Matsushima, Y.
Osaka J. Math.
13 (1976), 231-269

ON A PROBLEM OF STOLL CONCERNING A
COHOMOLOGY MAP FROM A FLAG MANIFOLD
INTO A GRASSMANN MANIFOLD

Yozo MATSUSHIMA

(Received April 18, 1975)

Introduction and summary. The main purpose of this article is to
answer a problem of W. Stoll which arose in his recent study [6] of value dis-
tribution of Schubert zeros.

We denote by 4 a p-tuple of non-negative integers {a,, a,, -+, a,} such that
0<a,<a,<-+<a,=<q and let m=p+q. A flag F of type A is a sequence
WVapirs Vagirr = Va o+ »} of linear subspaces in C™, where the subscript indicates
the dimension of each subspace, such that V,,,CV,,:,C-CV,,4p. The
totality F(A) of flags of type A is called the flag manifold of type 4. Itisa
projective algebraic manifold on which the unitary group U(m) acts transitively.
For each flag F of type A, there is associated a Schubert variety (4; F) which is
an irreducible algebraic subvariety of the Grassmann manifold Gr(p,m) of
p-planes in C™. The Schubert variety (4; F) consists of all p-planes ¥ such
that dim V' NV, ;=7 for all i=1,2, -, p. We denote by S(4) the subset of
Gr(p,m)x F(A) consisting of all pairs (V, F) such that V=(4; F). Itis proved
that S(4) is an irreducible analytic subvariety of Gr(p, m)x F(A4) [2]. The
projection maps of Gr(p,m)x F(A4) onto Gr(p,m) and F(A4) induce holomorphic
surjective maps z and o of S(4) onto Gr(p, m) and F(A) respectively. Then
S(A) is a holomorphic fiber bundle over F(4) of projection o whose typical
fibre is the Schubert variety. S(A4) is also a holomorphic fibre bundle over
Gr(p,m) [2] and the operation =, of fibre integration is defined.

Let A be a differential form of type (f —7, f —7) on the flag manifold F(4),
where f denotes the complex dimension of F(4) and 7 is a non-negative integer.
We assume that A is invariant by the action of the unitary group U(m) on F(A).
The group U(m) acts also on S(4) in a natural way and the pullback o*\
is invariant by U(m). The projection z: S(4)— Gr(p, m) commutes with
the action of U(m) on S(4) and Gr(p, m) and the fibre integration =4 is func-
torial. Hence m4(a*\) is also invariant by the action of U(m) on Gr(p, m).
Since Gr(p,m) is a symmetric space, a differential form on Gr(p, m) which
is invariant by U(m) is harmonic with respect to any invariant Kaehler metric.
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Hence 74(oc*\) represents a cohomology class of type (pg— | 4| —r, pg— | A| —7),
where | A|=3a; and pq is the complex dimension of Gr(p, m).

We take the standard basis {e,, ‘-, e,,} of C™ and denote by V' the k-plane
spanned by {e,, -+, e} and call F'={V’,,, -, V’,.,} the standard flag of
type A. We also call (4; F°) the standard Schubert variety and denote this
by (4). The standard Schubert varieties (B), where B={b,, -, b,} and
Sb;=r+3a,;, form a basis of the homology group of dimension 2(|A4|+r7) of
Gr(p, m) and the Poincaré duals C(B) of (B) form a basis of the cohomology
group of type (pg—|A|—r, pg—|A|—r). Therefore zy(c*\) is a linear
combination of these Poincaré duals C(B) with the condition |B|=3b;=
| 4] +r.

In the paper [6], Stoll defines a differential form X of type (f—1, f—1) on
F(A4) which is invariant by U(m) and which corresponds to the integral average
of so-called Levine form. He asked the question that in the expression of
n—*(o-*i,) by the Poincaré¢ duals C(B), for what kind of B the Poincaré dual C(B)
can appear with non-zero coefficient?

In this paper we prove the following theorem which answers the question
of Stoll.

Theorem. Let \ be a differential form of type (f —r, f —r) on the flag ma-
nifold F(A) which is invariant by the action of the unitary group U(m).
Let

74(c*N) = =d C(B),

where the summation extends over all B={b,, -, b,} such that Zb;=r+Za;.
If the coefficient dy is mon-zero, then B verifies the following condition: there
exist s indices j,, ++, j(1=7,<J, <+ <Js= p, S=7) and s positive integers n,, -, n,
with the condition 3.n,—=r such that

b;, = a;,+mn for R=1,2, ;s

7

and
b,=a; for j¥j,.

An application of the theorem is discussed in the paper of Stoll [6]. We discuss
here special cases. The case r=0. In this case A is a volume element on
F(A) invariant by U(m) and 7z4(c*\) is a scalar multiple of C(4). Hence
there is an invariant volume element on F(A4) such that zy(c*MA)=C(4).
The case r=1. In this case A\ is of type (f—1, f—1) and z4(c*\) is a linear
combination of those C(B) with non-zero coefficient verifying the condition
that b,=a; except for one index j, and bj,=aj,+1. This condition on B means
that the Schubert variety (B) of dimension |B| contains the Schubert variety
(A4) of dimension |B|—1 as a “boundary component” with respect to the
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Schubert cell decomposition of Gr(p, m).

The proof of Theorem is group theoretical and we use the results of Ko-
stant [3,4,b] on the de Rham duals of Schubert varieties. The papers of Ko-
stant deal with more general case of homogeneous compact Kaehler manifolds
and the proof in the general case is very complex. Therefore we have included
in this paper proofs of these results in our special case of the Grassmann mani-
fold in §3 and in an appendix. The proof of our theorem will be completed
in §4.

1. Fibre bundle structures of S(A4). In this section we introduce
several notations which we use throughout this paper. By A4, B, -+ we shall
denote p-tuples {a,, a,, -**, ap}, {b;, by, +++, bp} -++ of integers such that

0=a,<a,<+=a,=¢,0=b,<b,<--<b,<gq, -

where ¢ is a fixed positive integer and we set

m=p+q.
For each 4 we denote by | 4| the sum Za;:
(1.1) | 4| =Za;,
and we define k; by
(1.2) ki=ai+i (=1,2,-,p).
We have

1<k <k, <+ <kp=m.

A flag F of type A is an increasing sequence F={V,, -, V}} of linear sub-
spaces of C™, where the subscript indicates the dimension of each linear sub-
space. The totality F(A) of flags of type A is called the flag manifold of type
A. We denote by Gr(p,m) the Grassmann manifold of p-dimensional linear
subspaces of C™. We denote by {e,,e,, -+, e,} the standard basis of C™ and
denote by V; the k-dimensional subspace spanned by {e,, -, e,}. We call
F'={V’, -+, V'4} the standard flag of type A. We denote by o the point in
Gr(p, m) represented by V5 and call the point o the origin of Gr(p,m).

The groups GL(m, C) and U(m) act transitively on F(A4) and we can re-
present F(A) as homogeneous spaces of these two groups:

F(4) = GL(m, C)[P, = U(m)[H,,
H,=P,NnU(m),
where P, (resp. H,) consists of all k& GL(m, C) (resp. h€ U(m)) such that

(1.3)
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h-F°={hV°, -+, hV°, }=F°. We shall denote by = the projection
(1.4) zp: Ulm) — F(A) = U(m)/H, .

The groups GL(m, C) and U(m) act transitively also on Gr(p,m) and we
have

ws) Gr(p, m) = GL(m, C)|P = U(m)[U(p)x U(g)
‘ U(p)x Ulg) = PN Um),

where P consists of all z& GL(m, C) such that A-o=o0. The subgroup P con-
sists of all ke GL(m,C) of the form

(1.6) h— (};‘ Z) h,eGL(p, C), e GL(g, C)

and U(p) X U(qg)=P N U(m) is the subgroup of U(m) of all the unitary matrices
h of the form

B, 0
(1.7) h= (0 X ) h,e U(p), h,e U(q) .

We denote by 7 the projection

(1.8) ng: GL(m, C) — Gr(p, m) = GL(m, C)|P .

For each flag F of type 4 let

(1.9) (A; F)={VeGr(p,m)|dm VNV, =2i,i=1, -, p}

(4;F) is an irreducible algebraic subvariety of dimension |A4| of Gr(p,m)
and called the Schubert variety of type A (corresponding to F) [1]. We shall
denote (A4;F°) simply by (A) and we call (4) the standard Schubert variety of
type A. If F is a flag of type A, then there exists g GL(m, C) such that
g-F°=F. Then we have

8(A) = (4; F).
In particular, if ke P,, then AF°=F° and we have
h(A4) = (4)

for all k& P,. Thus the group P, acts on the standard Schubert variety (4).
The standard Schubert varieties (4) with the condition |A4|=r form a
basis of the homology group H,(Gr(p, m), Z).
A flag F' is an increasing sequence {V,, V,, -+, V,,} of m linear subspaces
of C™ and let
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pEF)= Vi =+, Vi) -

Then p(F) is a flag of type 4. Let (4; F)* be the set of all ¥ & Gr(p,m) such
that dim VNV, =i for all i=1,2,-+,p and dim V' NV,_,<? for all ¢ such
that k;—k;_,=a;—a;_,+1>1, where we let k=0, a,=0.

Obviously we have (4; F)*c(4; p(F)) and we have also

(45 p(F) = (4; Fy U(_ U (4i; )

7% -1
where we put 4,={a,, -+, a;-,, a;,—1, -+, a,} for all i such that a,>a;_,(a,=0)
and F;={Vy, -, Vi,_s Vig-1s =+ Vi, } [1]. Moreover (4; F)* is biholomor-
phic to C'4! and hence it is a cell of (real) dimension 2|A4| and (4; F)* is
Zariski open in (4; p(F)).
We denote by F° the standard flag {V?, V3, ---, V'%} and denote (4; F°)*
by (A4)* and call (4)* the standard Schubert cell of type 4. Then we have

Gr(p, m) = lij(A)* (disjoint union)

and this gives a cell decomposition of Gr(p, m).
Let

(1.10) S(A) = {(V, F)eGr(p, m)x F(A)|V (4; F)} .

