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ON BOUNDED KRULL PRIME RINGS
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In [7], the author defined the concept of non commutative Krull rings
on prime Goldie rings by using perfect additive topologies, and gave some
properties of such rings.

The main purpose of this paper is to investigate the ideal theory in bound-
ed Krull prime rings (cf. Section 1 for the definition).

In Section 1, it is shown that bounded Krull prime rings are maximal
orders in the sense of Asano [1]. Combining this with a result of [3] we shall
show that the group of z -ideals of a bounded Krull prime ring becomes a direct
product of infinite cyclic subgroups generated by minimal prime ideals in the
ring. Further it is established that a bounded Krull prime ring is a Dedekind
prime ring if and only if nonzero prime ideals of the ring are maximal.

In Section 2, we shall determine maximal orders equivalent to a fixed
bounded Krull prime ring and shall show that such maximal orders are also
bounded Krull prime rings (cf. Theorem 2.6).

In Section 3, it is shown that a bounded Krull prime ring with only a finite
number of minimal prime ideals is a right and left principal ideal ring. By using
this result we shall generalize two theorems on ideals in maximal orders over
Krull domains to the case of bounded Krull prime rings.

Section 4 contains some results on Krull orders over commutative integral
domains.

This paper is a continuation of [7]. Concerning the notations and ter-
minolgy not defined in this paper we refer to [7].

1. Groups of v-ideals

Throughout this paper R will denote a prime Goldie ring with identity
element and Q will denote the two-sided quotient ring of JR, where Q is a simple
and artinian ring (cf. [5]). Let F be a right additive topology on R. We will
denote by RF the ring of quotients of R with respect to F (cf. [11]). An
overring R' of R is said to be right essential if it satisfies the following two con-
ditions:

(1) There is a perfect right additive topology F on R such that R'—RF

(cf. p. 74 of [11]).
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(2)
If RF is a right essential overring of R, then F consists of all right ideals

I of R such that IRF=RF. So any element of F is an essential right ideal
of R. Hence RF= lim Hom(7, R) (7eF).

An overring R' of R is said to be essential if it is right and left essential.
For the convenience of the reader we repeat the definition of Krull ring.

A prime Goldie ring R is said to be a Krull ring if there are families
{/?,.} ίe/ and {*Sy}ye/ of essential overrings of R such that

(K2) each J?, is a noetherian, local, Asano order, each Sj is a noetherian,
simple ring and the cardinal number of J is finite, and

(K3) for every regular element c in R we have df?, Φ-R, for only finitely
many / in / and Rkc^Rk for only finitely many k in 7.

If J=φ, then R is said to be bounded.

Lemma 1.1. Let R be a prime Goldie ring and let T^S be overrings of
R. If T is a right essential overring of R, then it is a right essential overring of S.

Proof. By assumption, there is a perfect right additive topology F0 such
that T=RFo. We put F={I\IT=T, I is a right ideal of S}. First we shall
prove that a right ideal / of S is an element in F if and only if IΓ\R^F0. If
7fΊΛeF 0 , then it is evident that IT=T. Conversely assume that IT=T.
Write 1= Σ#z yt , where #, e7 and yt^T. There is an element 70eF0 such
that jί, 70£ & Hence 70£7 Π R and 7 Π R^F0. Next we shall prove that F is
a perfect right additive topology on S. (i) lίl^F ands^S, then we must
prove that s~ll= {x<=S\sx<=I}<=F. Since IT= T and R-+T is a flat epimor-
phism (cf. Theorem 13.10 of [11]), we obtain easily that S/7®ΛΓ=0. So
(j-1/)Γ=Γ, because S/s^I^sS+I)/!. Therefore s^I^F. (ii) If 7eF and
/ is a right ideal of S such that a~lJ^F for all αe7, then we have

T^JT^ Σβe/ a(<r7)Γ = Σ αΓ = IT = T .

Hence J^F so that F is a right additive topology on S.
If 70eF0, then I0S^F and so 5F Ξ> Γ. Conversely let # be any element of

SF. Then there exists I<=F such that #7£S. So x<=xT=xITSiT. There-
fore T=SF. Thus F is perfect by Theorem 13.1 of [11]. For any 7eF, we
have T= T(R Π 7), because R(M<=F0. Hence T is a right essential overring of S.

