ON ISOMORPHIC POWER SERIES RINGS

Yasunori ISHIBASHI

(Received June 5, 1975)

Introduction

Let A and B be commutative rings with an identity. In this paper we investigate the following question raised by M.J. O'Malley [4]. Can there be an isomorphism of A onto B whenever the formal power series rings $A\left[\left[X_{1}, \cdots\right.\right.$, $\left.\left.X_{n}\right]\right]$ and $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ are isomorphic? We shall say that A is n-power invariant if whenever C is a ring and $A\left[\left[X_{1}, \cdots, X_{n}\right]\right] \cong C\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$, then we have $A \cong C$. A ring A will be said to be strongly n-power invariant if whenever C is a ring and φ is an isomorphism of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ onto $C\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$, then there exists a C-automorphism ψ of $C\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ such that $\varphi\left(X_{i}\right)=$ $\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$. The present paper consists of three parts. In the first part we shall give a characterization of A-automorphisms of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$. The second part will deal with higher derivations on a complete local ring and we shall determine a necessary and sufficient condition in order that a complete local ring A is isomorphic to a formal power series ring $A_{0}[[X]]$. M.J. O'Malley has proved that semisimple rings (the Jacobson radical $=(0)$) are strongly 1-power invariant [4]. In the last part we shall show that semisimple rings are strongly n-power invariant for any positive integer n. In particular an affine domain over a field is strongly n-power invariant for any n. Next we shall prove that if A and B are local rings which may not be noetherian (see [2], p. 13) and $A\left[\left[X_{1}, \cdots, X_{n}\right]\right] \cong B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ under φ, then there is either a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ satisfying $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$ or $A($ resp. $B)$ is isomorphic to a formal power series ring $A_{0}[[X]]$ (resp. $\left.B_{0}[[Y]]\right)$. From this we shall easily conclude that a local ring A which may not be noetherian is either strongly n-power invariant for any n, or A is isomorphic to a formal power series ring $A_{0}[[X]]$. Furthermore we shall show that any noetherian local ring is n-power invariant for any n.

Throughout this paper all rings are assumed to be commutative and contain an identity.

1. A-automorphisms of $A\left[\left[X_{1}, \cdots, X_{\boldsymbol{n}}\right]\right]$

We denote the Jacobson radical of a ring A by $\mathfrak{F}(A)$. In this section let
us suppose that a ring A satisfies the condition $\bigcap_{m=1}^{\infty} \Im(A)^{m}=(0)$. As is well-known we have $\bigcap_{m=1}^{\infty} \Im(A)^{m}=(0)$ when A is noetherian.

Proposition 1. Let B be a ring and let φ be an isomorphism of $A\left[\left[X_{1}, \cdots\right.\right.$, $\left.\left.X_{n}\right]\right]$ onto $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. Let $\varphi\left(X_{i}\right)=b_{i}+b_{i 1} Y_{1}+\cdots+b_{i n} Y_{n}+\cdots$ for $1 \leqq i \leqq n$, where $b_{i}, b_{i j} \in B$. We set $\mathfrak{B}=\left(b_{1}, \cdots, b_{n}\right)$, the ideal of B generated by b_{1}, \cdots, b_{n}. Then we have
(1) $\bigcap_{m=1}^{\infty} \mathfrak{F}(B)^{m}=(0)$ and $\mathfrak{B} \subset \mathfrak{F}(B)$,
(2) B is complete in the \mathfrak{B}-adic topology,
(3) for any power series $\sum a_{i 1} \cdots_{i n} X_{1}^{i 1} \cdots X_{n}^{i n} \in A\left[\left[X_{1}, \cdots, X_{n}\right]\right], \sum \varphi\left(a_{i 1 \ldots i n}\right)$ $\varphi\left(X_{1}\right)^{i 1} \cdots \varphi\left(X_{n}\right)^{i n}$ is a well defined power series in $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ and we have $\varphi\left(\sum a_{i 1 \ldots i n} X_{1}^{i 1} \cdots X_{n}^{i n}\right)=\sum \varphi\left(a_{i 1 \ldots i n}\right) \varphi\left(X_{1}\right)^{i 1} \cdots \varphi\left(X_{n}\right)^{i n}$.