S(4) is an irreducible analytic subvariety of Gr(p,m)x F(4) [2]. The group
U(m) acts on Gr(p, m) X F(4) by g(V, F)=(gV, gF) and since we have g-(4;F)
=(4;gF), we also have g-S(4)=S(4). Thus U(m) acts on S(4).

Let # and & be the projection maps from Gr(p, m) X F(A4) onto Gr(p, m)
and F(A) respectively. These maps are equivariant with respect to the action
of U(m). Then # and & induce holomorphic and surjective maps = and o of
S(4) to Gr(p, m) and F(A).

If FEF(A), then ¢~'(F)=(4; F)X {F} and the fibres of & is biholomorphic
to the Schubert variety (4). S(4) is a holomorphic P ,-bundle over F(A4)
associated with the principal P,-bundle GL(m,C)—~F(4) [2].

Let

f - dimc FA .
Since dim¢ (4)=1|A4|, we have
dime S(4) = f+14] .

S(A) is also a holomorphic P-bundle over Gr(p,m) associated with the
principal P-bundle GL(m, C)—Gr(p, m) [2] and the operator = of fibre inte-
gration is defined. The operator 74 sends a form of type (#,v) on S(4) to a
form of type (u—t,v—t) on Gr(p, m), where
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t=jf+141—pq
and
p-q=dim¢ Gr(p, m).

The operator 7, commutes with the action of U(m) on S(4) and Gr(p,m).
Hence, if 7 is a form on S(A4) invariant by U(m), so is mx7.

Let A\ be a form of type (f —7, f—r) on F(A) invariant by U(m). The
pullback o*\ is a form of type (f—r, f—r) on S(A4) and is also invariant by
U(m). Then my(a*\) is a form of type (pg— | A| —r, pg— | A| —r) on Gr(p, m)
invariant by U(m). However a form on Gr(p,m) is invariant by U(m) if and
only if it is harmonic with respect to a Kaehler metric invariant by U(m).

For a standard Schubert variety (B) we shall denote by C(B) the Poincaré
dual of (B). C(B) is a form of type (pg— |B|, pg—|B|) invariant by U(m)
such that

s\;, _ S C(B) A
(B) @r(p,m>
for any closed form +r of type (|B|, |B]).

The Poincar¢ duals C(B) with the condition |B|=u form a basis of the
vector space of all invariant forms of degree 2u. Since z4(c*\) is an invariant
form of type (pg—|A|—r, pg—|A|—r), we have
(1.11) zx(e*N)= XV dz C(B).

IB|=|4|+r

The de Rham dual (or simply the dual) of a standard Schubert variety
(B) is the invariant form &5 of type (|B|, | B|) such that

S &= 33,1)
[¢1))

for all D satisfying |D|=|B|. Then we have

C(DYNEg = 8p,p
Grip,m)

for all D such that |D|=|B|. Then we get

dp= | mle™NEs 1Bl = 14147
Gr(p,m)
However from a well-known property of fibre integration, the right hand side
is equal to the integral

AN T*EG
s

and we obtain
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(1.12) dy— S NN, |B| = |A|+r

84>

We are going to transform the integral to an integral over U(m)x (A).
We now define a map

u: Um)x (4) — S(4)
by

weg V)= (eV,8F), g€ U(m), V&(4).
As Ve(d), gVeg(d)=(A4;gF°) and hence gV e(4;gF°) and u(g, V)=S(4).
The map p is surjective. For, let (W, F)eS(4). Then there exists g U(m)
such that gF°=F and as We(4; F), V=g"'Weg(4; F)=(4; F*)=(4) and
we get u(g, V)=(W, F). Moreover we see also that for any (g, V)= U(m)

X (4), p(u(g, V))=A(gh, h"'V) | k& H 1}.
The group H, acts on U(m)X(4) from the right by

(g, V)-h = (gh, -V, he H,,

and the action of H, on U(m)Xx(A4) is free.

We show that U(m)x (4) is a principal fibre bundle over S(A4) with struc-
ture group H,. To see this we first choose an open covering {U,} of F(4)
such that over each open set U, a section s,: U,—U(m) of the fibre bundle
np: Uim)—F(4) exists. Let

WV, = S(A)N(Gr(p, m)x U,) .

Then {CV/,} is an open covering of S(A4). We define 7,: C{/,—U(m)x (4)
as follows. Let ¢=(V, F)e<{,. Then o(q)eU, and s,(a(g))< U(m) is de-
fined. Let

To(9) = (Sa(a(9); Sa(a(9))'7(9)) -

Since 7 z(g)=gF° for g& U(m) and 7 x(s,(c(q))=0(q)=F, we have F=s,(a(q))F".
We have also s5,(a(¢))"'7(g)=s4(c(q))"'V and V &(4; F) and hence s,(c(q))"'7(q)
€(4; F°)=(A4). This shows that 7,(q)e U(m)Xx(A4) and also that

w(7a(9) = (7(9), o(9)) = ¢ -

There is a map gg,: U, N Us—H 4 such that s,(x)=sp(x) - gg,(x) for x&U,N U,.
Then

8Ba°0: CvanCVﬂ_’HA

is defined and we have

To(9) = Te(9)8pa(0(q))  for gEV,NVp.
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We define
(1.14) ba: HaX Vo= p7 (V)
by

ba(h, 9) = Ta(q) -k .

It is easy to see that U(m)x(A4) is a principal fibre bundle over S(4).

We have to notice here that the maps p, 7,, gg400, ¢, defined above are not
only continuous but also differentiable at every simple points of the domains
of these maps. Hence the pullbacks of differential forms by these maps are
defined.

To simplify the notation we put

7= c*NAT*ER.
We prove now the following lemma.

Lemma 1.1. Let 0, be a left invariant form on U(m) such that its re-
striction to the subgroup H, is a left invariant volume element on H , with

S 0,=1.

2y
Let w,=s¥0 4 be the pullback of 0, to U(m) X (4) by s,: U(m) X (A)—>U(m). Then
we have

(1.15) Snz S oAt |
84> T(m)x (4>

Proof. It is easy to see that there exists a left invariant form 6, satisfying
our condition. We denote by 8,’ the restriction of 4 to H,. Since H, is
a compact connected Lie group, every left invariant volume element is also
right invariant (see [4]). The fibre E of U(m)Xx(A) over a point g&=.S(4) is
the orbit of a point ucE by the right action of H,. Let iz: E—U(m)X(4)
be the inclusion map and 7,: H,—E a map defined by 7,(h)=uh. Then (s,0izo1,)
(h)=s,(uh)=s,(u)+h=L .k, where L, (g U(m)) denotes the left translation
of U(m) by g. Pulling back 64 by the map s,0igoz,: H,—U(m) we get i¥(15w ).
On the other hand pulling back 6, by the map H,— U(m) defined by L, iy,
1y being the inclusion map of H, into U(m), we get 6 ,’, because 0 4 is left in-
variant. However these two maps H,—U(m) are equal and we get

(1.16) H(i5wa) = 0,4 .

We now choose an open covering {¢{/,} of S(4) as we did before. To prove
(1.15) it is enough to show
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(1.17) q&:; =p—=<§V,>wA A p*n

for each ¢{,. From now on we fix €}/, and drop the index «. We shall prove
later that

(1.18) ¢*(wa Ap*n) = pEfanpia,

where ¢p=¢, is defined by (1.14) and pj and Py are the projections of H, X CY
onto H, and ¢I/. We have the commutative diagram

(1.19) Pq/\ /L

The integral on the right hand side of (1.17) is equal to

| pt6unptm
H )

by (1.18). Then by Fubini theorem this integral is equal to
| Joan=1-
v

v,

and this proves (1.17). Hence to prove the lemma it remains to prove (1.18).
To prove (1.18) we show that the restrictions of ¢*w, and pfy on H, X {q}
on each g€ are equal. For, let u=7(q) and let E be the fibre ©-'(q) over
g¢. Then ucE and the following diagram is comutative:

Hox{gp 20 &

p”"\ /’u
H,

where ¢, and py , are restrictions of ¢ and py on H,X {¢g}. The restriction
of ¢*w, to H,yx {g} is equal to ¢¥(i5w,) and this is equal to p¥ (i¥(1Ew,))-
However by (1.16), i¥(i%w,) is equal to 6 ,’, the restriction of §, on H,. Now
p¥ 04’ is the restriction of pff,’ to H,X {q} and this proves our assertion.
Let g€ and ke H, and let {x,, ---, x,} and {y,, --*, y,} be local coordi-
nates around ¢ and % respectively. We express p*n, pf0, and ¢*w, locally in
the form p*p=a(x)dx, A--- Ndx,, pH0.'=b(y)dy, A -+ Ady, and ¢p*w,=c(x,y)
dy, A -+ Ndy;+’, where o’ denotes the sum of the terms involving dx. Since
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pHfa=¢*w, on HX {¢'} for every gV we have c(x, y)=>b(y) and ¢p*w,=
pHfa+o’. However o' Ap*np=0 and hence ¢*waApEm=pEOaN pEM.
However pg,=po¢ by (1.19) and we have p*n=¢*(u*n) and Pp*wsApEm=
¢*(wa A p*n) and (1.18) is proved. From Lemma 1.1 and (1.12) we get

dg = S 0 A p*e*N A pF ey .
Tm3xcd)
However gou=mpos, and hence w4 A p*a*A=s¥(@4A7EN). Let B=nopu.
Then p*n*Ez=R*E; and B: U(m) X (A)—Gr(p, m) is defined by

(1.20) Bg V) =gV, Ve(d),geUm).