From Lemma 1.1, we have

Proposition 1.2. If R= Π R> Π Π Sy (ie/, e J) w β Krull prime ring and
if IQ> Λ are subsets of 7, J respectively, then S= Π /?* Π Π *Sy (ίe 70, y e J0)
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In particular, ifjύ=φy then S is bounded.

Let *S£ T be rings. Then 5 is an order in T if T is the two-sided quotient
ring of it. If R1 and R2 are orders in Q, then they are equivalent if there exist
regular elements aιy bιy a2, b2 of Q such that a^b^R^ aJRjb^R^ An order J?
in ζ) is said to be maximal when it is a maximal element in the set of orders which
are equivalent to R. If / is a right (left) Λ-ideal of Q, then O/(/)= {x<= Q \ */£/}
is an order in Q and is equivalent to R. Similarly Or(I)— {x^Q\IxSH} is an
order in Q and is equivalent to R. They are called a left order and a π£&£ order
of / respectively. We define the inverse of I to be I~1={q^Q\Iql£=I}.
Evidently I~1= {q£ΞQ\Iq^O^I)} = {q^Q\ qI^Or(I)}. A prime Goldie ring
is said to be Dedekind if it is a maximal order, and is a right and left hereditary.

Proposition 1.3. Let T be a prime Goldie ring with quotient ring Q. If
T= Π T1;, where T{ are essential overrings of T and are Dedekind prime rings,
then T is a maximal order in Q.

Proof. By Satz 1.2 of [1], it is enough to prove that Ol(A)=T=Or(A) for
every Γ-ideal A of Q. It is clear that Oι(A)^T. Conversely let x be any

element in Ot(A). Then xA^A so that xA^A^^TfA) (TiA)~1=Tiy be-

cause TI is a Dedekind prime ring. Write 1— Σ^yJVy* where Xj e T{A and
jjyefTV^)"1. Since Tί=TFίι9 where Fif is a perfect left additive topology on
Γ, we have/tfyC^ for some/eί1^. Hence oeJ^xA^TfA^QA^iA^^Tf
and thus x^xTi=xJTί^Tiy because T{ is an essential overring of T. There-
fore x<= Π Ti= T so that T=Ot(A). Similarly T=Or(A).

Corollary 1.4. If R is a bounded Krull prime ring, then it is a maximal
order in Q.

In [7], we defined the concepts of ^-operations and ^-operations on one-
sided jR-ideals (cf. §4 of [7]). Let R be a maximal order in Q and let / be a
(right) Λ-ideal. Then I^=(R:I)l={q ^Q\qI^R} so that Iυ=(I^γ\

If /=/„, then it is said to be a (ritht) v-ideal. For any right Λ-ideal /, we
note that I"1 is a left s -ideal and that (I~1I)V=R (cf. Proposition 4.1 and Corol-

lary 4.2 of [7]). In particular, the set D(R) of all τ -ideals becomes an abelian
group under the multiplication "o" defined by AoB=(AB)v for any z -ideals A
and B (cf. Theorem 4.2 of [3]).

Let A be an integral JR-ideal. We will denote by C(A) those elements
of R which are regular in R/A. If R satisfies the Ore condition with respect to
C(A), then we will denote by RA the ring of quotients of R with respect to C(A).

Let R= Π Ri(i^I) be a bounded Krull prime ring. Throughout this paper
PI will denote a unique maximal ideal of R£ and Pί=P/ΓiR- By Proposition
1.1 of [7], P{ is a prime ideal of R and Ri=RP.. Note that BRPi=RP. for any
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integral J?-ideal B^Pf by Proposition 1.1 of [7] and Goldie's theorem. This fact
is frequently used in this paper. We will denote by P the set {P£ \ i e /} .

Lemma 1.5. Let R be a bounded Krull prime ring and let P&P. Then

(1) R&P-1.

(2) P-1PRP = RP = RPP-1P andPP^Rp = RP = RPPP~l .

(3) P is a v-ideal .

