SOME INEQUALITIES FOR t-DESIGNS

Ryuzaburo NODA

(Received March 12, 1975)

1. Introduction

D.K. Ray-Chaudhuri and R.M. Wilson [3] proved $b \geqq\binom{ v}{s}$ for $2 s$-designs with $v \geqq k+s$, generalizing Fischer's inequality $b \geqq v$ for 2-designs, and Petrenjuk's inequality $b \geqq\binom{ v}{2}$ for 4-designs. In this note we introduce a notion of rank s tactical decompositions of $2 s$-designs, and generalize some of well known results for 2-designs.

Definition. A rank s tactical decomposition of a $2 s$-design (X, \mathcal{B}) is a partition of the set $X^{(s)}$ of all s-element subsets of X into s-point classes X_{1}, X_{2}, \cdots, X_{m}, together with a partition of \mathscr{B} into block classes $\mathscr{B}_{1}, \mathcal{B}_{2}, \cdots, \mathscr{B}_{m^{\prime}}$, such that the number of elements of X_{i} contained in a block B of \mathscr{B}_{j} depends only in i and j, (and does not depend on the choice of B in \mathscr{B}_{j}) and the number of blocks in \mathscr{B}_{h} containing an element $\left\{p_{1}, p_{2} \cdots p_{s}\right\}$ of X_{g} depends only on h and g.

Our first result is:
Theorem 1. Let a $2 s-(v, k, \lambda)$ design (X, \mathscr{B}) with $v \geqq k+s$ admit a rank s tactical decomposition with m s-point classes and m^{\prime} block classes. Then $m \leqq m^{\prime}$.

The case $s=1$ in the above was proved by W.M. Kantor (Theorem 4.1 [2]). Our proof, which will be given in section 2, seems to be more elementary.

If G is a group of automorphisms of a $2 s$-design (X, \mathscr{B}), then the orbits of G on $X^{(s)}$, together with the orbits of G on \mathscr{B}, form a rank s tactical decomposition of (X, \mathscr{B}). Therefore, by Theorem 1, we have

Corollary 2. A group of automorphisms of a $2 s-(v, k, \lambda)$ design (X, \mathscr{B}) with $v \geqq k+s$ has at least as many orbits on \mathscr{B} as on $X^{(s)}$. In particular a block transitive automorphism group of (X, \mathcal{B}) is s-homogeneous on points.

The following is a slight extension of a theorem of D.K. Ray-Chaudhuri and R.M. Wilson (Theorem 2 [3]).

Theorem 3. Let a $2 s-(v, \mathscr{B}, \lambda)$ design (X, \mathscr{B}) with $v \geqq k+s$ admit a rank
s tactical decomposition with m s-point classes and m^{\prime} block classes. Then b $(=|\mathscr{B}|) \geqq\binom{ v}{s}+m^{\prime}-m$.

Extending the notion of parallelsms of 2-designs we also introduce the following.

Definition. A rank s parallelism of a $2 s$-design (X, \mathscr{B}) is an equivalence relation on \mathscr{B} with the property that each element of $X^{(s)}$ lies in a unique member of each equivalent class. Equivalently a rank s parallelisms of a $2 s$-design (X, \mathscr{B}) is a partition of \mathscr{B} into "rank s parallel classes", each of which is a partition of $X^{(s)}$.

It is easy to see that a rank s parallelism of a 2 s-design is a rank s tactical decomposition with one s-point class and λ_{s} block classes, each of which consists of $\binom{v}{s} /\binom{k}{s}$ blocks. Here, as usual, λ_{s} denotes the number of blocks containing given s points. Thus, by Theorem 3 (or by Theorem 2 of [3]), we have

Corollary 4. Let a $2 s-(v, k, \lambda)$ design with $v \geqq k+s$ have a rank s parallelism. Then $b \geqq\binom{ v}{s}+\lambda_{s}-1$.

Corollary 4 is a generalization of Bose's inequality $b \geqq v+r-1$ for 2-designs with a parallelism [1]. The author does not know whether there exist $2 s$ designs, $s \geqq 2$, with a rank s parallelism. But the following is true.

