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In [7], the author defined the concept of non commutative Krull rings
on prime Goldie rings by using perfect additive topologies, and gave some
properties of such rings.

The main purpose of this paper is to investigate the ideal theory in bound-
ed Krull prime rings (cf. Section 1 for the definition).

In Section 1, it is shown that bounded Krull prime rings are maximal
orders in the sense of Asano [1]. Combining this with a result of [3] we shall
show that the group of v-ideals of a bounded Krull prime ring becomes a direct
product of infinite cyclic subgroups generated by minimal prime ideals in the
ring. Further it is established that a bounded Krull prime ring is a Dedekind
prime ring if and only if nonzero prime ideals of the ring are maximal.

In Section 2, we shall determine maximal orders equivalent to a fixed
bounded Krull prime ring and shall show that such maximal orders are also
bounded Krull prime rings (cf. Theorem 2.6).

In Section 3, it is shown that a bounded Krull prime ring with only a finite
number of minimal prime ideals is a right and left principal ideal ring. By using
this result we shall generalize two theorems on ideals in maximal orders over
Krull domains to the case of bounded Krull prime rings.

Section 4 contains some results on Krull orders over commutative integral
domains.

This paper is a continuation of [7]. Concerning the notations and ter-
minolgy not defined in this paper we refer to [7].

1. Groups of v-ideals

Throughout this paper R will denote a prime Goldie ring with identity
element and Q will denote the two-sided quotient ring of R, where Q is a simple
and artinian ring (cf. [5]). Let F be a right additive topology on R. We will
denote by Ry the ring of quotients of R with respect to F (cf. [11]). An
overring R’ of R is said to be right essential if it satisfies the following two con-
ditions:

(1) There is a perfect right additive topology F on R such that R'=R,
(cf. p. 74 of [11]).
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(2) If IEF, then R'I=R'.

If Ry is a right essential overring of R, then F consists of all right ideals
I of R such that IR,=R;. So any element of F is an essential right ideal
of R. Hence Rp= E@»Hom(l, R) (I€F).

An overring R’ of R is said to be essential if it is right and left essential.
For the convenience of the reader we repeat the definition of Krull ring.

A prime Goldie ring R is said to be a Krull ring if there are families
{R:}icr and {S;} ;< of essential overrings of R such that

(Kl) Rzn,R,n r]ij,
(K2) each R; is a noetherian, local, Asano order, each S; is a noetherian,
simple ring and the cardinal number of J is finite, and

(K3) for every regular element ¢ in R we have ¢R;=R; for only finitely
many 7 in I and R,c*+R, for only finitely many % in I.

If J=¢, then R is said to be bounded.

Lemma 1.1. Let R be a prime Goldie ring and let T 2S be overrings of
R. If T is a right essential overring of R, then it is a right essential overring of S.

Proof. By assumption, there is a perfect right additive topology F, such
that T=Rp,. Weput F={I|IT=T, I is a right ideal of S}. First we shall
prove that a right ideal I of S is an element in F if and only if N ReF,. If
INREF,, then it is evident that IT=T. Conversely assume that IT=T.
Write 1= 3> x;y;, where x;&I and y;&€7T. There is an element I, F, such
that y,J,SR. Hence I, SINRand INReF, Nextwe shall prove that F is
a perfect right additive topology on S. (i) If /&F and s& S, then we must
prove that s\ I={xeS|sxcI}=F. Since IT=T and R—T is a flat epimor-
phism (cf. Theorem 13.10 of [11]), we obtain easily that S/IQzT=0. So
(s7I)T=T, because S/s~'[=<(sS+1I)/I. Therefore s"*IF. (ii) If IF and
J is a right ideal of S such that a~'J& F for all ac I, then we have

T2JT2 Y, a@ )T =al =IT=T.

Hence JeF so that F is a right additive topology on S.

If I,eF,, then I,S=F and so Sz27. Conversely let x be any element of
Sz. Then there exists /& F such that xISS. So x=xT=xIT<T. There-
fore T=Sg. Thus F is perfect by Theorem 13.1 of [11].- For any I F, we
have T=T(RNI), because RNI=F,. Hence T isa right essential overring of :S.