Proof. (1) By Proposition 1.1 of [7], P=PRP Π #. So it follows that P is

a α -ideal i.e., P= Γ\PRPi(Pί^P). Since RP is a principal right and left ideal
ring, we have PRP=pRP for some p^P. On the other hand, since the integral
right ^-ideals satisfy the maximum condition, there are a finite number of ele-
ments x19 ,xn in P such that P=(x1R-\ ----- [-xnR)w. Write xί=pbίy where
bftΞRp, and 4f=<rV,, where r^R, c&C(P). Then we have P== [pc^\r1R+-"
+rnR)]w=pc-l(r1R^ ----- \-rnR)w<^pc-lR. Hence cp'Ψ^R and c/r'eP'1. If
cp~1^R=Ol(P)ί then cp'lPS>P and cp~lPRP^PRP. Since PRP is invertible,

and so p~l^RP. Hence \=pp~l^.P', a contradiction. Thus we have

(2) If P~1P=P, then P~1=Ry a contradiction, since £)(#) is a group.
Hence P-1P3P and so P~1PRP=RP. The other cases are similar.

(3) By Propositon 1.1 of [7], PRP=RPP and so RPP-1=P~1RP by (2).

So again by PVRP=RPPV, because PV3P, so that PVRP is an ideal of RP.
Hence PRP=PVRP or PVRP=RP. But if RP=PvRPί then RP=PP-1RP=
PP-lPvRP=PRp, a contradiction, because RP==P-1PRP=P~1PVRP=RP.
Hence PRP=PVRP and so P=PRP Π Λ 2P,,. Therefore P=PW, as desired.

Lemma 1.6. Le£ R be a bounded Krull prime ring. If I is an integral
right R-ideal, then I contains a intersection of powers of a finite number of ele-
ments in P.

Proof. Let c be a regular element in /. Then cR=Γ[cRP.(Pi^P)9 and
cRP.^RP. for finitely many P, in P only (1 ̂ i^k), Since RP. is regular in the
sense of [1] and the ideals of RP. are only the powers of P/. Hence d?
for some positive integer ra, and so we have I^cR= Π cRP(P^P) 3Pfι Π

Proposition 1.7 Let R be a bounded Krull prime ring and let P be a non-
zero prime ideal of R. Then P is minimal prime if and only if

Proof. If P is minimal prime, then it is evident that PeP by Lemma
1.6. Conversely assume that PeP. Then it is a prime element in the com-
mutative lattice ordered group D(R) and is a maximal element in D(R) by a
rseult in [3, p. 11]. Combining this with Lemma 1.6, we have that P is a
minimal prime ideal of R.
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Theorem 1.8. Let R be a bounded Krull prime ring. Then
(1) D(R) is an abelian group and is a direct product of infinite cyclic sub-

groups generated by minimal prime ideals of R.
(2) D(R)^ Π (̂ ftp)> where P ranges over all minimal prime ideals of R and

F(RP) denotes the group of all fractional RP-ideals.

Proof. (1) If PeP, then it is a prime element in D(R). Conversely if
P0 is a prime element in D(R), then it is a prime ideal of R and hence P0 Ξ>P for
some P in P. But P is a maximal element in D(R) and so P=P0. Hence the
assertion follows from Theorem 1.2 of [3] and Proposition 1.7.
(2) is evident.

In §2 of [7] we considered the following condition on bounded Krull
prime rings

(K4) : P{ $P, and P, £Py for any P,., Py e P and Pt =t=Py .

We know from Proposition 1.7 that bounded Krull prime rings satisfy
the condition (K4).

Lemma 1.9. Let R be a bounded Krull prime ring and let I be any right R-
ideal. Then

(1) /-> =

(2) RpΓ1 = (IRpΓ1 for any Pin P.

Proof. (1) is evident. (2) follows from Lemma 2.1 of [7] and (1).

Proposition 1.10. Let R be a bounded Krull prime ring. If I is a right
R-ideal, then Iυ=Iw.

Proof. /,=(/- V=n(Λp/-1)-1==n[(IRPΓ1]-1=n/12p=/i. by Lemma
1.9.

Corollary 1.11. Let R be a bounded Krull prime ring. If A is an R-ideal,
then ARP is an RP-ideal for every P in P.

