$ is homologous to ω^{\prime} and hence homotopic to ω^{\prime} in $\partial \widetilde{X}=S^{1} \times R^{1}$. Accordingly, ω is homotopic to ω^{\prime} in ∂X which implies that ω is isotopic to ω^{\prime} in ∂X.]

[^3]: *) To prove this isomorphism, it suffices to check that the characteristic polynomial $A^{\prime}(t)$ of $t: H^{1}(\tilde{M}(\alpha, \imath) ; Q) \rightarrow H^{1}(\tilde{M}(\alpha, t) ; Q)$ satisfies $A^{\prime}(\pm 1) \neq 0$, because $t-t^{-1}=t^{-1}(t-1)(t+1)$. For the Alexander polynomial $A(t)$ of $M(\alpha, t), A^{\prime}(t)$ equals to $A(t)$ up to units of $Q[t]: A^{\prime}(t) \doteq$ $A(t)$. (See [7, Lemma 2.6].) Since $A(\pm 1) \neq 0$, the result follows.

[^4]: *) See, for example, S. Kinoshita and T. Yajima: On the graphs of knots, Osaka Math. J. 9 (1957), 155-163.
 **) An oriented knot $k \subset S^{3}$ is said to be -amphicheiral, if $-k \subset S^{3}$ and $-k \subset-S^{3}$ belong to the same knot type. (See Fox [2, pl 143] for details.)

