ON THE MSp HATTORI-STONG PROBLEM

Rikio ŌKITA

(Received September 22, 1975)

1. Introduction

In the present paper, we work in the category of $C W$-spectra due to Adams [1]. For any ring spectrum E, we denote by $E_{*}()$ and $E^{*}()$ the associated homology and cohomology functors and by E_{*} the coefficient ring. The unit of E is denoted by $u^{E}: S \rightarrow E$. Let E be a ring spectrum and F a spectrum. Consider the spectrum morphism

$$
u^{E} \wedge 1: F=S \wedge F \rightarrow E \wedge F
$$

Then $u^{E} \wedge 1$ induces the generalized Hurewicz map

$$
h^{E}=\left(u^{E} \wedge 1\right)_{*}: F_{*} \rightarrow E_{*}(F)
$$

For $E=H$, we denote h^{E} simply by h.
Ray [7] has conjectured that the Hurewicz map

$$
\begin{equation*}
h^{K o}: M S p_{n} \rightarrow K O_{n}(M S p) \tag{1.1}
\end{equation*}
$$

is a split monomorphism for any integer n and has shown that it is a split monomorphism for $n \leqq 20$. Later Segal [14] has shown that the map (1.1) is not a monomorphism for $n=31$ (since $M S p_{31} \cong Z_{2}$) and that Ray's $M S p$ HattoriStong conjecture is false.

But still we may conjecture that the map

$$
\begin{equation*}
h^{K O} / \text { Tors }: M S p_{*} / \text { Tors } \rightarrow K O_{*}(M S p) / \text { Tors } \tag{1.2}
\end{equation*}
$$

is a split monomorphism, where Tors denotes the torsion subgroup.
For any ring spectrum E, we put

$$
W_{*}^{E}=\left\{x \in M S p_{*} \otimes \boldsymbol{Q} ; h^{E}(x) \in E_{*}(M S p) / \operatorname{Tors} \subset E_{*}(M S p) \otimes \boldsymbol{Q}\right\}
$$

Then $M S p_{*} / \operatorname{Tors} \subset W_{*}^{E}$. And the map (1.2) is a split monomorphism if and only if $M S p_{*} /$ Tors $=W_{*}^{K O}$.

Let L_{*} be a subring of $M S p_{*} \otimes \boldsymbol{Q}$. We put

$$
Q\left(L_{*}\right)=L_{*} /\left(L_{*} \cap D_{*}\right),
$$

where D_{*} is the ideal of all decomposable elements in $M S p_{*} \otimes \boldsymbol{Q}$.
In this paper, we prove the following two theorems.
Theorem 1.1. The inclusion $i: M S p_{*} /$ Tors $\rightarrow W_{*}^{K O}$ induces the isomorphism

$$
i_{*}: Q\left(M S_{*} / \text { Tors }\right) \cong Q\left(W_{*}^{K O}\right)
$$

(Cf. Proposition 3.12).
Theorem 1.2. The Hurewicz map

$$
h^{K o}: M S p_{n} \rightarrow K O_{n}(M S p)
$$

is a split monomorphism for $n \leqq 30$. In particular, we have

$$
M S p_{n} / \text { Tors }=W_{n}^{K O} \quad \text { for } \quad n<32
$$

The author wishes to express his hearty appreciation to Professor S. Araki.

2. Calculations in \boldsymbol{W}_{*}^{K} and $\boldsymbol{W}_{*}^{K O}$

We denote by ${ }_{n} i: C P^{n} \rightarrow C P^{\infty}$ (resp. ${ }_{n} i: H P^{n} \rightarrow H P^{\infty}$) the inclusion map. Let E be a ring spectrum having a class $x \in \widetilde{E}^{2}\left(C P^{\infty}\right)$ (resp. $x \in \widetilde{E}^{4}\left(H P^{\infty}\right)$) such that

$$
E^{*}\left(C P^{n}\right)=E_{\left.*\left[{ }_{n} x\right] /\left({ }_{n} x^{n+1}\right)\left(\text { resp. } E^{*}\left(H P^{n}\right)=E_{*[n} x\right] /\left({ }_{n} x^{n+1}\right)\right) ~}^{\text {and }}
$$

for each integer $n \geqq 1$ and ${ }_{1} x \in \widetilde{E^{2}}\left(C P^{1}\right)=\widetilde{E^{2}}\left(S^{2}\right)\left(\right.$ resp. $\left.{ }_{1} x \in \widetilde{E^{4}}\left(H P^{1}\right)=\widetilde{E^{4}}\left(S^{4}\right)\right)$ is represented by the unit u^{E}, where ${ }_{n} x={ }_{n} i^{*}(x)$. As is well known, x determines the Thom isomorphism $\phi: E_{*}(B U) \cong E_{*}(M U)$ (resp. $\phi: E_{*}(B S p) \cong E_{*}(M S p)$). Let $j: C P^{\infty} \rightarrow B U$ (resp. $j: H P^{\infty} \rightarrow B S p$) be the inclusion map and $y_{i}{ }^{\prime} \in E_{*}\left(C P^{\infty}\right)$ (resp. $y_{i}{ }^{\prime} \in E_{*}\left(H P^{\infty}\right)$) dual to x^{i}. Put $y_{i}=\phi j_{*}\left(y_{i}{ }^{\prime}\right)$. Then we have

$$
\begin{aligned}
E_{*}(M U) & =E_{*}\left[y_{1}, y_{2}, \cdots, y_{i}, \cdots\right] \\
\left(\operatorname{resp} . E_{*}(M S p)\right. & \left.=E_{*}\left[y_{1}, y_{2}, \cdots, y_{i}, \cdots\right]\right),
\end{aligned}
$$

where $y_{i} \in E_{2 i}(M U)$ (resp. $y_{i} \in E_{4 i}(M S p)$).
In $\tilde{H}^{2}\left(C P^{\infty}\right)$, choose x to be c_{1}, the first Chern class of the universal $U(1)-$ bundle ζ^{1} over $C P^{\infty}$. In this case, we denote y_{i} by b_{i}. Then we have

$$
H_{*}(M U)=Z\left[b_{1}, b_{2}, \cdots, b_{i}, \cdots\right], b_{i} \in H_{2 i}(M U)
$$

In $\widetilde{M U^{2}}\left(C P^{\infty}\right)$, choose x to be $c f_{1}$, the first Conner-Floyd Chern class of ζ^{1}, represented by the homotopy equivalence $C P^{\infty} \simeq M U(1)$.

Let $z \in K_{2}$ be such that ${ }_{1} i^{*}\left(\zeta^{1}-1\right)=z \gamma$ in $K^{0}\left(C P^{1}\right)$, where $\gamma \in \widetilde{K}^{2}\left(C P^{1}\right)=$ $\tilde{K}^{2}\left(S^{2}\right)$ is represented by the unit u^{K}. Then we have

$$
K_{*}=\boldsymbol{Z}\left[z, z^{-1}\right] . \text { and } \quad H_{*}(K)=\boldsymbol{Q}\left[t, t^{-1}\right]
$$

where $t=h(z)$.
In $\widetilde{K}^{2}\left(C P^{\infty}\right)$, choose x to be $z^{-1}\left(\zeta^{1}-1\right)$. As is well known, there is a unique ring spectrum morphism $g: M U \rightarrow K$ such that $g_{*}\left(c f_{1}\right)=z^{-1}\left(\zeta^{1}-1\right)$.

In $\tilde{H}^{4}\left(H P^{\infty}\right)$, choose x to be p_{1}, the first symplectic Pontrjagin class of the universal $S p(1)$-bundle ξ^{1} over $H P^{\infty}$. In this case we denote y_{i} by q_{i}. Then we have

$$
H_{*}(M S p)=Z\left[q_{1}, q_{2}, \cdots, q_{i}, \cdots\right], q_{i} \in H_{4 i}(M S p)
$$

In $\widetilde{M S} p^{4}\left(H P^{\infty}\right)$, choose x to be $p f_{1}$, the first Conner-Floyd symplectic Pontrjagin class of ξ^{1}, represented by the homotopy equivalence $H P^{\infty} \simeq M S p(1)$. In this case, we denote y_{i} by $q f_{i}$.

Put $\kappa_{i}=(g r)_{*}\left(q f_{i}\right) \in K_{*}(M S p)$, where $r: M S p \rightarrow M U$ is the morphism induced by the inclution $S p \rightarrow U$. Then we have

$$
K_{*}(M S p)=K_{*}\left[\kappa_{1}, \kappa_{2}, \cdots, \kappa_{i}, \cdots\right], \kappa_{i} \in K_{4 i}(M S p)
$$

Let $b u$ denote the connective $B U$-spectrum and $\psi: b u \rightarrow K$ the canonical morphism. Then we have

$$
\psi_{*}: b u_{n} \cong K_{n} \quad \text { if } \quad n \geqq 0, b u_{n}=0 \quad \text { if } \quad n<0
$$

And let $\tilde{\kappa}_{i} \in b u_{*}(M S p)$ be the unique class such that $\psi_{*}\left(\tilde{\kappa}_{i}\right)=\kappa_{i} \in K_{*}(M S p)$. Then we have

$$
b u_{*}(M S p)=b u_{*}\left[\tilde{\kappa}_{1}, \tilde{\kappa}_{2}, \cdots, \tilde{\kappa}_{i}, \cdots\right] .
$$

Therefore $\psi_{*}: b u_{*}(M S p) \rightarrow K_{*}(M S p)$ is a split monomorphism, so that we have

$$
\begin{equation*}
W_{*}^{b u}=W_{*}^{K} . \tag{2.1}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
W_{*}^{b o}=W_{*}^{K o} \tag{2.2}
\end{equation*}
$$

where bo denotes the connective $B O$-spectrum.
We have a Künneth isomorphism

$$
H_{*}() \otimes H_{*}(M S p) \cong H_{*}(\wedge M S p)
$$

since $H_{*}(M S p)$ is torsion free. By this isomorphism we idenify $H_{*}() \otimes$ $H_{*}(M S p)$ and $H_{*}(\wedge M S p)$.