Proof. Aw=(PnP?ι Pp)w by Theorem 1.8 and Proposition 1.10. Hence
we have ARP=AtΰRP=(PnP?ι Pp)wRP==PnP?ι. P»kkRP==P"RP. So, by Pro-
position 1.1 of [7], ARP is an Λp-ideal.

Lemma 1.12. Let R be a bounded Krull prime ring and let PeP. Then
jRp=lim B~1

3 where B ranges over integral R-ideals such that

Proof. If B is an integral 72-ideal not contained in P, then it is clear that
ΰn C(P)=f=φ (cf. Proposition 1.1 of [7]). Hence RP^lim B~\ Conversely let
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c be any element in C(P). Then έr/?3PflPfι PJ*, where P, eP and n, n{ are
integers. So RP=cRP=P"RP. Thus /i=0 so that <rJZ2PJΊ— PJ*. Hence
jRpC lim J5"1 and so RP=lim B~l.

Theorem 1.13. Let R be a bounded Krull prime ring. Then R is a
Dedekind prime ring if and only if any nonzero prime ideal is maximal.

Proof. If R is a Dedekind prime ring, then the result is known [1], Con-
versely, if any nonzero prime ideal is maximal, then the elements in P are only
maximal ideals of R by Lemma 1 .6. First we shall prove that maximal ideals of R
are invertible. Let P be any maximal ideal of R. Then R=P~1P or P~1P=P.
If P"'P=P, then PRP=RP by Lemma 1.5, a contradiction. Hence P~1P=R.
Similarly PP~l=R. Next we shall prove that R is a right and left noetherian
ring. To prove this let / be an integral right J?-ideal such that /ΞgP and
ΪRP=RP, where J=//P and RP=RP/P'. This implies that IRP+P'=RP.
Since P' is the Jacobson radical of RPJ we have IRP=RP. Write 1= Σ#O>i,
where x^I and y^Rp. By Lemma 1.12, there exists an integral Λ-ideal B
such that B&P and ytB^R. So #£/ and R=B+P^I. Hence R=I. This
implies that R/P is an artinian ring by Proposition 1.1 of [7] and Goldie's
theorem, and so R/Pn is also an artinian ring, because P is invertible. For any
finite members of elements P19 , Pk i

n Pand any positive integers nιy * ,nk we
have ^(PfiΠ— ΠPί*)sίΛ/PΓlθ— ΘJR/PJ*. So, by Lemma 1.6, the integral
right 72-ideals satisfy the maximum condition. Therefore R is right noetherian,
because R has a finite dimension in the sense of Goldie. Similarly R is left
noetherian. Now, since any maximal ideal is invertible and R is noetherian, we
obtain that R is an Asano order (see the proof of Theorem 2.6 of [6]). Further,
since R is bounded, it is a Dedekind prime ring by Theorem 3.5 of [8].

2. Maximal orders equivalent to a bounded Krull prime ring

In this section we shall prove that any maximal order equivalent to a
bounded Krull prime ring is also a bounded Krull prime ring. For this we
need some Lemmas.

Lemma 2.1. Let R be α bounded Krull prime ring, let I be α right R-ideαl
and let Pe P. Then

(1)

(2) Γ1IRP = RP =

(3)

Proof. (1) From Lemma 1.9 we have IRPΓ
1=IRPRPΓ

1=IRP(IRP)-1=
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(2) Since (Γ1I\=R, we have RP=(ΓlI)υRP=(ΓU)wRP=ΓlIRP by
Proposition 1.10. Similarly RP=RPΓ

1I.
(3) OtfRp)! = IRPΓ

1I = IRP.

If R is a local, noetherian, Asano order with unique maximal ideal P and
if / is a right Λ-ideal, then it follows that O/(/) is also a local, noetherian, Asano
order with a unique maximal ideal IPI~l (cf. Lemmas 2.3 and 3.1 of [9]).

Lemma 2.2. Let R be a bounded Krull prime ring and let I be a right v-ideal.
Then

(1) Oι(I)= Π Oι(IRP), where P ranges over all elements in P and O^IRp) is
a local, noetherian, Asano order with unique maximal ideal /P7/"1.