From Lemma 1.1, we have

Proposition 1.2. If R=NR; N NS; (i1, jET) is a Krull prime ring and
if I, J, are subsets of I, J respectively, then S=NR;N N S; (i€ 1,, jJ,) is Krull.
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In particular, if J,=¢, then S is bounded.

Let SST be rings. Then S is an order in T if T is the two-sided quotient
ring of it. If R, and R, are orders in Q, then they are equivalent if there exist
regular elements a,, b,, a,, b, of O such that ¢,Rb,SR,, a,R,b,SR,. Anorder R
in Q is said to be maximal when it is a maximal element in the set of orders which
are equivalentto R. If Iisa right (left) R-ideal of Q, then O,(I)={x= Q|xI< I}
is an order in Q and is equivalent to R. Similarly O,(I)={xeQ|IxEI} is an
order in Q and is equivalent to R. They are called a left order and a right order
of I respectively. We define the inverse of I to be I"'={qsQ|IqI<]I}.
Evidently I"'={q=Q|14<0,(I)}={qe Q| ¢/<0,(I)}. A prime Goldie ring
is said to be Dedekind if it is a maximal order, and is a right and left hereditary.

Proposition 1.3. Let T be a prime Goldie ring with quotient ring Q. If
T=NT;, where T; are essential overrings of T and are Dedekind prime rings,
then T is a maximal order in Q.

Proof. By Satz 1.2 of [1], it is enough to prove that O,(4)=T=0,(4) for
every T-ideal 4 of Q. It is clear that O,(A)2T. Conversely let x be any
element in O,(4). Then xAS A4 so that xA(T;A) '&(T;A4) (T;4)*=1T;, be-
cause T; is a Dedekind prime ring. Write 1= >x,y;, where x,&T;4 and
y,€(T;A)"". Since T;=Tp,, where F;, is a perfect left additive topology on
T, we have Jx; <A for some JEF;. Hence x] S(xA)T: A) 'S AT, A)<T;
and thus xexT;=x]JT;ST;, because T; is an essential overring of 7. There-
fore x= N T;=T so that T=0,(4). Similarly T=0,(4).

Corollary 1.4. If R is a bounded Krull prime ring, then it is a maximal
order in Q.

In [7], we defined the concepts of w-operations and v-operations on one-
sided R-ideals (cf. §4 of [7]). Let R be a maximal order in Q and let I be a
(right) R-ideal. Then I"'=(R:I),={q €Q|qISR} so that I,=(I"")"".

If I=1,, then it is said to be a (ritht) v-ideal. For any right R-ideal I, we
note that 7= is a left v-ideal and that (/~'I),=R (cf. Proposition 4.1 and Corol-
lary 4.2 of [7]). In particular, the set D(R) of all v-ideals becomes an abelian
group under the multiplication “o” defined by AoB=(A4B), for any v-ideals 4
and B (cf. Theorem 4.2 of [3]).

Let A be an integral R-ideal. We will denote by C(4) those elements
of R which are regular in R/A4. If R satisfies the Ore condition with respect to
C(A), then we will denote by R, the ring of quotients of R with respect to C(4).

Let R=NR,(i=I) be a bounded Krull prime ring. Throughout this paper
P; will denote a unique maximal ideal of R; and P;=P;/NR. By Proposition
1.1 of [7], P; is a prime ideal of R and R;=Rp,. Note that BRp,=Rp, for any
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integral R-ideal B< P; by Proposition 1.1 of [7] and Goldie’s theorem. This fact
is frequently used in this paper. We will denote by P the set {P;|ic I}.

Lemma 1.5. Let R be a bounded Krull prime ring and let PEP. Then

(1) R&EP*.
(2) P 'PRp=Rp=RpP 'Pand PP7'Rp = Rp = RpPP™'.
(3) Pisa v-ideal .