Lemma 2.1. Consider the commutative diagram

where $j=\left(u^{K} \wedge 1\right)_{*}: H_{*}(M S p) \rightarrow H_{*}(K \wedge M S p)=H_{*}(K) \otimes H_{*}(M S p)$. Then we have

$$
j(x)=1 \otimes x
$$

for any $x \in H_{*}(M S p)$ and

$$
\begin{aligned}
h\left(h^{K}\left(W_{*}^{K}\right)\right) & =h\left(K_{*}(M S p)\right) \cap j\left(H_{*}(M S p)\right) \\
& =h\left(Z\left[z^{2}, \kappa_{1}, \kappa_{2}, \cdots, \kappa_{i}, \cdots\right]\right) \cap j\left(H_{*}(M S p)\right) .
\end{aligned}
$$

Proof. It is proven by diagram chasing that

$$
j(x)=1 \otimes x
$$

for any $x \in H_{*}(M S p)$.
We have the following commutative diagram

where $\tilde{j}=\left(u^{b u} \wedge 1\right)_{*}: H_{*}(M S p) \rightarrow H_{*}(b u \wedge M S p)=H_{*}(b u) \otimes H_{*}(M S p)$.
Now let $x \in W_{*}^{K}=W_{*}^{b u}$ (Cf. (2.1)). Then there is an integer $n \neq 0$ such that $n x \in M S p_{*} /$ Tors. We have

$$
\begin{aligned}
n h\left(h^{b u}(x)\right) & =h\left(h^{b u}(n x)\right) \\
& =\tilde{j}(h(n x)) \in \tilde{j}\left(H_{*}(M S p)\right) .
\end{aligned}
$$

Since $\tilde{j} /$ Tors: $H_{*}(M S p) \rightarrow H_{*}(b u) / \operatorname{Tors} \otimes H_{*}(M S p)$ is a split monomorphism, $h\left(h^{b^{u}}(x)\right) \in \tilde{j}\left(H_{*}(M S p)\right)$. Therefore we obtain

$$
h\left(h^{K}(x)\right) \in j\left(H_{*}(M S p)\right)
$$

By (2.1) and dimensional reason, we obtain

$$
\begin{aligned}
& h^{K}(x) \in Z\left[z^{2}, \kappa_{1}, \kappa_{2}, \cdots, \kappa_{i}, \cdots\right] \\
& h\left(h^{K}(x)\right) \in h\left(Z\left[z^{2}, \kappa_{1}, \kappa_{2}, \cdots, \kappa_{i}, \cdots\right]\right)
\end{aligned}
$$

Conversly let $y \in K_{*}(M S p)$ and $h(y) \in i\left(H_{*}(M S p)\right)$. Then

$$
h(y) \in j\left(h\left(M S_{p_{*}} \otimes \boldsymbol{Q}\right)\right)=h\left(h^{K}\left(M S_{p_{*}} \otimes \boldsymbol{Q}\right)\right)
$$

so that $y \in h^{K}\left(M S p_{*} \otimes \boldsymbol{Q}\right)$. Consequently we obtain

$$
y \in h^{K}\left(W_{*}^{K}\right), h(y) \in h\left(h^{K}\left(W_{*}^{K}\right)\right) .
$$

Corollary 2.2. $h\left(W_{*}^{K}\right) \subset H_{*}(M S p)$.
It is well known that

$$
\begin{equation*}
g_{*}\left(b_{i}\right)=t^{i} /(i+1)!, \tag{2.3}
\end{equation*}
$$

where $g_{*}: H_{*}(M U) \rightarrow H_{*}(K)$. And we have

Lemma 2.3.

$$
(g r)_{*}\left(q_{i}\right)=2 t^{2 i} /[2(i+1)]!,
$$

where $(g r)_{*}: H_{*}(M S p) \rightarrow H_{*}(K)$.
Proof. We have

$$
r_{*}\left(q_{i}\right)=2\left[b_{2 i}-b_{1} b_{2 i-1}+\cdots+(-1)^{i-1} b_{i-1} b_{i+1}\right]+(-1)^{i} b_{i}^{2},
$$

so that the lemma follows immediately from (2.3).
Consider the commutative diagram

By definition, $(g r)_{*}\left(q f_{i}\right)=\kappa_{i}$. Therefore we have

$$
h\left(\kappa_{i}\right)=(g r)_{*} \otimes 1\left(h\left(q f_{i}\right)\right)
$$

so that, by Ray [9], $(5 \cdot 6)$ and Lemma 2.3, we can calculate the Hurewicz map

$$
h: K_{*}(M S p) \rightarrow H_{*}(K) \otimes H_{*}(M S p)
$$

Therefore, by Lemma 2.1 and the fact that $h^{K}: W_{*}^{K} \rightarrow K_{*}(M S p)$ is a monomorphism, we obtain

Proposition 2.4. W_{*}^{K} is generated by elements

$$
x_{i}(1 \leqq i \leqq 7), y_{4}, y_{6} \quad \text { and } \quad y_{7}
$$

in dimensions <32, where $x_{i}(1 \leqq i \leqq 6)$ are defined by

$$
\begin{aligned}
h^{K}\left(x_{1}\right)= & z^{2}+12 \kappa_{1}, \\
h^{K}\left(x_{2}\right)= & z^{2} \kappa_{1}-4 \kappa_{1}^{2}+10 \kappa_{2}, \\
h^{K}\left(x_{3}\right)= & z^{2}\left(-3 \kappa_{1}^{2}+4 \kappa_{2}\right)+12 \kappa_{1}^{3}-36 \kappa_{1} \kappa_{2}+28 \kappa_{3}, \\
h^{K}\left(x_{4}\right)= & z^{2}\left(\kappa_{1}^{3}-2 \kappa_{1} \kappa_{2}+\kappa_{3}\right)-4 \kappa_{1}^{4}+14 \kappa_{1}^{2} \kappa_{2}-4 \kappa_{2}^{2}-12 \kappa_{1} \kappa_{3}+6 \kappa_{4}, \\
h^{K}\left(x_{5}\right)= & z^{2}\left(-7 \kappa_{1}^{4}+18 \kappa_{1}^{2} \kappa_{2}-4 \kappa_{2}^{2}-11 \kappa_{1} \kappa_{3}+4 \kappa_{4}\right) \\
& +28 \kappa_{1}^{5}-112 \kappa_{1}^{3} \kappa_{2}+66 \kappa_{1} \kappa_{2}^{2}+96 \kappa_{1}^{2} \kappa_{3}-38 \kappa_{2} \kappa_{3}-62 \kappa_{1} \kappa_{4}+22 \kappa_{5}, \\
h^{K}\left(x_{6}\right)= & z^{4}\left(-2 \kappa_{1}^{4}+5 \kappa_{1}^{2} \kappa_{2}-\kappa_{2}^{2}-3 \kappa_{1} \kappa_{3}+\kappa_{4}\right) \\
& +z^{2}\left(-3 \kappa_{1}^{5}-10 \kappa_{1}^{3} \kappa_{2}+24 \kappa_{1} \kappa_{2}^{2}+13 \kappa_{1}^{2} \kappa_{3}-18 \kappa_{2} \kappa_{3}-14 \kappa_{1} \kappa_{4}+8 \kappa_{5}\right) \\
& +44 \kappa_{1}^{6}-150 \kappa_{1}^{4} \kappa_{2}+15 \kappa_{1}^{2} \kappa_{2}^{2}+25 \kappa_{2}^{3}+140 \kappa_{1}^{3} \kappa_{3}+36 \kappa_{1} \kappa_{2} \kappa_{3}-12 \kappa_{3}^{2}-84 \kappa_{1}^{2} \kappa_{4} \\
& -45 \kappa_{2} \kappa_{4}+18 \kappa_{1} \kappa_{5}+13 \kappa_{6}
\end{aligned}
$$

and

$$
y_{4}=\left(-x_{2}^{2}+x_{1} x_{3}\right) / 4, y_{6}=\left(-x_{2} x_{4}+x_{1} x_{5}\right) / 2 \text { and } y_{7}=\left(-x_{3} x_{4}+x_{2} x_{5}\right) / 2 .
$$

And we have
Lemma 2.5. Let $x \in W_{*}^{K}$, and

$$
h^{K}(x)=f\left(z, \kappa_{1}, \kappa_{2}, \cdots, \kappa_{i}, \cdots\right) \in Z\left[z, \kappa_{1}, \kappa_{2}, \cdots, \kappa_{i}, \cdots\right] .
$$

Then

$$
h(x)=f\left(0, q_{1}, q_{2}, \cdots, q_{i}, \cdots\right) \in H_{*}(M S p) .
$$

For example,

$$
\begin{aligned}
& h\left(x_{1}\right)=12 q_{1}, \\
& h\left(x_{2}\right)=-4 q_{1}^{2}+10 q_{2}, \\
& h\left(x_{3}\right)=12 q_{1}^{3}-36 q_{1} q_{2}+28 q_{3}, \\
& h\left(x_{4}\right)=-4 q_{1}^{4}+14 q_{1}^{2} q_{2}-4 q_{2}^{2}-12 q_{1} q_{3}+6 q_{4} .
\end{aligned}
$$

Proof. Notice that

$$
h\left(\kappa_{i}\right) \equiv 1 \otimes q_{i} \bmod t \otimes 1 \quad \text { in } \quad \boldsymbol{Q}[t] \otimes H_{*}(M S p)
$$

where $h: K_{*}(M S p) \rightarrow H_{*}(K) \otimes H_{*}(M S p)$. Then the lemma follows from Lemma 2.1.