(2) O,(/) satisfies the condition (K3).

Proof. (1) By Proposition 1.10, I=IW and so it is evident that O/(/)=
ΠOΛ/ΛpXPeP). Since IP'Γ*=(IRP)P'((IRpy\ O^IRp) is a local, noe-
therian, Asano order with unique maximal ideal /P7/""1.

(2) Let c be any regular element in O/(/). Then it follows from (K3) that
cIRp=Rp=IRp for almost all P in Pand cIRPI~l=IRPI~l. Hence, by Lemma
2.1, cOl(IRp)=Ol(IRp) for almost all P in P. By Corollary 4.2 of [7], Γl is a
left z -ideal. So from Lemma 1.9 and (1) we get: Or(/"1)= Π Or(RPΓ*)=
Γ(Or((IRP)-1)=Γ[Ol(IRP)=Ol(I). Hence, applying to Γ1 the above discus-
sion we have Of(IRP)c==Oι(IRP) for almost all P in P.

Let / be any right τ -ideal of R and let A be any right O/(/)-ideal. Then
we will denote by Aw the right O^-ideal Π AOf(IRP)

Lemma 2.3. Let R be a bounded Krull prime ring, let I be a right v-ideal
and let A be an integral right Ot(I)-ideaL Then

(1) If P is an elemet in P, then AO^IR^O^IRp) if and only if Aw ^IBI'1

for some integral R-ideal B with B&P.
(2) If a is any element in O,(7), then (a~1A)w=a~1(Aw).

Proof. (1) If AW^IBΓ\ where B is an integral Λ-ideal with 5ΦP, then
we get: AO^IRp) = AwOi(IRP)^IBΓlOl(IRP) = IBΓ1IRPΓ

1 = IRpΓ1 =
O^IRp). Hence AO^IRp^O^IRp). To prove the converse we may assume
that AIRpJ-^IRpJ'1 for finitely many Pf in P only (l^i^k) by Lemma 2.2.
By assumption, P, ΦP. There are positive integers nf (ί^i^k) such that
IP/^Γ^AIRpJ-1. Hence we have IP^—PfrΓ^A,, and P^-PfrStP.

(2) Let x be an element in O7(7). Then we have the following implications :
x^(a~1A)w^x^(a'-1A)IRPΓ

l for all P in P&xIBpΓ^a^A for some integral
Λ-ideal BP<£P by Lemmas 1.12 and 2Λ^axIBPΓ

1^A^ax<=AIRPΓ
1 for all

Aw. Hence (a~1A)w=a'1Aw.
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Lemma 2.4. Let R be a bounded Krull prime ring and let I be a right v-
ίdeal. Then O/(//?P) is an essential averring of Ot(I) for any P in P.

Proof. The lemma will be proved in the following four steps.

(a) Let Fp={A\AO,(IRp)=O,(IRP) and A is a right ideal of O,(/)}.
First we shall prove that FP is a right additive toplogy on O/(7). (i) if A^FP

and if tfeO^/), then there is an integral JR-ideal B such that IBI~1£ίAw and
B^P. Since IBΓ1 is an O,(/)-ideal, we have x~lAw ^IBΓ\ Hence x
by Lemma 2.3. (ii) If A e FP and B is a right ideal of O^/) such that x~
for all x in ^4, then we have B^FP in a similar way as in the proof of Lemma
1.1. Hence FP is a right additive topology.

(b) By Lemmas 1.12 and 2.1, O/(/JRP)=lim/β/~1, where B ranges over all

integral Λ-ideals such that B&P. From this and (a) we easily obtain that
Ol(IRp)=Ol(l)Fp. Hence FP is perfect.

(c) Let A be any element of FP. Then there is an integral Λ-ideal B( fP)

such that AW^IBΓ\ Hence IRPΓ
1=^IRPΓ

1AW. Write l=Σ*Wί> where

1 and y^A^AIRpI^. There is an integral Λ-ideal C(SCP) such
^^ and hence ICΓ^IRPΓ

1A. So we have IRPΓ
l=IRPΓ^A.

