Noda, R. Osaka J. Math. 13 (1976), 361-366

SOME INEQUALITIES FOR t-DESIGNS

Ryuzaburo NODA

(Received March 12, 1975)

1. Introduction

D.K. Ray-Chaudhuri and R.M. Wilson [3] proved $b \ge {v \choose s}$ for 2s-designs with $v \ge k+s$, generalizing Fischer's inequality $b \ge v$ for 2-designs, and Petrenjuk's inequality $b \ge {v \choose 2}$ for 4-designs. In this note we introduce a notion of rank s tactical decompositions of 2s-designs, and generalize some of well known results for 2-designs.

DEFINITION. A rank s tactical decomposition of a 2s-design (X, \mathcal{B}) is a partition of the set $X^{(s)}$ of all s-element subsets of X into s-point classes X_1, X_2, \dots, X_m , together with a partition of \mathcal{B} into block classes $\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_{m'}$, such that the number of elements of X_i contained in a block B of \mathcal{B}_j depends only in *i* and *j*, (and does not depend on the choice of B in \mathcal{B}_j) and the number of blocks in \mathcal{B}_h containing an element $\{p_1, p_2 \cdots p_s\}$ of X_g depends only on *h* and *g*.

Our first result is:

Theorem 1. Let a 2s- (v, k, λ) design (X, \mathcal{B}) with $v \ge k+s$ admit a rank s tactical decomposition with m s-point classes and m' block classes. Then $m \le m'$.

The case s=1 in the above was proved by W.M. Kantor (Theorem 4.1 [2]). Our proof, which will be given in section 2, seems to be more elementary.

If G is a group of automorphisms of a 2s-design (X, \mathcal{B}) , then the orbits of G on $X^{(s)}$, together with the orbits of G on \mathcal{B} , form a rank s tactical decomposition of (X, \mathcal{B}) . Therefore, by Theorem 1, we have

Corollary 2. A group of automorphisms of a 2s- (v, k, λ) design (X, \mathcal{B}) with $v \ge k+s$ has at least as many orbits on \mathcal{B} as on $X^{(s)}$. In particular a block transitive automorphism group of (X, \mathcal{B}) is s-homogeneous on points.

The following is a slight extension of a theorem of D.K. Ray-Chaudhuri and R.M. Wilson (Theorem 2 [3]).

Theorem 3. Let a 2s- $(v, \mathcal{B}, \lambda)$ design (X, \mathcal{B}) with $v \ge k+s$ admit a rank

R. Noda

s tactical decomposition with m s-point classes and m' block classes. Then b $(=|\mathcal{B}|) \ge {v \choose s} + m' - m.$

Extending the notion of parallelsms of 2-designs we also introduce the following.

DEFINITION. A rank s parallelism of a 2s-design (X, \mathcal{B}) is an equivalence relation on \mathcal{B} with the property that each element of $X^{(s)}$ lies in a unique member of each equivalent class. Equivalently a rank s parallelisms of a 2s-design (X, \mathcal{B}) is a partition of \mathcal{B} into "rank s parallel classes", each of which is a partition of $X^{(s)}$.

It is easy to see that a rank *s* parallelism of a 2s-design is a rank *s* tactical decomposition with one *s*-point class and λ_s block classes, each of which consists of $\binom{v}{s} / \binom{k}{s}$ blocks. Here, as usual, λ_s denotes the number of blocks containing given *s* points. Thus, by Theorem 3 (or by Theorem 2 of [3]), we have

Corollary 4. Let a 2s- (v, k, λ) design with $v \ge k+s$ have a rank s parallelism. Then $b \ge {\binom{v}{s}} + \lambda_s - 1$.

Corollary 4 is a generalization of Bose's inequality $b \ge v+r-1$ for 2-designs with a parallelism [1]. The author does not know whether there exist 2s-designs, $s \ge 2$, with a rank s parallelism. But the following is true.

Theorem 5. If $s \ge 2$, there exist no $2s(v, k, \lambda)$ designs, $v \ge k+s$, with a rank s parallelism having the smallest rumber $b = \begin{pmatrix} v \\ s \end{pmatrix} + \lambda_s - 1$ of blocks.

In the case s=1, as is well known, there exist infinitely many 2-designs with a parallelism having $v+\lambda_1-1$ blocks.

2. Proof of Theorem 1

Let N be the $\binom{v}{s} \times b$ -matrix whose rows are numbered by elements of $X^{(s)}$ and columns by elements of \mathcal{B} , and whose $(\{i_1, i_2, \dots, i_s\}, B)$ entry is 1 or 0 according as $\{i_1, i_2, \dots, i_s\} \subset B$ or not. Then N has rank $\binom{v}{s}$ by (the proof of) Theorem 1 [3]. So our Theorem 1 is an immediate consequence of the following.

