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1. Introduction

In the present paper, we work in the category of CW-spectra due to Adams
[1]. For any ring spectrum E, we denote by Ey() and E*( ) the associated
homology and cohomology functors and by Ey the coefficient ring. The unit
of E is denoted by u®: S—E. Let E be a ring spectrum and F a spectrum.
Consider the spectrum morphism

uEANl: F=SAF—-EAF.
Then 4 A1 induces the generalized Hurewicz map

For E=H, we denote AF simply by A.
Ray [7] has conjectured that the Hurewicz map

(1.1)  h&°: MSp,—KO,(MSp)

is a split monomorphism for any integer # and has shown that it is a split mono-
morphism for n<20. Later Segal [14] has shown that the map (1.1) is not
a monomorphism for n=31 (since MSp, = Z,) and that Ray’s MSp Hattori-
Stong conjecture is false.

But still we may conjecture that the map

(1.2) h%O[Tors: MSpy[Tors—KOy(MSp)/Tors

is a split monomorphism, where Tors denotes the torsion subgroup.
For any ring spectrum E, we put

Wi = {xeMSp+QQ; hE(x)E E «(MSp)[TorsC E(MSp)RQ} .

Then MSp«/Torsc W§. And the map (1.2) is a split monomorphism if and
only if MSp,/Tors=Wk©°.
Let Ly be a subring of MSp®Q. We put

O(Lx) = L«/(Lx N Dy)
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where Dy is the ideal of all decomposable elements in MSp.R Q.
In this paper, we prove the following two theorems.

Theorem 1.1.  The inclusion i: MSpy|Tors—WEC induces the isomorphism
ix: Q(MSpx/[Tors) = QWE°)

(Cf. Proposition 3.12).

Theorem 1.2. The Hurewicz map
h¥°%: MSp,—KO,(MSp)
1s a split monomorphism for n<30. In particular, we have

MSp,/Tors = WE°  for n<32.

The author wishes to express his hearty appreciation to Professor S. Araki.

2. Calculations in WX and WX°

We denote by ,i: CP*->CP> (resp. ,i: HP"—HP=) the inclusion map.
Let E be a ring spectrum having a class x& E*(CP>) (resp. ¥ E*(HP~)) such that

E*(CP") = Ex[a)/(a"") (resp. EX(HP") = E+[2]/(x™*")

for each integer #>1 and x€E*(CPY)=E?*S?) (resp. x € E*(HP)=E*(S")) is
represented by the unit u¥, where ,x=,/*(x). As is well known, x determines
the Thom isomorphism ¢: Ex(BU)=E«(MU) (resp. ¢: E«(BSp)=E +(MSp)).
Let j: CP>—BU (resp. j: HP>—BSp) be the inclusion map and y,/EE (CP>)
(resp. ¥,/ E4(HP*)) dual to x*. Put y;=¢j«(y;"). Then we have

E*(MU) = E*[yn Y2+t Vis ]
(resp. Ex(MSp) = Ex[y1, Vs > V5> 1) »
where y, € E,,(MU) (resp. y;€ E,,(MSp)).

In H*(CP~), choose x to be ¢,, the first Chern class of the universal U(1)-
bundle ¢* over CP>. In this case, we denote y; by 4;. Then we have

H(MU) = Z[b,, b,, -+, b;, -], by H,,(MU) .

In in{? *(CP~), choose x to be cf,, the first Conner-Floyd Chern class of ¢’,

represented by the homotopy equivalence CP~=MU(1).
Let €K, be such that *(¢'—1)=sv in K°(CP"), where yEK*CP")=
K?(S?) is represented by the unit #X. Then we have

Ky= Z[z,27'] and Hy«(K)=Q[t,t™"],
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where t=h(z).

In K*(CP~), choose x to be 27}(¢*—1). Asis well known, there is a unique
ring spectrum morphism g: MU—K such that g4(cf,)=2""(§'—1).

In H*(HP~), choose x to be p,, the first symplectic Pontrjagin class of the
universal Sp(1)-bundle &' over HP=. In this case we denote y; by ¢;. Then
we have

H*(MSP) = Z[Ql: Q25 ***5 Gis ]’ quHH(MSP) .

In ]%p‘(HP”), choose x to be pf,, the first Conner-Floyd symplectic Pon-
trjagin class of &', represented by the homotopy equivalence HP*—~=MSp(1). In

this case, we denote y; by ¢f;.
Put «;=(gr)«(qf ;) € K«(MSp), wherer: MSp—MU is the morphism induced
by the inclution Sp—U. Then we have

K*(MSP) = K*["l) Koy 20ty Kiy "']) /‘;‘EK“‘(MSP) .