Since the Schubert cell (4)* is a Zariski open set in (4), we can replace an
integral over U(m)Xx(A) by an integral over U(m)X (4)*.
Summing up we get

Lemma 1.2. Let N be a U(m)-invariant form of type (f—r, f—r) on F(A)
and let
mx(0*N) = > dp-C(B).

|B|=]4]+7

Then the coefficient dg is given by the integral

(1.21) d, — S 504 A TEN) A B,

T(mIx (4*
where s,: U(m) X (A)*—U(m) is the projection, 0, is a form on U(m) difined in
Lemma 1.1, the map B: U(m)X (A)*—Gr(p, m) is defined by (1.20) and Ep 1is
the de Rham dual of the Schubert variety (B).

In the next section we transform the integral (1.21) into an integral over
U(m) x N(A4), where N(A) is a complex simply connected abelian Lie subgroup
of GL(m, C).

2. The abelian complex Lie group acting simply transitively on
a Schubert cell. We prove first the following elementary lemma.

Lemma 2.1. A p-dimensional linear subspace V of C™ belongs to the Schu-
bert cell (A)* if and only if V has a basis of the form {e,,+v,, ex,+v,, -=*, €, 105},
where v;EV°,-, for i=1,2, .-+, p; here A={a,, ---, a}, ki=a;+1, k,=a,=0 and
V°y is the subspace spanned by {e,, e,, ---, ,} for k=1 and V°,= {0}.

Proof. Suppose that V' has a basis of the from {e,,+v,, -, e,,+v5}.
Then e,,+v,€V°, for j<i and hence dim VNV°, =i If dim VNV >4,

VN V%, would contain a non-zero vector v which is a linear combination of
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éx,+v, with I>i.  On the other hand since v& V", v is a linear combination of
e, ;e So we have v=a,e,+ - +ape,,=b;i(er,,,+Vis1) 4 +bslen,+05).
It follows from this that b,=0 and inductively b,_,=0, ---, b,,,=—0 and hence
v=0, a contradiction. Hence we must have dim V' N V°; =i for all i=1,2, .-+, p.
Suppose now that k;—k;_,>1. Then k;—1>k;_, and e, 0, with j <7 belongs
to V°,_,and v;€V°,_,. Suppose that dim VN V°, _,=i. Since V°, _,C V"
and dim V' N V=1, we would have dim VN V°, ;=i and so V'N Vorn=V'N
V. 'Then e,4v,€VNV°_, and hence e, =(es+2;)—v; belongs to V°, _,
and this is a contradiction. Hence we have dim VNV° _,<i and this
shows that V (4)*.

Suppose now that V' &(4)*. Then we have dim V"NV, =1 and if k,—k,
=k,>1, we have also dim V' N V%, _,={0}. If v is a non-zero vector in V' N V',
we can write v=aey,+w, wE V% _, and a0, for if a=0, then v=wV N V", ,
={0} and so v=0. From this we see that V' N V°,, is one-dimensional and has
a basis u, of the form w,=e,+v,, v,€V%,_,. Suppose that we have already
shown that dim V'N V°,=j and V' N V°, has a basis {u,, -, u;}, where u, is of
the form u,=e, +v,, v,€V%,_,, for j=1,2,..-,i—1. Consider now VNV,
We have dim VNV, =i and if k—k;_,>1, we have also dim V'NV,,_, <
Then we have dim V' N V,,>dim VNV, _,, for, this is trivial in the case k;—k;_,
>1 and when k;—k;_,=1, we have V%, _,=V",  and dim VN V", _=i—1 by
our assumption of induction and so we have dim V'N V%> dim V' N V°,_, also
in this case. Then there is a vector v& VNV, vV, _, and we can write
v=ae,+w,wE V%, _,,a+0. Letu,=a'v. Then u;=e,+v;. v;EV’%, and
VN V*,isspanned by u; and VN V°,,_,. Aswehave k,—1=k;_,, V°, DV’ _,
and so VNV%,_,DVNV%,_, and dim VN V°,_,=dim VNV, =i—1 and
the equality holds when k;—1=k;.,. However V' (4)* and we have dim
VN V%,_.<iwhen k,—1>k;_,. Hence we have always dim VN V°, _,=i—1
and so we get dim VN V° =i and VNV _,=VNV°%, _,. Then VNV", is
spanned by {u,, -+, u;_,, ;}. Proceeding in this way we see that dim V'N V,,=p
and so V=V NV, and V has a basis {u,, ---, u,}, where each #; is of the form
w=ep+9;.

Subtracting a suitable linear combination of e, v, with j <7 from e, +v;
we may assume that »; is a linear combination of e, with the condition s<k;,
s+k; for every j=1,2, ., i—1.

Let M(A) be the set of all mxXm complex matrices u=/(uy)(1=s, t<m)
satisfying the following conditions.

1) uis upper triangular, and unipotent, that is, #,,=0 for s>¢ and u,,=1;

2) if t=k,; for i=1,2, .-, p, then the entries of the -t column vectors
of u is zero except u,,=1, that is, u,=35,.

3) e, =0 for j <i.

It is verified easily that M(A4) is a closed connected, simply connected abelian
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subgroup of GL(m,C). The Lie algebra m(A4) of M(A) is the abelian sub-
algebra of gl(m,C) spanned by e, (i=1, 2, -+, p), where s satisfies the condition
s<k; and s=%k; for j=1,2,..-,i—1. Here e, denotes the matrix whose (s, k)-
entry is 1 and others are 0. We see then that m(4) is a complex abelian Lie
algebra of dimension |A4|=3a; and so M(A) is a simply connected complex
abelian Lie group of complex dimension |A4| and M(A) is isomorphic to
C'4! as complex Lie group.

Lemma 2.2. The group M(A) acts holomorphically and simply transi-
tively on the Schubert cell (A)*.

Proof. Let W be the p-dimensional subspace of C™ spanned by {e;, :**,
ex,}. By Lemma 2.1, W belongs to (4)*. Moreover if uc M(A), then u-W=
{ueg,, -+, uey,} and u-e,, is the k;th column vector of the matrixu. It follows
from the definition of M(A4) that u-ey, is of the form e,,+v;, where v; is a linear
combination of e, with s <k; and s=k;, j <i. By Lemma 2.1, ul¥ belongs to (4)*.
Conversely let V' =(A)*. Then V has a basis of the form {e;,+9,, -, e,,p+'v,,} ,
where v; is a linear combination of e, with s<k; and s#k;, j=1,--,i—1. Let
u be the m X m matrix whose -tk column vector is ex,+v; for t=Fk; (1=1,2,---,p)
and is e, for t=+k;. Then uesM(A4) and V=uW. Let w’'=M(A). Then
w'V=(u'u)-We(A)* and so v/ (4)*=(4)*. These show that the group M(4)
acts transitively on (A4)* and it is clear that M(4)x(4)*—(A4)* defined by
(u, V)—uV is holomorphic. To show that M(A4) acts simply transitively on
(A4)*, it is enough to show that, if uW=W, then u is the unit matrix. Thisis
easy to show and the lemma is proved.

Let now 7 a permutation of {1,2,..-,m}. We associate to 7 an mXm
matrix %, by the condition

Url; = €5y 1= 1» 2) e, m.

Then u, is a unitary matrix and 7—u, is a representation of the permutation
group.

We associate to each 4={a,, ---, a,} a permutation o4 of {1,2,---,m} as
follows. Let {l,--,L}={1,2,--,m}—{k, -+, kp} and let I <l,<-- <l,.
We define o, by the condition

20 =k, 1<i<
@.1) dc2'(@) =k 1Z5i5p
ca'(p+s) =1, 1=5s=q.

We then have

uo'A(ek;) =€

and hence
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u, W="V,={e,,e5}.
We define a subgroup N(4) of GL(m, C) by
N(4) = u, M(A)u;,
The Lie algebra n(4) is then given also by
n(4) = u, m(A);,

Since N(A) and M(A) are conjugate, N(A) is also a complex, simply connected
closed subgroup of GL(m, C).

Lemma 2.3. The group N(A) consists of all the complex mXm matrices

n=(n, ;) of the form
= 1)

where n'=(n,,,;)(1=<s=q, 1<i<p) is a ¢X p matrix satisfying np.,;=0 for
s>a; (=1, .-, p).

The Lie algebra n(A) is the complex abelian Lie subalgebra of gl(m, C) span-
ned by ep;; (1=s=q, 1=<i<p) such that s<a,.

Proof. To simplify the notation put oc=o,. We have

-1 __
Uslaplly, = €gareh)

and hence we have

-1
Ul pUs = Cpts,i»

The Lie algebra m(A4) is spanned by e,, (i=1, -+, p) such that a<k; and a=+k;
for j=1, ---,p—1. Since {1,2, -, m}—{k,, -, kp}={1, -*-, l;}, we have a=[,
for some s and [, <k;. As n(4)=u,m(4)u;’, n(A4) is spanned by e, ; such that
o' (p+5)<o~'(¢). Weshow now that the condition o~(p-+5) <o ~'(¢) is equivalent
to the condition that s<a;.

We see that for any s and 7 such that 1<s<¢, 1<i<p, we have either

o (D) <i+s=Za'(p+s)
or
o (p+9)<i+s=a7'(i).

Suppose that o~'(p+s5) <o ~'(f). Then we have the second case and so s<o~'(z)
—i=k;—i=a;. Suppose now that s<a;. Then i+s<k;=o"'({) and hence
o~ (p+s)<i+s=o7'(7) and so o '(p+s5)<o~!(¢) and our assertion is proved.
It follows from this that n(4) is spanned by e,,,; satisfying the condition
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s=a;. Then it is easy to see that if X en(4), then X*=0. Now N(4) is a
simply connected abelian Lie group and every matrix n in N(A4) is written
uniquely in the form n=exp X with Xen(4). However X*’=1 and so exp
X=14X. Thus #n is the form n=14X, X en(4), and hence 7 is of the form
stated in Lemma 2.3.

