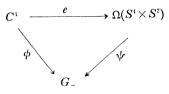
\tilde{H} -COBORDISM, I; THE GROUPS AMONG THREE DIMENSIONAL HOMOLOGY HANDLES

AKIO KAWAUCHI

(Received September 25, 1975)

This paper will introduce a concept of a cobordism theory, called \tilde{H} -cobordism, between 3-dimensional homology handles. The set of the types of distinguished homology orientable handles modulo \tilde{H} -cobordism relation will form an abelian group $\Omega(S^1 \times S^2)$, called the \tilde{H} -cobordism group of homology orientable handles. As a basic property of the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ the following commutative triangle will be established:



Here, C^1 is the Fox-Milnor's 1-knot cobordism group (See Fox-Milnor [3].), G_- is the Levine's integral matrix cobordism group (See Levine [9].), e is a homomorphism and ϕ , ψ are epimorphisms. In particular the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ will have an infinite rank. Analogously the \tilde{H} -cobordism group $\Omega(S^1 \times_{\tau} S^2)$ of homology non-orientable handles will be also constructed. We shall show that the \tilde{H} -cobordism group $\Omega(S^1 \times_{\tau} S^2)$ is isomorphic to the direct sum of infinitely many copies of the cyclic group of order two. Furthermore, it will be shown that the assignment $\tau: m \to m'$ of the type m of any distinguished homology non-orientable handle to the type m' of its 2-fold orientation-cover (which is a distinguished homology orientable handle) induces a well-defined homomorphism $\tau^*: \Omega(S^1 \times_{\tau} S^2) \to T_2 \subset \Omega(S^1 \times S^2)$ from $\Omega(S^1 \times_{\tau} S^2)$ to the subgroup T_2 of $\Omega(S^1 \times S^2)$ consisting of elements of order two. As one consequence T_2 will be infinitely generated.

Section 1 will construct the \hat{H} -cobordism group $\Omega(S^1 \times S^2)$ of homology orientable handles. In Section 2 we will discuss the properties of the invariants of $\Omega(S^1 \times S^2)$ and compare $\Omega(S^1 \times S^2)$ with Fox-Milnor's 1-knot cobordism group C^1 and with the Levine's integral matrix cobordism group G_- . Section 3 will concern the zero element and the order-two-elements of the \hat{H} -cobordism group $\Omega(S^1 \times S^2)$. It will be shown that the type m of a distinguished homology orientable

handle $M(\alpha, \iota)$ represents the zero element of $\Omega(S^1 \times S^2)$ (that is, m is null- \tilde{H} cobordant) if $M(\alpha, \iota)$ is embeddable to a homology 4-sphere. To consider the order-two-elements of $\Omega(S^1 \times S^2)$, we will introduce the \tilde{H} -cobordism group $\Omega(S^1 \times_{\tau} S^2)$ of homology non-orientable handles and determine its group structure and discuss the homomorphism $\tau^* \colon \Omega(S^1 \times_{\tau} S^2) \to T_2 \subset \Omega(S^1 \times S^2)$ in this section.

Throughout this paper, spaces and maps will be considered from the piecewise linear point of view.

1. A construction of the \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$

A 3-dimensional homology orientable handle M is a compact 3-manifold having the integral homology group of the orientable handle $S^1 \times S^2$: $H_*(M; Z) \approx H_*(S^1 \times S^2; Z)$. A homology orientable handle M is said to be distinguished if generators $\alpha \in H_1(M; Z)(\approx Z)$ and $\iota \in H_s(M; Z)(\approx Z)$ are specified. In that case the notation $M(\alpha, \iota)$ will be used. Two distinguished homology orientable handles $M(\alpha, \iota)$, $M'(\alpha', \iota')$ are said to have the same type if there is a piecewiselinear homeomorphism $h: M(\alpha, \iota) \cong M'(\alpha', \iota')$ which induces an isomorphism $h_*: H_*(M(\alpha, \iota); Z) \approx H_*(M'(\alpha', \iota'); Z)$ with $h_*(\alpha) = \alpha'$ and $h_*(\iota) = \iota'$. The class of distinguished homology orientable handles having the same type as $M(\alpha, \iota)$ is called the type of $M(\alpha, \iota)$. By -m we denote the type of $M(\alpha, -\iota)$. It is easily checked that the four distinguished handles $S^1 \times S^2(\alpha, \iota), S^1 \times S^2(\alpha, -\iota),$ $S^1 \times S^2(-\alpha, -\iota)$ and $S^1 \times S^2(-\alpha, \iota)$ of the orientable handle $S^1 \times S^2$ have the same type. We denote this type by 0.

DEFINITION 1.1. Two types m_1, m_2 in $\mathfrak{C}_+(S^1 \times S^2)$ are \tilde{H} -cobordant and denoted by $m_1 \sim m_2$, if for some representatives $M_1(\alpha_1, \iota_1) \in m_1, M_2(\alpha_2, \iota_2) \in m_2$ there exists a pair (W, φ) where W is a compact connected oriented 4-manifold with $\partial W = M_1(\alpha_1, \iota_1) + M_2(\alpha_2, -\iota_2)$ (disjoint union) and φ is a cohomology class in $H^1(W; Z)$ whose restrictions $\varphi | M_i(\alpha_i, \iota_i) \in H^1(M_i(\alpha_i, \iota_i); Z)$ are dual to α_i for i=1, 2, and such that the infinite cyclic cover \tilde{W}_{φ} associated with φ has a finitely generated rational homology group $H_*(\tilde{W}_{\varphi}; Q)$ [that is, for each $i, H_i(\tilde{W}_{\varphi}; Q)$ is a finite dimensional vector space over Q.].

As usual the triad (W, $M_1(\alpha_1, \iota_1), M_2(\alpha_2, \iota_2)$) is called an \tilde{H} -cobordism.

It is easily seen that $m \sim 0$ if and only if for some representative $M(\alpha, \iota) \in m$, there exists a pair (W^+, φ) where W^+ is a compact connected oriented 4-manifold with $\partial W^+ = M(\alpha, \iota)$ and $\varphi \in H^1(W^+; Z)$ with $\varphi \mid M(\alpha, \iota) \in H^1(M(\alpha, \iota); Z)$ dual to α , and such that the infinite cyclic ocver \tilde{W}_{φ}^+ associated with φ has a finitely generated rational homology group $H_*(\tilde{W}_{\varphi}^+; Q)$. In this case the notation $(W^+, M(\alpha, \iota), \phi)$ may be adopted as an \tilde{H} -cobordism.

Lemma 1.2. The \tilde{H} -cobordism relation \sim is an equivalence relation.

Proof. The relation \sim is reflexive, since the infinite cyclic cover \tilde{M} of any homology orientable handle M has a finitely generated rational homology group $H_*(\tilde{M}; Q)$. [To see this, notice that for any $i, i \neq 2, H_i(\tilde{M}; Q)$ is finitely generated (See for example Kawauchi [6, Proposition 3.4] for i=1.). The partial Poincaré duality theorem (See Kawauchi [6].) then asserts a duality $H^{\circ}(\tilde{M}; Q) \approx H_2(\tilde{M}; Q)$. So $H_2(\tilde{M}; Q) \approx Q$.] The relation is obviously symmetric. Further the use of the Mayer-Vietoris sequence easily yields that the relation is transitive. This completes the proof.

DEFINITION 1.3. The set $\Omega(S^1 \times S^2)$ is defined to be the set of $\mathfrak{C}_+(S^1 \times S^2)$ modulo the \tilde{H} -cobordism relation \sim .

For any $m \in \mathfrak{C}_+(S^1 \times S^2)$ the symbol [m] denotes the element of $\Omega(S^1 \times S^2)$ having *m* as the representative.

Now we shall introduce a sum oparation, called a circle union, in the set $\Omega(S^1 \times S^2)$.

Let $m_0, m_1 \in \mathbb{G}_+(S^1 \times S^2)$ and $M_i(\alpha_i, \iota_i) \in m_i, i=0, 1$. Choose for each *i* a polygonal oriented simple closed curve ω_i in $M_i(\alpha_i, \iota_i)$ which represents the homology class α_i . Then for each *i* there exists a closed connected orientable surface F_i in $M_i(\alpha_i, \iota_i)$ which intersects ω_i in a single point. [To see this, first note that the identity map $\omega_i \subset \omega_i$ can be extended to a piecewise-linear map $f_i: M_i(\alpha_i, \iota_i) \rightarrow \omega_i$ by means of the elementary obstruction theory. Second, note that there is a point $p_i \in \omega_i$ such that the preimage $f_i^{-1}(p_i)$ is a closed (not necessarily connected) orientable surface. Now choose as F_i the component of $f_i^{-1}(p_i)$ containing p_i .]

Consider the solid torus $S^1 \times B^2$ and choose piecewise-linear embeddings

$$h_0: S^1 \times B^2 \times 0 \to M_0(\alpha_0, \iota_0)$$
$$h_1: S^1 \times B^2 \times 1 \to M_1(\alpha_1, \iota_1)$$

such that

(1) there exist points $s \in S^1$, $b \in \text{Int } B^2$ with $h_0(s \times B^2 \times 0) \subset F_0$, $h_0(S^1 \times b \times 0) = \omega_0$, $h_1(s \times B^2 \times 1) \subset F_1$ and $h_1(S^1 \times b \times 1) = \omega_1$,

(2) both h_0 and h_1 are orientation-reversing with respect to the orientations of $S^1 \times B^2 \times 0$ and $S^1 \times B^2 \times 1$ induced from some orientation of $S^1 \times B^2 \times [0, 1]$,

(3) ω_0 and ω_1 are homologous in the adjunction space $M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1).$

Then the manifold $M = M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1) - S^1 \times$ Int $B^2 \times [0, 1]$ is a homology handle. [Proof. Let i=0 or 1. Consider the manifold $M'_i = M_i - h_i(S^1 \times \operatorname{Int} B^2 \times i)$. Let $b' \in \partial B^2$ and the simple closed curve $\omega'_i = h_i(S^1 \times b' \times i) \subset \partial M'_i$ be oriented so that ω'_i is homologous to ω_i in M_i . Let $\eta_i = h_i(s \times \partial B^2 \times i) \subset \partial M'_i$ be oriented suitably. It is easily checked that ω'_i

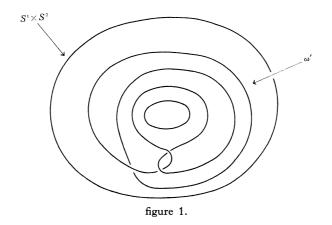
represents a generator of $H_1(M'_i; Z)(\approx Z)$ and η_i represents the zero element of $H_1(M'_i; Z)$ (since η_i bounds an orientable surface $F_i - h_i(s \times \operatorname{Int} B^2 \times i)$ in M'_i) and that ω'_i , η_i represent a basis for $H_1(\partial M'_i; Z)$. Then from consideration of the Mayer-Vietoris sequence we obtain that $H_1(M; Z) \approx Z$. Since M is orientable, $H_*(M; Z) \approx H_*(S^1 \times S^2; Z)$ by Poincaré duality.]