Let bu denote the connective BU-spectrum and +r: bu—K the canonical
morphism. Then we have

Yy bu, =K, if n=0,bu,=0 if n<0.
And let #;=buy(MSp) be the unique class such that Jr«(7;)=«; = K(MSp).
Then we have
bus(MSPp) = buy[®,, &,, -+, %;, -] .

Therefore Jry: bux(MSp)—K «(MSp) is a split monomorphism, so that we have
(2.1) Wy = Wk .

Similarly we have
(2.2) W = wke,

where bo denotes the connective BO-spectrum.
We have a Kunneth isomorphism

Hy( )QH«(MSp) = Hx( A\MSp)

since H«(MSp) is torsion free. By this isomorphism we idenify Hy( )®
H (MSp) and Hy( NMSp).

Lemma 2.1. Consider the commutative diagram

s

MSpxRQ — Hy(MSp)2Q

I j
h

K(MSp)RQ — » Hi(K)QRH«(MSp)QQ ,




550 R. Oxita

where j=(u¥ A1)x: H«(MSp)—H +(K A MSp)=H (K)QH +(MSp). Then we
have

J®) =1Qx
for any xe H «(MSp) and
h(RE (W) = WK «(MSp)) N j(H +(MSp))
= WZ[2*, ke, Ky, 25 155 1) N j(H+(MSP)) -
Proof. It is proven by diagram chasing that
J(x) = 1Q%

for any x€ H o(MSp).
We have the following commutative diagram

h
MSp@Q 2 y Hi(MSp)RQ

o~

1 Je ]

W b (ISPBQ — s H ()@ H(MSP)RR | ]

l Vi l Prx®1
Ko(MSPRQ————— H(K)@HA(MSP@R,

where 7=(u?A1)s: Hy(MSp)—H (bu N\ MSp)=H +(bu) R H +(M.Sp).
Now let x& WE=W}* (Cf.(2.1)). Then there is an integer n==0 such that
nxEMSpy/Tors. We have

nh(h"(x)) = h(h*(nx))
= J(h(nx)) € 7(H +«(MSP)) -

Since j/Tors: H(MSp)— H «(bu)/TorsQ H «(MSp) is a split monomorphism,
h(h**(x))E7(H «(MSp)). Therefore we obtain

h(h¥ (%)) € j(H +(MSp)) -
By (2.1) and dimensional reason, we obtain

hK(x)EZ[zz, K1y Kgy *0°y Kiy ] ’
h(hK(x))Eh(Z[zz, Ky Ky ooty Kgy ]) .

Conversly let yE K x(MSp) and h(y)si(H «(MSp)). Then
h(3) € j(HMSp+RQ)) = W(h*(MSpxRQ)) ,
so that yeh¥(MSp+RQ). Consequently we obtain
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YERK(WE), (y)E i (W)) .
Corollary 2.2. W(WE)C H(MSp).
It is well known that
(2.3)  gulb) = F[i+1)!,
where gy: Hy(MU)—H 4«(K). And we have

Lemma 2.3.
(gr)+(g:) = 2¢%/[2(:+-1)]!,

where (gr)«: H(MSp)—H +«(K).

Proof. We have

74(gs) = 2[byi—bibyi_ o+ (— 1), b; i ]+ (—1)82,

so that the lemma follows immediately from (2.3).

Consider the commutative diagram

l

MSpi(MSp) ————— Hy(MSp)QHx(MSP)

(g7) % (gr)s®1

K«(MSp) H(K)QHx(MSp) .

By definition, (gr)«(¢f;)=«;. Therefore we have
h(;) = (gr)«@1(k(gf)) »
so that, by Ray [9], (5:6) and Lemma 2.3, we can calculate the Hurewicz map
h: K (MSp)—H oK) H(MSP) .

Therefore, by Lemma 2.1 and the fact that 2%: WE—K (MSp) is a monomor-
phism, we obtain