Lemma. Let M be a (real) $n \times b$ -matrix with rank n. Assume that M can be decomposed into mm' rectangular submatrices M_{ij} , $1 \le i \le m$, $1 \le j \le m'$, such that M_{ij} is an $n_i \times b_j$ -matrix with constant column sum k_{ij} . Then $m \le m'$.

362

Proof. Let x_i $(1 \le i \le n)$ denote the *i*-th row vector of M. Set $y_1 = x_1 + \dots + x_{n_1}, y_2 = x_{n_1+1}, + \dots + x_{n_1+n_2}, \dots, y_m = x_{n_1+n_2\dots+n_{m-1}+1} + \dots + x_{n_1+n_2+\dots+n_m}$. Then y_i is the vector of the form:

$$y_i = \overbrace{(k_{i_1} \cdots k_{i_1})}^{b_1}, \quad \overbrace{k_{i_2} \cdots k_{i_2}}^{b_2}, \cdots, \quad \overbrace{k_{im'} \cdots , k_{im'})}^{b_{m'}}, \qquad 1 \leq i \leq m_i.$$

Then since the *m* vectors y_i are linearly independent, it follows that $m \leq m'$.

3. Proof of Theorem 3

We make use of an argument of D.K. Ray-Chaudhuri and R.M. Wilson [3]. Let V_s denote the free vector space over the rationals generated by $X^{(s)}$. Claerly V_s is $\binom{v}{s}$ dimensional over rationals. Now for each $A \in \mathcal{B}$, define a vector $\hat{A} \in V_s$ as the sum of all s-subsets of A, *i.e.*

$$\hat{A} = \sum (S: S \in X^{(s)}, S \subseteq A)$$
.

D.K. Ray-Chaudhuri and R.M. Wilson showed that the vectors $\{\hat{A}: A \in \mathcal{B}\}$ span V_s . Put $\hat{X}_j = \sum (S: S \in X_j)$. Then, by our assumption

$$\sum \{ \hat{A} : A \in \mathcal{B}_i \} = \sum_{j=1}^m \lambda_{ij} \sum (S : S \in X_j) = \sum_{j=1}^m \lambda_{ij} \hat{X}, \text{ for some } \lambda_{ij}, \qquad l \leq i \leq m'$$

So, if we choose one block A_i from each \mathcal{B}_i , then

$$\{\hat{A}: A \in \mathcal{B} - \{A_1, \cdots, A_{m'}\}\} \cup \{\hat{X}_1 \ \hat{X}_2 \cdots, \hat{X}_m\}$$

spans V_s . The stated inequality follows.

4. Proof of Theorem 5

Assume by way of contradiction that there exists a 2s-(v, k, λ) design (X, \mathcal{B}), $s \ge 2$, $v \ge k+s$ with a rank s parallelism having the smallest number $b = \begin{pmatrix} v \\ s \end{pmatrix} + \lambda_s - 1$ of blocks. Then we have

$$\frac{\binom{v}{s}}{\binom{k}{s}}\lambda_{s} = \binom{v}{s} + \lambda_{s} - 1,$$

$$\lambda_{s}\left\{\frac{\binom{v}{s}}{\binom{k}{s}} - 1\right\} = \binom{v}{s} - 1$$
(4.1)

Case 1. s=2r is even.

Applying the theorem of D.K. Ray-Chaudhuri and R.M. Wilson (Theorem 1 [3]), to a contracted s- $(v-s, k-s, \lambda)$ design of (X, \mathcal{B}) , we have

$$\lambda_s \ge \binom{v-s}{r} \tag{4.2}$$

Then (4.1) and (4.2) yield

$$\binom{v-s}{r} \left\{ \binom{v}{s}{l} - 1 \right\} \leq \binom{v}{s} - 1, \qquad (4.3)$$

Now let \mathcal{B}_1 be a rank s parallel class of (X, \mathcal{B}) . Then (X, \mathcal{B}_1) is a s-(v, k, 1) design, and hence, again by the theorem of D.K. Ray-Chaudhuri and R.M. Wilson, we have

$$\frac{\binom{v}{s}}{\binom{k}{s}} \ge \binom{v}{r}$$
(4.4)

Then (4.3) and (4.4) imply

$$\binom{v-s}{r} \left\{ \binom{v}{r} - 1 \right\} \leq \binom{v}{s} - 1$$

$$\left\{ \binom{v-s}{r} - 1 \right\} \binom{v}{r} \leq \binom{v-s}{r} \left\{ \binom{v}{r} - 1 \right\} \leq \binom{v}{s}$$

$$\binom{v-s}{r} - 1 \leq \frac{\binom{v}{s}}{\binom{v}{r}} = \frac{(v-r)(v-r-1)\cdots(v-2r+1)}{(2r-1)\cdots(r+1)}$$

$$(4.5)$$

On the other hand, since $v \ge 6r$, we have

$$\frac{v-s-i}{r-i} \geqq \frac{v-r-i}{2r-i}, \quad 0 \le i \le r-2$$
(4.6)

and

$$v - 3r + 1 \ge \frac{v - 2r + 1}{r + 1} + 1.$$
(4.7)