Let $c: K O \rightarrow K$ be the complexification morphism. As is well known, $K O_{*}$ is generated by the classes

$$
e \in K O_{1}, x \in K O_{4}, y \in K O_{8} \quad \text { and } \quad y^{-1} \in K O_{-8}
$$

subject to the relations

$$
2 e=e^{3}=e x=0, x^{2}=4 y \quad \text { and } \quad y y^{-1}=1
$$

such that

$$
c_{*}(x)=2 z^{2} \quad \text { and } \quad c_{*}(y)=z^{4} \quad \text { in } \quad K_{*} .
$$

Let $\sigma_{i} \in K O_{4 i}(M S p)$ be the unique class such that $c_{*}\left(\sigma_{i}\right)=\kappa_{i} \in K_{4 i}(M S p)$. Then we have

$$
K O_{*}(M S p)=K O_{*}\left[\sigma_{1}, \sigma_{2}, \cdots, \sigma_{i}, \cdots\right],
$$

and
(2.4) $\quad W_{*}^{K O} \subset W_{*}^{K}$.

As a corollary to Proposition 2.4, we obtain
Proposition 2.6. $W_{4 k}^{K O}$ has the following generators for $k \leqq 7$.

$$
\begin{aligned}
& k=1: 2 x_{1} . \\
& k=2: x_{1}^{2}, 2 x_{2} . \\
& k=3: 2 x_{1}^{3}, x_{1} x_{2}, 2 x_{3} . \\
& k=4: x_{1}^{4}, 2 x_{1}^{2} x_{2}, x_{1} x_{3}, 2 y_{4}, 2 x_{4} . \\
& k=5: 2 x_{1}^{5}, x_{1}^{3} x_{2}, 2 x_{1}^{2} x_{3}, 2 x_{1} y_{4}, x_{2} x_{3}, x_{1} x_{4}, 2 x_{5} . \\
& k=6: x_{1}^{6}, 2 x_{1}^{4} x_{2}, x_{1}^{3} x_{3}, 2 x_{1} x_{2} x_{3}, 2 x_{2} y_{4}, x_{3}^{2}, 2 x_{1}^{2} x_{4}, \\
& \quad x_{1} x_{2} x_{3}+x_{1}^{2}\left(y_{4}+x_{4}\right), x_{2} x_{4}, x_{1} x_{5}, 2 x_{6} . \\
& k=7: 2 x_{1}^{7}, x_{1}^{5} x_{2}, 2 x_{1}^{4} x_{3}, 2 x_{1}^{3} y_{4}, x_{1}^{2} x_{2} x_{3}, 2 x_{1} x_{3}^{2}, 2 x_{3} y_{4}, x_{1}^{3} x_{4}, \\
& \quad x_{1} x_{3}^{2}+x_{1} x_{2}\left(y_{4}+x_{4}\right), x_{3} x_{4}, 2 x_{1}^{2} x_{5}, x_{1} y_{6}, x_{2} x_{5}, 2 x_{1} x_{6}, \tilde{x}_{7} .
\end{aligned}
$$

Remark.

$$
W_{*}^{M S U}=W_{*}^{K O}, h^{M S U}\left(W_{*}^{M S U}\right)=H-S p_{*},
$$

where $H-S p_{*}$ is the algebra of Ray [10], (2•1), and

$$
h\left(2 x_{i}\right)=h_{i} \in H_{*}(M S p)
$$

for $i \leqq 4$, where h_{i} are the classes in [10], (3•7) (Cf. Lemma 2.5)

3. Adams spectral sequence maps

For any connective spectrum X such that X_{r} is finitely generated for each r, we denote by $E_{*}^{* *}(X)$ the mod 2 Adams spectral sequence for X_{*} (Cf. [3], 2.2). For an integer n, we denote by $F^{s} X_{n}$ the s-th filtration in the mod 2 Adams spectral sequence. Then we have

$$
F^{s} X_{n} / F^{s+1} X_{n}=E_{\infty}^{s, s+n}(X)=E_{r}^{s, s+n}(X) \quad(r \text { large })
$$

Let H be a graded vector space over \boldsymbol{Z}_{2}. We define a graded vector space H^{\prime} from H by

$$
H_{2 n}^{\prime}=H_{n}, H_{2 n+1}^{\prime}=0
$$

for any integer n. For any connected Hopf algebra H over \boldsymbol{Z}_{2}, we denote the augmentation ideal $\sum_{i>0} H_{i}$ by \bar{H}.

We denote the mod 2 Steenrod Algebra by A. Let $A^{\prime \prime}$ be endowed with structure as a graded A-module by the following A-action.

$$
A \otimes A^{\prime \prime} \xrightarrow{\beta \otimes 1} A^{\prime \prime} \otimes A^{\prime \prime} \xrightarrow{\mu} A^{\prime \prime}
$$

Here $\beta: A \rightarrow A^{\prime \prime}$ is the map such that $\beta^{*}(x)=x^{4} \in A^{*}$ for any $x \in A^{\prime *}$ and μ is the product map in A. Using the notation of Milnor [4], we denote $\left(\zeta_{j+1}^{m}\right)^{*}$ by m_{j} for any integers $m, j \geqq 0$. For any $n(0 \leqq n \leqq \infty)$, let $B(n)$ be the Hopf subalgebra of A (multiplicatively) generated by the elements $1_{0}, 2_{j}$ for $j<n$. The map β induces the isomorphism

$$
\begin{equation*}
A / / B \cong A^{\prime \prime} \tag{3.1}
\end{equation*}
$$

where $B=B(\infty)$.
Let R be a Hopf subalgebra of A, and $\left(C, d_{C}, \varepsilon_{C}\right)$ a R-free resolution of \boldsymbol{Z}_{2}. As is well known, A is free as a right R-module and we have the isomorphism $A \mid A \bar{R} \cong A \otimes_{\boldsymbol{R}} \boldsymbol{Z}_{2}$ of A-modules. So we obtain

Lemma 3.1. There is an A-free resolution of $A / A \bar{R}$:

The following proposition is well known.

Proposition 3.2.

(1) $($ Serre $[15])\left(H Z_{2}\right) *(H) \cong A / A \overline{B(0)}$
as graded A-modules.
(2) (Cf. [1], §16) $\left(H Z_{2}\right)^{*}(b o) \cong A / A \overline{B(1)}$
as graded A-modules.
(3) (Cf. [3], THEOREM II. 4) $\left(H Z_{2}\right)^{*}(M S p) \cong A^{\prime \prime} \otimes S^{\prime \prime}$
as graded coalgebra and A-modules (A oprating on $S^{\prime \prime}$ trivially), where S is the graded coalgebra over \boldsymbol{Z}_{2} such that

$$
S^{*} \cong Z_{2}\left[V_{2}, V_{4}, V_{5}, \cdots, V_{i}, \cdots\right], i \neq 2^{a}-1, \operatorname{deg} V_{i}=i
$$

As a result of Proposition 3.2, the following proposition is obtained by (3.1) and Lemma 3.1.

Proposition 3.3.

(1) $\quad E_{2}(H) \cong E x t_{B(0)}\left(Z_{2}, Z_{2}\right)$.
(2) $\quad E_{2}(b o) \cong E x t_{B(1)}\left(Z_{2}, Z_{2}\right)$.
(3) $\quad E_{2}(M S p) \cong \operatorname{Ext}_{B}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \otimes \boldsymbol{Z}_{2}\left[v_{2}, v_{4}, v_{5}, \cdots, v_{i}, \cdots\right]$,

$$
i \neq 2^{a}-1, v_{i}=\left[V_{i}\right] \in E_{2}^{0,4_{i}}(M S p) .
$$

A $B(n)$-free resolution of \boldsymbol{Z}_{2} has been constructed by Liulevicius [3]. Let $Y(n)$ be the Z_{2}-vector space with basis

$$
\left\{I \otimes J ; \begin{array}{l}
I=\left(i_{0}, i_{1}, \cdots, i_{n-1}\right), J=\left(j_{0}, j_{1}, \cdots, j_{n}\right), \text { where } I, J \text { are } \\
\text { sequences of non-negative, finitely non-zero integers. }
\end{array}\right\} .
$$

Let

$$
\operatorname{deg} I \otimes J=\left(\sum\left(i_{r}+j_{r}\right), \sum\left[i_{r}\left(2^{r_{+2}}-2\right)+j_{r}\left(2^{r+1}-1\right)\right]\right)
$$