Proposition 2.4. W is generated by elements
2(1=¢<7), y,, vs and y,

in dimensions<<32, where x; (1<1<6) are defined by
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h&(x,) = 2°4-12«, ,
h&(x,) = 2, —412+ 10k, ,
hE (%) = 2%(—3ri4-4r,)+ 12} — 36k, 28k, ,
hE(x,) = 22(1d—2u 10,4 1) — 4} 140lie,— 4w — 121 1,6k,
h¥(x,) = 2*(—Tri+18kin,—4rs— 11k, +-4x,)
+ 28k — 11263k, 661 1162+ 9612, — 381,16, — 620 16,22k,
h%(xs) = 2*(—2xi{+562k,—Ki— 3,105+ 1¢,)
+24(— 363 — 10k3k,+ 245 e+ 131500, — 181,10, — 140,16, +-8re,)
44412 — 150k, + 15212+ 2513+ 14065k, 36k, 10,00, — 1265 — Bdrcie,
— 454,16, + 181,113k,
and
Vo= (“x:+x1xa)/4) Ve = (_xzx4+x1x5)/2 and y, = (_x3x4+xzxs)/2 .
And we have
Lemma 2.5. Let x&W¥, and
hK(x) =f(zr Ky Kay *t"y Kgy "')EZ[Z, Ky Koy **°y Ky "'] .
Then
h(x) =f(0) 915 92 **°5 G "')EH*(MSP) .
For example,
h(x,) = 12¢,,
h(xz) = —4Qf+10‘_lz )
h(x3) = 1293—3691924-2893 ’
h(x,) = —4q;+14qiq,—4¢;—129,q,+6¢, .
Proof. Notice that
() = 1Q¢; mod tR1 in Q[{]RQH «(MSp)

where h: K (MSp)—H (K)RQH «(MSp). Then the lemma follows from
Lemma 2.1.

Let ¢: KO— K be the complexification morphism. As is well known, KO,
is generated by the classes

ecKO,, x€KO0,, yc KO, and y'eKO_,

subject to the relations

2e=f=ex=0,x"=4y and yy =1
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such that
cx(x) =22 and cy(y)=2' in K.

Let 0;=KO0,,(MSp) be the unique class such that cy(o;)=r;EK,,(MSPp).
Then we have

KO*(MSP) = KO*[O'” Ty **°y Ojy "'] ’
and

(2.4) WEoCc Wk .
As a corollary to Proposition 2.4, we obtain

Proposition 2.6. WX has the following generators for k<.

k=1:2x,.

k=242 2x,.

k= 3:2x3, xx,, 2x, .

k= 4: x}, 253%,, %,%,, 2y,, 2%, .

k= 5:2x3, x3%,, 20505, 200,95 X,%5, X,%45 2% .

k= 6: &5, 2xix,, 3%,y 2%0,%,%,, 2x,7,, X2, 2%%%, ,
x1x2x3+xf(y4+x4)’ Xy%45 %1% 2xe .

k= 17:2x], x3x,, 2%, 25}y, x2%,%,, 2%,%%, 2%,y,, x3%, ,
X, X2+ 20,00,( Vi %,), %4Xyy 20205, X1 Ve X,05, 20,%6, Xy .

REMARK.
WI;‘JSU — Wfo, hMSU(WJ;{SU) — H_Sp* R

where H-Spy is the algebra of Ray [10], (2-1), and
h(2x;) = h;= H «(MSp)
for <4, where A; are the classes in [10], (3-7) (Cf. Lemma 2.5)

3. Adams spectral sequence maps

For any connective spectrum X such that X, is finitely generated for each
r, we denote by E*(X) the mod 2 Adams spectral sequence for X (Cf. [3], 2.2).
For an integer n, we denote by F*X, the s-th filtration in the mod 2 Adams
spectral sequence. Then we have

FX,|F*'X, = ES*"(X) = ES**"(X) (r large)

Let H be a graded vector space over Z,. We define a graded vector space
H’ from H by
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H;,=H,, Hip=0
for any integer n. For any connected Hopf algebra H over Z,, we denote the
augmentation ideal >} H,by H.
i>0

We denote the mod 2 Steenrod Algebra by A. Let A” be endowed
with structure as a graded A-module by the following A-action.

1
A@A// B® N A//®AII ll)a AI/ .

Here B: A—A" is the map such that B*(x)=x'€ 4* for any x&A”* and p is
the product map in A. Using the notation of Milnor [4], we denote ({74,)* by
m; for any integers m, j=0. For any n (0=<n= o), let B(n) be the Hopf sub-
algebra of A (multiplicatively) generated by the elements 1,, 2; for j<n. The
map @B induces the isomorphism

(3.1)  A/B=4",

where B=DB(c0).
Let R be a Hopf subalgebra of A4, and (C, d, &) a R-free resolution of Z,.
As is well known, 4 is free as a right R-module and we have the isomorphism

AJ|AR= AR Z, of A-modules. So we obtain
R

Lemma 3.1. There is an A-free resolution of A/AR:

_ 1R¢& 1®d 1®d 1Qd 1
A/AR ®CA®C0 ®CA®C1 ®c.__ ®CA®C'_ ®dcm
R R

®
The following proposition is well known.