Proof. (1) Since $\mathfrak{F}\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)=\mathfrak{F}(A)\left[\left[X_{1}, \cdots, X_{n}\right]\right]+\left(X_{1}, \cdots, X_{n}\right)$ and $\bigcap_{m=1}^{\infty} \Im(A)^{m}=(0)$, we get $\bigcap_{m=1}^{\infty} \Im\left(A\left[\left[X_{1}, \cdots, X_{n}\right]\right]\right)^{m}=(0)$. On the other hand $\varphi\left(\Im\left(A\left[\left[X_{1}\right.\right.\right.\right.$, $\left.\left.\left.\left.\cdots, X_{n}\right]\right]\right)\right)=\Im\left(B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]\right)$ and hence $\bigcap_{m=1}^{\infty} \Im\left(B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]\right)^{m}=(0)$. Then it is easy to see that $\bigcap_{m=1}^{\infty} \Im(B)^{m}=(0)$. In order to show $\mathfrak{B} \subset \mathfrak{Y}(B)$, we have only to prove that $b_{i} \in \Im(B)$ for $1 \leqq i \leqq n$. For each $b \in B, 1+\varphi^{-1}(b) X_{i}$ is a unit of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ and hence $\varphi\left(1+\varphi^{-1}(b) X_{i}\right)=\left(1+b b_{i}\right)+b b_{i_{1}} Y_{1}+\cdots+b b_{i n} Y_{n}+\cdots$ is a unit of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. Therefore $1+b b_{i}$ is a unit of B for each $b \in B$ and so $b_{i} \in \mathfrak{F}(B)$ as asseretd. If B is \mathfrak{B}-adic complete, $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ is complete in the $\left(\mathfrak{B}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]+\left(Y_{1}, \cdots, Y_{n}\right)\right)$-adic topology. Then the assertion (3) is obvious. Thus it is sufficient to prove (2). (2) We set $\mathfrak{B}_{k}=\left(b_{1}^{k}, \cdots, b_{n}^{k}\right)$, the ideal of B generated by $b_{1}^{k}, \cdots, b_{n}^{k}$. The sequence of ideals $\left\{\mathfrak{B}_{k}\right\}$ defines a topology on B which is equivalent to the \mathfrak{B}-adic topology on B. Let $\left\{c_{k}\right\}$ be a Cauchy sequence of B in the \mathfrak{B}-adic topology. Then $\left\{c_{k}\right\}$ is a Cauchy sequence with respect to the topology defined by $\left\{\mathfrak{B}_{k}\right\}$. It is therefore immediate to see that there exists a subsequence $\left\{d_{k}\right\}$ of $\left\{c_{k}\right\}$ such that $d_{k}=\sum_{i=0}^{k}\left(r_{i_{1}} b_{1}^{t}+\right.$ $\left.\cdots+r_{i n} b_{n}^{i}\right)$ for each k, where $r_{i j} \in B$. Let $f_{i j}=\varphi^{-1}\left(r_{i j}\right) \in A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ and we set $f=\sum_{i=0}^{\infty}\left(f_{i 1} X_{1}^{i}+\cdots+f_{i n} X_{n}^{i}\right)$ which is a well defined power series in $A\left[\left[X_{1}\right.\right.$, $\left.\left.\cdots, X_{n}\right]\right]$. If B^{*} is the \mathfrak{B}-adic completion of B, then we have the canonical injection $\iota: B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right] \rightarrow B^{*}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. We shall identify $B\left[\left[Y_{1}, \cdots\right.\right.$, $\left.\left.Y_{n}\right]\right]$ with the subring $\iota\left(B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]\right)$ of $B^{*}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ and for $h \in B$ $\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ we shall denote $\iota(h)$ by h. The sequence $\left\{\sum_{i=0}^{k}\left(r_{i 1} \varphi\left(X_{1}\right)^{i}+\cdots\right.\right.$ $\left.\left.+r_{i n} \varphi\left(X_{n}\right)^{i}\right)\right\}_{k}$ is obviously a Cauchy sequence of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ under the $\left(\mathfrak{B}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]+\left(Y_{1}, \cdots, Y_{n}\right)\right)$-adic toplogy. Hence $\sum_{i=0}^{\infty}\left(r_{i_{1}} \varphi\left(X_{1}\right)^{i}+\cdots+\boldsymbol{r}_{i n}\right.$ $\left.\varphi\left(X_{n}\right)^{i}\right)$ is a well defined power series in $B^{*}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. On the other hand we have

$$
\begin{aligned}
& \varphi(f)-\sum_{t=0}^{k}\left(r_{i 1} \varphi\left(X_{1}\right)^{i}+\cdots+r_{i n} \varphi\left(X_{n}\right)^{i}\right) \\
= & \varphi(f)-\varphi\left(\sum_{i=0}^{k}\left(f_{i 1} X_{1}^{i}+\cdots+f_{i n} X_{n}^{i}\right)\right) \\
= & \varphi\left(\sum_{i=k+1}^{\infty}\left(f_{i 1} X_{1}^{i}+\cdots+f_{i n} X_{n}^{i}\right)\right) \\
= & \varphi\left(X_{1}\right)^{k+1} \varphi\left(\sum_{i=k+1}^{\infty} f_{i 1} X_{1}^{i-k-1}\right)+\cdots+\varphi\left(X_{n}\right)^{k+1} \varphi\left(\sum_{i=k+1}^{\infty}\right. \\
& \left.f_{i n} X_{n}^{t-k-1}\right) \in\left(\mathfrak{B}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]+\left(Y_{1}, \cdots, Y_{n}\right)\right)^{k+1}
\end{aligned}
$$

in $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. Hence we get

$$
\begin{aligned}
\varphi(f) & =\sum_{i=0}^{\infty}\left(r_{i 1} \varphi\left(X_{1}\right)^{i}+\cdots+r_{i n} \varphi\left(X_{n}\right)^{i}\right) \\
& =\sum_{i=0}^{\infty}\left(r_{i 1} b_{1}^{i}+\cdots+\boldsymbol{r}_{i n} b_{n}^{i}\right)+g
\end{aligned}
$$

in $B^{*}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$, where $g \in B^{*}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ and g has no constant term. Hence we see that $\left\{d_{k}\right\} \rightarrow c$, the constant term of $\varphi(f)$. Since $\varphi(f) \in B\left[\left[Y_{1}, \cdots\right.\right.$, $\left.\left.Y_{n}\right]\right]$ we have $c \in B$. Thus $\left\{c_{k}\right\} \rightarrow c$ and it follows that B is complete in its \mathfrak{B} adic topology.

Theorem 2. Let $Y_{i}=a_{i}+a_{i_{1}} X_{1}+\cdots+a_{i n} X_{n}+\cdots \in A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ for $1 \leqq$ $i \leqq n$. We set $\mathfrak{Y}=\left(a_{1}, \cdots, a_{n}\right)$, the ideal of A generated by a_{1}, \cdots, a_{n}. Then there exists an A-automorphism φ of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ such that $\varphi\left(X_{i}\right)=Y_{i}$ for $1 \leqq i \leqq n$ if and only if the following conditions hold:
(1) $\mathfrak{\Re} \subset \mathfrak{J}(A)$ and A is complete in the \mathfrak{Y}-adic topology,
(2) the matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& \cdots & \cdots & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

is invertible.
Proof. We assume that there exists an A-automorphism φ of $A\left[\left[X_{1}, \cdots\right.\right.$, X_{n}]] satisfying $\varphi\left(X_{i}\right)=Y_{i}$ for $1 \leqq i \leqq n$. Then it follows from Proposition 1 that $\mathfrak{A} \subset \mathfrak{F}(A)$ and A is complete in the \mathfrak{A}-adic topology. Let $\varphi^{-1}\left(X_{i}\right)=b_{i}+$ $b_{i_{1}} X_{1}+\cdots+b_{i n} X_{n}+\cdots$ for $1 \leqq i \leqq n$. Then we get

$$
\begin{aligned}
X_{i} & =\varphi^{-1}\left(\varphi\left(X_{i}\right)\right) \\
& =a_{i}+a_{i 1} \varphi^{-1}\left(X_{1}\right)+\cdots+a_{i n} \varphi^{-1}\left(X_{n}\right)+\cdots
\end{aligned}
$$