Proof. (1) By Proposition 1.1 of [7], P=PRpNR. So it follows that P is
a w-ideal i.e., P=NPRp(P;=P). Since Ry is a principal right and left ideal
ring, we have PR,=pR, for some p&P. On the other hand, since the integral
right w-ideals satisfy the maximum condition, there are a finite number of ele-
ments X, -+, %, in P such that P=(x,R+.--+x,R),. Write x;=pb;, where
b;eRp, and b;=c"'r;, where r,€R, cc C(P). Then we have P=[pc '(r, R+ -
+74R)]y=pc (r,R+---+7,R),Spc'R. Hence ¢p”'’ PSR and ¢p~'cP'. If
cp”'ER=0(P), then ¢p7'PESP and ¢p'PR,SPR,. Since PR, is invertible,
¢p'€Rpand so p'€Rp. Hence 1=pp ' P’, a contradiction. Thus we have
P'2R.

(2) If P'P=P, then P '=R, a contradiction, since D(R) is a group.
Hence P7'P2P and so P"'PRp=Rp. The other cases are similar.

(3) By Propositon 1.1 of [7], PRp=RpP and so RpP™'=P~'Rp by (2).
So again by P,Rp=RpP,, because P,2P, so that P,Rp is an ideal of Rp.
Hence PRp=P,Rp or P,Rp,=R,. But if Rp=P,Rp, then Rp=PP 'Rp=
PP7'P,Rp=PRp, a contradiction, because Rp=P 'PRp=P7'P,Rp=Rp.
Hence PRp=P,Rp and so P=PR,NR2P,. Therefore P=P,, as desired.

Lemma 1.6. Let R be a bounded Krull prime ring. If I is an integral
right R-ideal, then I contains a intersection of powers of a finite number of ele-
ments in P.

Proof. Let ¢ be a regular element in I. Then ¢R=N¢Rp(P;EP), and
cRp, S Rp, for finitely many P, in Ponly (1=<¢<k), Since Rp, is regular in the
sense of [1] and the ideals of Rp, are only the powers of P;’. Hence cRp, 2P,
for some positive integer #; and so we have I 2cR= N ¢cRp(P P)2P!1( -+ N Pis.

Proposition 1.7 Let R be a bounded Krull prime ring and let P be a non-
zero prime ideal of R. Then P is minimal prime if and only if P P.

Proof. If P is minimal prime, then it is evident that PP by Lemma
1.6. Conversely assume that P€P. Then it is a prime element in the com-
mutative lattice ordered group D(R) and is a maximal element in D(R) by a
rseult in [3, p. 11]. Combining this with Lemma 1.6, we have that P is a
minimal prime ideal of R.
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Theorem 1.8. Let R be a bounded Krull prime ring. Then

(1) D(R) is an abelian group and is a direct product of infinite cyclic sub-
groups generated by minimal prime ideals of R.

(2) D(R)=II F(Rp), where P ranges over all minimal prime ideals of R and
F(Rp) denotes the group of all fractional R p-ideals.

Proof. (1) If PP, then it is a prime element in D(R). Conversely if
P, is a prime element in D(R), then it is a prime ideal of R and hence P,2P for
some P in P. But P is a maximal element in D(R) and so P=P,. Hence the
assertion follows from Theorem 1.2 of [3] and Proposition 1.7.
(2) is evident.

In §2 of [7] we considered the following condition on bounded Krull
prime rings;

(K4'): P;;Pj and P;QPJ- for any Pi’ PjEPand P,'=‘=Pj .

We know from Proposition 1.7 that bounded Krull prime rings satisfy
the condition (K4).

Lemma 1.9. Let R be a bounded Krull prime ring and let I be any right R-
ideal. Then

(1) I""=n (IRp)(PeP).
(2) RpI™*=(IRp)™ forany Pin P.
Proof. (1) is evident. (2) follows from Lemma 2.1 of [7] and (1).

Proposition 1.10. Let R be a bounded Krull prime ring. If I is a right
R-ideal, then 1,=1,.

Proof. I,=(I"")"'=N(RpI")"'=N[(IRp)"]*=NIRp=I, by Lemma
1.9.

Corollary 1.11. Let R be a bounded Krull prime ring. If A is an R-ideal,
then ARp is an Rp-ideal for every P in P.