Proposition 3.2.

(1) (Serre [15]) (HZ,)*(H)=A/AB(0)
as graded A-modules.

(2) (CE. [1], §16) (HZ,)*(bo)~A|AB(1)
as graded A-modules.

(3) (Cf.[3], THEOREM II. 4) (HZ,)*(MSp)=A"RQS"
as graded coalgebra and A-modules (A oprating on S” trivially), where S is the
graded coalgebra over Z, such that

S*= Z [V, V, Vs, -, Vi o0, iE2°—1,deg V; = 1.

As a result of Proposition 3.2, the following proposition is obtained by

(3.1) and Lemma 3.1.
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Proposition 3.3.

(1) Ey(H)=Extpq(Z,, Z,).

(2) E,(bo)=ExtpuZ,, Z,).

(3) Ez(MSP)gExtB(Zz’ Z2)®Zz['vz) Uy, Usy **5 YUy, ]1
1=£2°—1, v;=[V;]€ E>*(MSp).

A B(n)-free resolution of Z, has been constructed by Liulevicius [3]. Let
Y(n) be the Z,-vector space with basis

I= (i, 15 s tus)s J = (Jos Jus ***5 Jm)s where I, J are }
sequences of non-negative, finitely non-zero integers. J .

{10/,
Let
deg IR] = (2 irtir) T2 —2)+Hi (2 —1)]).
We define a B(n)-homomorphism d(n): B(n)® Y(n)—B(n)® Y(n) by
dn)I8]) = 3 (1O~ A+ 2~ A)® ]

‘|’(jk+1+1)(1_ Ak)@(]_Ao+Ak+1)
F (et DI(I—A—An)Q(J+Ak+1)

+(I PN a 280 @ (J+280)]
+ E et Dot DI — 20— A= A)Q(J+ApritArsa) -
Here we set I—A,=0if ,=0 and J—A,=0if j,=0. Then

B(n)® Y(n) = (B(n)® Y(n), d(n), &n))

is the B(n)-free resolution of Z, constructed by him, where &(z): B(n)Q Y(n),—Z,
is the unique B(n)-homomorphism. Put

I>=0RJ.
Then we have
dn)J> =2 1lJ—Ap .
Using the notation of [3] for Homyg,,(B(n)Q Y(n), Z,)=Y(n)*, let

k; =[x Extsly (2., Z,),

9 = [y EExtpin(Z,, Z,),

T = [yoy§~+1—l—xox,~y,~+l]eExt‘*éff,;a“(Zz, Z),
w, = (Y] € Extyi(Z,, Z,) .
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Proposition 3.4. (Liulevicius [3])

(1) ExtB(o)(Zz: Zz) = Zz[%]-
(2) Extguy(Z,, Z,) has multiplicative generators q,, k,, T, and w, with bidegrees
(1,1), (1,2), (3,7) and (4,12) respectively subject to the relations

QR =0,k =0,k7,=0 and 7= go,.

Corollary 3.5.

(1) Eo(H)=E,H).

(2) E.(bo) = E,(bo).

Lemma 3.6. For any integer 7, there is an integer s,=sy(#) such that
Exty**™(Z,, Z,) = (Z,[qy, {T;}1)"°"" if s=s,.

Proof. Let B(m) be the Hopf subalgebra of B (multiplicatively) generated
by B(m), 1,,+, (0=<m< o). By Segal [12], PROPOSITION 2.3, there is a
spectral sequence ,,E¥** such that

wBy = Exty,(Z,, Z,)QF(Q*) (Q = B(m+1)//B(m)),
(mEoo)s’t = Extsé:m+1)(zz’ Zz) .

Since Q=Ez,[k,'], k' =[2,s], we have F(Q*)=Z,[k,,], deg k,,=(1, 2"**—2). And
Ext3om(Z,y Z2)=Extgom(Z,, Z,)R Z,[qp+:), deg ¢pi1=(1, 2"*—1). Therefore

mEl = ExtB(m)(Zz) Z2)®Zz[km]®zz[qm+1] .
Then we have
dl(qmﬂ) = %km

and all d, in ,E are trivial on Extg,,(Z,, Z,)® Z,[k,,] (Cf. [12]).
Now we prove by induction on m that there is an integer s,=s,(#,m) such
that

Extyon(Zyy Z,) = (Z,[q,, {7j; j=m—1}])"*"  if s2s,.