by Proposition 1 applied to an isomorphism φ^{-1}. Comparing the coefficients of X 's we have

$$
\sum_{k=1}^{n} a_{i k} b_{k j} \equiv \delta_{i j}(\bmod . \Im(A))
$$

where $\delta_{i j}$ denotes the Kronecker's symbol, because the coefficients of X 's in
$\varphi^{-1}\left(X_{1}\right)^{i 1} \cdots \varphi^{-1}\left(X_{n}\right)^{i n}\left(i_{1}+\cdots+i_{n} \geqq 2\right)$ belong to the ideal $\left(b_{1}, \cdots, b_{n}\right) \subset \mathfrak{F}(A)$. Then $\operatorname{det}\left(a_{i j}\right) \operatorname{det}\left(b_{i j}\right) \equiv 1(\bmod . \Im(A))$ and $\operatorname{hence} \operatorname{det}\left(a_{i j}\right)$ is a unit of A as asserted. Conversely we assume that the conditions (1) and (2) are satisfied. Since A is complete in the \mathfrak{Q}-adic topology, $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ is complete in its $\left(\mathfrak{Y}\left[\left[X_{1}, \cdots, X_{n}\right]\right]+\left(X_{1}, \cdots, X_{n}\right)\right)$-adic topology and hence $\sum a_{i 1 \ldots i n} Y_{1}^{i 1} \cdots Y_{n}^{i n}$ is a well defined power series in $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$. If we set $\varphi\left(\sum a_{i_{1} \ldots i n} X_{1}^{i 1} \cdots X_{n}^{i n}\right)$ $=\sum a_{i 1 \ldots i n} Y_{1}^{i 1} \cdots Y_{n}^{i n}$, then we see that φ is an A-endomorphism of $A\left[\left[X_{1}, \cdots\right.\right.$, X_{n}]] satisfying $\varphi\left(X_{i}\right)=Y_{i}$ for $1 \leqq i \leqq n$. In fact we shall show that φ is an automorphism. Let us consider an A-endomorphism τ of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ defined by $\tau\left(X_{i}\right)=X_{i}-a_{i}$ for $1 \leqq i \leqq n$. It is immediate to see that τ is an automorphism and hence we have only to show that $\varphi \tau$ is an automorphism in order to complete our proof. Since $\varphi \tau\left(X_{i}\right)=a_{i_{1}} X_{1}+\cdots+a_{i n} X_{n}+\cdots$ for $1 \leqq i \leqq n$, it is sufficient to prove assertion under the additional assumption: $a_{i}=0$ for $1 \leqq i \leqq n$. The matrix ($a_{i j}$) being invertible, we can resolve $X_{i}=$ $b_{i_{1}} Y_{1}+\cdots+b_{i n} Y_{n}+f_{i}\left(X_{1}, \cdots, X_{n}\right)$ for $1 \leqq i \leqq n$ conversely, where the non-zero terms of $f_{i}\left(X_{1}, \cdots, X_{n}\right)$ are of degree $\geqq 2$ in X_{1}, \cdots, X_{n}. Now we have $f_{i}\left(X_{i}\right.$, $\left.\cdots, X_{n}\right)=f_{i}\left(b_{11} Y_{1}+\cdots+b_{1 n} Y_{n}+f_{1}\left(X_{1}, \cdots, X_{n}\right), \cdots, b_{n_{1}} Y_{1}+\cdots+b_{n n} Y_{n}+f_{n}\left(X_{1}, \cdots\right.\right.$, $\left.\left.X_{n}\right)\right)=\sum_{j, k} c_{j k}^{(i)} Y_{j} Y_{k}+g_{i}\left(X_{1}, \cdots, X_{n}\right)$. Here the non-zero terms of $g_{i}\left(X_{1}, \cdots, X_{n}\right)$ are of degree $\geqq 3$ in X_{1}, \cdots, X_{n}. We repeat this procedure and eventually we can write $X_{i}=\sum b_{i_{1} \cdots i n} Y_{1}^{i 1} \cdots Y_{n}^{i n}$. Since $a_{i}=0$ for $1 \leqq i \leqq n$, we must have $b_{0 \ldots 0}=0$. Then it is easy to see that φ is a surjection. Next we shall prove that φ is an injection. To the contrary, let us suppose that there is a non-zero power series $f\left(X_{1}, \cdots, X_{n}\right) \in A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ satisfying $\varphi\left(f\left(X_{1}, \cdots, X_{n}\right)\right)=f\left(Y_{1}, \cdots, Y_{n}\right)$ $=0$. Let k be the degree of first non-zero terms in $f\left(X_{1}, \cdots, X_{n}\right)$. Since a_{i} $=0$ for $1 \leqq i \leqq n$, we have $f(0, \cdots, 0)=0$ and hence $k>0$. As is $f\left(Y_{1}, \cdots, Y_{n}\right)$ $=0$, we get ${ }_{i 1+\cdots+i n=k} a_{i_{1} \cdots i n}\left(a_{11} X_{1}+\cdots+a_{1 n} X_{n}\right)^{i 1} \cdots\left(a_{n 1} X_{1}+\cdots+a_{n n} X_{n}\right)^{i n}=0$, with some $a_{i 1 \ldots i n} \neq 0$. Now the matrix $\left(a_{i j}\right)$ is invertible by our assumption and therefore we have $A\left[X_{1}, \cdots, X_{n}\right]=A\left[a_{11} X_{1}+\cdots+a_{1 n} X_{n}, \cdots, a_{n 1} X_{1}+\cdots+a_{n n} X_{n}\right]$. This implies that $a_{11} X_{1}+\cdots+a_{1 n} X_{n}, \cdots, a_{n 1} X_{1}+\cdots+a_{n n} X_{n}$ are algebraically independent over A by the proof of (1.1) in [1]. Thus we obtain a contradiction and our proof is complete.

2. A condition that a complete local ring is isomorphic to a formal power series ring

Let A be a ring. A higher derivation on A is an infinite sequence of endomorphisms $D=\left\{\delta_{0}, \delta_{1}, \delta_{2}, \cdots\right\}$ of the underlying additive group of A satisfying the conditions: (1) $\delta_{0}=$ the identity mapping of A and (2) $\delta_{n}(a b)=\sum_{i+j=n} \delta_{i}(a)$ $\delta_{j}(b)$ for any $a, b \in A$ and n.