The gruop M(A) is simply transitive on the Schubert cell (4)*. It follows
that N(A) is then simply transitive on the Schubert cell u, (4)*=(4 ;F)*, where
F is the flag {us V3, -, u, V?,.} As we have W={e, -, e,,} €(4)* and
Va=u, W, we have V°E(A F)*. We have denoted earlier the point of
Gr(p, m) represented by V3 by o. So we have o (4; F)* and this is one of the
reasons why we replace M(A4) by N(A4).

We have (4)*~(4; F)* and as N(A) is simply transitive on (4; Fy*, N(4)
and (4; F)* are also biholomorphic. Hence we can identify U(m)x (4)* and
U(m)x N(4) by identifying (g, n)e U(m)x N(A) to the point (g,u;}-n-0) of
U(m) x (4A)*.

On the other hand we have defined the map B: U(m)Xx(4)*— Gr(p, m)
by B(g, V)=gV. Then, identifying U(m)x N(4) and U(m)=(A4)* as above,
the map B is identified with the map

B: U(m)x N(4) — Gr(p, m)
such that
(2.2) B(g, n) = gu,imo.
We now define a map
§: U(m)x N(A4) — Gr(p, m)
by
(2.3) ¥+(g, n) = u, gu; no, g€ U(m), nE N(4) .

Then §=t,0B, where t, is the transformation of Gr(p,m) induced by the
action of u=u, & U(m).
The integral (1.21) is transformed to the integral over U(m)Xx N(A4) and

the integrand is s¥(6, A 7E\) A B*Ez and B is defined now by (2.2). We have

F*Ep=P*t¥E, and tFE,=E, because £, is invariant by U(m). Hence B*Ez=
¥*E5. We now define a map

v: U(m)x N(4) — GL(m, C)

by
(2.4) v(g, n) = u, gu; n, g€ U(m), n€ N(A)

and let z¢ be the projection of GL(m, C) onto Gr(p, m) defined by (1.8). Then
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we have §=rgoy and ¥*f ,=v*z¥Ep. Then from Lemma 1.2 we obtain

Lemma 2.4. We have

(2.5) dy = g (0.0 ATEN) A Y*nEp

T(m)XN(4)
where v: U(m)x N(A)—Gr(p, m) is defined by (2.4) and ng: GL(m, C)—Gr(p, m)
is defined by (1.8).

In the next section we shall get information about &5 and #¥Eg.

3. Invariant differential forms on the Grassmann manifold and
the de Rham dual of a Schubert variety. We write the Grassmannian
Gr(p, m) in the form

Gr(p, m) = GL(m, C)|P

where P is the subgroup of GL(m, C) consisting of the matrices of the form

(g ;) aeGL(p, C), beGL(g, C).

The Lie algebra p of P is the subalgebra of gl(m, C) consisting of the matrices
of the form

(AC)AEI C), Beql(q, C
o B) gl(p, C), Begl(q,C) .

Let n* denote the abelian subalgebra of gl(m, C) consisting of all matrices of

the form
(5 o)
X = s
D 0

where D is a complex gXp matrix. Then we have
gl(m,C) =n*Py.

Let o denote the origin of Gr(m, p). The point o is the point represented by
the p-dimensional subspace V°={e,, ::-, e,} of C™ and hence it is the coset P
in our coset space representation of Gr(p, m). Every tangent vector at o is the
tangent vector at =0 to an orbit: z—(exp ¢ X) (0) of the origin o by a 1-par-
ameter subgroup exp ¢t X (X egl(m, C)) of GL(m, C) and the tangent vector to
the orbit at o is the zero vector if and only if XeP. Hence by mapping X
egl(m, C) to the tangent vector to the orbit (ext ¢ X) (o) at =0 we get a real
linear map from gl(m, C) onto the (real) tangent space T,(Gr(p, m)) whose kernel
is p. Thus we can identify Ty(Gr(p, m)) with gl(m, C)[p as real vector space.
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On the other hand, T,(Gr(p, m)) has the complex structure J, which comes from
the complex structure of Gr(p,m) and gl(m,C)/p is alsoa complex vector
space and we see easily that the above identification of T(Gr(p,m)) and gl(m,C)[p
is compatible with these complex structures, that is, the identification map is
complex linear isomorphism of these two vector spaces regarded as complex
vector spaces.

On the other hand we have gl(m, C)=n*@®p and we can identify canoni-
cally gl(m, C)/p with n*. Hence we identify n* with T(Gr(p, m)).

From now on the action of an element g GL(m, C) on Gr(p, m) will be
denoted by #,. Let h&P. Then #,(0)=0 and hence the differential #] of ¢,
at o defines a non-singular linear transformation p(k) of T, (Gr(p,m)) and
h—p(h) is a representation of the group P wihch we call the isotropic representa-
tion of Pato. Let us denote by ¢, the orbit #,,, ,x(0), where X en* and denote
by @,” the tangent vector of the orbit ¢, at s=0. Then p(k)(p,) is the
tangent vector to the curve r,=1#,(®;) at s=0. Since 27'€ P, we have ¢,-1(0)=0
and hence V. =14(@,)=u(texp s x(0))=1n*texp sx *th=1(0)=lexp s nxn-1(0). Hence
is identified with the image of A X A™*gl(m,C) in n* by the projection gl(m, C)

—n*. Let now
h, h, 0 0
h= )EP, X = ent.
0 A, D 0

Then 2 X k™' is of the form

Rxhi=(" *)
o (thhfl *

and hence the image of 2 X A™ in n* is of the form

x (0 0)
~ \w,DE 0)°

Thus, identifying n* with T,(Gr(p, m)), the isotropic representation p of P
is given by

p()X = X',  where

- k_(h,*) X_(o 0 X,_(o 0)
3-1) “\on) T \Do)T  \mDE'O)

We notice here that, as we see from (3.1), the isotropic representation p is es-
sentially a representation of GL(p, C)Xx GL(g, C) which is a subgroup of P.
When we regard n* as a vector space over R, we denote this vector space by
ng. We regard also T,(Gr(p,m)) as a vector space over R with complex
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structure J, defined by the complex structure of Gr(p,m).

Consider the set F of all R-linear maps of n% into C. We consider F as
a vector space over C and we can identify F with nz)*®zC. If feF, we
denote by f the map X— f(X). The dual space (n*)* of the complex vector
space n* is the subspace of F consisting of all f&F such that f(iX)=if(X) for
all Xeng. We put (n*)*=F*. We denote by F~ the complex subspace of
F consisting of all g&F such that g(iX)=—g(X) for all Xen}. Then
F =F+*={f| €F*} and we have

F=F*®F~.

Notice that, identifying nz with T(Gr(p, m)), F is identified with T§(Gr(p, m))
®rC, the vector space of all complex 1-froms of Gr(p,m) at o, and F*(resp.
F~) corresponds to the vector space of 1-forms of type (1, 0) (resp. type (0,1)).

Analogously AF is identified with the vector space of r-forms at 0. If heP
and ¢ EAF , we define p*(h)t e AF by

3.2) (P*(ME) (X, -+, X)) = E(p(A) X, -+, p(RT)XG)

where X;&ng and we regard { as an alternating r-linear form on nj. We call
p* the isotropic representation of P on AF.

Let w be an r-form on Gr(p, m) which is invariant by the action of U(m)
on Gr(p, m), i.e. tfo=w for all g U(m). In particular tFo=w for ke U(p)
X U(@)=PN U(m). This implies that for any tangent vector u,, ---, u, at o, we
have w,(p(h)u,, ++-, p(h)u,)=w,(u,, «--,u,) for all heU(p)x U(q) and this is

equivalent to the condition that
(3.3) p*(h)o, = @0 he U(p)X Ulg) -

Conversely let w, be an r-form at o satisfying (3.3) and let xGr(p, m). There
exists then g& U(m) such that t,(x)=o0. Then tfw,=w, is an r-form at x and
the condition (3.3) guarantees that w, is independent of the choice of g such
that ¢ (x)=o. Then we can define an r-from w on Gr(p, m) by x—w, and w is
obviously U(m)-invariant. This establishes an isomorphism between the
vector space of U(m)-invariant r-forms on Gr(p, m) and the vector space of all

elements t=AF satisfying p*(h)t=t for all ke U(p)x U(q).

We call an element ¢ of AF an invariant element if p*(h){=¢ for all he U(p)
x U(g)-

Thus a U(m)-invariant form on Gr(p, m) is identified with an invariant
element of AF.

Now let
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B — (e"‘I,, 0

. , tER.
0 e"‘I,)

Then we have
p(h;'l)X — ez:‘tX

for all Xeng. Let feFt=(m*)*. Then ¢ is a complex linear function on n*
and hence

(p(A)E) (X) = {(X) = €E(X)
and hence
(k) = e't, (e F* .
Analogously we get
pH(h)E = e, L F*

Let {¢,, -+, En} (N=pg=dimcn*) be a basis of F*. Then {,, ---,Ex} is a basis
of F"=F* and since F=F*®F~, {{,, +,Eny &y, +++, En} is a basis of F and

every element { € AF is written uniquely in the form

&= 2 Cu,vs

U+v=r

Cup = IZ; ar ;51N

where I= {in ""iu}y 1:<"' <im ]= {jv ""ju}’j1<"' <]v and §I=§i1/\ b Agiu’
Er=LiA - NTi,. Now p*(B)f=332ar,1p*(R)r A p*(R)Ey and p*(R)Sr=p*(R)C:,

A < Np*(R);,, p*(R)E r=p*(R)Es, A --- A p*(h)Ej,. Hence we have p*(h)t= >3

$+0=r
e g, . If ¢ is an invariant element, then we have ¢/ *=1 for all ¢ and
for, u,v such that ¢,,+0. Hence we have ¢, ,=0 for u3v. Hence, if { is an
invariant, then r is even and

§=§u,m2u="-

Thus we have proved that, if { EAF is invariant, then r=2u and ¢ is of
type (u, u). It follows in particular that if w is an invariant 7-form on Gr(p, m),
then o is of type (u,u) with r=2u.