For m=0, it is true by Proposition 3.4, (1). Assume that it is true for m.
Since deg g¢,,+,=(1, 14+(27"**—2)), 2"+*—2>1 and deg k,,=(1, 14 (2"**—3)),
2"+2_3>1, there is an integer s,’=s,’(n, m) such that

(mE2)"" " = (Z,[q0 {75 jSm—1}, guaa])**" if s=s.
Clearly there is an integer s,”=s,”(n, m)=s,” such that

(mB)" " = (Zlgo, {7j; jSm—1}, qua])™" i 5287
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gofm+1 18 a permanent cycle and 7, is represented by ¢,¢%,+,. Put s,(n, m+1)=
s,/ (n, m) then

Extgonii(Zo Z,) = (Zalgy {75 j=m}])>"*"  if s2s(n, m+1).

From the fact that Ext3*t™(Z,, Z,)=Extyii((Z,, Z,) if 2"**—3>mn, the
lemma follows.

Let
G = .G = A|AB(m)Q(HZ,)*(MSp) = (HZ) (. M) (HZ,y*(MSp)

(4 operating on (H Z,)*(MSp) trivially), where m=0 or 1 and ,M=H, M=bo.
And we define a map

® = ,&: Go(HZ)MANMSp) (M = ,,M)

by ®([a]Qu)=>)[a/]-a/'u for acA, us(HZ,)*(MSp), where (a)=
Sa/®a;”". Then we have

Lemma 3.7. (Cf. [1], §16) @ is an isomorphism of graded coalgebras and
A-modules.

We identify G and (HZ,)*(M N\ MSp) by ®.
Corollary 3.8.

(1) EZ(H/\MSP)ZZZ[QOJ Vyy Oy 205 U4y ]-
(2) E (boAMSp)=E,(bo)R Z,[v,, v,, ***, V;, *-].

Here v, E}*i(,,M N MSp), where
v; = [£;] if i=2/—1,v;,=[V] if 742—1
(HZ,)«(MSp) = A"™*QS"*).
Corollary 3.9.
(1) E(HAMSp)=E,(HNMSp).
Therefore we have
F°H,(MSp) = {xSH,(MSp); 2°|x} .
(2) Eo(bo\MSp)=E,(bo N MSp).
Lemma 3.10. For any v (HZ,)*(MSp), we have
WA (1Qu) =u,
where (uM A\ 1)*: G—(HZ,)*(MSp).
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Proof. For any ve(HZ,)«(MSp), we can prove by diagram chaising that
@M A 1)s(v) = 1-vEe(HZ,)$(MNAMSD) .

Therefore we have

@MAD*(1-u)=u
for any ues(HZ,)*(MSp), where (uM A1)*: (HZ,)*(M A\ MSp)—(HZ,)*(MSp).
Since ®7'(1-#)=1Q®u, the lemma follows.

For any ring spectrum X and any spectrum Y, u* A1l: Y->XA'Y induces
the spectral sequence map

hX: E¥*¥(Y)—-E*(XANY).
For X=H, we denote A* simply by &.

Lemma 3.11.
(1-a)  h(v;)=v; if {£2°—1.
(1-b) A (Extg(Z,, Z,)) is contained in the ring

R= Zz[Qo; Vs, gy *00y Vya_yyee]
(1-c)  A(7;)=g}(v,i+1_,+demcoposables in Z,[v,, v,, -+, V,a_y, - ]) ER.
(2-a) A(v;)=v; if 7£2°—1.
(2-b) h™(Extg(Z,, Z,)) is contained in the ring

1R == ExtB(l)(Zz) Zz)®Zz[v1) Vgy ***y Vya_yy "'] .

(2-c)  RB¥(t;)=7,(v}i_,Fother terms in Z,[v,, v,, ***, Vpi_,])+g5(vi+11+
decomposables in Z,[v,, v;, ***, Vye_y, -+ ]) E,R,

where v,=1.
(2-¢’) Let us(Z,[q,, {7a}])"'CExtg’(Z,, Z,). Then we have

hba(u) € Zz[flo’ Tos {‘Z)za_ 1}]
and
h(u) & Z,[qo, {,0-1}] if u€Z)q,].

(2-d) A*(k;)=ky(v,;_,+decomposables in Z,[v,, v;, =+, Vya_,, +++]) E,R.

Proof. We porve only (2). We can prove (1) in the same way. Applying
Lemma 3.1 to the resolution B(n)® Y(n), we obtain an A4-free resolurion of

A|AB(n):
A|AB(n) £ A i AR Y(n), ii AR Y(n), i .
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Then (AR Y(1)R@A"QS”, dR1®1, EQ1®1) is an A-free resolution of
.G = A|AB(H®A"RS"

and (AQ Y(=)®S”, d®1, BR1) an A-free resolution of
(HZ,)*(MSp) = A"QS" .