From construction it can be seen that the homology classes $\alpha_i \in H_1(M_i(\alpha_i, \iota_i); Z)$, i=0, 1, specify a unique homology class $\alpha_1 \in H_1(M; Z)$ and that the fundamental classes $\iota_i \in H_3(M_i(\alpha_i, \iota_i); Z)$, i=0, 1, specify a unique fundamental class $\iota \in H_3(M; Z)$.

DEFINITION 1.4. The distinguished homology orientable handle $M(\alpha, \iota)$ is called a *circle union* of $M_0(\alpha_0, \iota_0)$ and $M_1(\alpha_1, \iota_1)$ and denoted by $M_0(\alpha_0, \iota_0) \bigcirc$ $M_1(\alpha_1, \iota_1)$. Also, the type of $M(\alpha, \iota)$ is called a circle union of the types m_0 and m_1 and denoted by $m_0 \bigcirc m_1$.

Clearly the type of $M_0(\alpha_0, -\iota_0) \bigcirc M_1(\alpha_1, -\iota_1)$ is $-(m_0 \bigcirc m_1) = (-m_0) \bigcirc (-m_1)$.

1.5. Remark to Definition 1.4. It should be remarked that the circle union $m_0 \bigcirc m_1$ depends upon the choices of ω_0 , ω_1 , h_0 and h_1 . Consider for example a distinguished orientable handle $S^1 \times S^2(\alpha, \iota)$. Let $\omega \subset S^1 \times S^2(\alpha, \iota)$ be an oriented simple closed curve representing α of geometrical index^{*)} 1 and $T(\omega)$ be the regular neighborhood of ω in $S^1 \times S^2(\alpha, \iota)$. If the circle union $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ is defined to be the double of $cl(S^1 \times S^2)(\alpha, \iota) - T(\omega)$), then $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ has the same type as $S^1 \times S^2(\alpha, \iota)$. On the other hand, consider for example an oriented simple closed curve $\omega' \subset S^1 \times S^2(\alpha, \iota)$ representing α of geometrical index 3 and algebraic index 1 (See figure 1.) and let $T(\omega')$ be the regular neighborhood of ω' in $S^1 \times S^2(\alpha, \iota)$.



^{*)} A simple closed curve ω in S¹×S² has geometric index λ, if λ is the least number of intersections that a curve ambient isotopic to ω can have with s₁×S² and has algebraic index λ', if λ' is the unique integer such that ω is homologous to λ' times S¹×s₂ for a point (s₁, s₂)∈S¹×S².

If the circle union $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ is defined to be the double of $cl(S^1 \times S^2(\alpha, \iota) - T(\omega'))$, then $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ does not have the same type as $S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$, because $\pi_1(S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)) \approx Z$, but $\pi_1(S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota))$ is non-abelian. [In fact, the natural injection $\partial T(\omega') \to S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota)$ induces a monomorphism $\pi_1(\partial T(\omega')) \to \pi_1(S^1 \times S^2(\alpha, \iota) \bigcirc S^1 \times S^2(\alpha, -\iota))$ by the loop theorem.]

In spite of Remark 1.5 we can prove the following for arbitrary two circle unions $m_0 \bigcirc m_1$, $m_0 \bigcirc m_1$ of given two types m_0 , m_1 :

Lemma 1.6. $m_0 \bigcirc m_1 \sim m_0 \bigcirc 'm_1$.

Proof. Let $M_0(\alpha_0, \iota_0) \in m_0$ and $M_1(\alpha_1, \iota_1) \in m_1$. Assume $M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1) \in m_0 \bigcirc m_1$ and $M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1) \in m_0 \bigcirc m_1$ are given by the following:

$$\begin{split} &M_{0}(\alpha_{0}, \iota_{0}) \bigcirc M_{1}(\alpha_{1}, \iota_{1}) \\ &= M_{0}(\alpha_{0}, \iota_{0}) \times 0 \cup_{h_{0}} S^{1} \times B^{2} \times [0, 1] \cup_{h_{1}} M_{1}(\alpha_{1}, \iota_{1}) \times 0 - S^{1} \times \operatorname{Int} B^{2} \times [0, 1] \\ &M_{0}(\alpha_{0}, \iota_{0}) \bigcirc' M_{1}(\alpha_{1}, \iota_{1}) \\ &= M_{0}(\alpha_{0}, \iota_{0}) \times 1 \cup_{h_{0}'} S^{1} \times B^{2} \times [0, 1]_{h_{1}'} M_{1}(\alpha_{1}, \iota_{1}) \times 1 - S^{1} \times \operatorname{Int} B^{2} \times [0, 1] \,. \end{split}$$

Then we let

$$W = M_{\scriptscriptstyle 0}(lpha_{\scriptscriptstyle 0},\,\iota_{\scriptscriptstyle 0}) imes [0,\,1] egin{array}{c} \cup_{\,h_{\scriptscriptstyle 0}} S^{\,\scriptscriptstyle 1} imes B^2 imes [0,\,1] \cup_{\,h_{\scriptscriptstyle 1}} \ \cup_{\,h_{\scriptscriptstyle 1}} S^{\,\scriptscriptstyle 1} imes B^2 imes [0,\,1] \cup_{\,h_{\scriptscriptstyle 1}} M_{\scriptscriptstyle 1}(lpha_{\scriptscriptstyle 1},\,\iota_{\scriptscriptstyle 1}) imes [0,\,1] \, . \ \cup_{\,h_{\scriptscriptstyle 1}} S^{\,\scriptscriptstyle 1} imes B^2 imes [0,\,1] \cup_{\,h_{\scriptscriptstyle 1}} M_{\scriptscriptstyle 1}(lpha_{\scriptscriptstyle 1},\,\iota_{\scriptscriptstyle 1}) imes [0,\,1] \, . \end{array}$$

(See figure 2.)

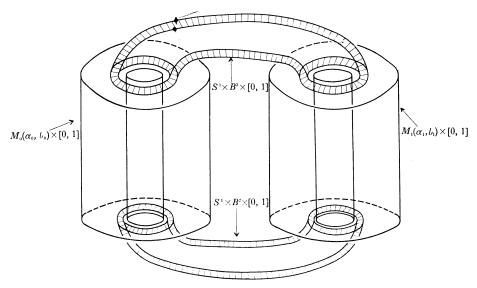
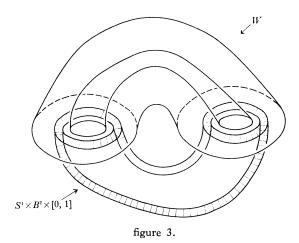


figure 2.

Clearly we have $\partial W = M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1) + M_0(\alpha_0, -\iota_0) \bigcirc M_1(\alpha_1, -\iota_1)$. Note that α_0, α_1 represent the same element α in $H_1(W; Z)$. Let $\varphi \in H^1(W; Z)$ be dual to α and \tilde{W}_{φ} be the infinite cyclic cover of W associated with φ . Since \tilde{W}_{φ} is the union of $\tilde{M}_0(\alpha_0, \iota_0) \times [0, 1]$, $R^1 \times B^2 \times [0, 1]$, $R^1 \times B^2 \times [0, 1]$ and $\tilde{M}_1(\alpha_1, \iota_1) \times [0, 1]$, each two intersections of which is empty or homeomorphic to $R^1 \times B^2$, it follows from the Mayer-Vietoris sequence that $H_*(\tilde{W}_{\varphi}; Q)$ is finitely generated over Q, where $\tilde{M}_i(\alpha_i, \iota_i)$ are the infinite cyclic covers of $M_i(\alpha_i, \iota_i)$, i=0, 1. Thus, the triad $(W, M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1), M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1))$ gives an \tilde{H} -cobordism and hence $m_0 \bigcirc m_1 \sim m_0 \bigcirc m_1$. This completes the proof.

Lemma 1.7. $m_0 \sim m_1$ is equivalent to $m_0 \bigcirc -m_1 \sim 0$.

Proof. Assume $m_0 \sim m_1$. Then for some representatives $M_0(\alpha_0, \iota_0) \in m_0$, $M_1(\alpha_1, \iota_1) \in m_1$ there is an \hat{H} -cobordism $(W, M_0(\alpha_0, \iota_0), M_1(\alpha_1, \iota_1))$. Note that there is a cohomology class $\varphi \in H^1(W; Z)$ such that for each $i \not \varphi | M_i(\alpha_i, \iota_i) \in$ $H^1(M(\alpha_i, \iota_i); Z)$ is dual to α_i . Let $M_0(\alpha_0, \iota_0) \supset M_1(\alpha_1, -\iota_1) = M_0(\alpha_0, \iota_0) \cup_{h_0}$ $S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, -\iota_1) - S^1 \times \text{Int } B^2 \times [0, 1]$ and $W' = W \cup_{h_0, h_1} S^1 \times B^2$ $\times [0, 1]$ (See figure 3.). Clearly $\partial W' = M_0(\alpha_0, -\iota_0) \bigcirc M_1(\alpha_1, -\iota_1)$. The cohomology class $\varphi \in H^1(W; Z)$ is easily extended to a cohomology class $\varphi' \in H^1(W'; Z)$ such that the restriction $\varphi' | M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, -\iota_1) \in H^1(M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, -\iota_1); Z)$. By applying the Mayer-Vietoris sequence, it is not difficult to see that the infinite cyclic cover $\tilde{W}'_{\varphi'}$; Q). [Use that $H_*(\tilde{W}_{\varphi}; Q)$ is finitely generated over Q.] So, $m_0 \bigcirc -m_1 \sim 0$.



Conversely assume $m_0 \bigcirc -m_1 \sim 0$. For $M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, -\iota_1) \in m_0 \bigcirc -m_1$ there is an \tilde{H} -cobordism ($W'', M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, -\iota_1), \phi$). By the definition

of the circle union there is a natural injection $j: S^1 \times \partial B^2 \times [0, 1] \to M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, -\iota_1)$. Let $W''' = W'' \cup_j S^2 \times B^1 \times [0, 1]$. It is easy to see that the boundary $\partial W'''$ is equal to the disjoint union $M_0(\alpha_0, \iota_0) + M_1(\alpha_1, -\iota_1)$ and that the triad $(W''', M_0(\alpha_0, \iota_0), M_1(\alpha_1, \iota_1))$ gives an \tilde{H} -cobordism between $M_0(\alpha_0, \iota_0)$ and $M_1(\alpha_1, \iota_1)$. This completes the proof.

Lemma 1.8. If $m_0 \sim 0$ and $m_1 \sim 0$, then $m_0 \bigcirc m_1 \sim 0$.