Lemma 1. Let A be a ring and let $D=\left\{\delta_{0}, \delta_{1}, \delta_{2}, \cdots\right\}$ be an infinite se-
quence of mappings of A into itself. Then the following conditions are equivalent:
(1) D is a higher derivation on A.
(2) The mapping $\varphi: a \rightarrow \delta_{0}(a)+\delta_{1}(a) t+\delta_{2}(a) t^{2}+\cdots$ is a ring homomorphism of A into $A[[t]]$ such that $\pi \varphi(a)=a$ for every $a \in A$ where π is the homormophism: $\sum_{i} a_{i} t^{i} \rightarrow a_{0}$.

Proof. The equivalence between (1) and (2) is nothing but a reformulation of the definition.

Lemma 2. Let A be a ring and let \mathfrak{A} be an ideal of A such that $\underset{\substack{~} \mathfrak{X}^{m}}{ }$ $=(0) . \quad$ Suppose that A is complete in the \mathfrak{N}-adic topology and let $D=\left\{\delta_{0}, \delta_{1}, \delta_{2}\right.$, $\cdots\}$ be a higher derivation on A. We assume that there exists an element $u \in \mathfrak{A}$ such that $\delta_{1}(u)=1$ and $\delta_{i}(u)=0$ for $i \geqq 2$. Then A contains a subring A_{0} having the following properties : (1) u is analytically independent over A_{0} and (2) A is the power series ring $A_{0}[[u]]$.

Proof. The mapping $\sigma: A \rightarrow A$, given by $\sigma(a)=\sum_{t=0}^{\infty}(-1)^{i} \delta_{i}(a) u^{i}$ is a ring homomorphism. We put $\operatorname{Im}(\sigma)=A_{0} . \quad A_{0}$ is a subring of A. From the definition of σ it follows that $a=\sigma(a)+\delta_{1}(a) u-\delta_{2}(a) u^{2}+\cdots$ for $a \in A$. Similarly we see $\delta_{1}(a)=\sigma\left(\delta_{1}(a)\right)+\delta_{1}^{2}(a) u-\delta_{2} \delta_{1}(a) u^{2}+\cdots$ and therefore we can write $a=\sigma(a)+\sigma\left(\delta_{1}(a)\right) u+\left(\delta_{1}^{2}(a)-\delta_{2}(a)\right) u^{2}+\left(-\delta_{2} \delta_{1}(a)+\delta_{3}(a)\right) u^{3}+\cdots$. Proceeding in this way we have $a=\sum_{i=0}^{\infty} a_{i} u^{i}$ with $a_{i} \in A_{0}$. Next we shall prove that u is analytically independent over A_{0}. Since $\delta_{1}(u)=1$ and $\delta_{i}(u)=0$ for $i \geqq 2$, we get $u \in \operatorname{Ker}(\sigma)$. For $a \in A_{0}$ there exists $b \in A$ such that $a=\sigma(b)=b-\delta_{1}(b) u$ $+\delta_{2}(b) u^{2}-\cdots$. Thus it follows that $a=b-u c$ for some $c \in A$. If $a \in \operatorname{Ker}$ $(\sigma) \cap A_{0}$, we obtain $b=a+u c \in \operatorname{Ker}(\sigma)$ and hence $a=\sigma(b)=0$. Let us suppose that $\sum_{i=0}^{\infty} a_{i} u^{i}=0$ with $a_{i} \in A_{0}$. Since $a_{0}=-\left(\sum_{i=1}^{\infty} a_{i} u^{i-1}\right) u$ and $u \in \operatorname{Ker}(\sigma)$, we have $a_{0} \in \operatorname{Ker}(\sigma) \cap A_{0}=(0)$. By induction it will be shown that all $a_{i}=0$. If we assume $a_{i}=0$ for $0 \leqq i \leqq n$, we get $0=a_{n+1} u^{n+1}+a_{n+2} u^{n+2}+\cdots$. Then we have $0=\delta_{n+1}\left(a_{n+1} u^{n+1}+a_{n+2} u^{n+2}+\cdots\right)=a_{n+1}+u b$ for some $b \in A$ and therefore $a_{n+1} \in \operatorname{Ker}(\sigma) \cap A_{0}=(0)$ as desired. Hence A is the power series ring $A_{0}[[u]]$.

An ideal \mathfrak{N} of a ring A is said to be differential if we have $\delta_{1}(\mathscr{U}) \subset \mathfrak{Y}$ for every higher derivation $\left\{\delta_{0}, \delta_{1}, \delta_{2}, \cdots\right\}$ on A.

Theorem 3. A complete local ring A is isomorphic to a formal power series ring $A_{0}[[X]]$ if and only if the maximal ideal \mathfrak{M} of A is not differential.

Proof. We assume that A is isomorphic to a formal power series ring $A_{0}[[X]]$. Then A_{0} is a complete local ring. Let \mathfrak{M}_{0} be the maximal ideal of A_{0}. It is well-known that the maximal ideal of $A_{0}[[X]]$ is $\mathfrak{M}_{0}[[X]]+(X)$. We consider a mapping δ_{n} of $A_{0}[[X]]$ into itself defined by $\delta_{n}\left(\sum_{i=0}^{\infty} a_{i} X^{i}\right)=\sum_{i=0}^{\infty}$

higher derivation on $A_{0}[[X]]$. Since $\delta_{1}(X)=1$, the ideal $\mathfrak{M}_{0}[[X]]+(X)$ is not differential and hence \mathfrak{M} is so. Conversely we assume that the maximal ideal \mathfrak{M} of A is not differential. Then exists a higher derivation $\left\{\delta_{0}, \delta_{1}, \delta_{2}, \cdots\right\}$ on A such that $\delta_{1}(u)$ is a unit of A for some $u \in \mathfrak{M}$. By Lemma 1 the mapping $\varphi: a \rightarrow \sum_{i=0}^{\infty} \delta_{i}(a) t^{i}$ is a ring homomorphism of A into the power series ring $A[[t]]$. We shall set $s=\delta_{1}(u) t+\delta_{2}(u) t^{2}+\cdots$. Since $\delta_{1}(u)$ is a unit of A, we can resolve $t=u_{1} s+u_{2} s^{2}+\cdots\left(u_{i} \in A\right)$ conversely, where $u_{1}=\delta_{1}(u)^{-1}$ is a unit of A. Obviously s is analytically independent over A and we have $A[[t]]=A[[s]]$. For $a \in A$ we shall define $d_{n}(a) \in A$ by the following identity:

$$
\begin{aligned}
& a+\delta_{1}(a) t+\delta_{2}(a) t^{2}+\cdots+\delta_{n}(a) t^{n}+\cdots \\
= & a+\delta_{1}(a)\left(u_{1} s+u_{2} s^{2}+\cdots\right)+\delta_{2}(a)\left(u_{1} s+u_{2} s^{2}+\cdots\right)^{2}+\cdots \\
= & a+d_{1}(a) s+d_{2}(a) s^{2}+\cdots+d_{n}(a) s^{n}+\cdots .
\end{aligned}
$$