We define a $B(n)$-homomorphism $d(n): B(n) \otimes Y(n) \rightarrow B(n) \otimes Y(n)$ by

$$
\begin{aligned}
d(n)(I \otimes J)=\sum_{k}[& 1_{k} I \otimes\left(J-\Delta_{k}\right)+2_{k}\left(I-\Delta_{k}\right) \otimes J \\
& +\left(j_{k+1}+1\right)\left(I-\Delta_{k}\right) \otimes\left(J-\Delta_{0}+\Delta_{k+1}\right) \\
& +\left(j_{k+1}+1\right) 1_{0}\left(I-\Delta_{0}-\Delta_{k}\right) \otimes\left(J+\Delta_{k+1}\right) \\
& \left.+\binom{j_{k+1}+2}{2}\left(I-\Delta_{0}-2 \Delta_{k}\right) \otimes\left(J+2 \Delta_{k+1}\right)\right] \\
+\sum_{k<t} & \left(j_{k+1}+1\right)\left(j_{t+1}+1\right)\left(I-\Delta_{0}-\Delta_{k}-\Delta_{t}\right) \otimes\left(J+\Delta_{k+1}+\Delta_{t+1}\right)
\end{aligned}
$$

Here we set $I-\Delta_{r}=0$ if $i_{r}=0$ and $J-\Delta_{r}=0$ if $j_{r}=0$. Then

$$
B(n) \otimes Y(n)=(B(n) \otimes Y(n), d(n), \varepsilon(n))
$$

is the $B(n)$-free resolution of \boldsymbol{Z}_{2} constructed by him, where $\varepsilon(n): B(n) \otimes Y(n)_{0} \rightarrow \boldsymbol{Z}_{2}$ is the unique $B(n)$-homomorphism. Put

$$
\langle J\rangle=(0) \otimes J
$$

Then we have

$$
d(n)\langle J\rangle=\sum 1_{k}\left\langle J-\Delta_{k}\right\rangle
$$

Using the notation of [3] for $\operatorname{Hom}_{B(n)}\left(B(n) \otimes Y(n), Z_{2}\right)=Y(n)^{*}$, let

$$
\begin{aligned}
k_{j} & =\left[x_{j}\right] \in E x t_{B(n)}^{1,22^{j+2}-2}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right), \\
q_{0} & =\left[y_{0}\right] \in E x t_{B(n)}^{1,1}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right), \\
\tau_{j} & =\left[y_{0} y_{j+1}^{2}+x_{0} x_{j} y_{j+1}\right] \in E x t_{B(n)}^{3,2+3-1}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right), \\
\omega_{0} & =\left[y_{1}^{4}\right] \in E x t_{B(n)}^{4,2}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) .
\end{aligned}
$$

Proposition 3.4. (Liulevicius [3])
(1) $\operatorname{Ext}_{\boldsymbol{B}(0)}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[q_{0}\right]$.
(2) $\operatorname{Ext}_{B(1)}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$ has multiplicative generators q_{0}, k_{0}, τ_{0} and ω_{0} with bidegrees $(1,1),(1,2),(3,7)$ and $(4,12)$ respectively subject to the relations

$$
q_{0} k_{0}=0, k_{0}^{3}=0, k_{0} \tau_{0}=0 \quad \text { and } \quad \tau_{0}^{2}=q_{0}^{2} \omega_{0} .
$$

Corollary 3.5.

(1) $\quad E_{\infty}(H)=E_{2}(H)$.
(2) $\quad E_{\infty}(b o)=E_{2}(b o)$.

Lemma 3.6. For any integer n, there is an integer $s_{0}=s_{0}(n)$ such that

$$
E x t_{B}^{s, s+n}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=\left(\boldsymbol{Z}_{2}\left[q_{0},\left\{\tau_{j}\right\}\right]\right)^{s, s+n} \quad \text { if } \quad s \geqq s_{0}
$$

Proof. Let $\tilde{B}(m)$ be the Hopf subalgebra of B (multiplicatively) generated by $B(m), 1_{m+1}(0 \leqq m<\infty)$. By Segal [12], PROPOSITION 2.3, there is a spectral sequence ${ }_{m} E_{*}^{* * *}$ such that

$$
\begin{aligned}
& m E_{1}=\operatorname{Ext}_{\tilde{B}(m)}\left(Z_{2}, Z_{2}\right) \otimes F\left(\Omega^{*}\right)(\Omega=B(m+1) / / \tilde{B}(m)), \\
& \left({ }_{m} E_{\infty}\right)^{s, t} \cong E x t_{B(m+1)}^{s, t}\left(Z_{2}, Z_{2}\right) .
\end{aligned}
$$

Since $\Omega=E_{Z_{2}}\left[k_{m^{\prime}}{ }^{\prime}\right], k_{m}{ }^{\prime}=\left[2_{m}\right]$, we have $F\left(\Omega^{*}\right)=\boldsymbol{Z}_{2}\left[k_{m}\right]$, $\operatorname{deg} k_{m}=\left(1,2^{m+2}-2\right)$. And $\operatorname{Ext}_{\tilde{B}(m)}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=\operatorname{Ext}_{\boldsymbol{B}(m)}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \otimes \boldsymbol{Z}_{2}\left[q_{m+1}\right], \operatorname{deg} q_{m+1}=\left(1,2^{m+2}-1\right)$. Therefore

$$
{ }_{m} E_{1}=E_{x} t_{B(m)}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \otimes \boldsymbol{Z}_{2}\left[k_{m}\right] \otimes \boldsymbol{Z}_{2}\left[q_{m+1}\right] .
$$

Then we have

$$
d_{1}\left(q_{m+1}\right)=q_{0} \dot{k}_{m_{m}}
$$

and all d_{r} in ${ }_{m} E$ are trivial on $\operatorname{Ext}_{B(m)}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \otimes \boldsymbol{Z}_{2}\left[k_{m}\right]$ (Cf. [12]).
Now we prove by induction on m that there is an integer $s_{0}=s_{0}(n, m)$ such that

$$
E x t_{B(m)}^{s, s+n}\left(Z_{2}, Z_{2}\right)=\left(Z_{2}\left[q_{0},\left\{\tau_{j} ; j \leqq m-1\right\}\right]\right)^{s, s+n} \quad \text { if } \quad s \geqq s_{0}
$$

For $m=0$, it is true by Proposition 3.4, (1). Assume that it is true for m. Since $\operatorname{deg} q_{m+1}=\left(1,1+\left(2^{m+2}-2\right)\right), 2^{m+2}-2 \geqq 1$ and $\operatorname{deg} k_{m}=\left(1,1+\left(2^{m+2}-3\right)\right)$, $2^{m+2}-3 \geqq 1$, there is an integer $s_{0}{ }^{\prime}=s_{0}{ }^{\prime}(n, m)$ such that

$$
\left({ }_{m} E_{2}\right)^{s, s+n}=\left(Z_{2}\left[q_{0},\left\{\tau_{j} ; j \leqq m-1\right\}, q_{m+1}^{2}\right]\right)^{s, s+n} \quad \text { if } \quad s \geqq s_{0}^{\prime} .
$$

Clearly there is an integer $s_{0}{ }^{\prime \prime}=s_{0}{ }^{\prime \prime}(n, m) \geqq s_{0}{ }^{\prime}$ such that

$$
\left(m_{m} E_{2}^{s, s+n}=\left(Z_{2}\left[q_{0},\left\{\tau_{j} ; j \leqq m-1\right\}, q_{0} q_{m+1}^{2}\right]\right)^{s, s+n} \quad \text { if } \quad s \geqq s_{0}{ }^{\prime \prime}\right.
$$

$q_{0} q_{m+1}^{2}$ is a permanent cycle and τ_{m} is represented by $q_{0} q_{m+1}^{2}$. Put $s_{0}(n, m+1)=$ $s_{0}{ }^{\prime \prime}(n, m)$ then
$E x t_{\boldsymbol{B}(m+1)}^{s, s+n}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=\left(\boldsymbol{Z}_{2}\left[q_{0},\left\{\tau_{j} ; j \leqq m\right\}\right]^{s, s+n} \quad\right.$ if $\quad s \geqq s_{0}(n, m+1)$.
From the fact that $E x t_{B}^{s, s+n}\left(Z_{2}, Z_{2}\right) \cong E x t_{B(m)}^{s, s+n}\left(Z_{2}, Z_{2}\right)$ if $2^{m+2}-3>n$, the lemma follows.

Let

$$
G={ }_{m} G=A / A \overline{B(m)} \otimes\left(H Z_{2}\right)^{*}(M S p)=\left(H Z_{2}\right)^{*}\left({ }_{m} M\right) \otimes\left(H Z_{2}\right)^{*}(M S p)
$$

(A operating on $\left(H Z_{2}\right)^{*}(M S p)$ trivially), where $m=0$ or 1 and ${ }_{0} M=H,{ }_{1} M=b o$. And we define a map

$$
\Phi={ }_{m} \Phi: G \rightarrow\left(H Z_{2}\right)^{*}(M \wedge M S p) \quad\left(M={ }_{m} M\right)
$$

by $\Phi([a] \otimes u)=\sum\left[a_{i}{ }^{\prime}\right] \cdot a_{i}{ }^{\prime \prime} u \quad$ for $\quad a \in A, u \in\left(H Z_{2}\right)^{*}(M S p)$, where $\quad \psi(a)=$ $\sum a_{i}{ }^{\prime} \otimes a_{i}{ }^{\prime \prime}$. Then we have

Lemma 3.7. (Cf. [1], §16) Φ is an isomorphism of graded coalgebras and A-modules.

We identify G and $\left(H Z_{2}\right)^{*}(M \wedge M S p)$ by Φ.