Theorem 5. If $s \geqq 2$, there exist no $2 s-(v, k, \lambda)$ designs, $v \geqq k+s$, with a rank s parallelism having the smallest rumber $b=\binom{v}{s}+\lambda_{s}-1$ of blocks.

In the case $s=1$, as is well known, there exist infinitely many 2-designs with a parallelism having $v+\lambda_{1}-1$ blocks.

2. Proof of Theorem 1

Let N be the $\binom{v}{s} \times b$-matrix whose rows are numbered by elements of $X^{(s)}$ and columns by elements of \mathscr{B}, and whose $\left(\left\{i_{1}, i_{2}, \cdots, i_{s}\right\}, B\right)$ entry is 1 or 0 according as $\left\{i_{1}, i_{2}, \cdots, i_{s}\right\} \subset B$ or not. Then N has $\operatorname{rank}\binom{v}{s}$ by (the proof of) Theorem 1 [3]. So our Theorem 1 is an immediate consequence of the following.

Lemma. Let M be a (real) $n \times b$-matrix with rank n. Assume that M can be decomposed into $m m^{\prime}$ rectangular submatrices $M_{i j}, 1 \leqq i \leqq m, 1 \leqq j \leqq m^{\prime}$, such that $M_{i j}$ is an $n_{i} \times b_{j}$-matrix with constant column sum $k_{i j}$. Then $m \leqq m^{\prime}$.

Proof. Let $x_{i}(1 \leqq i \leqq n)$ denote the i-th row vector of M. Set $y_{1}=$ $x_{1}+\cdots+x_{n_{1}}, y_{2}=x_{n_{1}+1},+\cdots+x_{n_{1}+n_{2}}, \cdots, y_{m}=x_{n_{1}+n_{2}+\cdots+n_{m-1}+1}+\cdots+x_{n_{1}+n_{2}+\cdots+n_{m}}$. Then y_{i} is the vector of the form:

$$
y_{i}=\overbrace{\left(k_{i_{1}} \cdots k_{i_{1}}\right.}^{b_{1}}, \overbrace{k_{i_{2}} \cdots k_{i_{2}}}^{b_{2}}, \cdots, \overbrace{\left.k_{i m^{\prime}} \cdots, k_{i m^{\prime}}\right)}^{b_{m^{\prime}}}, \quad 1 \leqq i \leqq m_{i} .
$$

Then since the m vectors y_{i} are linearly independent, it follows that $m \leqq m^{\prime}$.

3. Proof of Theorem 3

We make use of an argument of D.K. Ray-Chaudhuri and R.M. Wilson [3]. Let V_{s} denote the free vector space over the rationals generated by $X^{(s)}$. Claerly V_{s} is $\binom{v}{s}$ dimensional over rationals. Now for each $A \in \mathscr{B}$, define a vector $\hat{A} \in V_{s}$ as the sum of all s-subsets of A, i.e.

$$
\hat{A}=\Sigma\left(S: S \in X^{(s)}, S \subseteq A\right)
$$

D.K. Ray-Chaudhuri and R.M. Wilson showed that the vectors $\{\hat{A}$: $A \in \mathscr{B}\}$ span V_{s}. Put $\hat{X}_{j}=\Sigma\left(S: S \in X_{j}\right)$. Then, by our assumption
$\sum\left\{\hat{A}: A \in \mathscr{B}_{i}\right\}=\sum_{j=1}^{m} \lambda_{i j} \sum\left(S: S \in X_{j}\right)=\sum_{j=1}^{m} \lambda_{i j} \hat{X}$, for some $\lambda_{i j}, \quad 1 \leqq i \leqq m^{\prime}$
So, if we choose one block A_{i} from each \mathscr{B}_{i}, then

$$
\left\{\hat{A}: A \in \mathscr{B}-\left\{A_{1}, \cdots, A_{m^{\prime}}^{\prime}\right\}\right\} \cup\left\{\hat{X}_{1} \hat{X}_{2} \cdots, \hat{X}_{m}\right\}
$$

spans V_{s}. The stated inequality follows.