Then the mapping $\psi: a \rightarrow a+d_{1}(a) s+d_{2}(a) s^{2}+\cdots$ is a ring homomorphism of A into $A[[s]]$. It follows from Lemma 1 that $\left\{d_{0}=1, d_{1}, d_{2}, \cdots\right\}$ is a higher derivation on A. Since $u+\delta_{1}(u) t+\delta_{2}(u) t^{2}+\cdots=u+s$, we have $d_{1}(u)=1$ and $d_{i}(u)=0$ for $i \geqq 2$. Hence by Lemma 2 we see that A is isomorphic to a formal power series ring $A_{0}[[X]]$.

3. Power invariant rings and strongly power invariant rings

Let A be a ring. We say that A is n-power invariant if whenever B is a ring and $A\left[\left[X_{1}, \cdots, X_{n}\right]\right] \cong B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$, then we have $A \cong B$. A is said to be strongly n-power invariant if whenever B is a ring and $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ $\cong B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ under φ, then there exists a B-automorphism ψ of $B\left[\left[Y_{1}\right.\right.$, $\left.\left.\cdots, Y_{n}\right]\right]$ such that $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$. We first observe that if A is strongly n-power invariant and $A\left[\left[X_{1}, \cdots, X_{n}\right]\right] \cong B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ under φ, there is a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ such that $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$ and hence $\psi^{-1} \varphi$ is an isomorphism of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ onto $B\left[\left[Y_{1}\right.\right.$, $\left.\left.\cdots, Y_{n}\right]\right]$ satisfying $\psi^{-1} \varphi\left(X_{i}\right)=Y_{i}$ for $1 \leqq i \leqq n$. Hence we have

$$
\begin{aligned}
& A \cong A\left[\left[X_{1}, \cdots, X_{n}\right]\right] /\left(X_{1}, \cdots, X_{n}\right) \cong B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right] /\left(Y_{1}, \cdots, Y_{n}\right) \\
& \cong B
\end{aligned}
$$

Thus a strongly n-power invariant ring A is n-power invariant.
Theorem 4.*) A semisimple ring A (the Jacobson radical of $A=(0)$) is strongly n-power invariant for any n.

Proof. Let B be a ring and let φ be an isomorphism of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ onto $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. By Proposition 1 we have

[^0]\[

$$
\begin{aligned}
& \varphi\left(X_{i}\right)=b_{i}+b_{i_{1}} Y_{1}+\cdots+b_{i n} Y_{n}+\cdots(1 \leqq i \leqq n), \\
& \varphi^{-1}\left(Y_{i}\right)=a_{i_{1}} X_{1}+\cdots+a_{i n} X_{n}+\cdots(1 \leqq i \leqq n)
\end{aligned}
$$
\]

where $b_{i} \in \mathfrak{Y}(B), b_{i j} \in B, a_{i j} \in A$ and B is $\left(b_{1}, \cdots, b_{n}\right)$-adic complete. Let $\varphi\left(a_{i j}\right)$ $=b_{i j}{ }^{\prime}+b_{i j 1} Y_{1}+\cdots+b_{i j n} Y_{n}+\cdots$ for $1 \leqq i, j \leqq n$, where $b_{i j^{\prime}}{ }^{\prime}, b_{i j k} \in B$. Then by Propositon 1

$$
\begin{aligned}
Y_{i} & =\varphi\left(\varphi^{-1}\left(Y_{i}\right)\right) \\
& =\varphi\left(a_{i 1}\right) \varphi\left(X_{1}\right)+\cdots+\varphi\left(a_{i n}\right) \varphi\left(X_{n}\right)+\cdots \\
& =\sum_{j=1}^{n}\left(b_{i j}^{\prime}+\sum_{k=1}^{n} b_{i j k} Y_{k}+\cdots\right)\left(b_{j}+\sum_{k=1}^{n} b_{j k} Y_{k}+\cdots\right)+\cdots
\end{aligned}
$$

Equating the coefficients of Y 's we have

$$
\sum_{j=1}^{n} b_{i j}{ }^{\prime} b_{j k} \equiv \delta_{i k}(\bmod . \Im(B))
$$

because the coefficients of Y 's in $\varphi(a) \varphi\left(X_{1}\right)^{i 1} \cdots \varphi\left(X_{n}\right)^{i n}\left(a \in A, i_{1}+\cdots+i_{n} \geqq 2\right)$ belong to $\mathfrak{J}(B)$. Then it is immediate to see that the matrix ($b_{i j}$) is invertible. Thus it follows from Theorem 2 that there exists a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ satisfying $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$.

Corollary. An affine domain A over a field is strongly n-power invariant for any n.

Proof. By Hilbert's Nullstellensatz we see that $\mathfrak{F}(A)=(0)$. Now our assertion follows from Theorem 4.
From now on we exclusively consider local rings which may not be noetherian (see [2], p. 13) and for such a ring A we denote the unique maximal ideal by $\mathfrak{M}(A)$.

Theorem 5. Let A be a local ring which may not be noetherian and let φ be an isomorphism of $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$ onto $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$. Then we have the following facts:
(1) B is a local ring which may not be noetherian.
(2) There is either a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ satisfying $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$, or $A($ resp. $B)$ contains a local ring $A_{0}\left(\right.$ resp. $\left.B_{0}\right)$ which may not be noetherian and an element $a \in \mathfrak{M}(A)($ resp. $b \in \mathfrak{M}(B))$ such that a (resp. $b)$ is analytically independent over $A_{0}\left(\right.$ resp. $\left.B_{0}\right)$ and $A=A_{0}[[a]]$ (resp. $\left.B=B_{0}[[b]]\right)$.