Corollary 3.8.

(1) $E_{2}(H \wedge M S p)=Z_{2}\left[q_{0}, v_{1}, v_{2}, \cdots, v_{i}, \cdots\right]$.
(2) $\quad E_{2}(b o \wedge M S p)=E_{2}(b o) \otimes \boldsymbol{Z}_{2}\left[v_{1}, v_{2}, \cdots, v_{i}, \cdots\right]$.

Here $\left.v_{i} \in E_{2}^{0,4_{i}}{ }_{m} M \wedge M S p\right)$, where

$$
v_{i}=\left[\zeta_{j}\right] \quad \text { if } \quad i=2^{j}-1, v_{i}=\left[V_{i}\right] \quad \text { if } \quad i \neq 2^{a}-1
$$

$\left(\left(H Z_{2}\right)_{*}(M S p)=A^{\prime \prime *} \otimes S^{\prime \prime *}\right)$.

Corollary 3.9.

(1) $E_{\infty}(H \wedge M S p)=E_{2}(H \wedge M S p)$.

Therefore we have

$$
F^{s} H_{n}(M S p)=\left\{x \in H_{n}(M S p) ; 2^{s} \mid x\right\}
$$

(2) $\quad E_{\infty}(b o \wedge M S p)=E_{2}(b o \wedge M S p)$.

Lemma 3.10. For any $u \in\left(H Z_{2}\right)^{*}(M S p)$, we have

$$
\left(u^{M} \wedge 1\right)^{*}(1 \otimes u)=u
$$

where $\left(u^{M} \wedge 1\right)^{*}: G \rightarrow\left(H Z_{2}\right)^{*}(M S p)$.

Proof. For any $v \in\left(H Z_{2}\right)_{*}(M S p)$, we can prove by diagram chaising that

$$
\left(u^{M} \wedge 1\right)_{*}(v)=1 \cdot v \in\left(H Z_{2}\right)_{*}(M \wedge M S p)
$$

Therefore we have

$$
\left(u^{M} \wedge 1\right)^{*}(1 \cdot u)=u
$$

for any $u \in\left(H Z_{2}\right)^{*}(M S p)$, where $\left(u^{M} \wedge 1\right)^{*}:\left(H Z_{2}\right)^{*}(M \wedge M S p) \rightarrow\left(H Z_{2}\right)^{*}(M S p)$. Since $\Phi^{-1}(1 \cdot u)=1 \otimes u$, the lemma follows.

For any ring spectrum X and any spectrum $Y, u^{X} \wedge 1: Y \rightarrow X \wedge Y$ induces the spectral sequence map

$$
h^{X}: E_{*}^{* *}(Y) \rightarrow E_{*}^{* *}(X \wedge Y) .
$$

For $X=H$, we denote $h^{\boldsymbol{x}}$ simply by h.

Lemma 3.11.

(1-a) $\quad h\left(v_{i}\right)=v_{i} \quad$ if $\quad i \neq 2^{a}-1$.
(1-b) $h\left(\operatorname{Ext}_{\boldsymbol{B}}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)\right)$ is contained in the ring

$$
{ }_{0} R=\boldsymbol{Z}_{2}\left[q_{0}, v_{1}, v_{3}, \cdots, v_{2} a_{-1}, \cdots\right] .
$$

(1-c) $\quad h\left(\tau_{j}\right)=q_{0}^{3}\left(v_{2^{j+1}-1}+\right.$ demcoposables in $\left.Z_{2}\left[v_{1}, v_{3}, \cdots, v_{2^{a}-1}, \cdots\right]\right) \in_{0} R$.
(2-a) $\quad h^{b o}\left(v_{i}\right)=v_{i} \quad$ if $\quad i \neq 2^{a}-1$.
(2-b) $h^{b o}\left(\operatorname{Ext}_{\boldsymbol{B}}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)\right)$ is contained in the ring

$$
{ }_{1} R=\operatorname{Ext}_{B(1)}\left(Z_{2}, Z_{2}\right) \otimes \boldsymbol{Z}_{2}\left[v_{1}, v_{3}, \cdots, v_{2} a_{-1}, \cdots\right] .
$$

(2-c) $h^{b o}\left(\tau_{j}\right)=\tau_{0}\left(v_{2}^{2} j_{-1}+\right.$ other terms in $\left.Z_{2}\left[v_{1}, v_{3}, \cdots, v_{2^{j}-1}\right]\right)+q_{0}^{3}\left(v_{2^{j+1}{ }_{-1}}+\right.$ decomposables in $\left.Z_{2}\left[v_{1}, v_{3}, \cdots, v_{2}{ }^{a}-\cdots\right]\right) \in_{1} R$, where $v_{0}=1$.
(2-c') Let $u \in\left(\boldsymbol{Z}_{2}\left[q_{0},\left\{\tau_{a}\right\}\right]\right)^{s, t} \subset E x t_{B}^{s, t}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$. Then we have

$$
h^{b o}(u) \in Z_{2}\left[q_{0}, \tau_{0},\left\{v_{2}{ }^{a}-1\right\}\right]
$$

and

$$
h^{b o}(u) \notin \boldsymbol{Z}_{2}\left[q_{0},\left\{v_{2^{a}-1}\right\}\right] \quad \text { if } \quad u \notin \boldsymbol{Z}_{2}\left[q_{0}\right] .
$$

$$
\begin{equation*}
h^{b o}\left(k_{j}\right)=k_{0}\left(v_{2^{j-1}}+\text { decomposables in } Z_{2}\left[v_{1}, v_{3}, \cdots, v_{2^{a}-1}, \cdots\right]\right) \in_{1} R . \tag{2-d}
\end{equation*}
$$

Proof. We porve only (2). We can prove (1) in the same way. Applying Lemma 3.1 to the resolution $B(n) \otimes Y(n)$, we obtain an A-free resolurion of $A / A \overline{B(n)}$:

$$
A \mid A \overline{B(n)} \stackrel{\varepsilon}{\leftarrow} A \stackrel{d}{\leftarrow} A \otimes Y(n)_{1} \stackrel{d}{\leftarrow} \underset{\leftarrow}{d} A \otimes Y(n)_{s} \stackrel{d}{\leftarrow} \cdots .
$$

Then $\left(A \otimes Y(1) \otimes A^{\prime \prime} \otimes S^{\prime \prime}, d \otimes 1 \otimes 1, \varepsilon \otimes 1 \otimes 1\right)$ is an A-free resolution of

$$
{ }_{1} G=A / A \overline{B(1)} \otimes A^{\prime \prime} \otimes S^{\prime \prime}
$$

and $\left(A \otimes Y(\infty) \otimes S^{\prime \prime}, d \otimes 1, \beta \otimes 1\right)$ an A-free resolution of

$$
\left(H Z_{2}\right)^{*}(M S p)=A^{\prime \prime} \otimes S^{\prime \prime}
$$

We can define an A-homomorphism $f_{s}: A \otimes Y(1)_{s} \otimes A^{\prime \prime} \rightarrow A \otimes Y(\infty)_{s}$ for each $s \geqq 0$ such that

$$
\left\{f_{s} \otimes 1 ; A \otimes Y(1)_{s} \otimes A^{\prime \prime} \otimes S^{\prime \prime} \rightarrow A \otimes Y(\infty)_{s} \otimes S^{\prime \prime}\right\}
$$

is a homomorphism of A-free resolutions, that is,
and

$$
\left(u^{b o} \wedge 1\right)^{*}(\varepsilon \otimes 1 \otimes 1)=(\beta \otimes 1)\left(f_{0} \otimes 1\right)
$$