4. Proof of Theorem 5

Assume by way of contradiction that there exists a $2 s-(v, k, \lambda$) design (X, $\mathscr{B}), s \geqq 2, v \geqq k+s$ with a rank s parallelism having the smallest number $b=\binom{v}{s}+\lambda_{s}-1$ of blocks. Then we have

$$
\begin{align*}
& \frac{\binom{v}{s}}{\binom{k}{s}} \lambda_{s}=\binom{v}{s}+\lambda_{s}-1 \\
& \lambda_{s}\left\{\frac{\binom{v}{s}}{\binom{k}{s}}-1\right\}=\binom{v}{s}-1 \tag{4.1}
\end{align*}
$$

Case 1. $s=2 r$ is even.
Applying the theorem of D.K. Ray-Chaudhuri and R.M. Wilson (Theorem 1 [3]), to a contracted $s-(v-s, k-s, \lambda)$ design of (X, \mathscr{B}), we have

$$
\begin{equation*}
\lambda_{s} \geqq\binom{ v-s}{r} \tag{4.2}
\end{equation*}
$$

Then (4.1) and (4.2) yield

$$
\begin{equation*}
\binom{v-s}{r}\left\{\frac{\binom{v}{s}}{\binom{k}{s}}-1\right\} \leqq\binom{ v}{s}-1 \tag{4.3}
\end{equation*}
$$

Now let \mathscr{B}_{1} be a rank s parallel class of (X, \mathscr{B}). Then $\left(X, \mathscr{B}_{1}\right)$ is a $s-(v, k$, 1) design, and hence, again by the theorem of D.K. Ray-Chaudhuri and R.M. Wilson, we have

$$
\begin{equation*}
\frac{\binom{v}{s}}{\binom{k}{s}} \geqq\binom{ v}{r} \tag{4.4}
\end{equation*}
$$

Then (4.3) and (4.4) imply

$$
\begin{align*}
& \binom{v-s}{r}\left\{\binom{v}{r}-1\right\} \leqq\binom{ v}{s}-1 \\
& \left\{\binom{v-s}{r}-1\right\}\binom{v}{r} \leqq\binom{ v-s}{r}\left\{\binom{v}{r}-1\right\} \nsubseteq\binom{v}{s} \\
& \binom{v-s}{r}-1 \not \frac{\binom{v}{s}}{\binom{v}{r}}=\frac{(v-r)(v-r-1) \cdots(v-2 r+1)}{2 r(2 r-1) \cdots(r+1)} \tag{4.5}
\end{align*}
$$

On the other hand, since $v \geqq 6 r$, we have

$$
\begin{equation*}
\frac{v-s-i}{r-i} \nsupseteq \frac{v-r-i}{2 r-i,}, \quad 0 \leqq i \leqq r-2 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v-3 r+1 \geqq \frac{v-2 r+1}{r+1}+1 \tag{4.7}
\end{equation*}
$$

Then (4.6) and (4.7) yield

$$
\begin{aligned}
& \binom{v-s}{r}-1=\frac{(v-s)}{r} \cdot \frac{(v-s-1)}{r-1} \cdots \frac{(v-3 r+2)}{2} \cdot(v-3 r+1)-1 \\
& \varsubsetneqq \frac{(v-r)}{2 r} \cdot \frac{(v-r-1)}{2 r-1} \cdots \frac{(v-2 r+2)}{r+2}\left\{\frac{v-2 r+1}{r+1}+1\right\}-1
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\binom{v}{s}}{\binom{v}{r}}+\frac{(v-r)}{s} \frac{\binom{v}{s-1}}{\binom{v}{r+1}}-1 \\
& \geqq \frac{\binom{v}{s}}{\binom{v}{r}}
\end{aligned}
$$