Proof. (1) It is obvious by Proposition 1.
(2) By Proposition 1 we can express

$$
\begin{aligned}
& \varphi\left(X_{i}\right)=b_{i}+b_{i_{1}} Y_{1}+\cdots+b_{i n} Y_{n}+\cdots(1 \leqq i \leqq n) \\
& \varphi^{-1}\left(Y_{i}\right)=a_{i}+a_{i 1} X_{1}+\cdots+a_{i n} X_{n}+\cdots(1 \leqq i \leqq n)
\end{aligned}
$$

where $a_{i} \in \mathfrak{M}(A)$ and $b_{i} \in \mathfrak{M}(B)$ for $1 \leqq i \leqq n$. Here A is $\left(a_{1}, \cdots, a_{n}\right)$-adic complete
and B is $\left(b_{1}, \cdots, b_{n}\right)$-adic complete. Let

$$
\begin{aligned}
& \varphi\left(a_{i}\right)=b_{i}{ }^{\prime}+b_{i_{1}}{ }^{\prime} Y_{1}+\cdots+b_{i n}{ }^{\prime} Y_{n}+\cdots(1 \leqq i \leqq n), \\
& \varphi\left(a_{i j}\right)=b_{i j}{ }^{\prime \prime}+b_{i j_{1}} Y_{1}+\cdots+b_{i j n} Y_{n}+\cdots(1 \leqq i, j \leqq n) .
\end{aligned}
$$

We see that $b_{i}{ }^{\prime}$ is in $\mathfrak{M}(B)$, as is $a_{i} \in \mathfrak{M}(A)$. If the matrix

$$
\text { (\#) }\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
& \cdots & \cdots & \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right)
$$

is invertible, then it follows from Theorem 2 that there exists a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ satisfying $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$. To the contrary we assume that matrix ($\#$) is not invertible. From Proposition 1 we have

$$
\begin{aligned}
Y_{i}= & \varphi\left(\varphi^{-1}\left(Y_{i}\right)\right) \\
= & \varphi\left(a_{i}\right)+\varphi\left(a_{i 1}\right) \varphi\left(X_{1}\right)+\cdots+\varphi\left(a_{i n}\right) \varphi\left(X_{n}\right)+\cdots \\
= & \left(b_{i}{ }^{\prime}+\sum_{k=1}^{n} b_{i k}{ }^{\prime} Y_{k}+\cdots\right)+\sum_{j=1}^{n}\left(b_{i j}{ }^{\prime \prime}+\sum_{k=1}^{n} b_{i j k} Y_{k}+\cdots\right) \\
& \left(b_{j}+\sum_{k=1}^{n} b_{j k} Y_{k}+\cdots\right)+\cdots .
\end{aligned}
$$

Comparing the coefficients of Y 's we get

$$
\sum_{j=1}^{n} b_{i j}{ }^{\prime \prime} b_{j k}+b_{i k}{ }^{\prime} \equiv \delta_{i k}(\bmod . \mathfrak{M}(B))
$$

because the coefficients of Y 's in $\varphi(a) \varphi\left(X_{1}\right)^{i 1} \cdots \varphi\left(X_{n}\right)^{i n}\left(a \in A, i_{1}+\cdots+i_{n} \geqq 2\right)$ belong to $\mathfrak{M}(B)$. Thus we have

$$
\left(\begin{array}{cccc}
b_{11}{ }^{\prime \prime} & b_{12}{ }^{\prime \prime} & \cdots & b_{1 n}^{\prime \prime} \\
b_{11}^{\prime \prime} & b_{12}^{\prime \prime} & \cdots & b_{2 n}^{\prime \prime} \\
& \cdots & \cdots & \\
b_{n 1}^{\prime \prime} & b_{n 2}^{\prime \prime} & \cdots & b_{n n}^{\prime \prime \prime}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
& \cdots & \cdots & \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right) \equiv\left(\begin{array}{cccc}
1-b_{11}^{\prime} & -b_{11}{ }^{\prime} & \cdots & -b_{1 n}^{\prime} \\
-b_{21}^{\prime} & 1-b_{22}^{\prime} & \cdots & -b_{2 n}^{\prime} \\
\cdots \cdots & \\
-b_{n 1}^{\prime} & -b_{n 2}^{\prime} & \cdots & 1-b_{n n}^{\prime \prime}
\end{array}\right)
$$

(mod. $\mathfrak{P l}(B)$). By our assumption the matrix (\#) is not invertible and so det $\left(b_{i j}\right) \in \mathfrak{M}(B)$. Since $\operatorname{det}\left(\delta_{i j}-b_{i j}{ }^{\prime}\right) \equiv \operatorname{det}\left(b_{i j}{ }^{\prime \prime}\right) \operatorname{det}\left(b_{i j}\right)(\bmod . \mathfrak{M}(B))$, we must have $\operatorname{det}\left(\delta_{i j}-b_{i j}{ }^{\prime}\right) \in \mathfrak{M}(B)$ where $\delta_{i j}$ is the Kronecker's symbol. Hence there exists $a b_{i j} \notin \mathfrak{M}(B)$. Then it is easy to see that the matrix

$$
j \supset\left(\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
b_{i 1} \cdots & \cdots & b_{i j}^{\prime} & \cdots & b_{i n}^{\prime} \\
& & & & & \ddots \\
& & & & & 1
\end{array}\right)
$$