Let us denote by F,, the subspace of AF consisting all elements of type
(u,0) and by I the subspace of all invariant elements of AF. Then we have

I= EIu,m Iu,u = Fu,unl-

To investigate the space I,, we proceed as follows. We identify AF* with
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the subspace F,, of AF and hence AF* with >)F,,. Then AF* and AF*
are invariant subspaces of AF, i.e. p*(h)-l'\F*Cz-\F* for all A€ U(p)x U(g).
Analogously we identify AF~ with the subspace F, , of AF and AF* with 2F, .

Then AF~ and AF~ are also invariant subspaces of AF. The conjugate C-
linear isomorphism {—& from F* onto F* is extended to a conjugate C-linear

isomorphism AF*—>AF-. Moreover, if n€AF* and ke U(p)x U(g), then
we have

p*(k)n = p*(k)n .

Since U(p)x U(q) is compact, there is a positive definite invariant hermitian
inner product <., +> on F* such that

<ML, p*(h)ny = <& >
for all A& U(p)x U(gq). We can extend the inner product to a positive definite
invariant hermitian inner product on AF*. We then define a non-degenerate
C-bilinear function (-, -) on (AF*)X(;\F ) By
€ n) =<2

Then we have

(p*(R)E, p*(h)m) = (£, 7)
for all he U(p)x U(q).

Using this bilinear function, we define a complex linear isomorphism from
Hom (AF*, AF+) onto F, ,=(AF+)A(AF") in the following way. Let {£;} be
a basis of AF* and S=Hom (1§F+, 1{F+). For any ;‘E;\F" we have S(¢)=
=81(8)¢r and S is a linear function on AF*. Then there is a unique 7, AF-
such that S;(£)=(¢, 7;) for all {E;\F*. We define

P(S) =23 L1 A

The map o: Hom(/iF*, ;\F*)—)FM is an isomorphism of complex vestor
spaces and the definition is independent of the choice of the basis {¢;}.
Moreover we have

(34) Plp*()-S-p*(h™) = p*(W)(S)

for all he U(p) x U(g).
It follows from (3.4) that the space I, , of invariant elements in F, , is the
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image by @ of the subspace of Hom (AF*, AF *) consisting of all S such thrt
p*(h)S = S-p*(h)
for all he U(p) X U(g).

% u
To study these endomorphisms S of AF* we decompose AF™ into direct
sum of irreducible invariant subspaces and use the Schur’s Lemma. As we

shall see later AF* decomposes into direct sum of irreducible invariant sub-
spaces in the following way. There is a 1-1 correspondence between the set
{4} with the condition | 4|=u and the irreducible invariant subspaces {F,}

of AF*+ and if A=+A’, then F, and F, are not isomorphic as U(p) X U(q)-
module and we have
AF* =3 F,
A,|A| =4
and F, and F s are orthogonal for A+A4’. The irreducible invariant subspace
F, is characterized as follows. The matrices e€54,,(1=i=<p, 1<s<q) form a
basis of n* over C. Let {{,.:} be the dual basis of F*=(n*)*. Let

(3’5) KA = sé. §P+s.i ’

where the exterior product extends over the pairs (7,s) such thrt 4;>0 and
s<a;. Since |A|=u,t, is the product of u elements {,,,; with s<a; and

hence ¢ AEAF + and in fact ¢, is an element of F, which is a weight vector
for the lowest weight A, of F, and F, is completely determined by &, (see

Theorem 2, Appendix). Now let S be an endomorphism of AF* such that
p*(h)S=Sp*(h) for all . Then the kernel of S|F, and the image S(F,) are
both invariant subspaces of F, and since F, is irreducible, we have either
S(F 4)={0} or else S(F,)=+ {0} and S|F, is an isomorphism of F, onto S(F,)
as U(p) X U(g)-module. In the second case, S(F,)=F, for some A’ with
|A’|=u and as F,~F, and we have A=A’. Thus for each A, we have
either S(F,)={0} or S(F,)=F, and, in the case S(F,)=F,, by Schur’s
Lemma, S|F,=c,-1, where c,&C and 1, is the identity map of F,. Thus
we have
S= 3 c4:Py,caeC,
4,14 =7

where P, is the projection operator of AF* with respest to the direct sum de-

composition AF*=3F -
Let {¢:(A4)|1<i<m,, m,=dimcF,} be an orthonormrl basis of F,. Since

F, | Fy for A+ A’, {¢,(A)}:, 4 is an orthonormal basis for AF+=3F "2 and we
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have P A(§)=2‘}<§, Ci(A)>§i(A):2;J(C » £4(A4))5:(A). Hence we get p(P 4)=2>¢:(A)
AEi(A) and
P8)= 20 a2 t(A)NE(A)
and we have proved the following lemma.

Lemma 3.1. The complex vector space 1, of invariant elements of type
(u, u) is spanned by @ with |A|=u, where

my
0% = 2 L(A) NE(A)
and {¢,(A), -+, Em (A)} is an orthomormal basis of the invariant irreducible

susbpace F, of AF*. The invariants 0% are linearly independent.

We now discuss the decomposition of AF*. The matrices {ep4si| 1SiZD,
1=<s=<gq} form a basis of n* and {{,,,;} is the dual basis of F*=(n*)*. Let
teF* and let

;s = L(€prs,i) -

Then C=E M; 8 povs,i
Let

=" ,)EU@* U@

and h,=(a;;) (1=, /< p) and h;'=(bprs p+s) (155, 1=<¢q). Let
mis = (P*(R)0) (€p+s.) -
Then m{ =C(h ™ <ep.s,h)=2]0; byt p1+5(€p-s,;) and we have

mi, = ,2: a;M;,bp1e p1s
Now let M be the complex vector space consisting of all pX ¢ complex matrices.
The group U(p)x U(q) operates on M by

T(hym = hym-h;', me M

and h—T(h) is a representation of U(p)X U(g). Now the map {—m=(m; )
defines a vector space isomorphism of F* onto M. Moreover the above com-
putation shows that this is an isomorphism of U(p)X U(q)-module. The re-
presentation of U(p)x U(q) on the exterior algebra AM is discussed in the
Appendix and since AF* and AM are isomorphic as U(p)X U(g)-module,

we obtain from Theorem 2 of Appendix the decomposition of AF*=SF A
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Finally we notice that {,,,;EF* corresponds to the matrix ¢; ,,, M.

Let o be a U(m)-invariant form of type (u,#) on Gr(p,m). Identifying
the vector space of (u, u)-forms at o with F, ,, the value w, of » at o is identified
with an invariant element 1, , and the map o—w, is a vector space isomor-
phism of the space of U(m)-invariant (u,u)-forms onto I,,.

We denote by wp the U(m)-invariant (u, u)-form on Gr(p,m) which cor-
responds to the basis element wj of I, ,, where | B|=u. We are going to show
that wp is essentially the dual of the Schubert variety (B), that is, we show that

Sw,= 0 for B+C.
>
Now as GL(m,C) is a holomorphic prinicpal bundle over Gr(p,m) of
projection zg and group P, the pullbacks &=zfw of U(m)-invariant (u, u)-
forms w on Gr(p,m) are characterized by the following properties:
1) @ is of type (u, u);
2) #Y)@=0 for any left invariant vector field on GL(m,C) belonging
to the subalgebra p of gl(m, C);
3) R¥o=é& forall heP;
4) L,a=& forallgeU(m).
To simplify our notation we write gl instead of gl(m, C) and we denote this by
gl when we regard gl as a vector space over R. Then gl(®zC is regarded
as the vector space of all C-valued left invariant 1-forms on GL(m, C). On the
other hand we have gl=n*®p and F=(n3%)*®@zC. Hence we can identify F
with the vector space of all left invariant 1-forms & on GL(m,C) such that
(Y)t=0,Yep. In particular F* (resp. F~) is the space of holomorphic
(resp. conjugate holomorphic) left invariant 1-forms ¢ on GL(m, C) satisfying
(Y)=0, Yep.
We choose an orthonormal basis {{;(4)} of F,. Then

LA AN (1sismy, 1sjsSmy; | 4] = |A'|=u)

form an orthonormal basis of F,,'u=(1{F+) A (1§F ).

We identify F, , with the vector space of all left invariant (u, #)-forms % on
GL(m, C) satsifying i{(Y)n=0, Yeb.

If o is a U(m)-invariant form of type (u,u) on Gr(p,m), then d=rfw
satisfies #(Y)&=0 for all Y=p and we can write & uniquely in the form

(3.6) & = Za(i, 4;j, AV (A) NEJ(A)

where a(z, A; j, A’) are functions on GL(m, C).
Since ¢;(A) A E,(A’) are left invariant and L¥&=a for all ye U(m), we get

(3.7) a(t, 4; j, A’) (8) = a(i, 435, A) ()
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for all g GL(m, C) and y U(m).
To study the effect of the left translation L, by g&GL(m,C) on &, we
need the following lemma.

Lemma 3.2. Every g GL(m,C) is written uniquely in the form

3.8) g = u(g)-b(g),

where u(g) is unitary and b(g) is upper triangular. This decomposition is called
the Iwasawa decomposition of g.