Proof. For $M_0(\alpha_0, \iota_0) \in m_0$, $M_1(\alpha_1, \iota_1) \in m_1$, there are \tilde{H} -cobordisms $(W_0, M_0(\alpha_0, \iota_0), \phi)$ and $(W_1, M_1(\alpha_1, \iota_1), \phi)$. Let $M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1) = M_0(\alpha_0, \iota_0) \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} M_1(\alpha_1, \iota_1) - S^1 \times \text{Int } B^2 \times [0, 1]$. If we let $W = W_0 \cup_{h_0} S^1 \times B^2 \times [0, 1] \cup_{h_1} W_1$ (See figure 4.), then the triad $(W, M_0(\alpha_0, \iota_0) \bigcirc M_1(\alpha_1, \iota_1), \phi)$ gives an \tilde{H} -cobordism. So, $m_0 \bigcirc m_1 \sim 0$, which completes the proof.

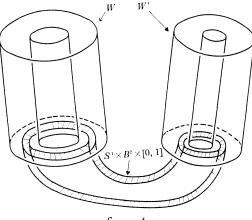


figure 4.

Now we can derive the following theorem which is a main purpose of this section.

Theorem 1.9. The set $\Omega(S^1 \times S^2)$ forms an abelian group under the sum $[m_0]+[m_1]=[m_0 \bigcirc m_1]$. The zero element of this group is [0]. The inverse of any element [m] is the element [-m].

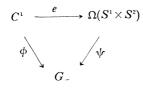
Proof. To show that the sum $[m_0]+[m_1]=[m_0 \bigcirc m_1]$ is well-defined, let $m_0 \sim m'_0$ and $m_1 \sim m'_1$. By Lemma 1.7 $m_0 \bigcirc -m'_0 \sim 0$ and $m_1 \bigcirc -m'_1 \sim 0$. Then by Lemma 1.8 $(m_0 \bigcirc -m'_0) \bigcirc (m_1 \bigcirc -m'_1) \sim 0$. Since $(m_0 \oslash m_1) \oslash m_2 \sim m_0 \bigcirc (m_1 \oslash m_2)$ and $m_0 \oslash m_1 = m_1 \bigcirc m_0$ for all m_0, m_1 and m_2 , we obtain $(m_0 \bigcirc m_1) \bigcirc -(m'_0 \oslash m'_1) \sim (m_0 \bigcirc -m'_0) \bigcirc (m_1 \bigcirc -m'_1)$. Hence again by Lemma 1.7 $m_0 \oslash m_1 \sim m'_0 \oslash m'_1$. Thus, $[m_0] = [m'_0]$ and $[m_1] = [m'_1]$ imply $[m_0] + [m_1] = [m'_0] + [m'_1]$. It is clear that $([m_0] + [m_1]) + [m_2] = [m_0] + ([m_1] + [m_2])$ and $[m_0] + [m_1] = [m_1] + [m_0]$. Also, we have $[m] + [0] = [m \bigcirc 0] = [m]$ and, by Lemma 1.7, [m] + [-m] = [0]. This completes the proof.

The group $\Omega(S^1 \times S^2)$ is called the *H*-cobordism group of 3-dimensional homology orientable handles. The zero element is denoted by 0 and the inverse of [m] is -[m].

2. Relating the \hat{H} -cobordism group $\Omega(S^1 \times S^2)$ to the Fox-Milnor's group C and the Levine's group G_-

The purpose of this section is to prove the following theorem.

Theorem 2.1. There is a commutative triangle



of groups and homomorphisms, where the homomorphisms $\phi: C^1 \rightarrow G_-$ and $\psi: \Omega(S^1 \times S^2) \rightarrow G_-$ are onto.

A knot $k \subset S^3$ is a polygonal oriented 1-sphere k in the oriented piecewiselinear 3-sphere S^3 . Two knots $k_1 \subset S^3$, $k_2 \subset S^3$ have the same knot type if there is a piecewise-linear homeomorphism $(S^3, k_1) \rightarrow (S^3, k_2)$ which is orientationpreserving as both the maps $S^3 \rightarrow S^3$ and $k_1 \rightarrow k_2$. The knot type of a knot $k \subset S^3$ will mean the class of knots with the same knot type as $k \subset S^3$. The set of knot types is denoted by \mathcal{K} . Let k be a knot type and $(k \subset S^3) \in k$ be a representative knot. By -k, we denote the knot type of the knot $(-k \subset -S^3)$, where -k and $-S^3$ are the same as k and S^3 but have the opposite orientations, respectively.

Now we shall construct a function $e: \mathcal{K} \to \mathfrak{C}_+(S^1 \times S^2)$. Let k be a knot type and $(k \subset S^3) \in k$ be a knot. Consider the regular neighborhood $T(k) \subset S^3$ of the knot $k \subset S^3$. Then T(k) is clearly piecewise-linear homeomorphic to the solid torus $S^1 \times B^2$. We note that the solid tours T(k) in S^3 has unique meridian and longitude curves^{*)} (up to isotopies of $\partial T(k)$ and the orientations of curves).

^{*)} A meridian curve of a solid (knotted) torus T in S³ is a simple closed curve ω in ∂T such that ω is homologous to 0 in T but not in ∂T. A longitude curve of T in S³ is a simple closed curve ω in ∂T such that ω is homologous to 0 in S³-Int T but not in ∂T. The uniqueness of the meridian and longitude curves follows from a more general principle: Let X be a homology orientable circle i.e. X is a compact 3-manifold with H_{*}(X; Z)≈H_{*}(S¹; Z) and H_{*}(∂X; Z)≈H_{*}(S¹×S¹; Z). If ω, ω'⊂∂X are homologous to 0 in X but not in ∂X, then with suitable orientations of ω, ω', ω is isotopic to ω' in ∂X. [Proof. Take a simple closed curve ω* in ∂X intersecting ω in single point. Using that ω represents the zero element of H₁(X; Z) and that the natural homomorphism H₁(∂X; Z)→H₁(X; Z) is onto, it follows that ω* represents a generator of H₁(X; Z). Let f:∂X→ω* be a natural projection such that for some point p*∈ω*, f⁻¹(p*)=ω. Then we may find an extension f': X→ω* of f such that (f')⁻¹(p*)=F is a connected surface with ∂F=ω. Since the infinite cyclic covering

The orientation of the longitude curve should be chosen so that the longitude curve is homologous to k in T(k). The orientation of the meridian curve should be chosen so that the linking number of the meridian curve and the knot k in S^3 is +1. Let $h: S^1 \times S^1 \to \partial T(k)$ be a piecewise-linear homeomorphism such that for some point (s_1, s_2) in $S^1 \times S^1$ the curves $h(s_1 \times S^1)$ and $h(S^1 \times s_2)$ are the meridian curve and the longitude curve of T(k), respectively. Define M to be the adjunction space S^3 -Int $(T(k)) \cup_k B^2 \times S^1$. $(\partial B^2$ is identified with S^1 .) By applying the Mayer-Vietoris sequence, we have $H_1(M; Z) \approx Z$. Hence M is a homology orientable handle by Poincaré duality. Note that the oriented meridian curve of T(k) represents a generator α of $H_1(M; Z)$. We specify the orientation of M compatible with the orientation of $S^3 - T(k)$ induced from that of S^3 . So, a generator $\iota \in H_3(M; Z)$ is specified.

DEFINITION 2.2. The distinguished homology orientable handle $M(\alpha, \iota)$ is called the distinguished homology orientable handle obtained from S³ by the elementary surgery along the knot $k \subset S^3$.

By using the uniqueness of the meridian curve, the longitude curve and the regular neighborhood, it is easily checked that the type of $M(\alpha, \iota)$ is uniquely determined by the knot type \bigstar of $k \subset S^3$. So we denote this type by $e(\bigstar)$.

Thus, we have the following:

Lemma 2.3. There is a function $e: \mathcal{K} \to \mathbb{G}_+(S^1 \times S^2)$.

For any two knot types k_1 , k_2 , one can construct a unique knot type $k_1 \# k_2$ well-known as *the knot sum*. Two knot types k_1 , k_2 are *cobordant* if for a representative knot $k \subset S^3$ of the knot sum $k_1 \# - k_2 k$ bounds a locally flat 2-cell in the 4-cell B^4 . The set \mathcal{K} modulo this knot cobordism relation forms an abelian group C^1 , called *the knot cobordism group*. (See Fox-Milnor [3] for details.) The sum operation of C^1 is the usual knot sum operation.

Lemma 2.4. The function $e: \mathcal{K} \to \mathfrak{C}_+(S^1 \times S^2)$ induces a homomorphism $C^1 \to \Omega(S^1 \times S^2)$ also denoted by e.

Proof. For two knot types k_1, k_2 , it is directly checked that $e(k_1 \# k_2)$ is a circle union of $e(k_1)$ and $e(k_2)$ i.e. $e(k_1 \# k_2) = e(k_1) \bigcirc e(k_2)$. [Note that for $(K_i \subset S^3) \in k_i$, i=1, 2, the exterior of the knot sum $(K_1 \subset S^3) \# (K_2 \subset S^3)$ is the adjunction

 $p: \tilde{X} \to X$ associated with the Hurewicz homomorphism can be constructed by using f', we may regard $F \subset \tilde{X}$. Note that $[F] \in H_2(X, \partial X; Z)$ is a generator (See [7, Lemma 2.5].). By using the isomorphism $p_*: H_2(\tilde{X}, \partial \tilde{X}; Z) \approx H_2(X, \partial X; Z)$ (See [7, Remark 2.4].), $[F] \in H_2(\tilde{X}, \partial \tilde{X}; Z)$ is a generator *i.e.* a finite fundamental class (See [6].). Similarly, we can find a surface $F' \subset \tilde{X}$ with $\partial F' = \omega'$ and such that [F'] is a finite fundamental class of \tilde{X} . The boundary-isomorphism $\partial: H_2(\tilde{X}, \partial \tilde{X}; Z) \approx H_1(\partial \tilde{X}; Z)$, then, implies that $[\omega]$ and $[\omega']$ are equal up to sign. That is, with suitable orientations of ω, ω', ω is homologous to ω' and hence homotopic to ω' in $\partial \tilde{X} = S^1 \times R^1$. Accordingly, ω is homotopic to ω' in ∂X which implies that ω is isotopic to ω' in $\partial X.$]

space of the exteriors of $K_i \subset S^3$ along uniquely specified annuli on the boundaries] Hence it suffices to show that if a knot type & is cobordant to the trivial knot type, then $e(k) \sim 0$. According to Fox-Milnor [3], this knot type k can be realized as a local knot type of a piecewise linear 2-sphere S(k) in S⁴ with just one locally knotted point. Let $N=N(S(k), S^4)$ be the regular neighborhood of S(4) in S^4 . Let $W=S^4-\operatorname{Int} N$ and $M=\partial W$. Notice that $H_*(\partial W; Z) \approx H_*(S^1; Z)$ by the Alex ander duality. By using the Mayer-Vietoris sequence of the triple (S⁴; W, N), we obtain that $H_1(M; Z) \approx Z$. Hence M is a homology orientable handle. M may be a distinguished homology orientable handle obtained from S^3 by the elementary surgery along a representative knot $(k \subset S^3) \in k$: $M = M(\alpha, \iota)$. [For N is obtained from a 4-cell by attaching a 2-handle along a solid torus $T \subset S^3$ representing k. Using $H_1(M; Z) = Z$ and the unique longitude curve of $T \subset S^3$, M with suitably chosen $\alpha \in H_1(M; Z)$ and $\iota \in H_3(M; Z)$ belongs to e(k). Since W has the homology of a circle, it follows from Milnor [11, Assertion 5] that the rational homology group $H_*(\tilde{W}; Q)$ of any infinite cyclic cover \tilde{W} is finitely generated over Q. This shows that the triad $(W; M(\alpha, \iota), \phi)$ gives an \tilde{H} -cobordism. Therefore $e(k) \sim 0$. This completes the proof.