Therefore O/(/RP) is a right essential overring of O/(/).
(d) Let FP = {A I O/(/RP)24=O/(/Rp) and ̂  is a left ideal of O,(/)} . By

similar way as in (a), (b) and (c) we easily obtain that Oι(IRP)=Ol(I)Fp and
that it is a left essential overring of O/(7). This completes the proof.

Lemma 2.5. Let R be a bounded Krull prime ring and let R' be any order
equivalent to R. Then R' is a maximal order if and only if R'— Oι(I) for some
right v-ideal I of R.

Proof. If R/=Ol(I) for some right ^-ideal /, then it is a maximal order by
Satz 1.3 of [1]. This also follows from Proposition 1.3, Lemmas 2.2 and 2.4.
Conversely assume that R' is a maximal order, then there are regular elements
c, d in R such that cR'd^R and so R'dR is a right Λ-ideal. Put I=(R'dR)υ,
then 1= Π (RfdR)RP (P^P) by Proposition 1.10. This implies that / is a left
^-module, so that O^I) ^R'. Therefore Otf^R'.

Theorem 2.6. Let R be a bounded Krull prime ring. If R' is a maximal
order equivalent to R, then it is a bounded Krull prime ring and D(R)^D(R').

Proof. This is evident from Theorem 1.8, Lemmas 2.2, 2.4 and 2.5.

In case maximal orders over commutative Krull domains, the second
assertion of the theorem was proved by R.M. Fossum (cf. Theorem 2.1 of

3. The generalization of some results on maximal orders over
commutative Krull domains
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Lemma 3.1. Let R be a bounded Krull prime ring, let Ply •••, Pk^P and

letA=P1Γ\ --ΓlP*. Then
(1) C(A)=C(Pl) Π ••• ΓΊ C(Pk). Hence each element of C(A) is regular.
(2) R satisfies the Ore condition with respect to C(A).
(3) RA=RPlΓ\ ••• Π Rpk=lim B~l, where B ranges over all integral R-ideals

such that >

Proof. (1) Let c be any element in C(A). If cx^P£, then
Pi-ιPί+1 PΛG.4 and so ΛtfV P^P^ P^S^CP,. Hence #ePt and
tfeCίPJn ••• Π C(PA). The converse inclusion is evident. Since each element
of C(Pt ) is regular in R (cf. Proposition 1.1 of [7]), so is each element of C(A).

(2) Let / be an integral right /{-ideal. First we shall prove that / Π C(A) Φ φ
if and only if there is an integral Λ-ideal B^Pf (l^i^k) such that /?£/. If c
is an element in / Π C(A). Then cRP.=RP. (1 ̂ i^k) by (1) and hence we have

iV (cf. the proof of Lemma 1.6), where PyeP
), PyφP, (l ^i^k) and HJ are positive integres. Conversely

assume that I^B and P^B (1 ̂ i^k). Then PP^ P, ̂ P^ P^P, and so
there is an element ^ such that c.-elMV" P^Pf-n— PΛΠ C(P, ). Put
^=^ιH ----- !-£*• Then we have ceC(^4)Π/, as desired. Now let S=
/ZpjΠ ••• n/2p A and let Λ? be any element in S. Then xB^R for some integral
Λ-ideal J5^Pt- by Lemma 1.12. Put B=^ί^Bf. Then B^P/ for all
ί (1 ̂ i^K) and xB^R. So there is an element £' in ΰ Π C(A) and r7 in /? such
that xc'— rr . Now let c be any element in C(A) and let r be any element in R.
By (1), c~1^S and so c~lrd=s for some d^C(A) and se/?. Hence rd=cs.
This implies that /? satiefies the Ore condition with respect to C(A) and RA=S.

(3) is evident from the discussion of (2).

Lemma 3.2. Under the same notation asin Lemma 3.1, if Aήί=P1RAΓ\ ••• (Ί

(1) /?Λ/^* ά the quotient ring of R/A.
(2) RA/PfRA is a simple artinian ring.