Proof. A,=(P"P}..-Pg), by Theorem 1.8 and Proposition 1.10. Hence
we have ARp=A,Rp=(P"P}1---P}¥),,Rp=P"P*.--P{+Rp=P”Rp. So, by Pro-
position 1.1 of [7], ARp is an R p-ideal.

Lemma 1.12. Let R be a bounded Krull prime ring and let PEP. Then
Rp=lim B™*, where B ranges over integral R-ideals such that B<L P.

Proof. If B is an integral R-ideal not contained in P, then it is clear that
BN C(P)=*¢ (cf. Proposition 1.1 of [7]). Hence Rp22lim B™. Conversely let
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¢ be any element in C(P). Then cR2P"P---Pj, where P;€P and n, n; are
integers. So Rp=cRp=P"Rp. Thus n=0 so that ¢cR2P!---Pi. Hence
RyS lim B7* and so Rp=Ilim B™.

—_—

—_

Theorem 1.13. Let R be a bounded Krull prime ring. Then R is a
Dedekind prime ring if and only if any nonzero prime ideal is maximal.

Proof. If Ris a Dedekind prime ring, then the result is known [1]. Con-
versely, if any nonzero prime ideal is maximal, then the elements in P are only
maximal ideals of R by Lemma 1.6. First we shall prove that maximal ideals of R
are invertible. Let P be any maximal ideal of R. Then R=P'P or P7'P=P.
If P7'P=P, then PRp=R, by Lemma 1.5, a contradiction. Hence P™'P=R.
Similarly PP~*=R. Next we shall prove that R is a right and left noetherian
ring. To prove this let  be an integral right R-ideal such that I2P and
IR,=R,, where I=I/P and R,=R,/P’. This implies that IR,+P'=R,.
Since P’ is the Jacobson radical of Rp, we have IR,=R,. Write 1= > x;y;,
where x;7 and y;€Rp. By Lemma 1.12, there exists an integral R-ideal B
such that B&P and y,BER. So B&I and R=B+PSI. Hence R=1. This
implies that R/P is an artinian ring by Proposition 1.1 of [7] and Goldie’s
theorem, and so R/P” is also an artinian ring, because P is invertible. For any
finite members of elements P,,--+, P, in Pand any positive integers #,, -+, 1, we
have R/(PiN ---N Pi)=R[PHD---BR[Pj. So, by Lemma 1.6, the integral
right R-ideals satisfy the maximum condition. Therefore R is right noetherian,
because R has a finite dimension in the sense of Goldie. Similarly R is left
noetherian. Now, since any maximal ideal is invertible and R is noetherian, we
obtain that R is an Asano order (see the proof of Theorem 2.6 of [6]). Further,
since R is bounded, it is a Dedekind prime ring by Theorem 3.5 of [8].

2. Maximal orders equivalent to a bounded Krull prime ring

In this section we shall prove that any maximal order equivalent to a
bounded Krull prime ring is also a bounded Krull prime ring. For this we
need some Lemmas.

Lemma 2.1. Let R be a bounded Krull prime ring, let I be a right R-ideal
and let PEP. Then

(1) O,(IRp) = IR I™".
(2) I IRp =R, = RpI"'I.
(3) IR, = O,(IRp)I.

Proof. (1) From Lemma 1.9 we have IRpI *=IRpRpI'=IRp(IRp)™'=
O,(IRp).
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(2) Since (I7'I),=R, we have Rp=(I"'I),Rp=(I"'I),Rp=I"'IRp by
Proposition 1.10. Similarly Rp=RpII.
(3) O;(IRp)I = IRpI'I = IR,.

If R is a local, noetherian, Asano order with unique maximal ideal P and
if I is a right R-ideal, then it follows that O,([) is also a local, noetherian, Asano
order with a unique maximal ideal JPI™* (cf. Lemmas 2.3 and 3.1 of [9]).

Lemma 2.2. Let R be a bounded Krull prime ring and let I be a right v-ideal.
Then

(1) OiI)=NO«IRp), where P ranges over all elements in P and O,(IRp) is
a local, noetherian, Asano order with unique maximal ideal IP'I .

(2) O,(1) satisfies the condition (K3).