This lemma is a special case of a more general theorem of Iwasawa. How-
ever, in our special case the lemma is proved as follows. Letg,,---,g,, be column
vectors of g. Then we can construct an orthonormal basis {u,, --, u,,} of C™
(by Schmidt method) such that

Uy = At Opgot e arr+0

for k=1, 2, ---,m, where g;; ({<j) are complex numbers. Let #(g) the unitary
matrix whose column vectors are #,, -++, #,, and 8(g)~* the upper triangular matrix
whose (z, k)-entry (i <k) is a;,. Then we have u(g)=g-b(¢)™! and hence g=u(g)-
b(g) and b(g) is also upper triangular. The uniqueness is easy to prove.

From (3.7) and (3.8) we get

3.9) a(i, 4;j, A') (8) = a(i, 4; 5, 4') (b(g)) -

Thus these functions are completely determined by their values on B, B de-

noting the group of all non-singualr upper triangular matrices. Let b B.
Then

L¥o = Z(a(i, A; §, A)o L)t (A) N E ;(A')
and taking the value of both sides at the unit matrix 1, we get
(3.10) (L¥®), = Za(i, 43 j, A") (b)E(A), AT (A'), .

We have zgoL,=t,ong, where t, denotes the action of b= B on Gr(p, m). Then
L¥é=L¥(z¥w)=n¥&(t¥») and zg(1)=o0 and hence (L¥&),=(t¥w),on&, where =&
denotes the surjective linear map AT,(GL(m, C))—AT,(Gr(p, m)) induced by the
differential of 7z at 1. However T,(GL(m, C)) is canonically identified with gl
and the kernel of zZ: gly—Ty(Gr(p, m)) is equal to p as discussed at the be-
ginning of this sestion and #Z induces an isomorphism of n* onto T,(Gr(p, m)).
Therefore identifying To(Gr(p, m)) with n}, as we did before, we have zZZ=X,
where Zegl and X is the n*-component of X with respect to the decomposi-
tion gl=n*@p. On the other hand, since B is a subgroup of P, we have
t,(0)=0 and hence (tFw),(X,, -+, X,)=w,(p(0)X,, -, p(6)X,.) (X;En*), where
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p is the isotropic representation of P. Hence (t¥»),=p*(6 ")w, by (3.2). Now
let o=wp, |B|=u. Then w,=wz=3;(B)AL;(B) by Lemma 3.1. Notice that

we regard here ¢;(B) as an element of AF* not as a differential form on GL(m, C).
Then p*(b™)wl=21p*(b7")¢:(B) A p*(b7')¢«(B). Thus, for any Z,, -+, Z,, &g,

we have (L;)ka)l(ZIY ) Zzu):(tfka)o(Xn T X2”)=’E((p*(b—l)§,(3)) A (p*i(b—l)

Z.(B))) (X, ++-, X..), where X; is the n*-component of Z;=gl. On the other
hand from (3.10) we get (Lifw 4),(Z,, -+, Z,u)=2a(i, A; j, A') (b) (§:(A), AT ,(A),)
(Zyy 5 Zy)=3a(3, A5 7, A’) (b) (£:(A) NE(A7) (X, -+, X,i). Hence we obtain

(3.11)  Za(i, 455, A4') (8) £(A) A E;(A') = Zp*(b7)EA(B) A p*(67)(B) .

Now Fj is also invariant by the isotropic representation p* of P on AF, because
Fy is invariant by p*(g) for all g GL(p, C) X GL(g, C) and, as we see from (3.1)
and (3.2), for he)p, there is g GL(p, C) X GL(g, C) such that p*(h)=p*(g).

Therefore we can writ
(3.12) PHEIEAB) = 20 pui(B; 67)E(B)
and since p*(b7")¢ ;(B))=p*(67")¢ ;(B), we have also
P¥(O7)E(B) = 2 714(B; b7)u(B) -
Hence
510467 )u(B) A p*(6)EB)
= 33 (32 pulB; b7)pu(B; b7))EW(B) A Ei(B)
and it follows from (3.11) that
a(t, A;j, A’) (b)=0, if A%=B or A’+B
a(?, B; j, B) (b) = Zk,“p,-k(B; b Ypju(B;67Y).
Hence we have proved the following lemma.
Lemma 3.3. The pullback &pz=n{wy is of the form
@p = ? a;;5i(B) AE;(B),
where the functions a;; on GL(m, C) is given by
a;,(8) = 23 pis(B; b(g))P;u(B; b(8) ™) -

We now integrate wy over the Schubert variety (C) where |C|=|B|=u. This
integral is equal to the integral of wz over the Schubert cell (C)*. However as
we have seen in §2 there is a biholomorphic map « from the simply connected
complex abelian group N(C) onto (C)* given by a(n)=u;'+n-0(c=0oc) and we
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have the following commutative diagram:

GL(m, C) —5> Gr(p, m)

i
NC) 2 (o

where j=Lus10iy, iy being the inclusion map of N(C) into GL(m, C). Hence

we get Sszgi*waz Sa*(i*w3)=Sj*cBB== SiﬁL’,‘i,—I(T)B. However, we have u;*
w* * N N P AGH)
€ U(m) and L¥&z=ay for all xe U(m) and hence L¥%-1&,=&, and we get

(3.13) S 0y = S it

[Py N
Now the Lie algebra n(C) (C={c,, -**, ¢»}) is spanned by e, ; with the condition
s=c; (see §2). Hence i} s.s:=0 for s>¢; and {{¥Ls.00, 5=¢;,1=1, 2, ---, p}
form a basis of left invariant holomorphic 1-forms on the complex abelian Lie

group N(C). Every form belonging to AF* is a linear combination of forms of
the type

(3.14) Cp+sl,i1 JARERIVAN Cﬁ+s,‘,i,,

and the pullback by 7, of these froms are all zero except for ¢, where ¢ is
defined by (3.5) and &. is a weight vector for the lowest weight A of F.
Suppose now that i¥&z+0. By Lemma 3.3, we must have }{,(B)+0 for

some 7. Now {;(B)eFyzand Fy is a subspace of AF*. Then £«(B) is a linear
combination of form of the type (3.14). Since ##(£:(B))+0, {c must appear
in the linear expression of ¢;(B). We can conclude from this that B=C. For,
we may assume that {;(B)eFy is a weight vector for some weight A, of Fy.
Then for any diagonal mxm matrix H, §;(B) is an eigen-vector for the eigen

value A,(H) of the linear transformation p’*(H) of AF*, where p* denotes the
representation of the Lie algebra gl(p, C) X gl(p, C) induced by the representa-
tion p* of GL(p,C)xXGL(q,C). We see easily also that each element of the
form of (3.14) is also an eigen-vector of p’*(H). Hence, when we express
¢(B) as a linear combination of elements of the type (3.13), only elements
corresponding to the eigen-value A,(H) appears with non-zero coefficient and
¢ appears with non-zero coefficient. However { is a weight vector for the
weight A and hence {¢ is an eigenvector of p"*(H) for the eigenvalue A (H).
Hence we have A,(H)=Ag(H) for any diagonal matrix H and this shows that
A,=Ac and thus Ac is a weight of Fz. However, the eigenvector space for
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the weight A; is a one-dimensional subspace of AF* (see Appendix) and
contained in F.. Since A,=A. and §,(B) is a weight vector for A,, we get
§(B)eF.. Thus FcNFgz=+(0) and hence Fo=Fy. This implies B=C because
C—F. is bijective. Thus, if if&z+0, we get B=C. Hence, if C+B, we
have i}&;=0 and from (3.13) it follows that

fos=0,c+B,1BI = 1C] =u.
()]
The Schubert varieties (C) with |C|=u form a basis of the 2u-dimensional
homology group and wg is not cohomologous to zero. Then the value v5 of
the integral of wy over (B) can not be zero and £z=vg5'ey is the dual of the
Schubert variety (B).
Thus we have proved th following

Lemma 3.4. Let wp be the invariant (u, u)-form on Gr(p, m) corresponding
to the invariant element oy of type (w,u) in F,,. Then

Ep = vp'wg

is the dual of the Schubert variety (B), where vy is the value of the integral of wp
over (B).

ReEMARK. Lemma 3.4 is a special case of a more general result of Kostant
[3,6]. We can express v, explicitly by an integral of a certain function on C*
using Lemma 3.3 and (3.13).

4. The final step of the proof of Theorem. In Lemma 2.4 we have
an expression of the number dj by the integral (2.5) and the integrand involves
the form y*z¥£,;. By Lemma 3.4 we have £3=v5'wp and hence vy*z{Eg
=v5'v*@p, @p=nEwz and we have an information about & by Lemma 3.3.
We study now v*&z using Lemma 3.3; the map v: U(m)X N(4A)—GL(m, C)
is defined by

g, n) = u, guzim g€ Ulm), n=N(4) .

To simplify our notation we put c=0,. We define two maps I(u,): U(m)X
N(A)—U(m)x N(A) and v: U(m)X N(A)—GL(m,C) by

I(u;) (g, m) = (u-gu;’,n)
and
v(g,n) = gn.

Then we have
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v = vol(u,).

To study the differentials of these maps at (1,z), where 1 is the unit matrix, we
identify the tangent vactor space of U(m)xN(4) at (1,n) with n(m)xn(4),
u(m) and n(4) denoting the Lie algebra of U(m) and N(A) respectively. The
elements of these Lie algebras will be regarded as left invariant vector fields on
GL(m, C) in a canonical way. Then a tangent vector at (1, ) is a pair (X,,Y,)
where X eu(m) and Yen(4). We see easliy that

I(u,)"(X,, YV,) = ((Ad(u,)X)s, V)
and
V1(X,, Y,) = (Ad(n")X,)+ Y,
Since yT=pToI(u,), we get
(4.1) vYI(X,, Yy) = (Ad(n™")Ad(u,)X)ut Y,

Let {6,} (a=1,2, ---, m*) be a basis of left invariant real 1-forms on U(m).
Let 545, be the left invariant 1-form on GL(m, C) defined in §3. We have seen
that if s> a;, 1%8,.,.;=0 and that i}{,,,; and ¥, ; with the condition s=<a;
form a basis of left invariant complex 1-forms on N(4). We denote by s, and s,
the projections of U(m)x N(A) onto U(m) and N(A) respectively. Then {s¥6.,,
SF(EEL pasi)s SEORXE pisi)} (a=1,2, v- m?, s<a;, 1=1, 2, ---, p) form a bsis of left
invariant 1-forms on the the group U(m) X N(A4).