Usually any knot type cobordant to the trivial knot type is called *a slice* knot type.

In the proof of Lemma 2.4, we have also proved the following:

Corollary 2.5 (Kato [5]). If a knot type k is a slice knot type, then any representative homology orientable handle of e(k) is embeddable to the 4-sphere S^4 .

A Seifert matrix A (with sign -1) is an integral square matrix with $det(A-A')=\pm 1$. (A' is the transpose of A.) Two Seifert matrices A_1, A_2 are said to be cobordant if the block sum $A_1 \oplus -A_2$ is congruent (over Z) to a matrix of the form $\begin{pmatrix} O & B \\ C & D \end{pmatrix}$ (B, C, D are square matrices of the same size.) The set of

Seifert matrices modulo this cobordism relation forms an abelian group G_{-} , called *the matrix cobordism group*. (See Levine [9] for details. Note that only Seifert matrices with sign -1 are considered here.) In [10] Levine calculated that G_{-} is isomorphic to the direct sum $\sum_{i=1}^{\infty} Z^{i} + \sum_{i=1}^{\infty} (Z/2Z)^{i} + \sum_{i=1}^{\infty} (Z/4Z)^{i}$.

For a while we would like to spare time for describing familiar algebraic invariants of a polygonal oriented 1-sphere in a piecewise linear oriented homology 3-sphere, called a homological knot. The arguments may proceed in the same way as the usual knot theory. Let $k \subset \overline{S}^3$ be a homological knot. k bounds an oriented connected surface F, called a Seifert surface for k, by using a notion of the transverse regularity. We define a pairing $\theta: H_1(F; Z) \otimes H_1(F; Z) \to Z$ such that $\theta(\alpha \otimes \beta) = L(\alpha, i_*(\beta))$, where L denotes the homological linking number in \overline{S}^3 and $i_*(\beta)$ denotes the translate of the cycle β off F in the positive normal direction. With a basis for $H_1(F; Z)$, θ represents an integral square matrix A,

called a Seifert matrix for $k \subset \overline{S}^3$ associated with surface F. Using a formula $\theta(\alpha \otimes \beta) - \theta(\beta \otimes \alpha) = \alpha \cdot \beta$, where $\alpha \cdot \beta$ is the intersection number, we obtain $det(A - A') = \pm 1$. (See for example Levine [8].) So, A is in fact a Seifert matrix. The integral polynomial $A(t) = \det(tA - A')$ is called the Alexander polynomial of $k \subset \overline{S}^3$. Let $X = \overline{S}^3$ -Int T(k) for the regular neighborhood T(k) of k in \overline{S}^3 and \hat{X} be the infinite cyclic cover of X associated with the Hurewicz homomorphism $\pi_1(X) \to H_1(X; Z)$. We choose an orientation of \hat{X} induced by that of X and a generator t of the covering transformation group of \tilde{X} associated with a generator α of $H_1(X; Z)$ with linking number $L(\alpha, k) = +1$. By using the Mayer-Vietoris sequence, the matrix tA - A' is a relation matrix of $H_1(\tilde{X}; Z)$ as a Z[t]-module. The Seifert surface F induces a generator μ of $H_2(\tilde{X}, \partial \tilde{X}; Z)$ ($\approx Z$), called a finite fundametnal class of \tilde{X} . (See Kawauchi [6, Theorem 2.3] and also Erle [1].) By Kawauchi [6, Theorem 2.3] (See also Milnor [11, p 127].) there is a duality $\cap \mu: H^q(\tilde{X}; Q) \approx H_{2-q}(\tilde{X}, \partial \tilde{X}; Q)$ for all q, since $H_*(\tilde{X}; Q)$ is finitely generated over Q. Hence using a canonical isomorphism $H^1(\tilde{X}, \partial \tilde{X}; Q) \approx H^1(\tilde{X}; Q)$, the cup product $H^1(\tilde{X}, \partial \tilde{X}; Q) \times H^1(\tilde{X}, \partial \tilde{X}; Q) \to H^2(\tilde{X}, \partial \tilde{X}; Q)$ is a non-singular skew-symmetric bilinear form. Define a symmetric bilinear form

$$\langle \ , \ \rangle : H^{1}(\tilde{X}, \, \partial \tilde{X}; \, Q) imes H^{1}(\tilde{X}, \, \partial \tilde{X}; \, Q) o H^{2}(\tilde{X}, \, \partial \tilde{X}; \, Q) \stackrel{\bigcap \mu}{pprox} H_{0}(\tilde{X}; \, Q) = Q$$

by the equality $\langle x, y \rangle = (x \cup ty) \cap \mu + (y \cup tx) \cap \mu$. This bilinear form is isometric on $t: \langle tx, ty \rangle = \langle x, y \rangle$ and non-singular.

DEFINITION 2.6. The pair (\langle , \rangle, t) is called *the quadratic form* of the homological knot $k \subset S^3$. (See Erle [1] and Milnor [11].)

The signature of $k \subset \overline{S}^3$ is the signature of this form \langle , \rangle .

The following proposition is essentially proved by Erle [1].

Proposition 2.7. Let A be any Seifert matrix for a homological knot $k \subset \overline{S}^3$ associated with a Seifert surface. A is S-equivalent to a non-singular Seifert matrix A_* such that, with a suitable basis for $H^1(\tilde{X}, \partial \tilde{X}; Q)$, the linear isomorphism $t: H^1(\tilde{X}, \partial \tilde{X}; Q) \rightarrow H^1(\tilde{X}, \partial \tilde{X}; Q)$ and the form $\langle , \rangle : H^1(\tilde{X}, \partial \tilde{X}; Q) \times$ $H^1(\tilde{X}, \partial \tilde{X}; Q) \rightarrow Q$ represent the matrices $A'_*^{-1}A_*$ and $A_* + A'_*$, respectively. (In fact, Erle [1] proved this proposition for any usual knot $k \subset \overline{S}^3$. Without difficulty, Erle's proof may be applied for homological knot $k \subset \overline{S}^3$. See Trotter [13] for a concept of S-equivalences.)

By Proposition 2.7, the signature of $k \subset \overline{S}^3$ is equal to the signature $\sigma(A_* + A'_*) = \sigma(A + A')$.

Let $m \in \mathfrak{C}_+(S^1 \times S^2)$ and $M(\alpha, \iota) \in m$. We choose a polygonal oriented simple closed curve ω in $M(\alpha, \iota)$ representing α and let $T(\omega)$ be the regular neighborhood of ω in $M(\alpha, \iota)$. Also we choose polygonal oriented simple closed curves k and l in $\partial T(\omega)$ intersecting in a single point such that k is oriented so as to be

 $L(k, \omega) = +1$ and bounds a 2-cell in $T(\omega)$ and such that l is homologous to ω in $T(\omega)$. (Note that in any case the choice of l is not unique.) Let $(s_1, s_2) \in S^1 \times S^1$ and define a piecewise-linear homeomorphism $h: S^1 \times S^1 \to \partial T(\omega)$ such that $h(s_1 \times S^1) = k$ and $h(S^1 \times s_2) = l$. Let $\overline{S}^3 = M(\alpha, \iota) - \operatorname{Int} T(\omega) \cup_k B^2 \times S^1$. It is easy to see that \overline{S}^3 is a homology 3-sphere. (Notice that k is homologous to 0 in $M(\alpha, \iota) - \operatorname{Int} T(\omega)$.) The orientation of \overline{S}^3 is chosen so as to coincide with that of $M(\alpha, \iota) - \operatorname{Int} T(\omega)$. Thus, we obtain a homological knot $k \subset \overline{S}^3$ from $M(\alpha, \iota)$ (, although the homeomorphism type of the pair (\overline{S}^3, k) is never uniquely determined by the type of $M(\alpha, \iota)$).

DEFINITION 2.8. A Seifert matrix for the homological knot $k \subset \overline{S}^3$ associated with a Seifert surface is called a Seifert matrix for $M(\alpha, \iota)$ (or the type m).

Accordingly if A is a Seifert matrix for a knot type k, then A is also a Seifert matrix for the type e(k).

DEFINITION 2.9. The Alexander polynomial $A(t) = \det(tA - A')$ of $k \subset \overline{S}^3$ is called the Alexander polynomial of $M(\alpha, \iota)$ (or the type m).

This definition coincides with that of Kawauchi [7, Definition 1.3], because the matrix tA-A' is a relation matrix of $H_1(\tilde{M}(\alpha, \iota); Z)$ by the canonical isomorphism $H_1(\tilde{X}; Z) \approx H_1(\tilde{M}(\alpha, \iota); Z)$. Here \tilde{X} denotes the infinite cyclic cover of $X=M(\alpha, \iota)$ —Int $T(\omega)$ with the uniquely specified generator t of the covering transformation group and with the associated orientation. $\tilde{M}(\alpha, \iota)$ denotes the infinite cyclic cover of $M(\alpha, \iota)$ such that the covering projection $\tilde{M}(\alpha, \iota) \rightarrow M(\alpha, \iota)$ is an extension of the covering projection $\tilde{X} \rightarrow X$. $\tilde{M}(\alpha, \iota)$ has an orientation compatible with that of \tilde{X} . The generator of the covering transformation group of $\tilde{M}(\alpha, \iota)$ is an extension of $t: \tilde{X} \rightarrow \tilde{X}$, also denoted by t. Note that the finite fundamental class $\mu \in H_2(\tilde{X}, \partial \tilde{X}; Z)$ determined by a Seifert surface specifies a unique generator of $H_2(\tilde{M}(\alpha, \iota); Z)$. This $\mu \in H_2(\tilde{M}(\alpha, \iota); Z)$ is called *the finite fundamental class* of $\tilde{M}(\alpha, \iota)$. By using the canonical isomorphisms $H^i(\tilde{X}, \partial \tilde{X}; Q) \approx H^i(\tilde{M}(\alpha, \iota); Q), i=1, 2$, the bilinear form

 $\langle , \rangle : H^{1}(\tilde{X}, \partial \tilde{X}; Q) \times H^{1}(\tilde{X}, \partial \tilde{X}; Q) \rightarrow Q$ passes to the form (,): $H^{1}(\tilde{M}(\alpha, \iota); Q) \times H^{1}(\tilde{M}(\alpha, \iota); Q) \rightarrow Q$ defined by the equality (x, y) =

 $(x \cup ty) \cap \mu + (y \cup tx) \cap \mu$ for all x, y in $H^{1}(\widetilde{M}(\alpha, l); Q)$.