where $\quad\left(u^{b o} \wedge 1\right)^{*}: A / A \overline{B(1)} \otimes A^{\prime \prime} \otimes S^{\prime \prime} \rightarrow A^{\prime \prime} \otimes S^{\prime \prime} \quad(\mathrm{Cf}$. Lemma 3.10). Partial construction of $\left\{f_{s}\right\}$ is given as the following $\left((\circ) \sim(\mathrm{iii}),\left(\mathrm{i}^{\prime}\right)\right)$.
(०) For $\left(\zeta_{1}^{n_{1}} \zeta_{2}^{n_{2}} \ldots \zeta_{j}^{n} \cdots\right)^{*} \in A^{\prime \prime}=Y(1)_{0} \otimes A^{\prime \prime}$, $f_{0}\left[\left(\zeta_{1}^{n_{1}} \zeta_{2}^{n_{2} \ldots \zeta_{j}^{n} n_{j}}\right)^{*}\right]=\left(\zeta_{1}^{4 n_{1}} \zeta_{2}^{4 n_{2}} \ldots \zeta_{j}^{4 n_{j} \cdots}\right)^{*} \in A=A \otimes Y(\infty)_{0}$.
(i) $f_{1}\left(\left\langle\Delta_{0}\right\rangle \otimes 2_{j-1}\right)=8_{j-1}\left\langle\Delta_{0}\right\rangle+6_{j-1}\left\langle\Delta_{j}\right\rangle \quad$ for $j \geqq 2$, $f_{1}\left(\left\langle\Delta_{0}\right\rangle \otimes 2_{0}\right)=8_{0}\left\langle\Delta_{0}\right\rangle+6_{0}\left\langle\Delta_{1}\right\rangle+2_{0}\left\langle\Delta_{2}\right\rangle$, $f_{1}\left(\left\langle\Delta_{1}\right\rangle \otimes 2_{j-1}\right)=8_{j-1}\left\langle\Delta_{1}\right\rangle+4_{j-1}\left\langle\Delta_{j+1}\right\rangle$, $f_{1}\left(\left\langle\Delta_{0}\right\rangle \otimes 1_{j}\right)=4_{j}\left\langle\Delta_{0}\right\rangle+2_{j}\left\langle\Delta_{j+1}\right\rangle$.
(ii) $f_{2}\left(\left\langle\Delta_{0}+\Delta_{1}\right\rangle \otimes 2_{j-1}\right)=8_{j-1}\left\langle\Delta_{0}+\Delta_{1}\right\rangle+6_{j-1}\left\langle\Delta_{1}+\Delta_{j}\right\rangle+4_{j-1}\left\langle\Delta_{0}+\Delta_{j+1}\right\rangle$ $+2_{j-1}\left\langle\Delta_{j}+\Delta_{j+1}\right\rangle \quad$ for $j \geqq 2$, $f_{2}\left(\left\langle\Delta_{0}+\Delta_{1}\right\rangle \otimes 2_{0}\right)=8_{0}\left\langle\Delta_{0}+\Delta_{1}\right\rangle+4_{0}\left\langle\Delta_{0}+\Delta_{2}\right\rangle$, $f_{2}\left(\left\langle 2 \Delta_{1}\right\rangle \otimes 2_{j-1}\right)=8_{j-1}\left\langle 2 \Delta_{1}\right\rangle+4_{j-1}\left\langle\Delta_{1}+\Delta_{j+1}\right\rangle+\left\langle 2 \Delta_{j+1}\right\rangle$, $f_{2}\left(\left\langle 2 \Delta_{0}\right\rangle \otimes 1_{j}\right)=4_{j}\left\langle 2 \Delta_{0}\right\rangle+2_{j}\left\langle\Delta_{0}+\Delta_{j+1}\right\rangle+\left\langle 2 \Delta_{j+1}\right\rangle$.
(iii) $f_{3}\left(\left\langle\Delta_{0}+2 \Delta_{1}\right\rangle \otimes 2_{j-1}\right)=8_{j-1}\left\langle\Delta_{0}+2 \Delta_{1}\right\rangle+6_{j-1}\left\langle 2 \Delta_{1}+\Delta_{j}\right\rangle$ $+4_{j-1}\left\langle\Delta_{0}+\Delta_{1}+\Delta_{j+1}\right\rangle+2_{j-1}\left\langle\Delta_{1}+\Delta_{j}+\Delta_{j+1}\right\rangle+\left\langle\Delta_{0}+2 \Delta_{j+1}\right\rangle$, $f_{3}\left(\left\langle 3 \Delta_{0}\right\rangle \otimes 1_{j}\right)=4_{j}\left\langle 3 \Delta_{0}\right\rangle+2_{j}\left\langle 2 \Delta_{0}+\Delta_{j+1}\right\rangle+\left\langle\Delta_{0}+2 \Delta_{j+1}\right\rangle$.
(i') $\quad f_{1}\left(\left[\Delta_{0} \otimes(0)\right] \otimes 1_{j-1}\right)=4_{j-1} \Delta_{0} \otimes(0)+1_{0} 1_{j} \Delta_{j-1} \otimes(0)+\Delta_{j} \otimes(0)$ for $j \geqq 2$, $f_{1}\left(\left[\Delta_{0} \otimes(0)\right] \otimes 1_{0}\right)=4_{0} \Delta_{0} \otimes(0)+\Delta_{1} \otimes(0)$.
We have

$$
\operatorname{Hom}_{A}\left(f_{s} \otimes 1,1\right)=f_{s}^{*} \otimes 1: Y(\infty)_{s}^{*} \otimes S^{\prime \prime} \rightarrow Y(1)_{s}^{*} \otimes A^{\prime \prime} \otimes S^{\prime \prime}
$$

where $f_{s}^{*}: Y(\infty)_{s}^{*} \rightarrow Y(1)_{s}^{*} \otimes A^{\prime \prime}$ and $1: S^{\prime \prime *} \rightarrow S^{\prime \prime *}$. So we obtain (2-a) and (2-b).
By (iii), we obtain

$$
f_{3}^{*}\left(y_{0} y_{j+1}^{2}+x_{0} x_{j} y_{j+1}\right)=y_{0} y_{1}^{2} \otimes \zeta_{j}^{2}+\text { other terms in } Y(1)^{*} \otimes A^{\prime \prime} \quad \text { for } \quad j \geqq 1
$$

and

$$
f_{3}^{*}\left(y_{0} y_{j+1}^{2}+x_{0} x_{j} y_{j+1}\right)=y_{0}^{3} \otimes \zeta_{j+1}+\text { other terms in } Y(1)^{*} \otimes A^{\prime \prime} .
$$

Obviously we have $f_{3}^{*}\left(y_{0} y_{1}^{2}+x_{0}^{2} y_{1}\right)=y_{0} y_{1}^{2} \otimes 1+$ other terms, so that
$f_{3}^{*}\left(y_{0} y_{j+0}^{2}+x_{0} x_{j} y_{j+1}\right)=y_{0} y_{1}^{2} \otimes \zeta_{j}^{2}+y_{0}^{3} \otimes \zeta_{j+1}+$ other terms in $Y(1) * \otimes A^{\prime \prime}$

$$
\text { for } j \geqq 0 \text {, }
$$

where $\zeta_{0}=1$. No $y_{0} y_{1}^{2}+$ other terms in $\left(Y(1)_{3}^{*}\right)^{7}$ is coboundary and $E x t_{B(i)}^{3,7}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=\left\{0, \tau_{0}\right\} . \quad\left(Y(1)_{3}^{*}\right)^{3}=\left\{0, y_{0}^{3}\right\}$. Therefore we have

$$
h^{b o}\left(\tau_{j}\right)=\tau_{0} v_{2}^{2} j_{-1}+q_{0}^{3} v_{2^{j+1}{ }_{-1}}+\text { other terms in }{ }_{1} R .
$$

From the dimensional reason, (2-c) follows.
($2-\mathrm{d}$) can be proven by (i^{\prime}).
Now we prove ($2-\mathrm{c}^{\prime}$). We define a ring homomorphism

$$
\boldsymbol{\gamma}: \boldsymbol{Z}_{2}\left[q_{0}, \tau_{0},\left\{v_{2}{ }^{a}{ }_{-1}\right\}\right] \rightarrow \boldsymbol{Z}_{2}\left[\tau_{0},\left\{v_{2}{ }^{a}-1\right\}\right]
$$

by $\gamma\left(q_{0}\right)=0, \gamma\left(\tau_{0}\right)=\tau_{0}, \gamma\left(v_{2}{ }_{-1}\right)=v_{2}{ }^{a}{ }_{-1}$. And we define a decreasing flitration $\left\{F^{s}\right\}$ in $Z_{2}\left[\tau_{0},\left\{v_{2}{ }^{a}{ }_{-1}\right\}\right]$ by

$$
\begin{aligned}
& F^{0}=Z_{2}\left[\tau_{0},\left\{v_{2}{ }_{-1}\right\}\right] \\
& F^{s+1}=\left(\text { the ideal of } F^{0} \text { generated by }\left\{v_{2}{ }_{-1} ; a \geqq 1\right\} F^{s}\right)
\end{aligned}
$$

Then $F^{s} F^{t} \subset F^{s+t}$ and $\gamma h^{b o}\left(\tau_{j}\right) \equiv \tau_{0} v_{2}^{2}{ }_{-1} \bmod$ higher filtration.
Let

$$
\begin{aligned}
& u=q_{0}^{s^{\prime}} u^{\prime}, s^{\prime} \geqq 0, u^{\prime} \in Z_{2}\left[q_{0},\left\{\tau_{a}\right\}\right], \\
& u^{\prime} \text { is not divisible by } q_{0} \text { in } Z_{2}\left[q_{0},\left\{\tau_{a}\right\}\right] .
\end{aligned}
$$

If $u \notin Z_{2}\left[q_{0}\right]$ then u^{\prime} has the form

$$
\begin{aligned}
& u^{\prime}=\sum_{\substack{0 \leq s_{0} \leq m, 0 \leq s_{1}, \cdots, s_{j}, \cdots,\left(s_{0}, s_{1}, \cdots, s_{j}, \cdots\right) \neq(0)}}^{\sum} b^{\left(s_{0}, s_{1}, \cdots s_{j}, \cdots\right)} \tau_{j_{0} \tau_{1}^{s}, \cdots \tau_{s}^{s} \cdots+q_{0} u^{\prime \prime}} \\
& b^{\left(s_{0}, s_{1} \cdots, \cdots, s_{j}, \cdots\right) \in Z_{2}, u^{\prime \prime} \in Z_{2}\left[q_{0},\left\{\tau_{a}\right\}\right]}
\end{aligned}
$$

($m \geqq 0$ and there is $\left(s_{1}, \cdots, s_{j}, \cdots\right.$) such that $b^{\left(m, s_{1}, \ldots, s_{j}, \ldots\right)} \neq 0$). We have

$$
s_{0}+s_{1}+\cdots+s_{j}+\cdots=\left(s-s^{\prime}\right) / 3 \quad \text { if } \quad b^{\left(s_{0}, s_{1}, \cdots, s_{j} \cdot \cdots\right)} \neq 0 .
$$

Therefore we obtain

$$
\begin{aligned}
\gamma h^{b o}\left(u^{\prime}\right) \equiv & \sum_{\substack{0 \leq s_{1}, \ldots, s_{j}, \cdots,\left(m, s_{1}, \cdots, s_{j}, \cdots\right) \neq(0)}} b^{\left(m, s_{1} \cdots s_{j} \cdots\right)_{0}^{m}\left(v_{0} v_{1}^{2}\right)^{s_{1} \ldots\left(\tau_{0} v_{2}^{2} j_{-1}\right)^{s_{j}} \ldots}} \begin{array}{l}
\text { mod higher filtration },
\end{array}
\end{aligned}
$$

so that $\left(2-c^{\prime}\right)$ is proven.
By Lemma 3.11, (2-a) and (2-d), we obtain
Proposition 3.12. Let k be an integer, and $x \in M S p_{4 k+1}$ represented by an element $\neq 0$ of $E_{\infty}^{1,1+(4 k+1)}(M S p)$. Then $h^{K O}(x) \neq 0$ in $K O_{4 k+1}(M S p)$.