Proof. (1) By Proposition 1.10, I=1,, and so it is evident that O,(I)=
N O,(IR)Y(PP). Since IPI7'=(IRp)P'((IRp)*, O,(IRp) is a local, noe-
therian, Asano order with unique maximal ideal JP'I™*.

(2) Let ¢ be any regular element in O,(I). Then it follows from (K3) that
c¢IRp=Rp=1IR, for almostall Pin Pand cIR,I '=IR,I"*. Hence, by Lemma
2.1, cO,(IRp)=0O,(IRp) for almost all Pin P. By Corollary 4.2 of [7], [7' is a
left v-ideal. So from Lemma 1.9 and (1) we get: O,(I")=NO,(Rpl™ )=
N O,((IRp)™)=NO,(IRp)=0,(I). Hence, applying to I™* the above discus-
sion we have O,(IRp)c=0,(IRp) for almost all P in P.

Let I be any right v-ideal of R and let A be any right O,(I)-ideal. Then
we will denote by A4, the right O,(I)-ideal N 4O,(IR;) (P<P).

Lemma 2.3. Let R be a bounded Krull prime ring, let I be a right v-ideal
and let A be an integral right O,(I)-ideal. Then

(1) If Pisanelemetin P, then AO,(IRp)=0O,(IRp) if and only if A,,2IBI™*
for some integral R-ideal B with BLP.

(2) If ais any element in O/(I), then (a™*A),=a (4,).

Proof. (1) If A,2IBI™*, where B is an integral R-ideal with BL P, then
we get: AO,(IRp)= A,0,(IRp)2IBI*O;(IRp)=IBI 'IRpI'=IRpl ' =
O,(IRp). Hence AO,(IRp)=0,(IRy). 'To prove the converse we may assume
that AIR, I7'S IRp I for finitely many P; in P only (1<:/<k) by Lemma 2.2.
By assumption, P;#=P. There are positive integers #; (1<i<k) such that
IP/I'S AIRpI~*. Hence we have IP}1---Pjl 'S A, and P}---PpLP.

(2) Letxbe anelementin O,(I). Then we have the following implications:
x€(a"'A),~xs(a"*A)IRpI ™ for all P in P=xIBpI'Sa™'A for some integral
R-ideal B, <P by Lemmas 1.12 and 2.1=axIB IS A=axc AIR,I* for all
P=axc 4,~x=a*4,. Hence (a7'4),=a"'4,,.
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Lemma 2.4. Let R be a bounded Krull prime ring and let I be a right v-
tdeal. Then O, (IRp) is an essential overring of O,(I) for any P in P.

Proof. The lemma will be proved in the following four steps.

(a) Let Fp={4|AO,(IRp)=0,(IRp) and A is a right ideal of O,(I)}.
First we shall prove that F, is a right additive toplogy on O,(1). (i) if A€F,
and if x=0,(I), then there is an integral R-ideal B such that /BI"'S A4, and
B&P. Since IBI7' isan O,(I)-ideal, we have x™*4,2IBI"*. Hencex'A&Fp
by Lemma 2.3. (ii) If A< Fpand B is a right ideal of O,(I) such that x'BeFp
for all x in A, then we have BEF in a similar way as in the proof of Lemma
1.1. Hence Fj is a right additive topology.

(b) By Lemmas 1.12and 2.1, O,(IRp)=Ilim IBI"', where B ranges over all
integral R-ideals such that B&P. From this and (a) we easily obtain that
O,(IRp)=0,(I)p,. Hence F is perfect.

(c) Let 4 be any element of F. Then there is an integral R-ideal B(< P)
such that 4,2IBI"'. Hence IR I '=IR,I'4,. Write 1=3x;y;, where
%;€IRpI™ and y;,€4,SAIRpI™'. There is an integral R-ideal C(&P) such
that y,JCI"'S A4 and hence ICI"'SIR,I7'A. So we have IR, I '=IRpI'A.
Therefore O,(IRp) is a right essential overring of O,(I).

(d) Let Fp,={A4|0,(IRp)A=0,(IRp) and A is a left ideal of O,(I)}. By
similar way as in (a), (b) and (c) we easily obtain that O,(IRP):O,(I)FPI and
that it is a left essential overring of O,(I). This completes the proof.