DEFINITION 2.10. The pair ((,), t) is called the quadratic form of $M(\alpha, \iota)$ (or the type m).

The signature of $M(\alpha, \iota)$ (or the type m), denoted by $\sigma(M(\alpha, \iota))$ (or $\sigma(m)$) is the signature of the homological knot $k \subset \overline{S}^3$. So, the signature of $M(\alpha, \iota)$ coincides with the signature of the bilinear form (,). Easily $\sigma(M(\alpha, \iota)) = \sigma(M(-\alpha, \iota))$ and $\sigma(M(\alpha, -\iota)) = -\sigma(M(\alpha, \iota))$.

From Proposition 2.7, the following is immediately obtained:

Lemma 2.11. Let A be a Seifert matrix for $M(\alpha, \iota)$. A is S-equivalent to a non-singular Seifert matrix A_* such that, with a suitable basis for $H^1(\tilde{M}(\alpha, \iota); Q)$, the linear isomorphism $t: H^1(\tilde{M}(\alpha, \iota); Q) \to H^1(\tilde{M}(\alpha, \iota); Q)$ and the form $(,): H^1(\tilde{M}(\alpha, \iota); Q) \times H^1(\tilde{M}(\alpha, \iota); Q) \to Q$ represent the matrices $A'_*{}^{-1}A_*$ and $A_* + A'_*$, respectively.

Note that by Lemma 2.11 $\sigma(M(\alpha, \iota)) = \sigma(A_* + A'_*) = \sigma(A + A')$.

For the quadratic form ((,), t) of the type m of $M(\alpha, \iota)$, if $H^1(\tilde{M}(\alpha, \iota); Q)$ contains a half-dimensional vector subspace V with tV = V and such that (x, y)=0 for all x, y in V, then the quadratic form ((,), t) is said to be *null-cobordant* (See Levine [10].).

The following theorem is a basically important result.

Theorem 2.12. If $m \sim 0$, then the quadratic form ((,), t) of m is null-cobordant.

Proof. Since $m \sim 0$, for $M(\alpha, \iota) \in m$ there exists an \tilde{H} -cobrodism $(W, M(\alpha, \iota), \phi)$. Hence for some $\varphi \in H^1(W; Z)$ with $\varphi \mid M(\alpha, \iota) \in H^1(M(\alpha, \iota); Z)$ dual to α , the infinite cyclic cover \tilde{W}_{φ} associated with φ has a finitely generated rational homology group $H_*(\tilde{W}_{\varphi}; Q)$. Note that by Kawauchi [6, Theorem 2.3], the Poincaré dualities $\cap \overline{\mu} : H^*(\tilde{W}_{\varphi}; Q) \approx H_{3-*}(\tilde{W}_{\varphi}, \tilde{M}(\alpha, \iota); Q)$ and $\cap \overline{\mu} : H^*(\tilde{W}_{\varphi}, \tilde{M}(\alpha, \iota); Q) \approx H_{3-*}(\tilde{W}_{\varphi}, \tilde{M}(\alpha, \iota); Z)$ is a finite fundamental class determined from μ by the boundary-isomorphism $\partial: H_3(\tilde{W}_{\varphi}, \tilde{M}(\alpha, \iota); Z) \approx H_2(\tilde{M}(\alpha, \iota); Z)$.

Now we consider the following commutative (up to sign) diagram:

Here the top and bottom sequences are exact and the vertical homomorphisms are isomorphisms.

For all $u \in H^1(\tilde{W}_{\varphi}; Q)$, suppose $(i^*(u), y)=0$. This situation is equivalent to $\delta(t-t^{-1})y=0$ *i.e.* $(t-t^{-1})y\in \operatorname{Im} i^*$, because $(i^*u, y)=[i^*(u)\cap(t-t^{-1})y]\cap \mu=$ $[u\cup\delta(t-t^{-1})y]\cap\overline{\mu}$. Using $(t-t^{-1})\operatorname{Im} i^*\subset\operatorname{Im} i^*$ and the isomorphism^{*)} $t-t^{-1}$: $H^1(\tilde{M}(\alpha, \iota); Q)\approx H^1(\tilde{M}(\alpha, \iota); Q), (t-t^{-1})y\in \operatorname{Im} i^*$ is equivalent to $y\in \operatorname{Im} i^*$. Thus we showed that the orthogonal complement of $\operatorname{Im} i^*$ is $\operatorname{Im} i^*$ itself. In particular, $\dim_Q \operatorname{Im} i^*=\frac{1}{2}\dim_Q H^1(\tilde{M}(\alpha, \iota); Q)$. Since $t\operatorname{Im} i^*\subset\operatorname{Im} i^*$, the quad-

^{*)} To prove this isomorphism, it suffices to check that the characteristic polynomial A'(t) of t: H¹(M(α, ι); Q)→H¹(M(α, ι); Q) satisfies A'(±1)≠0, because t-t⁻¹=t⁻¹(t-1)(t+1). For the Alexander polynomial A(t) of M(α, ι), A'(t) equals to A(t) up to units of Q[t]: A'(t)= A(t). (See [7, Lemma 2.6].) Since A(±1)≠0, the result follows.

ratic form ((,), t) is null-cobordant. This completes the proof.

Lemma 2.13. There is a homomorphism $\psi: \Omega(S^1 \times S^2) \rightarrow G_-$.

Proof. Let $m \in \mathfrak{C}_+(S^1 \times S^2)$ and A a Seifert matrix for m. We define $\psi[m] = [A]$. To prove the well-definedness, first we shall show that if $m \sim 0$, then A is null-cobordant. By Lemma 2.11, A is S-equivalent to a non-singular Seifert matrix A_* such that t represents $A'_*^{-1}A_*$ and the form (,) represents $A_* + A'_*$. Since by Theorem 2.13 the quadratic form ((,), t) is null-cobordant, there exists a symplectic basis $e_1, e_2, \dots, e_s, e_1^*, e_2^*, \dots, e_s^*$ of $H^1(\tilde{M}(\alpha, \iota); Q)$: $(e_i, e_j) = (e_i^*, e_j^*) = 0, (e_i, e_j^*) = \delta_{ij}$ such that the vector subspace V spanned by e_1, e_2, \dots, e_s is invariant under t. (See for example Milnor-Husemoller [12, p 13].) Then there is a non-singular rational matrix P such that the matrix $P^{-1}A'_*^{-1}A_*P$ is of the form $\begin{pmatrix} Q & R \\ O & S \end{pmatrix}$ (, since tV = V), where Q, R, S are rational square matrices of the

same size, and such that $P'(A_*+A'_*)P = \begin{pmatrix} O & I \\ I & O \end{pmatrix}, I = \begin{pmatrix} O & 1 \\ \ddots & O \end{pmatrix}$.

Using the equality $P'A_*P = [P'(A_*+A'_*)P(E+P^{-1}A'_*^{-1}A_*P)^{-1}]'$ (*E* is the unit matrix.), it is not difficult to see that the matrix $P'A_*P$ is of the form $\begin{pmatrix} O & B \\ C & D \end{pmatrix}$. (*B*, *C*, *D* are rational square matrices of the same size.) [Note that

det $(E+P^{-1}A'_*^{-1}A_*P) \neq 0$, since the Alexander polynomial A(t) satisfies $A(-1)\neq 0$.] Then by Levine [9, Lemma 8] A_* is null-cobordant. Since A is S-equivalent to A_* , it follows that A is cobordant to A_* . Hence A is null-cobordant. Let $m_1, m_2 \in \mathfrak{C}_+(S^1 \times S^2)$. Notice that if A_1, A_2 are Seifert matrices for m_1, m_2 , respectively, then the block sum $A_1 \oplus A_2$ is a Seifert matrix for a circle union $m_1 \odot m_2$. [To see this, let $M_i(\alpha_i, \iota_i) \in m, i=1, 2$, and consider homological knots $k_i \subset \overline{S}_i^3$ obtained from $M(\alpha_i, \iota_i), i=1, 2$. Then one can verify that the homological knot sum $(k_1 \subset \overline{S}_1^3) \# (k_2 \subset \overline{S}_2^3)$, defined to be analogous to the usual knot sum, is a homological knot obtained from some circle union $M_1(\alpha_1, \iota_1) \odot M_2(\alpha_2, \iota_2)$. Now the desired result easily follows.] If $m_1 \sim m_2$, then $m_1 \odot -m_2 \sim 0$. Hence the block sum $A_1 \oplus -A_2$ is null-cobordant, since $A_1 \oplus -A_2$ is a Seifert matrix for $m_1 \odot -m_2$. Thus, $[m_1]=[m_2]$ implies $[A_1]=[A_2]$; that is, $\psi[m]=[A]$ is well-defined. Further, ψ is a homomorphism, since for any $m_1, m_2 \in \mathfrak{C}_+(S^1 \times S^2)$

$$egin{aligned} \psi([m_1]+[m_2]) &= \psi[m_1 igodot m_2] \ &= [A_1 \oplus A_2] \ &= [A_1]+[A_2] \ &= \psi[m_1]+\psi[m_2] \end{aligned}$$

This completes the proof.

2.14. Proof of Theorem 2.1. Levine [9] defined the homolorphism $\phi: C^1 \to G_-$ sending any knot cobordism class to the matrix cobordism class of the corresponding Seifert matices. By Lemma 2.4, the homomorphism $e: C^1 \to \Omega(S^1 \times S^2)$ is obtained and by Lemma 2.13, the homomorphism $\psi: \Omega(S^1 \times S^2) \to G_-$ is obtained. From construction, we have $\psi e = \phi$. Since ϕ is onto (See for example Levine [9].), ψ is onto. This proves Theorem 2.1.

Here are four corollaries to Theorem 2.1.

Corollarly 2.15. The \tilde{H} -cobordism group $\Omega(S^1 \times S^2)$ has the free part of infinite rank.

This follows from the facts that G_{-} has the free part of infinite rank and that the homomorphism ψ is onto.

The reduced Alexander polynomial $\tilde{A}(t)$ of a type $m \in \mathfrak{C}_+(S^1 \times S^2)$ is the integral polynomial obtained from the Alexander polynomial A(t) of m by cancelling the factors of the type $f(t)f(t^{-1})$.