is invertible. Now we shall show that B is $\left(b_{i}{ }^{\prime}\right)$-adic complete. Let $\left\{c_{k}\right\}$ be a Cauchy sequence in B under the $\left(b_{i}{ }^{\prime}\right)$-adic topology. Then there is a subsequence $\left\{d_{k}\right\}$ of $\left\{c_{k}\right\}$ such that $d_{k}=\sum \sum_{j=0}^{k} r_{j} b_{i}{ }^{\prime j}$ for each k, where $r_{j} \in B$. Let $f_{j}=\varphi^{-1}\left(r_{j}\right)$ and we set $f=\sum_{j=0}^{\infty} a_{i}^{j} f_{j}$ which is a well defined power series in $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]$, because A is $\left(a_{1}, \cdots, a_{n}\right)$-adic complete. Then $\varphi(f)=\sum_{j=0}^{\infty}$ $\varphi\left(a_{i}\right)^{j} r_{j}=\sum_{j=0}^{\infty} r_{j} b_{i}{ }^{j}+g$ in $B^{*}\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$, where B^{*} denotes the $\left(b_{i}{ }^{\prime}\right)$-adic completion of B and g has no constant term. Since $\varphi(f) \in B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$, we see that $\sum_{j=0}^{\infty} r_{j} b_{i}{ }^{\prime j} \in B$, that is, $\left\{d_{k}\right\}$ converges in B and hence $\left\{c_{k}\right\}$ converges in B. Together with $b_{i}{ }^{\prime} \in \mathfrak{M}(B)$, it follows from Theorem 2 that there exists a B-automorphism σ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ such that $\sigma\left(Y_{j}\right)=\varphi\left(a_{i}\right)$ and $\sigma\left(Y_{k}\right)=Y_{k}$ for $k \neq j$, that is, $\varphi\left(a_{i}\right)$ is analytically independent over $B\left[\left[Y_{1}, \cdots, Y_{j-1}, Y_{j+1}\right.\right.$, $\left.\left.\cdots, Y_{n}\right]\right]$ and $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]=B\left[\left[Y_{1}, \cdots, Y_{j-1}, \varphi\left(a_{i}\right), Y_{j+1}, \cdots, Y_{n}\right]\right]$. We consider the following sequence of ring homomorphisms:

$$
\begin{aligned}
& \left.A \xrightarrow{\iota} A\left[X_{1}, \cdots, X_{n}\right]\right] \stackrel{\varphi}{\rightarrow} B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]=B\left[\left[Y_{1}, \cdots, Y_{j-1},\right.\right. \\
& \left.\left.\varphi\left(a_{i}\right), Y_{j+1}, \cdots, Y_{n}\right]\right] \xrightarrow{\tau} B\left[\left[Y_{1}, \cdots, Y_{j-1}, \varphi\left(a_{i}\right), Y_{j+1}, \cdots, Y_{n}\right]\right] \\
& {[[t]] \stackrel{\Phi^{-1}}{\sim} A\left[\left[X_{1}, \cdots, X_{n}\right]\right][[t]] \xrightarrow{\nu} A[[t]]}
\end{aligned}
$$

where $\iota(a)=a$ for $a \in A, \varphi$ is the given isomorphism, $\tau\left(\varphi\left(a_{i}\right)\right)=\varphi\left(a_{i}\right)+t, \tau\left(Y_{k}\right)$ $=Y_{k}+t$ for $k \neq j, \widetilde{\varphi}^{-1}$ is the ismomorphism induced by φ^{-1}, and $\nu\left(X_{i}\right)=0$ for $1 \leqq i \leqq n$. We set ρ the composite of these homomorphisms. Then ρ is a ring homomorphism of A into $A[[t]]$ such that $\pi \rho(a)=a$ where π is the homomorphism: $\sum_{i} a_{i} t^{i} \rightarrow a_{0}$. Thus we can express $\rho(a)=a+\delta_{1}(a) t+\delta_{2}(a) t^{2}+\cdots$. Thence $\left\{1, \delta_{1}, \delta_{2}, \cdots\right\}$ is a higher derivation on A by Lemma 1. Since $\rho\left(a_{i}\right)$ $=a_{i}+t$, we have $\delta_{1}\left(a_{i}\right)=1, \delta_{j}\left(a_{i}\right)=0$ for $j \geqq 2$ and by Lemma 2 we see that A contains a subring A_{0} satisfying the properties: a_{i} is analytically independent over A_{0} and $A=A_{0}\left[\left[a_{i}\right]\right]$. It is obvious that A_{0} is a local ring which may not be noetherian. On the other hand

$$
\begin{aligned}
& \quad X_{l}=\varphi^{-1}\left(\varphi\left(X_{l}\right)\right) \\
& =\varphi^{-1}\left(b_{l}\right)+\varphi^{-1}\left(b_{l_{1}}\right) \varphi^{-1}\left(Y_{1}\right)+\cdots+\varphi^{-1}\left(b_{l n}\right) \varphi^{-1}\left(Y_{n}\right)+\cdots
\end{aligned}
$$

We set

$$
\begin{aligned}
& \varphi^{-1}\left(b_{l}\right)=a_{l}{ }^{\prime}+a_{l_{1}}{ }^{\prime} X_{1}+\cdots+a_{l n}{ }^{\prime} X_{n}+\cdots(1 \leqq l \leqq n), \\
& \varphi^{-1}\left(b_{l m}\right)=a_{l m}{ }^{\prime \prime}+a_{l m 1} X_{1}+\cdots+a_{l m n} X_{n}+\cdots(1 \leqq l, m \leqq n) .
\end{aligned}
$$

Here $a_{l}{ }^{\prime}$ is in $\mathfrak{M}(A)$, as is $b_{l} \in \mathfrak{M}(B)$. Thus

$$
\begin{aligned}
X_{l}= & \left(a_{l}{ }^{\prime}+\sum_{k=1}^{n} a_{l k}{ }^{\prime} X_{k}+\cdots\right)+\sum_{m=1}^{n}\left(a_{l m}{ }^{\prime \prime}+\sum_{k=1}^{n} a_{l m k} X_{k}+\cdots\right) \\
& \left(a_{m}+\sum_{k=1}^{n} a_{m k} X_{k}+\cdots\right)+\cdots .
\end{aligned}
$$

Comparing the coefficients of $X^{\prime} s$ we get

$$
\sum_{m=1}^{n} a_{l m}{ }^{\prime \prime} a_{m k}+a_{l k}^{\prime} \equiv \delta_{l k}(\bmod . \mathfrak{M}(A))
$$

In the matrix notation

$$
\left(a_{i j}{ }^{\prime \prime}\right)\left(a_{i j}\right) \equiv\left(\delta_{i j}-a_{i j}{ }^{\prime}\right)(\bmod . \mathfrak{M}(A))
$$