Then (4.6) and (4.7) yield

$$\binom{v-s}{r} - 1 = \frac{(v-s)}{r} \cdot \frac{(v-s-1)}{r-1} \cdots \frac{(v-3r+2)}{2} \cdot (v-3r+1) - 1$$
$$\ge \frac{(v-r)}{2r} \cdot \frac{(v-r-1)}{2r-1} \cdots \frac{(v-2r+2)}{r+2} \left\{ \frac{v-2r+1}{r+1} + 1 \right\} - 1$$

364

$$= \frac{\binom{v}{s}}{\binom{v}{r}} + \frac{(v-r)\binom{v}{s-1}}{\binom{v}{r+1}} - 1$$
$$\ge \frac{\binom{v}{s}}{\binom{v}{r}}.$$

This contradicts (4.5).

Case 2. s=2r+1 $(r\geq 1)$ is odd.

Applying the theorem of D.K. Ray-Chaudhuri and R.M. Wilson to a contracted 2(s-1)- $(v-2, k-2, \lambda)$ design of (X, \mathcal{B}) , we have

$$\lambda_{2} = \frac{\binom{v-2}{s-2}}{\binom{k-2}{s-2}} \lambda_{s} \ge \binom{v-2}{s-1}$$

$$(4.8)$$

Then (4.1) and (4.8) yield

$$\frac{\binom{k-2}{s-2}(v-s)}{s-1} \left\{ \binom{v}{s} \\ \frac{\binom{k}{s}}{\binom{k}{s}} - 1 \right\} \leq \binom{v}{s} - 1$$

$$\frac{s(v-s)}{k(k-1)} \left\{ \binom{v}{s} - \binom{k}{s} \right\} \leq \binom{v}{s} - 1$$
(4.9)

On the other hand applying Fischer's inequality to a contracted 2-(v-s+2, k-s+2, 1) design of a s-(v, k, 1) design (X, \mathcal{B}_1) , where \mathcal{B}_1 is a rank s parallel class of (X, \mathcal{B}) , we have

$$(k-s+2) (k-s+1) \le v-s+1. \tag{4.10}$$

We shall now show that

$$\binom{v}{s} - \binom{k}{s} \ge \frac{4}{5} \left\{ \binom{v}{s} - 1 \right\}$$
(4.11)

Deny (4.11). Then

$$\frac{1}{5} \begin{pmatrix} v \\ s \end{pmatrix} \leq \begin{pmatrix} k \\ s \end{pmatrix}$$

$$v(v-1) \cdots (v-s+1) \leq k(k-1) \cdots (k-s+1) 5$$
(4.12)

R. Noda

Then (4.10) and (4.12) give

$$v(v-1) \cdots (v-s+2) \leqq k(k-1) \cdots (k-s+3) 5$$

$$v(v-1) \cdots (v-s+3) \leqq k(k-1) \cdots (k-s+3)$$

$$v \leqq k$$
, a contradiction.

Now by (4.9) and (4.11) we obtain

$$s(v-s) \leq \frac{5}{4} k(k-1)$$

Combining this with (4.10) gives

$$(k-s+2)(k-s+1) \leq \frac{5k(k-1)}{4s} + 1$$
 (4.13)

Then since $k \ge 2s$ (4.13) implies

$$\left(\frac{1}{2}k+2\right)\left(\frac{1}{2}k+1\right) \ge \frac{5k(k-1)}{4s}+1$$
 (4.14)

If $s \leq 5$ then (4.14) gives

$$\left(\frac{1}{2}k+2\right)\left(\frac{1}{2}k+1\right) \leq \frac{k(k-1)}{4}+1$$
$$\frac{3}{2}k+2-\leq -\frac{1}{4}k+1, \text{ a contradiction.}$$

So we must have s=3. But then (4.13) gives

$$(k-1) (k-2) \leq \frac{5}{12} k(k-1) + 1$$

 $7k^2 - 31k + 12 \leq 0$

 $k \leq 4$, a contradiction.

OSAKA UNIVERSITY

References

- [1] R.C. Bose: A note on the resolvability of balanced incomplete block designs, Sankhya 6 (1942). 105–100.
- [2] W.M. Kantor: Automorphism groups of designs, Math. Z. 109 (1969), 246-252.
- [3] D.K. Ray-Chaudhuri and R.M. Wilson: On t-designs, Osaka. J. Math. 12 (1975), 737-744.

366