Corollary 2.16. If $m \sim 0$, then the Alexander polynomial A(t) splits as follows: $A(t) \doteq f(t)f(t^{-1})$ for some integral polynomial f(t) and the signature $\sigma(m)$ is 0. More generally, if $m_1 \sim m_2$, then the reduced Alexander polynomils $\tilde{A}_1(t)$, $\tilde{A}_2(t)$ are the same polynomial (up to $\pm t^i$): $\tilde{A}_1(t) \doteq \tilde{A}_2(t)$ and the signatures $\sigma(m_1)$, $\sigma(m_2)$ are equal: $\sigma(m_1) = \sigma(m_2)$.

Corollary 2.17. For any $[k] \in C^1$, the equalities $\sigma[k] = \sigma([e(k)])$ and $\tilde{A}_{[k]}(t) = \tilde{A}_{[e(k)]}(t)$ hold.

Corollary 2.18. For any $m \in \mathfrak{C}_+(S^1 \times S^2)$, the signature $\sigma(m)$ is even. For any integer *i*, there exists $m \in \mathfrak{C}_+(S^1 \times S^2)$ with $\sigma(m) = 2i$.

2.19. Addendum. Re-examination of the Seifert matrices. Let $m \in \mathbb{G}_+(S^1 \times S^2)$ and $M(\alpha, \iota) \in m$. A Seifert matrix for $M(\alpha, \iota)$ (or m) may be also defined as follows: Let $f: M(\alpha, \iota) \to S^1$ be a piecewise-linear map with $f_*: H_1(M(\alpha, \iota); Z) \approx H_1(S^1; Z)$ and such that for some point $0 \in S^1$, $F = f^{-1}(0)$ is a closed orientable connected surface (See Kawauchi [6, Corollary 1.3].). Using that $[F] \in H_2(M(\alpha, \iota); Z)$ is a generator, we may orient F so that $[F] = \varphi \cap \iota$, where $\varphi \in H^1(M(\alpha, \iota); Z)$ is a dual element of $\alpha \in H_1(M(\alpha, \iota); Z)$. Let M^* be the oriented manifold (with orientation induced by that of $M(\alpha, \iota)$) obtained from $M(\alpha, \iota)$ by splitting along F. Let $\partial M^* = F \cup F'$. Here the component of ∂M^* with orientation coinciding with that of F is identified with F. F' denotes the copy of F but with the oposite orientation. Let $i': F \to F' \subset \partial M^* \subset M^*$ be the natural injection. If $a \in H_1(F; Z)$, let $a' \in H_2(M(\alpha, \iota), M(\alpha, \iota) - F; Z)$ be the image of a under the composite

$$H_{1}(F; Z) \xrightarrow{i'_{*}} H_{1}(M^{*}; Z) \xrightarrow{\approx} H_{1}(M(\alpha, \iota) - F; Z) \xrightarrow{\partial^{-1}} H_{2}(M(\alpha, \iota), M(\alpha, \iota)F; Z).$$

By using a duality γ_U : $H_2(M(\alpha, \iota), M(\alpha, \iota) - F; Z) \approx H^1(F; Z)$, relating a slant product, where U is the Thom class of $M(\alpha, \iota)$ corresponding to the fundamental class ι , define a pairing

$$\theta' \colon H_1(F; Z) \otimes H_1(F; Z) \to Z$$

by the equality $\theta'(a \otimes b) = \gamma_U(a') \cap b \in H_0(F; Z) = Z$.

It is checked that with a basis for $H_1(F; Z)$ θ' represents a Seifert matrix for $M(\alpha, \iota)$. The formula $\theta'(a \otimes b) - \theta'(b \otimes a) = a \cdot b$ is also obtained.

3. Elements of $\Omega(S^1 \times S^2)$ of order zero and two and the \hat{H} -cobordism group $\Omega(S^1 \times_{\tau} S^3)$ of homology non-orientable handles

A general problem of bringing about a better understanding of \hat{H} -cobordism between the types of distinguished homology orientable handles seems still difficult, but a partial answer is presented here.

Theorem 3.1. If a representative homology orientable handle $M(\alpha, \iota)$ of a type $m \in \mathbb{G}_+(S^1 \times S^2)$ is embeddable in a homology 4-sphere \overline{S}^4 , then $m \sim 0$.

Proof. Assume $M(\alpha, \iota) \subset \overline{S}^4$. Then $M(\alpha, \iota)$ separates \overline{S}^4 into two manifolds, say, W_1 , W_2 and, by easy computation of the homology, one of W_1 , W_2 has the homology of a circle, say, $H_*(W_1; Z) \approx H_*(S^1; Z)$. Then the triad $(W_1, M(\alpha, \iota), \phi)$ gives an \hat{H} -cobordism. This completes the proof of Theorem 3.1.

Here are a few examples, whose somewhat analogous properties were also noticed by Kato [5, Theorems 5.1 and 5.5] in higher dimensions.

EXAMPLES 3.2. First we consider a (suitably oriented) trefoil 3_1 . (See fugre 5.)

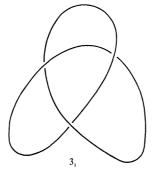


figure 5.

Using that $\sigma(e(3_1)) = \sigma(3_1) = \pm 2 \pm 0$ or that $A(t) = t^2 - t + 1$ is irreducible, $e(3_1) \approx 0$. Hence by Theorem 3.1, $e(3_1)$ is not embeddable to the 4-sphere S^4 . Note that $e(3_1)$ is locally-flatly embeddable to the 5-sphere S^5 , since according to Hirsch [4] every compact orientable 3-manifold is locally-flatly embeddable to S^5 .

On the other hand, consider the stevedore's knot 6_1 . (See figure 6.)

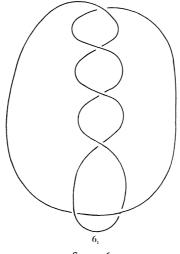
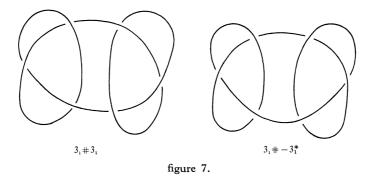


figure 6.

Since this knot is a slice knot, by Corollary 2.5, $e(6_1)$ is embeddable to S^4 . Similar arguments also apply for the granny knot $3_1 # 3_1$ and the square knot $3_1 # -3_1^*$. (See figure 7.)



In fact, $e(3_1 \# 3_1)$ is not embeddable to S^4 , although $e(3_1 \# -3_1^*)$ is embeddable to S^4 , since $\sigma(e(3_1 \# 3_1)) = 2\sigma(3_1) = \pm 4 \pm 0$ and $3_1 \# -3_1^*$ is a slice knot. Next we would like to discuss order-two-elements of $\Omega(S^1 \times S^2)$. To do

this, we shall introduce the \tilde{H} -cobordism group of homology non-orientable handles.

A homology non-orientable handle M is a compact 3-manifold having the homology of the non-orientable handle $S^1 \times_{\tau} S^2$: $H_*(M; Z) \approx H_*(S^1 \times_{\tau} S^2; Z)$, and is said to be distinguished if a generator $\alpha \in H_1(M; Z)$ is specified. If a homology non-orientable handle M is distinguished, then the notation $M(\alpha)$ will be used. Two distinguished homology non-orientable handles $M_1(\alpha_1)$, $M_2(\alpha_2)$ have the same type if there is a piecewise-linear homeomorphism $h: M_1(\alpha_1) \to M_2(\alpha_2)$ such that $h_*(\alpha_1) = \alpha_2$. The type of $M(\alpha)$ is the class of distinguished homology non-orientable handles with the same type as $M(\alpha)$. The set of the types is denoted by $\mathfrak{C}_+(S^1 \times_{\tau} S^2)$.

In $\mathfrak{C}_+(S^1 \times_{\tau} S^2)$ an \tilde{H} -cobordism relation is defined as an analogy of Definition 1.1.

DEFINITION 3.3. Two types m_1 , m_2 in $\mathfrak{C}_+(S^1 \times_\tau S^2)$ are \tilde{H} -cobordant and denoted by $m_1 \sim m_2$ if for $M_1(\alpha_1) \in m_1$, $M_2(\alpha_2) \in m_2$ there exists a pair (W, φ) , where W is a compact connected 4-manifold with $\partial W = M_1(\alpha_1) + M_2(\alpha_2)$ (disjoint union) and $\varphi \in H^1(W; Z)$ whose restrictions $\varphi \mid M_i(\alpha_i) \in H^1(M_i(\alpha_i); Z)$ are dual to α_i , i=1, 2, such that the infinite cyclic cover \tilde{W}_{φ} associated with φ is orientable and has a finitely generated rational homology group $H_*(\tilde{W}_{\varphi}; Q)$. [Note that any infinite cyclic cover $\tilde{M}(\alpha)$ is always orientable (See Kawauchi [7].).]

Let m_0 , $m_1 \in \mathfrak{G}_+(S^1 \times_{\tau} S^2)$ and $M_0(\alpha_0) \in m_0$, $M_1(\alpha_1) \in m_1$. Choose polygonal oriented simple closed curves $\omega_0 \subset M_0(\alpha_0)$, $\omega_1 \subset M_1(\alpha_1)$ which represent α_0 , α_1 , respectively. It is not difficult to see that the regular neighborhoods $T(\omega_0) \subset M_0(\alpha_0)$ of ω_0 and $T(\omega_1) \subset M_1(\alpha_1)$ of ω_1 are both peicewise-linearly homeomorphic to the solid Kliein bottle $S^1 \times_{\tau} B^2$. Note that there exists closed connected *orientable* surfaces $F_0 \subset M_0(\alpha_0)$, $F_1 \subset M_1(\alpha_1)$ transversally intersecting ω_0 , ω_1 , in single points, respectively.

Consider two piecewise-linear embeddings

$$h_0: S^1 \times_{\tau} B^2 \times 0 \to M_0(\alpha_0)$$
$$h_1: S^1 \times_{\tau} B^2 \times 1 \to M_1(\alpha_1)$$

such that there exist points $s \in S^1$, $b \in \text{Int } B^2$ with $h_0(S^1 \times_{\tau} b \times 0) = \omega_0$, $h_0(s \times_{\tau} B^2 \times 0) \subset F_0$, $h_1(S^1 \times_{\tau} b \times 1) = \omega_1$ and $h_1(s \times_{\tau} B^2 \times 1) \subset F_1$ and such that ω_0 and ω_1 are homologous in the adjunction space $M_0(\alpha_0) \cup h_0 S^1 \times_{\tau} B^2 \times [0, 1] \cup h_1 M_1(\alpha_1)$.

As an analogy of Definition 1.4, we may have Definition 3.4.