We can define an A-homomorphism f;: AQ Y(1),QA4”"—AQ Y(o), for each
s=0 such that

{f:®1; AR Y(1),QA4"QS8"—=AQ ¥(=),®S5"}

is a homomorphism of A-free resolutions, that is,

@ A)*ERIR1) = (BRL)(f,®1)
and (fsQNEAR1IRX1) = (dR1)(f+: Q1) for any s=0,

where (u*°A1)*: AJAB(1)QA"QS"—A"®S” (Cf. Lemma 3.10). Partial
construction of {f} is given as the following ((o)~(iii), (i’)).

(e) For (Etatre--Li*€A"=Y(1),4",
Fol(€Pgre - Lhie e )*] = (EimEimee g% ¥ €A = AQ Y(00),.

(1) fiKAD>®2;,) = 8, KA p>+6;_<A;> for j=2,
FiKAD®2)) = 8,KAD+6,KAD+2KA,>,
f[KAD®2;,) = 8j—1<A1>+4j—1<Aj+1> ’
f1(<Ao>®1j) = 4'i<A0>+2i<Aj+1> .

(ii)  foKA+ADR2; ;) = 8, KA +AD+6,_ A HAD+4; Ag+Aj >
+2; KA+ A for j=2,
[(KAHADR2,) = 8KA+AD+4LA+A,D,
fK280®2;_,) = 8, 1 C2AD+4;_ KA+ A D+2A ;1D
fz(<2Ao>®1j) = 4j<2A0>+2i<Ao+Aj+1>+<2Aj+1> .

(iil) fy(<A+2A0R2; 1) = 8, 1KA+2A>+6;_(2A,+4,>
4 KA A A D+ 2, KA A+ A DHKAAH204D>
FABAD®R1;) = 4;BA>+2,2A0+ A+ >+ AH24 41> .
(1) fi([2:B0)]®1;-1) = 4;-:8,(0)+1,1;4;_,@(0)+4,Q(0) forj=2,
[1([A:R(0)]® 1) = 4,A,(0)+A,(0) .
We have
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Hom 4(f,®1, 1) = f¥Q1: Y(=)¥QS"-Y(1)¥*QA"®S",

where f¥: Y(oc0)¥— Y(1)¥*®A” and 1: S”*—S"*_, So we obtain (2-a) and (2-b).
By (iii), we obtain

T Y11 %%V j41) = Yoy QE%+other terms in Y(1)*Q4”  for j=1
and
J¥oYirr+%0%;9;41) = Y3QL j4+1+-other terms in Y(1)*®QA4" .
Obviously we have f¥(y,y2+x2y,)=,y:® 14 other terms, so that

FE(DoYirot %25 541) = Y0 @L5+.@E 41 +other terms in Y(1)*Q@4”
for j=0,

where ¢,=1. No y,yi+other terms in (Y(1)*) is coboundary and
Extge(Z,, Z,)=1{0, 7o}. (Y(1)¥)’={0, »}}. Therefore we have

h*(7;) = 7,03 _,+qv.i+1_,+other terms in R.

From the dimensional reason, (2-c) follows.
(2-d) can be proven by (i').
Now we prove (2-¢). We define a ring homomorphism
V: Z,[90 Tor {v22_1}]1> 2,70, {2,2_1}]
by ¥(¢,)=0, ¥(To)=To, ¥(v,°_,)=7,2_,. And we define a decreasing flitration {F*}
in Z,[7,, {v,°_.}] by
F° = Z,[7, {v,°.,}],
F#+' = (the ideal of F° generated by {v,_,; a=1}F*)
Then F°F*C F*** and yh*(7;)=7,2}i_, mod higher filtration.
Let
u=qu,s20,wEZ]q, {r.}],
' is not divisible by ¢, in Z,[g,, {7.}].
If ue: Z,[q,] then u’ has the form
w = M b0 e g e g

Ogsl, cery 3}: ey
(SO: S15°0°5 855 "')*(0)

b E Z,, W E Zy[qy {Ta}]

(m=0 and there is (s, ***,$;, +-*) such that s *v-*;=>=%0). We have
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so‘|'s1+“'+3j+“‘ — (S-——S')/3 T e |
Therefore we obtain

TS T ol e ()
=81 Sty
(mh"ls"':s]""):l:(o) . .
mod higher filtration,

so that (2-c’) is proven.
By Lemma 3.11, (2-a) and (2-d), we obtain

Proposition 3.12. Let k be an integer, and x < MSp .+, represented by an
element =0 of EL"*“*+>(MSp). Then h¥(x)=%0 in KO 4. (MSP).