Proof. $E x t_{B}^{1}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$ is a \boldsymbol{Z}_{2}-vector space generated by $\left\{q_{0}, k_{0}, k_{1}, \cdots, k_{j}, \cdots\right\}$.
By Lemma 3.6 and Lemma 3.11, (1), we obtain
Lemma 3.13. Let s, t be integers, and $u \in E_{\infty}^{s, t}(M S p)$ such that $q_{0}^{n} u \neq 0$ for any integer $n \geqq 0$. Then $h(u) \neq 0$ in $E_{\infty}^{s, t}(H \wedge M S p)$.

Remark. Lemma 3.13 follows also from [12], PROPOSITION 3.2.

4. Proof of Thorem 1.1

For any integer k, we denote by g_{k} the composition of the following sequence of homomorphism

$$
M S p_{t k} \otimes \boldsymbol{Q} \xrightarrow{h} H_{4 k}(M S p) \otimes \boldsymbol{Q} \xrightarrow{\boldsymbol{p}_{\boldsymbol{k}}} \boldsymbol{Q},
$$

where $p_{k}(x)$ is the coefficient of q_{k} in x for any $x \in H_{4 k}(M S p) \otimes \boldsymbol{Q}$. We have the commutative diagram

Here q denotes the quotient map, and u_{1}, u_{2} are the maps such that

$$
g_{k} \mid M S p_{4 k} / \text { Tors }=u_{1} \circ q, g_{k} \mid W_{4 k}^{K O}=u_{2} \circ q
$$

(Cf. Corollary 2.2 and (2.4)). Since u_{2} is a monomorphism, Theorem 1.1 is equivalent to

$$
\begin{equation*}
g_{k}\left(M S p_{t k} / \text { Tors }\right) \supset g_{k}\left(W_{4 k}^{K O}\right) \quad \text { for any integer } k . \tag{4.1}
\end{equation*}
$$

By [9], (6•4), we have
(4.2) $\quad M S p_{*} / \operatorname{Tors} \otimes \boldsymbol{Z}\left[\frac{1}{2}\right]=W_{*}^{K O} \otimes \boldsymbol{Z}\left[\frac{1}{2}\right]$.

Therefore (4.1) is equivalennt to

$$
\begin{equation*}
2^{s} \mid g_{k}\left(M S p_{4 k} \mid \text { Tors }\right) \Rightarrow 2^{s} \mid g_{k}\left(W_{4 k}^{K O}\right) \quad \text { for any integer } k \tag{4.3}
\end{equation*}
$$

Let E be a ring spectrum. Then, obviously, we have

$$
\begin{equation*}
f_{*}\left(W_{*}^{E}\right) \subset W_{*-n}^{E} \tag{4.4}
\end{equation*}
$$

for any morphism $f: M S p \rightarrow M S p$ of degree $-n$, where $f_{*}: M S p_{*} \otimes \boldsymbol{Q} \rightarrow$ $M S p_{*-n} \otimes \boldsymbol{Q}$.

Making use of Proposition 2.6, Lemma 2.5 and (4.4), we can prove the following proposition in the same way as that of Segal [13].

Proposition 4.1.

(1) For any integer $k, g_{k}\left(W_{4 k}^{K O}\right)$ is divisible by 2. If k is a power of 2 then it is divisible by 4.
(2) Let k be an odd integer. Then $h\left(W_{4 k}^{K O}\right)$ is divisible by 4 in $H_{4 k}(M S p)$. In particular, $g_{k}\left(W_{4 k}^{K O}\right)$ is divisible by 4.

And further, making use of some results in §3, we obtain
Proposition 4.2. If $k=2^{j}-1, j$ an integer >0, then $g_{k}\left(W_{4 k}^{K O}\right)$ is divisible by 8.
Proof. Let $x \in W_{4 k}^{K O}$ and $x \neq 0$. By Lemma 3.6, there is an integer $n \geqq 0$ such that $2^{n} x \in M S p_{4 k} /$ Tors $\subset M S p_{4 k}$ is represented by an element of $Z_{2}\left[q_{0},\left\{\tau_{m}\right\}\right.$, $\left.\left\{v_{i} ; i \neq 2^{a}-1\right\}\right] \cap E_{\infty}(M S p)$. Let $2^{n} x$ be represneted by $u \in E_{\infty}^{s}(M S p), s \geqq 0$.
(i) In case $u \in Z_{2}\left[q_{0},\left\{v_{i} ; i \neq 2^{a}-1\right\}\right]$: There is a decomposable element $y \in H_{4 k}(M S p)$ such that

$$
h\left(2^{n} x\right) \equiv y \bmod F^{s+1} H_{4 k}(M S p)
$$

Therefore, by Corollary 3.9 , (1), $g_{k}\left(2^{n} x\right)$ is divisible by 2^{s+1}, so that $g_{k}(x)$ is divisible by 2^{s+1-n}. By Lemma 3.13, $h\left(2^{n} x\right)$ is not divisible by 2^{s+1}, so that $h(x)$ is not divisible by 2^{s+1-n}. By Proposition 4.1, (2), we have $s+1-n \geqq 3$. Consequently $g_{k}(x)$ is divisible by 8 .
(ii) In case $u \notin Z_{2}\left[q_{0},\left\{v_{i} ; i \neq 2^{a}-1\right\}\right]$: By Lemma 3.11, (2-a) and (2-c'), we have

$$
h^{b o}(u) \notin Z_{2}\left[q_{0},\left\{v_{i}\right\}\right] \subset E_{\infty}(b o \wedge M S p) .
$$

By (2.2), $h^{b o}(x) \in b o_{4 k}(M S p)$. Let $h^{b o}(x)$ be represented by $w \in E_{\infty}^{*, *+4 k}(b o \wedge M S p)$. By Proposition 3.4, (2), $h^{b o}\left(2^{n} x\right)=2^{n} h^{b o}(x)$ is represented by $q_{0}^{n} w$, so that

$$
h^{b o}(u)=q_{0}^{n} w, w \in E_{*}^{s-n}(b o \wedge M S p)
$$

Then $w \notin \boldsymbol{Z}_{2}\left[q_{0},\left\{v_{i}\right\}\right]$, so that $s-n \geqq 3 . \quad h\left(2^{n} x\right)$ is ${ }_{2}$ divisible by 2^{s}, so that $h(x)$ is divisible by 2^{s-n}. Consequently $h(x)$ is divisible by 8 .

Let $n_{j}\left(n_{1}, n_{2}, \cdots, n_{r}\right) \in M S p_{2 N-4 j}$ be the Stong-Ray classes in [11], where $N=\sum_{i=1}^{r}\left(2 n_{i}-1\right)$.

Proposition 4.3.

(1) (Segal [13]) For an even integer $k>0$, we define integers s_{k} and t_{k} as follows. If k is not a power of 2 then we define $s_{k}=2^{u}+1,2^{u}$ the largest power of 2 less than k, and $t_{k}=k-s_{k}+2$. If $k=2^{j}$ then we define $s_{k}=t_{k}=2^{j-1}+1$. Then we have

$$
g_{k}\left(n_{1}\left(s_{k}, t_{k}\right)\right) \equiv \begin{cases}2 \bmod 4 & \text { if } k \equiv 0 \bmod 2, k \neq 2^{j} \\ 4 \bmod 8 & \text { if } k=2^{j}\end{cases}
$$

(2) Using the notation of (1), we have

$$
g_{k}\left(n_{2}\left(s_{k+1}, t_{k+1}\right)\right) \equiv \begin{cases}4 \bmod 8 & \text { if } k \equiv 1 \bmod 2, k \neq 2^{j}-1 \\ 8 \bmod 16 & \text { if } k=2^{j}-1\end{cases}
$$

(Segal [13] has proven the fact that $g_{k}\left(M S p_{4 k} /\right.$ Tors) is not divisible by 8 if $k \equiv 1$ $\bmod 2, k \neq 2^{j}-1$.).

Now (4.3) follows from Propositions 4.1, 4.2 and 4.3, so that Theorem 1.1 is proven.

As a corollary to Proposition 4.3, we obtain
Proposition 4.4. $\left\{n_{j}\left(n_{1}, n_{2}, \cdots, n_{r}\right) \in M S p_{*}\right\}$ generates $Q\left(M S p_{*} /\right.$ Tors $) \cong$ $Q\left(W_{*}^{K O}\right)$.