Proof. It is evident that PίRA=Pi

/ ΓΊ RA. Hence it follows that A =A* Π R
and that both P{RA and ^4* are integral /?Λ-ideals. So /?/^4S /?^/^* as rings

Further regular elements in R/A are only {[c+A]\c^C(A)} and RA is the
quotient ring of R with respect to C(A). So RA/A* is the quotient ring of /?/A
Since (Λ+^n ΠP^nCC^Φφ, we get (Λ+^Π - nPkϊ)RA=RA and
P1jR^+(P2/?^n •- nP^)^/?Λ. This implies that P ,̂ ~,PkRA are com-
aximal. Hence we obtain the following diagram:

R/A £ R/P, e-e
mi nu nn

Y θ-θ
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Since RPί/P/ is the quotient ring of R/P{ by Proposition 1.1 of [7], !we have
RA/PiRA=RPJP/ and hence RA/PfRA is a simple artinian ring.

Lemma 3.3. Under the same notation as in Lemma 3.1, RA is a right and
left principal ideal ring.

Proof. By Proposition 1.2, Theorem 1.13, Lemmas 3.1 and 3.2, RA is
a bounded Dedekind prime ring with the maximal ideals PτRA9 , PkRA Then
it is well known that RA is a right and left principal ideal ring (cf. Satz 2.8 of [2]
or Remark 3.3 of [8, p. 437]).

Now by the validity of Lemma 3.3, the following two theorems are ob-
tained by the same way as the corresponding ones for maximal orders over
commutative Krull domains (cf. Theorems 3.5 and 4.5 of [7]).

Theorem 3.4 (Approximation theorem for bounded Krull prime rings).
Let R be a bounded Krull prime ring, let P^ •• ,Pk^P and let nly ~,nk be any
integers. Then there is a unit x in Q such that xRPi=Pi/ni(\^i^k) and x^RP.
for allPj^P with PjφP, .

Theorem 3.5. Let R be a bounded Krull prime ring and let I be any right
R-ideal. Then there are units cy d in Q such that Iv=(cR-}-dR)υ.

4. Krull orders over commutative Krull domains

Let o be a commutative integral domain and let K be its field of quotients.
Suppose that 2 is a central simple ^-algebra with finite dimension over K
and that Λ is an o-order (cf. §1 of [4], for the definition o-orders). Then we have

Proposition 4.1. Let Λ be a Krull prime ring and let o* be the center

of it. Then
(i) A is a bounded and maximal o*-order.
(ii) o* is a Krull domain.

Proof. Let Λ— Π t Λ, , where Λ, are essential overrings of Λ. We shall
prove that each Λ, is not simple. Let x be any regular element but not unit in
Λt . Then, by the same way as in the proof of Proposition 3.1 of [7], there is an
element #ΦO in o contained in Λ?Λ/ and so aKi is a proper ideal of Λt . Hence
Λ, is not simple so that it is a local, noetherian, Asano order with unique maximal
ideal P/. Thus Λ is bounded. Let ot =Λ, Π K. Then we have o*=Λ Π K=
(Π , Λ,') Π K= Π o, . Let x be any nonzero element in K. Then tfΛ, =P/*' for
some integer nf. The mapping v{: K-+Z defined by Vf(x)=ni is a dicrete valua-
tion, where Z is the ring of integers. It is evident that oi={x^K\vί(x)^0}.
Let a be any nonzero element in o*. Then βΛ^Λ,- for almost all /. Hence
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.̂(α)=0 for almost all i. Hence o* is a Krull domain by Theorem 3.5 of [10].

Since 0*^0, Λ is an o*-order and it is a maximal order as ring by Proposition

1.3. If Γ is an o*-order such that Γ2Λ, then we have cΓ£Λ for some

OΦ^eo*, because there exists a finitely generated free o*-submoduole in 2

which contains Γ by Proposition 1.1 of [4]. So Γ is equivalent to Λ. Hence

Γ=Λ and therefore Λ is a maximal order as o*-algebras.

Proposition 4.2. Let o be a Krull domain and let Λ be an o-order. Then

following conditions are equivalent:

( i ) A is a Krull prime ring.

(ii) A is a maximal order as rings.

(iii) Λ is a maximal order as o-algebras.

Proof. (i)=^>(ii): This follows from Corollary 1.4 and Proposition 4.1.

(ii)=Ξ>(iii): This is clear from the proof of Proposition 4.1.

(iii)=K i) : This follows from Proposition 3.1 of [7].
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