Let now ¢ be a left invariant 1-form on GL(m,C). Then we can write
the pullback v*& in the form

(4-2) ¥ = 2;f ®°S 1*9¢+zgs,i3§kiz’5§ prsit ) hs,is;ki;\';f Ds,i

where f,, g,; and h,; are complex valued functions on U(m)x N(4). We shall
show that g, ; and k,; are constant and that

falg, m) = fo(1,m), for all g U(m);
fo(1,n) = E,(Ad(n")Ad(u,)X,) ,

where {X,} is the basis of the Lie algebra u(m) such that 6,(Xg)=38,s and in
the above formula we regard X, as a left invariant vector field on GL(m, C).

To see these, we consider the left translation L, ,, of U(m)Xx N(A), where
g€ U(m). Then we have s,oL ,,=Lgos,, s;0L,»,=s, and oL, ,,=Lyo",
with ¢’=u,gu;*. Since { and 0, are left invariant, we get L*, ,,(v*{)=o*¢,
L*, (s¥0,)=s¥0, and also L* ,,s§i¥Cs.. =558 p1s:. Then from (4.2) we
get fuoL g 1y=Ffu, £si°Lg,y=8ss and h, ;oL ,=h,; and these mean that we
have

(4.3) {
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(#4)  folgm) = fu(1,m), £0.i(8, 7) = 85.(1, M), hs (g, ) = s (1, m)

for any ge U(m).
We get from (4.1) that

(Y*)a,m( Xy V) = Eu(Ad(n™ ) Ad(u,) X)+-5(Y)

and we also have (s¥6.)q.m(X,, Ya)=04(X) and sFi¥8s.s:( X0, Ya)=Cprs:(Y).
Then we get from (4.2) that

(45  SulL, m0a(X) 2 i1, W e V) HZ (L, 1) s (V)
= L (Ad(n™)Ad(u)X)+(Y) .

Notice that since X and Y are left invariant vector fields and 8,, {p.si and &p.s i
are also left invariant 1-forms, 6,(X), §p1../(Y) and .5, Y) are constant.
Letting X=0 in (4.5) we get

(4.6) 8(Y) = 2gsi(1, 1) p1s,( Y)+Zhsi(1, m)E s, o V)

for all Yen(4). Since e,,,,; and ie,,,, ; (*=—1) with the condition s=a;
(j=1,2, -+, p) form a basis over R of n(4), letting Y=e,,,; and Y=iep,,;
respectively in (4.6), we get {(epss, ;)=28s, ;(1, n)+h,, (1, n) and (iepys, ;)=18s,;
(1, n)—1th,, ,(1,n) and hence g, (1, n)=1{l(ep+s, ;)—iC(teps.,;)}/2 and hy ;(1,7)
= {8(ep+s, ;)+it(iepss, ;)} /2 and hence combined with (4.4), we see that g, ; and
ks, ; are constant. Then since (4.6) holds for any Y en(4) we obtain also

lﬁ{ = zgs,iix’tpﬂ.i+2hs,iiﬁfp+s,i

and hence the second term on the right hand side of (4.2) is equal to s§(z%{).

Now letting Y=0 and X=X, in (4.5) we get f4(1, n)=C.(Ad(n"*)Ad(1,;) X.)
and this, together with (4.4) proves (4.3). Thus we have shown that, for any
left invariant 1-form ¢ on GL(m,C), we have

(4.7) 7*E = 23 fastOatsE(RE)

and the function f, satisfies (4.3).
We consider now the pullback by v of a left invariant u-form » on GL(m, C)
of the form

(4‘8) n= §P+s1.f| AREIRAN §P+su,i“ .

We say that a form on U(m) X N(A) is of type (a, b) if it is a linear combination
of forms of the type s¥(0) A s¥(£), where @ is a left invariant a-form on U(m)
and £ is a left invariant b-form on N(A4). The exterior product of a form of
type (a, b) and a form of type (@, &) is a form of type (a+a’, b+¥’).

It follows from (4.7) that if s>a;, then o*{,,,; is of type (1,0), because
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%8 54s,i=0, and that if s<a;, then ¥*&,,,; is a sum of a form of type (1, 0)
and a form of type (0, 1).

We denote by u, (resp. u,) the numbers of factors §,4s,, in (4.8) such
that s,>a;, (resp. s,<a;,). Then

u=u,tu,.
Assume that > | 4| and let
u=|A4|+r, r=0.

Since | 4] is equal to the number of 1-forms &, ; satisfying s<a;, we have
u,<|A| and since u,-}-u,= | A| +r, we have also

u=r

and the equality holds if and only if u,=|4].
We have then

(49) 7*7] :agu 77(a+u1,b) ’
T2

where 714, 5, is a form of type (a+u,, b).
Analogously if 7’ is of the form

(4.10) 7 = Cpr,ji N Npitu i

we have

(4'11) ')’*’7]' = +b2] ;’—i,(a’+u1’.b/) ’
@ =uy

where %'/, 5> 18 Of type (a’+u,’, b’y and u,’ (resp. u,”) is the number of the
factors in (4.11) satisfying the condition #,>a;, (resp. £,<a;,). Then we have
also u=u,"+u,/, u/=r, u,’<| 4.

We now consider the pullback y*&, and the integrand s¥(0 4 A 7E\) A v*7EE g
of the integral (2.5) which is equal to v5's¥(0 4 A 7¥\) A v*G . Here M is a U(m)-
invariant form of type (f—r, f—r) on F(4)=U(m)/H , with f=dim¢ F(4) and
0 4 is a left invariant form on U(m) defined in Lemma 1.1 and the degree of 64
is equal to dim H,. Since 2f=m*—dim H,, 0, A 7§\ is a left invariant form
on U(m) of degree m*—2r, where m*=dim U(m). Hence s§(6 4 A 7)) is a form
of type (m*—2r, 0) on U(m)x N(A). The form &z on GL(m,C) is of type (u,u)
and

u=|B| = |4|+r.

Lemma 4.1. Let n and 7’ be left invariant forms on GL(m, C) of the form
(4.8) and (4.10) respectively. Suppose that s¥(0 4 A wEN) A v*n Aoy*5’==0.  Then
we have w,=u,’=r and u,—u,’=|A4|.
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Proof. Put E=s¥(@,A7EN). By (4.9) and (4.11), EAy*p Ao*5’ is a sum
Of & A Meauy, 5y N T ca’+uy,5) @0d these forms are of type (¢, d), where

¢ =m—2r+a+t+a’+u,+u', d = b-+b.

and these are non-zero only if c=m’=dim U(m) and d=2|4|=2 dim:N(4).
Since one of these forms is non-zero, we have —2r+4-a-+a’+u,+u,’=0. How-
ever we have u,=r and u, =7 and a and a’ are non-negative. Hence we get
w,=u,’=r and a=a’=0. However u=u,+u,—=u,’+u,’=|A|+r and so we have
u,=u,=|A4|.

If » verifies the condition u,=|A|, » is of the form

(4.12) 7= tlpe i A Nprs i, ACas

with s,>a;, for k=1, .-+, r, where {  is defined by (3.5).
Analogously, if 7’ verifies the condition #,’=| 4|, %" is of the form

(4.13) 7' = £Lpsn i N Npis,j, AEa

with #,>j, for k=1, ..-,r. Hence we can state Lemma 4.1 in the following
form.

Lemma 4.2. Letnand 7' be left invariant u-forms on GL(m, C) defined by
(4.8) and (4.10) respectively. If s¥(04NmEN) NY*(n A7) is non-zero, then 1 and
7’ are of the form (4.12) and (4.13) respectively.

Now by Lemma 3.3, &5 is of the form
where a;; are functions on GL(m, C) defined in Lemma 3.3 and {{;(B)} is an
orthonormal basis of F;. However we don’t need to assume here that {{;(B)}
is orthonormal, because if we replace {{;(B)} by another basis, then the matrix
(a;;) is simply multiplied by constant matrices and this does not disturb our
following study. We choose here a basis {£;(B)} in the following way. Since
Fp is an irreducible GL(p, C) X GL(g, C)-module with respect to the isotropic

representation p* of GL(p, C)X GL(g, C) and since {j is the weight vector for
the lowest weight A, of Fjg, Fp is spanned by { and elements of the form

(4.15) P (ear) P ¥(ea)ls  (120),

where p’* is the representation of the Lie algebra gl(p, C)x gl(g, C) defined by
p* and a, -+, a; are simple roots and e,,=gl(p, C) X gl(g, C) is a root vector for
the simple root ¢; (see Appendix).

Let §,(B)=%tz and let §y(B), -, L, (B), mp=dim¢ Fy be the linearly
independent elements of the form (4.15). Each {,(B) is then a weight vector
for a weight A, of Fz and we number §,(B), §,(B), -+ in such a way that we
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have Ag==A,<A,<A,<--. Since each {4(B) is of the form (4.15) for k=2,
£4(B) is of the form ‘

(4.16) Eu(B) = p*(ea)k s

where E=p"*(es,):-p*(e,,)lp and & is a weight vector for the weight Ay—a,
where « is a simple root (see Lemma 1 of Appendix).
From now on we assume that

sFOANTEN) A v*G5 50 .
Then we see from (4.14) that
(4.17) sF(O 4 A TEN) Ay¥(Eu(B) AEi(B))£0
for some %k and I. Since &§y(B) and &,(B) are elements of Fz and Fy is a sub-

space of AF* with u= |B|, £«(B) and &,(B) are linear combinations of #-forms
7 and 7’ respectively, where #» and %’ are defined by (4.8) and (4.10). From
(4.17) and Lemma 4.2 it follows that §,(B) is of the form

(4.18) E(B) = c+CpispisNoos A pis i NEateer,

where s,>a;, for k=1,2,..-,7 and ¢ is @ non-zero constant.
We prove the following lemma.