Lemma 2.5. Let R be a bounded Krull prime ring and let R’ be any order
equivalent to R. Then R’ is a maximal order if and only if R'=0,(I) for some
right v-ideal I of R.

Proof. If R’=0,(I) for some right v-ideal I, then it is a maximal order by
Satz 1.3 of [1]. This also follows from Proposition 1.3, Lemmas 2.2 and 2.4.
Conversely assume that R’ is a maximal order, then there are regular elements
¢, d in R such that cR"d<R and so RdR is a right R-ideal. Put I=(R’dR),,
then /=N (R'dR)Rp (P=P) by Proposition 1.10. This implies that 7 is a left
R’-module, so that O,(I)2R’. Therefore O,(I)=R’.

Theorem 2.6. Let R be a bounded Krull prime ring. If R’ is a maximal
order equivalent to R, then it is a bounded Krull prime ring and D(R)==D(R’).

Proof. This is evident from Theorem 1.8, Lemmas 2.2, 2.4 and 2.5.

In case maximal orders over commutative Krull domains, the second
assertion of the theorem was proved by R.M. Fossum (cf. Theorem 2.1 of
[4)-

3. The generalization of some results on maximal orders over
commutative Krull domains
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Lemma 3.1. Let R be a bounded Krull prime ring, let P, -+, P,EP and
let A=P,N -+ NPy. Then

(1) CA)=CP)N --NC(Py). Hence each element of C(A) is regular.

(2) R satisfies the Ore condition with respect to C(A).

(3) Rs=Rp,N--NRp,=lim B™*, where B ranges over all integral R-ideals
such that BEP; (1<i<k).

Proof. (1) Let ¢ be any element in C(4). If cxeP;, then cxP,--
p;,_P; PS4 and so xP,--P; P, ,---P,SASP;, Hence xcP; and
ceC(P,)N ---NC(Py). The converse inclusion is evident. Since each element
of C(P;) is regular in R (cf. Proposition 1.1 of [7]), so is each element of C(4).

(2) LetIbeanintegral right R-ideal. First we shall prove that I N C(A)=%¢
if and only if there is an integral R-ideal BE P; (1<i<k) such that B&I. Ifc¢
is an element in 1N C(4). Then ¢cRp,=R;, (1<i=<k) by (1) and hence we have
I2cR2P} PRy (cf. the proof of Lemma 1.6), where P;,eP
(k+1=j=<k+Il), P;%=P; (1=<i<k) and n; are positive integres. Conversely
assume that 2B and P; 2B (1</<k). Then BP,---P;_,P;,,-P,%P; and so
there is an element ¢; such that ¢;€BP,---P;_,P;,,--P,NC(P;). Put
c¢=¢,+-+c¢,. Then we have c=C(4A)NI, as desired. Now let S=
Rp N -+ NRp, and let x be any element in S. Then xB;SR for some integral
R-ideal B;EP; by Lemma 1.12. Put B=3>%_,B;. Then B&LP; for all
i (1={<k)and xB&R. So there is an element ¢’ in BN C(4) and 7’ in R such
that xc’=7". Now let ¢ be any element in C(4) and let r be any element in R.
By (1), ¢c7'eS and so ¢ 'rd=s for some d=C(4) and s€R. Hence rd=cs.
This implies that R satiefies the Ore condition with respect to C(4) and R,=S.

(3) is evident from the discussion of (2).

Lemma 3.2. Under the same notation asin Lemma 3.1, if A*=P R, N ---N
P.R,, then:

(1) R,/A* is the quotient ring of R|A.

(2) R4/P:R, is a simple artinian ring.