Proof. Exty(Z,, Z,)is a Z,-vector space generated by {q,, k,, &, ***, k;j, **}.
By Lemma 3.6 and Lemma 3.11, (1), we obtain

Lemma 3.13. Let s, ¢ be integers, and u< EL*(MSp) such that gju==0 for
any integer n>0. Then A(x)+0 in EL/(H A MSp).

ReEMARK. Lemma 3.13 follows also from [12], PROPOSITION 3.2.

4. Proof of Thorem 1.1

For any integer k, we denote by g, the composition of the following
sequence of homomorphism

h
MSpa®Q > HuMSpoe 2 q,
where p4(x) is the coefficient of ¢, in x for any x& H,,(MSp)@Q. We have the

commutative diagram

MSp[Tors s Qu(MSps[Tors) —— Z
| | /
W — s Qu(WE)
Here ¢ denotes the quotient map, and u,, u, are the maps such that
el MSp.u/Tors = u,0q, gl WP = uyoq

(Cf. Corollary 2.2 and (2.4)). Since u, is a monomorphism, Theorem 1.1 is
equivalent to
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4.1) Zu(MSp,i| Tors) Dg (WEC for any integer k.

By [9], (64), we have

(42)  MSpy/Tors@Z[}] = Wi°RZ[}].

Therefore (4.1) is equivalennt to

4.3) 2° | go(MSp [ Tors)=>2° | g (WEP for any integer k.
Let E be a ring spectrum. Then, obviously, we have

(44) S WHDCWE ..

for any morphism f: MSp—>MSp of degree —mn, where fi: MSp:QRQ—
MSP*—n@Q-

Making use of Proposition 2.6, Lemma 2.5 and (4.4), we can prove the
following proposition in the same way as that of Segal [13].

Proposition 4.1.

(1) For any integer k, g (WEP) is divisible by 2. If k is a power of 2 then it
is divisible by 4.

(2) Let k be an odd integer. Then h(WEP) is divisible by 4 in H,(MSp).
In particular, g (WEP) is divisible by 4. '

And further, making use of some results in §3, we obtain
Proposition 4.2. If k=2/—1, j an integer >0, then g (WEP) is divisible by 8.

Proof. Let xe WZXP and x+0. By Lemma 3.6, there is an integer n=0
such that 2"x& MSp,,/ TorsC MSp,, is represented by an element of Z,[q,, {7,},
{v:; 1£2°—1}]NE(MSp). Let 2"x be represneted by uc EL(MSp), s=0.

(i) In case ue Z,[q,, {v;; i£2°—1}]: There is a decomposable element
yEH (MSp) such that

h(2"x) = y mod F*+'H ,(MSp).

Therefore, by Corollary 3.9, (1), g,(2"x) is divisible by 2°**, so that gg(x) is
divisible by 2°+*~*, By Lemma 3.13, A(2"x) is not divisible by 2°**, so that A(x)
is not divisible by 2°**"%. By Proposition 4.1, (2), we have s41—n=3.
Consequently g,(x) is divisible by 8.
(ii) In case ueE Z,[q,, {v;; 1=2°—1}]: By Lemma 3.11, (2-a) and (2-c’), we
have
B(w) & Z,[g, {v:}]CE(bo\MSp).

By (2.2), B*(x) € bo(MSp). Let h*(x) be represented by we EX-*+*(bo A MSp).
By Proposition 3.4, (2), A*°(2"x)=2"h"(x) is represented by g}, so that
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h*(u) = q'w, we EL"(bo A MSP) .

Then wes Z,[q,, {v;}], so that s—n>3. h(2"x) is’divisible by 2°, so that h(x) is
divisible by 2°7*. Consequently %(x) is divisible by 8.

Let n;(n,, n,, -+, n,)EMSp,5_,; be the Stong-Ray classes in [11], where

N= ;21(2”,.—1).

Proposition 4.3.

(1) (Segal [13]) For an even integer k>0, we define integers s, and t, as
Sollows. If k is not a power of 2 then we define s,=2"+1, 2* the largest power of
2 less than k, and t,—=k—s,+2. If k=27 then we define s,=t,=27"'+1. Then
we have

(150 1) {2mod4 if k=0mod 2, k=27

nl S ] = .