DEFINITION 3.4. The homology non-orientable handle

$$M_{0}(\alpha_{0}) \bigcirc M_{1}(\alpha_{1}) = M_{0}(\alpha_{0}) \cup_{h_{0}} S^{1} \times_{\tau} B^{2} \times [0, 1] \cup_{h_{1}} M_{1}(\alpha_{1}) - S^{1} \times_{\tau} \operatorname{Int} B^{2} \times [0, 1]$$

distinguished naturally is called a circle union of $M_0(\alpha_0)$ and $M_1(\alpha_1)$. The type of $M_0(\alpha_0) \bigcirc M_1(\alpha_1)$ is denoted by $m_0 \bigcirc m_1$.

It is not difficult to check that for two circle unions $m_0 \bigcirc m_1, m_0 \oslash' m_1, m_0 \oslash' m_1$. Further, we can prove that $m_0 \sim m_1$ if and only if $m_0 \oslash m_1 \sim 0$ as an analogy of Lemma 1.7, where 0 is the type of $S^1 \times_{\tau} S^2$. [Note that $S^1 \times_{\tau} S^2(\alpha)$ has the same type as $S^1 \times_{\tau} S^2(-\alpha)$.] As a result, the set $\Omega(S^1 \times_{\tau} S^2) = \mathbb{G}_+(S^1 \times_{\tau} S^2) / \sim$ forms an abelian group under the sum $[m_0] + [m_1] = [m_0 \oslash m_1]$, called the \hat{H} -cobordism group of homology non-orientable handles. Every non-zero element of $\Omega(S^1 \times_{\tau} S^2)$ has order 2, since $m \sim m$ implies $m \oslash m \sim 1$ The zero element of $\Omega(S^1 \times_{\tau} S^2)$ is the \hat{H} -cobordism class containing the type 0 of $S^1 \times_{\tau} S^2$.

Theorem 3.5. $\Omega(S^1 \times_{\tau} S^2)$ is the direct sum of infinite copies of the cyclic group of order 2.

To prove Theorem 3.5, the Alexander polynomial seems to be usefull. The Alexander polynomial A(t) of $m \in \mathfrak{C}_+(S^1 \times_\tau S^2)$ is the integral polynomial which is a generator of the smallest principal ideal containing the ideal associated with a relation matrix of $H_1(\tilde{M}(\alpha); Z)$ as a Z[t]-module (See Kawauchi [7] for details.). Here, $\tilde{M}(\alpha)$ denotes the infinite cyclic cover of $M(\alpha) \in m$ and t denotes a generator of the covering transformation group of $\tilde{M}(\alpha)$, related to the generator $\alpha \in H_1(M(\alpha); Z)$. A(t) is the complete invariant of $M(\alpha)$ or the type m up to units $\pm t^s \in Z(t) \cdot A(t)$ satisfies the properties that $A(t) \pm A(-t^{-1})$ and A|(1)|=1; and, conversely, any integral polynomial with these properties is the Alexander polynomial of some $m \in \mathfrak{C}_+(S^1 \times_\tau S^2)$. (See [7].) For characteristic polynomial A'(t) of the linear isomorphism $t: H_1(\tilde{M}(\alpha); Q) \to$ $H_1(\tilde{M}(\alpha); Q)$ we have A(t) = A'(t), that is, A(t), A'(t) are equal up to units $qt^s \in Q[t]$.

The following is an analogous result to Corollary 2.16.

Lemma 3.6. Let $m \in \mathfrak{C}_+(S^1 \times_{\tau} S^2)$. If $m \sim 0$, then the Alexander polynomial A(t) of m has a type of $f(t)f(-t^{-1})$ for some integral polynomial f(t).

Before showing Lemma 3.6 we shall show Theorem 3.5.

3.7. Proof of Theorem 3.5. Consider for example the irreducible integral polynomials $A_n(t) = nt^2 + t - n$, $n=1, 2, 3, \cdots$. These $A_n(t)$ are realized as the Alexander polynomials of some $m_n \in \mathfrak{C}_+(S^1 \times_\tau S^2)$, $n=1, 2, 3, \cdots$. Then it is easy to see that m_1, m_2, m_3, \cdots represent a set of linearly independent elements of $\Omega(S^1 \times_\tau S^2)$. [Notice that if $A_1(t), A_2(t)$ are the Alexander polynomials of m_1, m_2 , respectively, then the product $A_1(t)A_2(t)$ is the Alexander polynomial of any circle union $m \bigcirc m_2$.] This completes the proof.

3.8. Proof of Lemma 3.6. Since $m \sim 0$, for $M(\alpha) \in m$ there exists a pair (W, φ) , where W is a compact connected 4-manifold with $\partial W = M(\alpha)$ and $\varphi \in H^1(W; Z)$ with $\varphi \mid M(\alpha) \in H^1(M(\alpha); Z)$ dual to α , such that the infinite cyclic cover \tilde{W}_{φ} is orientable and has a finitely generated rational homology group $H_*(\tilde{W}_{\varphi}; Q)$. Then from the exact sequence $H^1(\tilde{W}_{\varphi}; Q) \xrightarrow{\delta} H^1(\tilde{M}(\alpha); Q) \xrightarrow{\delta} H^2(\tilde{W}_{\varphi}, \tilde{M}(\alpha); Q)$ we obtain the short exact sequence $0 \to \operatorname{Im} i^* \to H^1(\tilde{M}(\alpha); Q) \to \operatorname{Im} \delta \to 0$. Then we have $A(t) \doteq B(t)C(t)$, where B(t), C(t) are the characteristic polynomials of $t: \operatorname{Im} i^* \to \operatorname{Im} i^*$, $t: \operatorname{Im} \delta \to \operatorname{Im} \delta$, respectively. Since the square

$$\begin{array}{c} H^{i}(\tilde{M}(\alpha); Q) & \stackrel{\delta}{\longrightarrow} H^{2}(\tilde{W}_{\varphi}, \tilde{M}(\alpha); Q) \\ \approx & \downarrow \cap \mu & \approx & \downarrow \cap \overline{\mu} \\ H_{1}(\tilde{M}(\alpha); Q) & \stackrel{i_{*}}{\longrightarrow} & H_{1}(\tilde{W}_{\varphi}; Q) \end{array}$$

is commutative, we obtain the Poincaré dual isomorphism $\cap \overline{\mu}$: Im $\delta \approx \operatorname{Im} \iota_*$, where $\mu \in H_2(\tilde{M}(\alpha); Z)$ and $\overline{\mu} \in H_3(\tilde{W}_{\varphi}, \tilde{M}(\alpha); Z)$ are the finite fundamental classes such that $\overline{\mu}$ is mapped to μ by the boundary isomorphism $\partial: H_3(\tilde{W}_{\varphi}, \tilde{M}(\alpha); Z) \approx$ $H_2(\tilde{M}(\alpha); Z) (\approx Z)$. (See Kawauchi [6, Theorem 2.3].) Notice that $t\overline{\mu} = -\overline{\mu}$. Using the identity Im $i^* = \operatorname{Hom}(\operatorname{Im} i_*, Q)$ and the equality $(tu) \cap \overline{\mu} = -t^{-1}(u \cap \overline{\mu})$, the Poincaré dual isomorphism $\cap \overline{\mu}$: Im $\delta \approx \operatorname{Im} i_*$ gives the equality $C(-t^{-1}) \doteq$ B(t). This proves Lemma 3.6.

Lemma 3.9. This is a well-defined function

$$\tau: \mathfrak{C}_{+}(S^{1} \times_{\tau} S^{2}) \to \mathfrak{C}_{+}(S^{1} \times S^{2})$$

induced by the 2-fold orientation covering.

Proof. Let $m \ni \mathfrak{C}_+(S^1 \times_{\tau} S^2)$ and $M(\alpha) \in m$. Consider the infinite cyclic covering $p: \tilde{M}(\alpha) \to M(\alpha)$ associated with the Hurewicz homomorphism. Let t be the generator of the covering transformation group of $\tilde{M}(\alpha)$ related to α . The 2-fold covering $\tau': M' \to M(\alpha)$ from the orbits space $M' = \tilde{M}(\alpha)/t^2$ to $M(\alpha)$ induced by the projection $p: \tilde{M}(\alpha) \to M(\alpha)$ is the 2-fold orientation covering, since $\tilde{M}(\alpha)$ is orientable.

We must prove that M' is a homology orientable handle. Let $p': \tilde{M}(\alpha) \to M'$ be the natural projection. The short exact sequence $0 \to C_{\sharp}(\tilde{M}(\alpha)) \xrightarrow{t^2-1} C_{\sharp}(\tilde{M}(\alpha))$ $\xrightarrow{p'} C_{\sharp}(M') \to 0$ of simplicial chain $Z[t^2]$ -modules induces the following exact sequence

$$H_{1}(\tilde{M}(\alpha); Z) \xrightarrow{p'_{*}} H_{1}(M'; Z) \to H_{0}(\tilde{M}(\alpha); Z) \to 0$$

of $Z[t^2]$ -modules, where $H_1(M'; Z)$ and $H_0(\tilde{M}(\alpha); Z)$ are regarded as trivial $Z[t^2]$ -modules. Let $\mathcal{E}: Z[t^2] \to Z$ be the augmentation homomorphism such that $\mathcal{E}(t^2)=1$. By taking a tensor product, we obtain an exact sequence

$$H_{1}(\widetilde{M}(\alpha); Z) \otimes_{\varepsilon} Z \xrightarrow{p'_{*} \otimes 1} H_{1}(M'; Z) \otimes_{\varepsilon} Z \to H_{0}(\widetilde{M}(\alpha); Z) \otimes_{\varepsilon} Z \to 0.$$

$$\stackrel{\parallel}{H_{1}(M'; Z)} \stackrel{\parallel}{Z} Z$$

Sublemma 3.9.1. $H_1(\tilde{M}(\alpha); Z) \otimes_{\varepsilon} Z = 0.$

By assuming this sublemma, we obtain that $H_1(M'; Z) \approx Z$. By the Poincaré duality, M' is a homology orientable handle. Let $\alpha' \in H_1(M'; Z)$ be a generator determined by α under the 2-fold orientation covering $\tau: M' \to M(\alpha)$. Let $\iota \in H_3(M'; Z)$ be any generator. The distinguished homology orientable handles $M'(\alpha', \iota), M'(\alpha', -\iota)$ have the same type, because t of $\tilde{M}(\alpha)$ induces a homeomorphism $t': M' \to M'$ with $t'_*(\alpha') = \alpha'$ and $t'_*(\iota) = -\iota$. This type is denoted by $\tau(m)$. Thus the function $\tau: \mathfrak{C}_+(S^1 \times_{\tau} S^2) \to \mathfrak{C}_+(S^1 \times S^2)$ is obtained. This completes the proof.