Now we have $\operatorname{det}\left(\varphi^{-1}\left(b_{l m}\right)\right) \equiv \operatorname{det}\left(a_{l_{m}}{ }^{\prime \prime}\right)\left(\bmod .\left(X_{1}, \cdots, X_{n}\right)\right)$. Since $\operatorname{det}\left(\varphi^{-1}\left(b_{l m}\right)\right)$ $=\varphi^{-1}\left(\operatorname{det}\left(b_{l m}\right)\right)$ and $\operatorname{det}\left(b_{l_{m}}\right) \in \mathfrak{M}(B)$ by our assumption, it is immediate to see that $\operatorname{det}\left(a_{l m}{ }^{\prime \prime}\right) \in \mathfrak{M}(A)$. Thus the same argument as above implies that some $a_{l m}{ }^{\prime} \notin \mathfrak{M}(A)$ and we have $A\left[\left[X_{1}, \cdots, X_{n}\right]\right]=A\left[\left[X_{1}, \cdots, X_{m-1}, \varphi^{-1}\left(b_{l}\right), X_{m+1}, \cdots, X_{n}\right]\right]$. Then we see that B contains a subring B_{0} satisfying the properties: b_{l} is analytically independent over B_{0} and $B=B_{0}\left[\left[b_{l}\right]\right]$. Obviously B_{0} is a local ring which may not be noteherian and our proof is now complete.

Theorem 6. Let A be a local ring which may not be noetherian. Then we have only one of the followings:
(1) A is strongly n-power invariant for any n.
(2) A is isomorphic to a formal power series ring $A_{0}[[X]]$.

Proof. We assume that A is not strongly n-power invariant for some n. Then we have a ring B and an isomorphism $\varphi: A\left[\left[X_{1}, \cdots, X_{n}\right]\right] \cong B\left[\left[Y_{1}, \cdots\right.\right.$, $\left.\left.Y_{n}\right]\right]$ such that there is never a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ satisfying $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$. Now Theorem 5 implies that A must be isomorphic to a power series ring $A_{0}[[X]]$. Conversely it is easy to see that a power series ring $A_{0}[[X]]$ is not strongly n-power invariant for any n.

Thus a local ring which may not be noetherian can simply be called to be stronly power invariant without reference to the number n of variables.

Corollary 1. An artinian local ring is strongly power invariant.
Proof. An artinian local ring A is not isomorphic to a power series ring $A_{0}[[X]]$ and hence A is strongly power invariant.

Corollary 2. Let P be a point on an irreducible affine algebraic curve over an algebraically closed field k and let A be the local ring of P. Then the following conditions are equivalent:
(1) P is a singular point.
(2) The completion \hat{A} is strongly power invariant.

Proof. Let us suppose that P is non-singular. Then it is obvious that \hat{A} is isomorphic to the power series ring $k[[X]]$ and hence by Theorem $6 \hat{A}$ is not strongly power invariant. Conversely we assume that \hat{A} is not strongly power invariant. Then it follows from Theorem 6 that \hat{A} is isomorphic to a
formal power series ring $A_{0}[[X]]$. Since \hat{A} is reduced and $\operatorname{dim} \hat{A}=1, A_{0}$ is reduced and $\operatorname{dim} A_{0}=0$. Now it is immediate to show that $A_{0} \cong k$ and therefore $\hat{A} \cong k[[X]]$. Hence P is non-singular.

Corollary 3. Let V be an irreducible affine varety over a field of characteristic zero and let A be the local ring of a component of the singular locus of V. Then the completion \hat{A} is strongly power invariant.

Proof. If \hat{A} is not strongly power invariant, \hat{A} is isomorphic to a formal power series ring $A_{0}[[X]]$. Then we can obtain a contradiction by the same argument as that of Theorem 5 in [5].

Theorem 7. Let A be a complete local ring. Then A is strongly power invariant if and only if the maximal ideal $M(A)$ of A is differential.

Proof. The assertion follows from Theorem 3 and Theorem 6 immediately.
Theorem $8^{* *)}$ A noetherian local ring is n-power invariant for any n.
Proof. Let A be a noetherian local ring. We shall prove our assertion by induction on Krull dimension of A. If $\operatorname{dim} A=0$, then A is strongly power invariant by Corollary 1 of Theorem 6 and hence A is n-power invariant for any n according to the remark preceding to Theorem 4. Let us suppose dim $A>0$. Let B be a ring and let $A\left[\left[X_{1}, \cdots, X\right]\right] \cong B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ under φ. If there exists a B-automorphism ψ of $B\left[\left[Y_{1}, \cdots, Y_{n}\right]\right]$ such that $\varphi\left(X_{i}\right)=\psi\left(Y_{i}\right)$ for $1 \leqq i \leqq n$, then $A \cong B$ by the remark preceding to Theorem 4. Unless such an automorphism exists, it follows from Theorem 5 that A (resp. B) is a power series ring $A_{0}[[a]]$ (resp. $\left.B_{0}[[b]]\right)$. Here A_{0} and B_{0} are local rings. Thus we have an isomorphism $A_{0}\left[\left[a, X_{1}, \cdots, X_{n}\right]\right] \cong B_{0}\left[\left[b, Y_{1}, \cdots, Y_{n}\right]\right]$. Since $\operatorname{dim} A_{0}$ $<\operatorname{dim} A$, our induction hypothesis means that A_{0} is n-power invariant for any n. Hence we have $A_{0} \cong B_{0}$ and $A=A_{0}[[a]] \cong B_{0}[[b]]=B$, as desired.

Fukuoka University of Education

References

[1] S. Abhyankar, W. Heinzer and P. Eakin: On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] M. Nagata: Local Rings, Interscience, New York, 1962.
[3] M.J. O'Malley: R-automorphisms of $R[[X]]$, Proc. London Math. Soc. (3) 20 (1970), 60-78.

[^1][4] M.J. O'Malley: Isomorphic power series rings, Pacific J. Math. 41 (1972), 503-512.
[5] A. Seidenberg: Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42.

[^0]: * This result is essentially due to M.J. O'Malley [4].

[^1]: ** After this paper is completed, the author has observed that E. Hamann obtained the result: a quasi-local ring is n-power invariant for any n, in her paper "On Power Invariance", to appear.