Proof. Itis evidentthat P,R,=P;/NR,. Henceit followsthat A=4A*N R
and that both P;R, and A* are integral R -ideals. So R/AS R,[/A* as rings.
Further regular elements in R/A4 are only {[c+A4]|lc=C(4)} and R, is the
quotient ring of R with respectto C(4). So R,/A* is the quotient ring of R/A.
Since (P,+(P,N - NP,))NC(A)*+¢, we get (P,+(P,N--NPL))R,=R, and
PR,+(P,R,N - NPRY=R,. This implies that P,R,, ---, P,R, are com-
aximal. Hence we obtain the following diagram:

R/A < R/P, &--D R/P,
Nl Nl ni
R,/ A* —%RA/S;RA & "'EBRA/'SlkRA

'RP]/PI, DD RP,,/Pk/ .
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Since Rp,/P;/ is the quotient ring of R/P; by Proposition 1.1 of [7], iwe have
R4[P;R,=Rp, [P/ and hence R,/P;R , is a simple artinian ring.

Lemma 3.3. Under the same notation as in Lemma 3.1, R, is a right and
left principal ideal ring.

Proof. By Proposition 1.2, Theorem 1.13, Lemmas 3.1 and 3.2, R, is
a bounded Dedekind prime ring with the maximal ideals P,R,, +--, P,R,. Then
it is well known that R, is a right and left principal ideal ring (cf. Satz 2.8 of [2]
or Remark 3.3 of [8, p. 437]).

Now by the validity of Lemma 3.3, the following two theorems are ob-
tained by the same way as the corresponding ones for maximal orders over
commutative Krull domains (cf. Theorems 3.5 and 4.5 of [7]).

Theorem 3.4 (Approximation theorem for bounded Krull prime rings).
Let R be a bounded Krull prime ring, let P,, -+, P, P and let n,, -+, n, be any
integers. Then there is a unit x in Q such that xR, =P;"(1<i<k) and x€Rp,
for all P;€ P with P;=P;.

Theorem 3.5. Let R be a bounded Krull prime ring and let I be any right
R-ideal. Then there are units ¢, d in Q such that I,—=(cR-+dR),.

4. Krull orders over commutative Krull domains

Let o be a commutative integral domain and let K be its field of quotients.
Suppose that ) is a central simple K-algebra with finite dimension over K
and that A is an o-order (cf. §1 of [4], for the definition o-orders). Then we have

Proposition 4.1. Let A be a Krull prime ring and let o* be the center
of it. Then

(i) A is a bounded and maximal o*-order.

(ii) o* zs a Krull domain.

Proof. Let A=N; A;, where A; are essential overrings of A. We shall
prove that each A; is not simple. Let x be any regular element but not unit in
A;. Then, by the same way as in the proof of Proposition 3.1 of [7], there is an
element ¢=+0 in o contained in xA; and so aA; is a proper ideal of A;. Hence
A; is not simple so that it is a local, noetherian, Asano order with unique maximal
ideal P/. 'Thus A is bounded. Let o,=A;NK. Then we have p*=ANK=
(N;A)NK=Npo; Letxbeanynonzero element in K. Then xA;=P;/" for
some integer 7;. The mapping v;: K— Z defined by v,(x)=n; is a dicrete valua-
tion, where Z is the ring of integers. It is evident that o,={xeK |v;(x)=0}.
Let a be any nonzero element in o*. Then aA;=A; for almost all 2. Hence
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v;(a@)=0 for almost all 7. Hence o*is a Krull domain by Theorem 3.5 of [10].
Since 0*=p, A is an o*-order and it is a maximal order as ring by Proposition

1.3.

If T is an o*-order such that I'2A, then we have ¢cI'CA for some

0=3=ceo*, because there exists a finitely generated free o*-submoduole in 3
which contains T by Proposition 1.1 of [4]. So I is equivalent to A. Hence
T'=A and therefore A is a maximal order as o*-algebras.

Proposition 4.2. Let o be a Krull domain and let A be an o-order. Then

following conditions are equivalent:

(1]
[2]

(31
(4]
(51
(6]
(7]
(8]
[91

[10]

(1]

(1) A zs a Krull prime ring.

(ii) A s a maximal order as rings.

(iii) A is a maximal order as o-algebras.

Proof. (i)=>(ii): This follows from Corollary 1.4 and Proposition 4.1.
(ii)=>(iii): This is clear from the proof of Proposition 4.1.

(iif)=>( i) : This follows from Proposition 3.1 of [7].
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