Bl W) =1 4 mod 8 if k=27

(2) Using the notation of (1), we have

4 mod 8 if k=1mod2, k+2/—1
8mod16 i k=27-1

(Segal [13] has proven the fact that g,(MSp,./Tors) is not divisible by 8 if k=1
mod 2, k+27—1.).

ulr(snes ) = |

Now (4.3) follows from Propositions 4.1, 4.2 and 4.3, so that Theorem
1.1 is proven.
As a corollary to Proposition 4.3, we obtain

Proposition 4.4. {n;(n,, n,, ---,n,)EMSpy} generates Q(MSpy/Tors)=
QWZ°).

Proof. From Stong [17], Theorem 1, it follows that {n(n,, n,, --*, n,)}
generates Q(MSpy/Tors)Q Z , for any odd prime p.

5. Proof of Theorem 1.2 and some remarks

For integers &, s=0, we put

F3{ = h(MSp,) N F°H ,,(MSp)
and
F; = h(WEYNF°H,(MSp) .

The following lemma follows immediately from the definition.

Lemma 5.1. For m=1 or 2, the inclusion F;,,—H ( MSp) induces the
monomorphism
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F5,|F3}'—F*H, (MSp)[F*+'H (MSp) = E%*+*(H \ MSp) .
Lemma 5.2. MSp,,/Tors = WX if and only if
Fi[Fi+tt = F;[F;V'CEL Y HAMSp)  for any s=0.
Proof. By (4.2), we have
hMSp)RZ[4] = (WEO)QZ[4] .

Therefore there is an integer s,=s,(k) such that F{=Fj; for any s=s,. Then it
is easy to see that A(MSp,,)=h(WXP) if and only if

Fi|F{* = Fj[F;* for any s=0.
Since ~: MSp«QRQ—H «(MSp)RQ is an isomorphism, the lemma follows.

By Theorem 1.1, Proposition 2.6, Lemmas 3.13, 5.2 and Segal [12],
TABLE II, we obtain

Lemma 5.3. MSp,,/Tors=WEK° for k<7.

By Lemma 5.3, Proposition 2.6, Lemma 3.11, (2) and [12], TABLE II,
we can prove

Lemma 5.4.
order of MSp, = order of hX°(MSp,)
for n<30, =0 mod 4.

Since MSp,; is torsion free for k<7 by [12], Theorem 1.2 follows from
Lemmas 5.3 and 5.4.

Making use of the Ray classes ¢; = MSp,;_,in [8], we can immediately calcu-
late the ring structure of MSpy in dimensions <30 except the values of a%, and
a’X,, where o is the generator of MSp, =~ Z, (Cf. Ray [10], (5-25)). For example,
we have

Proposition 5.5. For k<5,
EMSPp1 CoMSpprs and  xZMSP,pr, CPMSPaprs -
We can calculate the Hurewicz map (1.1) for n=17:
Proposition 5.6. There is an indecomposable element T MSp,, such that
h*O(r) = e(o3+y0,) .

Proof. Using the notation of [12], «? is represented by o, and Zy4 by g,7;.
Therefore 247y, is represented by g,0,v;. Since
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2(x, 2,35+ 22224y +2,)) = 2xy, mod F°MSp,, ,

x,2%,%,+x%(x5+ y,—+x,) is represented by w,v3.
Let 7€ MSp,, be a class represented by k,2;. Then x{7’ is represented by
kyw,v3, so that

w7 = a%,%,%0,+x5(%3+ y,+x,)) mod F*MSp,, .
Therefore
YREO(1') = KEO(¥7") = ye(oi+ yo,) mod KX(F MSp,s) .
Since AXO(F°*MSp,)=yh*O(F*MSp,,), there is an element A E F’MSp,, such that

YHEO(1') = ye(ait-yo,)+ yh*O(N) ,
BEO(1") = e(o3+ yo,)+HEO(N) .

We may take T=1"-}\.

Let yE¥*(MSp) denote the Adams-Novikov spectral sequence for MSpy
(Cf. [5]). Proposition 2.6 shows us the structure of

MSpy|Tors = yEX(MSp)C yE¥(MSP)
in low dimensions:

Proposition 5.7.

(1) (Porter [6]) yE*(MSp)={x= MSp,QQ; r«(x)EMU,}.
(2) {x€MSpsRQ; rx(x)EMU,} = WE.

Proof of (2). Consider the commutative diagram

MSp@-M_, k. (MSp)2e

[

2 .
MUQ@Q— Kx(MU)QQ .

Then ry: K (MSp)—K«(MU) is a split monomorphism. And, by Hattori [2]
or Stong [16], A% : MU +—>K «(MU) is a split monomorphism.
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