Proof. From Stong [17], Theorem 1, it follows that $\left\{n_{1}\left(n_{1}, n_{2}, \cdots, n_{r}\right)\right\}$ generates $Q\left(M S p_{*} /\right.$ Tors $) \otimes \boldsymbol{Z}_{p}$ for any odd prime p.

5. Proof of Theorem 1.2 and some remarks

For integers $k, s \geqq 0$, we put

$$
F_{1}^{s}=h\left(M S p_{4 k}\right) \cap F^{s} H_{4 k}(M S p)
$$

and

$$
F_{2}^{s}=h\left(W_{4 k}^{K O}\right) \cap F^{s} H_{4 k}(M S p)
$$

The following lemma follows immediately from the definition.
Lemma 5.1. For $m=1$ or 2 , the inclusion $F_{m}^{s} \rightarrow H_{4 k}(M S p)$ induces the monomorphism

$$
F_{m}^{s} / F_{m}^{s+1} \rightarrow F^{s} H_{4 k}(M S p) / F^{s+1} H_{4 k}(M S p)=E_{o b}^{s, s+4 k}(H \wedge M S p) .
$$

Lemma 5.2. $M S p_{4 k} /$ Tors $=W_{4 k}^{K O}$ if and only if

$$
F_{1}^{s} / F_{1}^{s+1}=F_{2}^{s} / F_{2}^{s+1} \subset E_{\infty}^{s, s+4 k}(H \wedge M S p) \quad \text { for any } s \geqq 0
$$

Proof. By (4.2), we have

$$
h\left(M S p_{4 k}\right) \otimes \boldsymbol{Z}\left[\frac{1}{2}\right]=h\left(W_{4 k}^{K O}\right) \otimes \boldsymbol{Z}\left[\frac{1}{2}\right] .
$$

Therefore there is an integer $s_{0}=s_{0}(k)$ such that $F_{1}^{s}=F_{2}^{s}$ for any $s \geqq s_{0}$. Then it is easy to see that $h\left(M S p_{4 k}\right)=h\left(W_{4 k}^{K O}\right)$ if and only if

$$
F_{1}^{s} / F_{1}^{s+1}=F_{2}^{s} / F_{2}^{s+1} \quad \text { for any } s \geqq 0
$$

Since $h: M S p_{*} \otimes \boldsymbol{Q} \rightarrow H_{*}(M S p) \otimes \boldsymbol{Q}$ is an isomorphism, the lemma follows.
By Theorem 1.1, Proposition 2.6, Lemmas 3.13, 5.2 and Segal [12], TABLE II, we obtain

Lemma 5.3. $M S p_{4 k} /$ Tors $=W_{4 k}^{K O}$ for $k \leqq 7$.
By Lemma 5.3, Proposition 2.6, Lemma 3.11, (2) and [12], TABLE II, we can prove

Lemma 5.4.

$$
\text { order of } M S p_{n}=\text { order of } h^{K O}\left(M S p_{n}\right)
$$

for $n \leqq 30, n \equiv 0 \bmod 4$.
Since $M S p_{4 k}$ is torsion free for $k \leqq 7$ by [12], Theorem 1.2 follows from Lemmas 5.3 and 5.4.

Making use of the Ray classes $\phi_{i} \in M S p_{8 i-3}$ in [8], we can immediately calculate the ring structure of $M S p_{*}$ in dimensions $\leqq 30$ except the values of $\alpha \tilde{x}_{7}$ and $\alpha^{2} \tilde{x}_{7}$, where α is the generator of $M S p_{1} \simeq Z_{2}$ (Cf. Ray [10], (5-25)). For example, we have

Proposition 5.5. For $k \leqq 5$,

$$
x_{1}^{2} M S p_{4 k+1} \subset \alpha M S p_{4 k+8} \quad \text { and } \quad x_{1}^{2} M S p_{4 k+2} \subset \alpha^{2} M S p_{4 k+8} .
$$

We can calculate the Hurewicz map (1.1) for $n=17$:
Proposition 5.6. There is an indecomposable element $\tau \in M S p_{17}$ such that

$$
h^{K O}(\tau)=e\left(\sigma_{2}^{2}+y \sigma_{2}\right) .
$$

Proof. Using the notation of [12], x_{1}^{2} is represented by ω_{0} and $2 y_{4}$ by $q_{0} v_{2}^{2}$. Therefore $2 x_{1}^{2} y_{4}$ is represented by $q_{0} \omega_{0} v_{2}^{2}$. Since

$$
2\left(x_{1} x_{2} x_{3}+x_{1}^{2}\left(x_{2}^{2}+y_{4}+x_{4}\right)\right) \equiv 2 x_{1}^{2} y_{4} \bmod F^{6} M S p_{24}
$$

$x_{1} x_{2} x_{3}+x_{1}^{2}\left(x_{2}^{2}+y_{4}+x_{4}\right)$ is represented by $\omega_{0} v_{2}^{2}$.
Let $\tau^{\prime} \in M S p_{17}$ be a class represented by $k_{0} v_{2}^{2}$. Then $x_{1}^{2} \tau^{\prime}$ is represented by $k_{0} \omega_{0} v_{2}^{2}$, so that

$$
x_{1}^{2} \tau^{\prime} \equiv \alpha\left(x_{1} x_{2} x_{3}+x_{1}^{2}\left(x_{2}^{2}+y_{4}+x_{4}\right)\right) \bmod F^{6} M S p_{25}
$$

Therefore

$$
y h^{K O}\left(\tau^{\prime}\right)=h^{K O}\left(x_{1}^{2} \tau^{\prime}\right) \equiv y e\left(\sigma_{2}^{2}+y \sigma_{2}\right) \bmod h^{K O}\left(F^{6} M S p_{25}\right) .
$$

Since $h^{K O}\left(F^{6} M S p_{25}\right)=y h^{K O}\left(F^{2} M S p_{17}\right)$, there is an element $\lambda \in F^{2} M S p_{17}$ such that

$$
\begin{aligned}
& y h^{K O}\left(\tau^{\prime}\right)=y e\left(\sigma_{2}^{2}+y \sigma_{2}\right)+y h^{K O}(\lambda), \\
& h^{K O}\left(\tau^{\prime}\right)=e\left(\sigma_{2}^{2}+y \sigma_{2}\right)+h^{K O}(\lambda) .
\end{aligned}
$$

We may take $\tau=\tau^{\prime}+\lambda$.
Let ${ }_{U} E_{*}^{* *}(M S p)$ denote the Adams-Novikov spectral sequence for $M S p_{*}$ (Cf. [5]). Proposition 2.6 shows us the structure of

$$
M S p_{*} / \text { Tors }={ }_{v} E_{\infty}^{0 *}(M S p) \subset_{U} E_{2}^{0 *}(M S p)
$$

in low dimensions:

Proposition 5.7.

(1) (Porter [6]) ${ }_{U} E_{2}^{0 *}(M S p) \cong\left\{x \in M S p_{*} \otimes \boldsymbol{Q} ; r_{*}(x) \in M U_{*}\right\}$.
(2) $\left\{x \in M S p_{*} \otimes \boldsymbol{Q} ; r_{*}(x) \in M U_{*}\right\}=W_{*}^{K}$.

Proof of (2). Consider the commutative diagram

Then $r_{*}: K_{*}(M S p) \rightarrow K_{*}(M U)$ is a split monomorphism. And, by Hattori [2] or Stong [16], $h^{K}: M U_{*} \rightarrow K_{*}(M U)$ is a split monomorphism.

Osaka City University

References

[1] J.F. Adams: Stable homotopy and generalized homology, University of Chicago, Chicago Ill. (1971).
[2] A. Hattori: Integral characteristic numbers for weakly almost complex manifolds, Topology 5 (1966), 259-280.
[3] A. Liulevicius: Notes on homotopy of Thom spectra, Amer. J. of Math. 86 (1964), 1-16.
[4] J. Milnor: The Steenrod algebra and its dual, Ann. of Math. 67 (1968), 150-171.
[5] S.P. Novikov: The methods of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 855-951 (Math. USSR Izv. 1 (1967), 827-913).
[6] D.D. Porter: Novikov resolutions for symplectic cobordism, Thesis, Northwestern University, Evanston, Ill. (1969).
[7] N. Ray: A Note on the symplectic bordim ring, Bull. Iondon Math. Soc. 3 (1971), 159-162.
[8] -: Indecomposables in Tors $M S p_{*}$, Topology 10 (1971), 261-270.
[9] -: Some results in genralized homogy, K-theory and bordism, Proc. Camb. Phil. Soc. 71 (1972), 283-300.
[10] -: The symplectic bordism ring, Proc. Camb. Phil. Soc. 71 (1972), 271282.
[11] : Realizing symplectic bordism classes, Proc. Camb. Phil. Soc. 71 (1972), 301-305.
[12] D.M. Segal: On the symplectic cobordism ring, Comm. Math. Helv. 45 (1970), 159-169.
[13] -: Divisibility conditions on characteristic numbers of stably symplectic manifolds, Proc. Amer. Math. Soc. 27 (1971), 411-415.
[14] —: Halving the Milnor manifolds and some conjectures of Ray, Proc. Amer. Math. Soc. 39 (1973), 625-628.
[15] J.-P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comm. Math. Helv. 27 (1953), 198-232.
[16] R.E. Stong: Relations among characteristic numbers-I, Topology 4 (1965), 267281.
[17] : Some remarks on symplectic cobordism, Ann. of Math. 86 (1967), 425-433.