3.10. Proof of Sublemma 3.9.1. Note that there exists a presentation square matrix S(t) of $H_1(\tilde{M}(\alpha); Z)$ as a Z[t]-module *i.e.* $Z[t]^{2g} \xrightarrow{S(t)} Z[t]^{2g} \rightarrow H_1(\tilde{M}(\alpha); Z) \rightarrow 0$ is exact for some integer $g \ge 0$. [To see this, let $F \subset M(\alpha)$ be a closed orientable connected 2-sided surface in $M(\alpha)$ intersecting a simple closed curve representing α in a single ponit, and M^* be the manifold obtained from $M(\alpha)$ by splitting along F. Since M^* is orientable, we have an isomorphism $H_1(M^*; Z) \approx H_1(F; Z)$. Let $i_1, i_2 \colon F \to F_1 \cup F_2 = \partial M^* \subset M^*$ be two natural identifications. With suitable bases of $H_1(F; Z)$, $H_1(M^*; Z)$, i_{1^*} , i_{2^*} : $H_1(F; Z) \to H_1(M^*; Z)$ represent square integral matrices S_1 , S_2 , respectively. By applying the Mayer-Vietoris sequence, we obtain an exact sequence

$$H_{1}(F; Z) \otimes Z[t] \xrightarrow{i_{*}} H_{1}(M^{*}; Z) \otimes Z[t] \to H_{1}(\tilde{M}(\alpha); Z) \to 0,$$

where $i_*(x) = ti_{1^*}(x) - i_{2^*}(x)$. Thus, we can obtain an exact sequence

$$Z[t]^{2g} \xrightarrow{S(t)} Z[t]^{2g} \to H_1(\tilde{M}(\alpha): Z) \to 0$$
,

where $S(t) = tS_1 - S_2$.] By taking a tensor product, we obtain an exact sequence

We shall show that $A^{\varepsilon}(t) = \det S^{\varepsilon}(t)$ is a unit in the quotient ring $Z[t]/(t^{2}-1)$. Note that $A(t) = \det S(t)$ is the Alexander polynomial of $M(\alpha)$. So, A(t) satisfies $A(t) \doteq A(-t^{-1})$ and |A(1)| = 1. We can write $t^{-s}A(t) = \sum_{i=-s}^{s} a_{i}t^{i}$, $a_{i} = (-1)^{i}a_{-i}$ (s>0). Then $t^{\eta(s)}A^{\varepsilon}(t) = A^{\varepsilon}(1)$ and $A^{\varepsilon}(t) = t^{\eta(s)}A^{\varepsilon}(1)$ is a unit in $Z[t]/(t^{2}-1)$, where $\eta(s) = 0$ if s is even, 1 if s is odd. This implies that the homomorphism $S^{\varepsilon}(t): Z[t]^{2g} \otimes_{\varepsilon} Z \rightarrow Z[t]^{2g} \otimes_{\varepsilon} Z$ is an isomorphism. Therefore $H_{1}(\tilde{M}(\alpha); Z) \otimes_{\varepsilon} Z$ = 0. This proves Sublemma 3.9.1.

Lemma 3.11. The function $\tau: \mathfrak{S}_+(S^1 \times_{\tau} S^2) \to \mathfrak{S}_+(S^1 \times S^2)$ carries the Alexander polynomial A(t) of any $m \in \mathfrak{S}_+(S^1 \times_{\tau} S^2)$ to the Alexander polynomial $A^{\tau}(t)$ of $\tau(m) \in \mathfrak{S}_+(S^1 \times S^2)$ such that $A^{\tau}(t^2) \doteq A(t)A(-t)$.

Proof. Let $M(\alpha) \in m$. With a basis for $H_1(\tilde{M}(\alpha); Q)$, $t: H_1(\tilde{M}(\alpha); Q) \rightarrow H_1(\tilde{M}(\alpha); Q)$ represents a matrix B. Then $A(t) \doteq \det(tE-B)$. For the linear isomorphism $t'=t^2: H_1(\tilde{M}(\alpha); Q) \rightarrow H_1(\tilde{M}(\alpha); Q)$ representing B^2 , we have $A^{\tau}(t') \doteq \det(t'E-B^2)$. Hence,

$$A^{\tau}(t^2) \doteq \det(t^2 E - B^2)$$

$$\doteq \det(t E - B) \det(t E + B)$$

$$\doteq A(t)A(-t) .$$

This completes the proof.

The reduced Alexander polynomial $\tilde{A}(t)$ of $m \in \mathfrak{C}_+(S^1 \times_\tau S^2)$ is the integral polynomial obtained from the Alexander polynomial A(t) of m by cancelling the factors of the type $f(t)f(-t^{-1})$.

Theorem 3.12. The function $\tau: \mathfrak{C}_+(S^1 \times_{\tau} S^2) \to \mathfrak{C}_+(S^1 \times S^2)$ induces a homomorphism $\tau^*: \Omega(S^1 \times_{\tau} S^2) \to T_2 \subset \Omega(S^1 \times S^2)$ carrying the reduced Alexander polynomial $\tilde{A}(t)$ to the reduced Alexander polynomial $\tilde{A}^{\tau}(t)$ such that $A^{\tau}(t^2) \doteq A(t)A(-t)$, where T_2 is the subgroup of $\Omega(S^1 \times S^2)$ consisting of elements of order 2.

Proof. For $m_1, m_2 \in \mathbb{C}_+(S^1 \times_\tau S^2)$, the equality $\tau(m_1 \bigcirc m_2) = \tau(m_1) \bigcirc \tau(m_2)$ is easily obtained. For $m \in \mathbb{C}_+(S^1 \times_\tau S^2)$, assume $m \sim 0$. Then for $M(\alpha) \in m$ there exists an \tilde{H} -cobordism $(W, M(\alpha), S^1 \times_\tau S^2)$. The 2-fold orientation cover $(W', M', S^1 \times S^2)$ of $(W, M(\alpha), S^1 \times_\tau S^2)$ gives an \tilde{H} -cobordism. So, $\tau(m) \sim 0$. Therefore τ^* is a homomorphism to T_2 . The remainder follows from Corollary 2.16 and Lemmas 3.6 and 3.11. This completes the proof.

Corollary 3.13. T_2 is infinitely generated.

Proof. Consider for example $m_n \in \mathbb{G}_+(S^1 \times_{\tau} S^2)$ with Alexander polynomial $A_n(t) = nt^2 + t - n, n = 1, 2, 3, \cdots$, as in 3.7. Then the Alexander polynomial of the 2-fold orientation cover $\tau(m_n)$ is $A_n(t) = n^2t^2 - (2n^2+1)t + n^2$. Since for

 $n=1, 2, 3, \cdots$ these Alexander polynomials $A_n(t)$ are irreducible and mutually distinct, the set $\{\tau(m_1), \tau(m_2), \tau(m_3), \cdots\}$ gives a linearly independent subset of T_2 , which completes the proof.

One may ask whether the subgroup T'_2 of order-2-elements of the Fox-Milnor's knot cobordism group C^1 is infinitely generated.

As a matter of fact, T'_{2} is also infinitely generated, although it seems to be difficult to set up a general argument.

Claim. T'_2 is infinitely generated.

In fact, consider the knot $k_n \subset S^3$ with the numbers of crossings 2n, 2n, illustrated in figure 8^n . In the case n=1, this knot k_1 is called the figure eight knot: $k_1 = 4_1$ (See figure 8¹.).

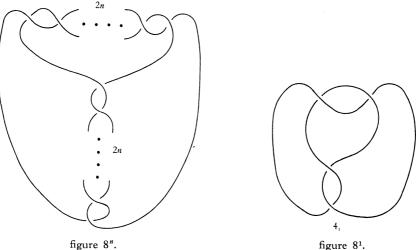


figure 81.

One can easily shown^{*)} that each knot $k_n \subset S^3$ is -amphicheiral^{**)} by an analogy of the method which is used for showing that the figure eight knot is -amphicheiral. Since the Alexander polynomial of $k_n \subset S^3$ is $A_n(t) = n^2 t^2 - n^2 t^2$ $(2n^2+1)t+n^2$, which is irreducible, it follows that T'_2 is infinitely generated.

One can also derive the conclusion of Corollary 3.13 by using these knots.

In concluding this paper, the author would like to propose a few questions and one interesting conjecture.

Question. Is $\operatorname{Im} \tau^* = T_2$?

^{*)} See, for example, S. Kinoshita and T. Yajima: On the graphs of knots, Osaka Math. J. 9 (1957), 155-163.

^{**)} An oriented knot $k \subset S^3$ is said to be *-amphicheiral*, if $-k \subset S^3$ and $-k \subset -S^3$ belong to the same knot type. (See Fox [2, pl 143] for details.)

This question seems closely related to a question due to Fox and Milnor: Is an element of order 2 of C^1 necessarily determined by a -amphicheiral knot?

One may also ask whether τ^* is injective, although the author expects a negative answer.

The following conjecture seems to be justified by Lemma 3.11.

Conjecture. The Alexander polynomial A(t) of a -amphicheiral knot necessarily satisfies $A(t^2) \doteq f(t)f(-t)$ for some integral polynomial f(t) with $f(t) \doteq f(-t^{-1})$.

One can easily checked that any -amphicheiral knot in the Alexander and Briggs knot table satisfies this assertion.

For example, the Alexander polynomial of the knot 8_{12} which is known to be -amphicheiral is $A(t)=t^4-7t^3+13t^2-7t+1$. Then,

$$A(t^{2}) = (t^{4} + t^{3} - 3t^{2} - t + 1)(t^{4} - t^{3} - 3t^{2} + t + 1).$$

OSAKA CITY UNIVERSITY

References

- D. Erle: Die quadratische Form eines Knotens und ein Satz über Knotenmanigfaltigkeiten, J. Reine Angew. Math. 236 (1969), 174–218.
- [2] R.H. Fox: A quick trip through knot theory, Topology of 3-Manifolds and Related Topics, M.K. Fort, Jr., Perntice-Hall 1962.
- [3] and J.W. Milnor: Singularties of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
- [4] M.W. Hirsch: The imbedding of bounding manifolds in Euclidean space, Ann. of Math. 74 (1961), 494–497.
- [5] M. Kato: Higher dimensional PL knotes and knot manifolds, J. Math. Soc. Japan 21 (1969), 458-480.
- [6] A. Kawauchi: A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. 26 (1975), 437-458.
- [8] J. Levine: Polynomial invariants of knots of codimension two, Ann. of Math. 84 (1966), 537-554.
- [9] ———: Knot cobordism groups in codimension two, Comment. Math. Helv.
 44 (1969), 229-244.
- [10] -----: Invariants of knot cobordism, Invent. math. 8 (1969), 98-110.
- [11] J.W. Milnor: Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston Mass. 1968.
- [12] and D. Husemoller: Symmetric Bilinear Forms, Springer, 1973.
- [13] H.F. Trotter: On S-equivalences of Seifert matrices, Invent. math. 20 (1973) 173-207.