This contradicts (4.5).
Case 2. $s=2 r+1 \quad(r \geqq 1)$ is odd.
Applying the theorem of D.K. Ray-Chaudhuri and R.M. Wilson to a contracted $2(s-1)-(v-2, k-2, \lambda)$ design of (X, \mathscr{B}), we have

$$
\begin{equation*}
\lambda_{2}=\frac{\binom{v-2}{s-2}}{\binom{k-2}{s-2}} \lambda_{s} \geqq\binom{ v-2}{s-1} \tag{4.8}
\end{equation*}
$$

Then (4.1) and (4.8) yield

$$
\begin{align*}
& \frac{\binom{k-2}{s-2}(v-s)}{s-1}\left\{\frac{\binom{v}{s}}{\binom{k}{s}}-1\right\} \leqq\binom{ v}{s}-1 \\
& \frac{s(v-s)}{k(k-1)}\left\{\binom{v}{s}-\binom{k}{s}\right\} \leqq\binom{ v}{s}-1 \tag{4.9}
\end{align*}
$$

On the other hand applying Fischer's inequality to a contracted $2-(v-$ $s+2, k-s+2,1)$ design of a $s-(v, k, 1) \operatorname{design}\left(X, \mathscr{B}_{1}\right)$, where \mathscr{B}_{1} is a rank s parallel class of (X, \mathscr{B}), we have

$$
\begin{equation*}
(k-s+2)(k-s+1) \leqq v-s+1 \tag{4.10}
\end{equation*}
$$

We shall now show that

$$
\begin{equation*}
\binom{v}{s}-\binom{k}{s} \geqq \frac{4}{5}\left\{\binom{v}{s}-1\right\} \tag{4.11}
\end{equation*}
$$

Deny (4.11). Then

$$
\begin{align*}
& \frac{1}{5}\binom{v}{s} \nLeftarrow\binom{k}{s} \\
& v(v-1) \cdots(v-s+1) \not \lessgtr k(k-1) \cdots(k-s+1) 5 \tag{4.12}
\end{align*}
$$

Then (4.10) and (4.12) give

$$
\begin{aligned}
& v(v-1) \cdots(v-s+2) \nLeftarrow k(k-1) \cdots(k-s+3) 5 \\
& v(v-1) \cdots(v-s+3) \nLeftarrow k(k-1) \cdots(k-s+3) \\
& v \nsupseteq k \text {, a contradiction. }
\end{aligned}
$$

Now by (4.9) and (4.11) we obtain

$$
s(v-s) \leqq \frac{5}{4} k(k-1)
$$

Combining this with (4.10) gives

$$
\begin{equation*}
(k-s+2)(k-s+1) \leqq \frac{5 k(k-1)}{4 s}+1 \tag{4.13}
\end{equation*}
$$

Then since $k \geqq 2 s$ (4.13) implies

$$
\begin{equation*}
\left(\frac{1}{2} k+2\right)\left(\frac{1}{2} k+1\right) \geqq \frac{5 k(k-1)}{4 s}+1 \tag{4.14}
\end{equation*}
$$

If $s \leqq 5$ then (4.14) gives

$$
\begin{aligned}
& \left(\frac{1}{2} k+2\right)\left(\frac{1}{2} k+1\right) \leqq \frac{k(k-1)}{4}+1 \\
& \frac{3}{2} k+2-\leqq-\frac{1}{4} k+1, \text { a contradiction. }
\end{aligned}
$$

So we must have $s=3$. But then (4.13) gives

$$
\begin{aligned}
& (k-1)(k-2) \leqq \frac{5}{12} k(k-1)+1 \\
& 7 k^{2}-31 k+12 \leqq 0 \\
& k \leqq 4, \text { a contradiction. }
\end{aligned}
$$

Osaka University

References

[1] R.C. Bose: A note on the resolvability of balanced incomplete block designs, Sankhya 6 (1942). 105-100.
[2] W.M. Kantor: Automorphism groups of designs, Math. Z. 109 (1969), 246-252.
[3] D.K. Ray-Chaudhuri and R.M. Wilson: On t-designs, Osaka. J. Math. 12 (1975), 737-744.