Lemma 4.3. Assume that (4.17) holds for some k and 1. Then there exist
s tndices j, -, js (157, <Jo <+ <Js = p, s<r) and s positive integers n,,n,, -+, n,
with the condition n,--n,~---- +n,=r such that

b;, =a;+n. for c=1,2,.,5
and
bj = ﬂj fOf j#ja .

To prove Lemma 4.3, we first assume k=1. From our choice of the basis
{€(B)} we have

§(B) =¢85

and &, is the exterior product of §,,, ; satisfying the condition s<¥b; (1=1,2, -,
p;B={b,, -+, b,}). By (4.18) we have {s=c-Lpis s A" Alpis,i, AEa+,
where c+0. Since {5 and §pie,0 A - Alpis,;, AL 4 are both of the form (4.8)
and distinct elements of the form (4.8) are linearly independent, we get c==+1
and

(4.19) o= ELprain N <Epus,i, N



262 Y. MATSUSHIMA

Let j be an index, 1< j< p, which is distinct from each of 7;, I=1,2,---,7. The
number of factors of the form {,,,, ; on the right hand side of (4.19) is equal to
a; and it is equal to b; on the left hand side. Hence we get b,=a;. Letj, -+, s
be the distinct indices among 7, -+, 7, and let n, be the number of the indices ¢,
which are equal to j,. Then we have n,+-:-4n,~=r,n,>0. Then the number
of factors of the form &,,,, ; on the right hand side of (4.19) is equal to n,4-a;,
and on the left hand side it is equal to &;, and hence b; =a; +n,. Thelemma
is thus proved in the case k=1.

Assume now k>1. We may assume that k is the smallest index k>1
satisfying (4.17). By our choice of {&;(B)}, {x(B) is a weight vector for
a weight A, with Ag<A, and by (4.16) {.(B)=p’'*(es)¢, where a is
a simple root of gl(p, C)xgl(g,C) and £ is a weight vector for a weight A,—a.

Since £ F and Fy is a subspace of AF + E=3c, 7, where 7 are elements of the
form (4.8) and c,=C. We have p’*(e,)é==c,p *(es)n and p’ *(e,,,)7)=12’:_]§ P11
Ao Np"*(ea) pit,j, A+ N pis,;,» We notice here that simple roots are of the

form a=N—N,(1=5i<p—1) or a=Npis—Npe1(1=5=<¢—1) and hence
€n=0; ;110 €4=€p,s p1sri. We also have

Pl*(ej,l)gpﬂ-,i = 81i§p+s,,~
(1=4,j, 1=, 15=q)

and

P *(pit, p+u)C prsi = — S48 prusi
(Isi<p, 1=s, 1, u=q)

(see §3 and Appendix).

It follows in particular that the term £pig.i, A *p"*(€a)l pis, i, N N proyi,
is either zero or of the form (4.8). We have &y(B)=3c¢,p"*(es)n and (4.19).
We see then that §ppg s Aves Alpis, i ANa=FLpiry i Aoer Ap"*(€a)Cpie, i, N
A& pis,.j, for some n=C,., ;A A4y, ;. and for some /, where » appears in
the expression £=3¢,7 with ¢,#+0. Renumbering, if necessary, we may assume
/=1 and hence we have

(4.20) Ci,ﬂb,-l Aces A C,H’_;' IS
= £(P*(€a)lpr11,7) NEptt0ia N Nty i -

The simple root « is either a=N;—N\;, and e,=e¢; ;4, O A=Npis—Npis4 and

€w=Cpis prst1- We first assume a=N;—N\;y, and ez=e; ;4. Then, since
/’

P*(€i,i41)8 prt1,77="0i41, 7.8 p+1,,: =0 we have

(4.21) itl=j,
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and

(4.22) §p+t1,i A §P+t2.jz ASIERAN CP‘H‘u-ju
= s is N Apis, i, NEa

Suppose that £,y ;=8s1s,:, for some [, 1<I<ri.e.i=i; and t,=s;. We may
assume without loss of generality /=1, hence /=7, and #,=s,. Then we have
Cprtrin N NCpitiy=%8pispi, N " ANEpus,i, NCa. Then we may assume
Corey i, =Cprsyi, for I=2, v ;rand Eppp 5 Ao NEpyy i =284  Then =
Eortnin N A pity i, =% pitjy Noos NEpus, j, N4 and E=cm+++- with ¢,=0.
Since £ is a weight vector for the weight A,—a and A,—a <A, £ is a linear
combination of the basis elements {;(B) with A;=A,—a. Since we have num-
bered {{;(B)} insuch a way that Ag=A(B) <A,(B)=:--, £ isalinear combination
of £(B) with i<k. On the other hand E=cn+ =26, (Epiey,j; N+ ACpus,.;,
A& 4)+- and S=§d,{,~(3). It follows then that when we express §;(B) as a

linear combination of the elements of the form (4.8), at least one of {;(B) with
d;+0 must be of the form (4.18). Since i <k and since k is the least index >1
such that §,(B) has the form (4.18), we must have 7=1. Then we have A,—a
=A,=Ap and since the space of weight vectors for the lowest weight A is one
dimensional, we obtain £§=d.{z=d-{,(B). On the other hand £==c¢,(£,.4, ;,
A+ NEpiy, i, NE4)+++ and hence £,(B) is also of the form (4.18) and in this
case the lemma is already proved.

We assume now 7,4, ;%854s,:, for all I=1,2, ---,7. We see then from
(4.22) that { ».,,,; is a factor of {, and hence

(4.23) t,<a;.

We may assume $pip, 5, A" Alput, 1.5, 00=FEEprspiyN* ANpis i, Then we
have

z-:p+t1,i A §p+t,+2.i,+z ARSRAS gm»:,,,i., = %84

and hence

1=t i NCprtn i N Nty iriiy 1) N(CalCpaeni)

where & 4/¢ p44,,; means that the factor ., ; is deleted from the product {,. By
(4.21) and (4.23) a;,=a;,=a;=t, and hence {,,, ;, is a factor of &4/8pis,:.
Then we have §,.,, j; A($a/C p+4,,:)=0 and we get 7=0. This is a contradiction
because 7=0. Therefore the case {,.sy,,iFpts,:,(I=1, -+, 7) can not occur.

The last case we have to consider is the case a=MNpis—Apist1y Ca=
€p+s,pis+1- This case is treated quite analogously as in the case a=X\;,—MN\;4,
and the proof of Lemma 4.3 is completed.

Suppose now that the integral (2.5)
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dp= | stOanmPr)nv*ntEs
Tm)XN(4)
is non-zero. Then the integrand is certainly non-zero and as #gfp=v5'dp,
vz' being a non zero constant, s§(04 A 7E\) A ¥*®y is non-zero and (4.17) holds.
Then by Lemma 4.3, B=1{b,, -+, b,} verifies the conditions in Lemma 4.3.
Summing up we have proved the following theroem which is stated in the
introduction. '

Theorem. Let N be a form of type (f—r, f—r) on the flag manifold F(A)
which is invariant by the action of the unitary group U(m), where f=dimc F(A)
and r is a non-negative integer. Then m(p*\) is a form of type (pg—|A|—r,
pg— | A| —r) on the Grassmann manifold Gr(p, m) (p-q=dim¢ Gr(p, m)) which is
also invariant by the action of U(m). Then ny(c*\) is a linear combination of
the Poincaré dual C(B) of the Schubert varieties (B), where B={b,,b,, ---, b,}
verifies the following conditions: Let A={a,, a,, -+, a,}. There exist s indices
Judo 5 Js (1= J1<Jyy ++0y <Js=p; s=<7r) and s positive integers n,, -+, n, with the
condition n,~+n,~+-+--+n=r such that b, =a; +n, for c=1,---,s and b;=a; for
JFJer

Appendix. In this appendix we discuss the representation of the direct pro-
duct GL(p, C) X GL(g, C) of complex general linear groups on the exterior algebra
AM, where M is the complex vector space of all p X ¢ complex matrices. The
problem is to decompose AM into direct sum of irreducible invariant sub-
spaces. This had been done in the last section of the paper of Kostant [3, a] as
an application of his more general theory and he attributed the main result in
this special case to Ehresmann. The purpose of this appendix is to formulate
the main theorem of Ehresmann and Kostant in a form suitable for our purpose
and to introduce a few notions in the representation theory which are needed
in §3 and §4.

Let

G = GL,XGL,,

where GL,=GL(k, C) for any positive integer k, and we identify G with the
subgroup of GL,,, m=p-+q in the usual way.

The diagonal matrices in G form an abelian subgroup H of G which we call
a Cartan subgroup of G. The Lie algebra g of G consists of all mXm com-
plex matrices X of the form

X, 0
(1) X=(O Xz)’ XlEgIﬁ’ XzEqu

and the subalgebra Y) corresponding to H consists of all diagonal matrices. §
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is called a Cartan subalgebra of g. Let
K= U(p)xU(q).

Then K is a maximal compact subgroup of G and the Lie algebra ? of K is
a real Lie subalgebra of g consisting of matrices of the from (1) satisfying the
condition ‘X;=—X; (1=1,2). Every matrix X&g is written uniquely in the
form X=Y,+{Y, with Y,, Y,¥, and we can identify g with the complexifi-
cation of the real Lie algebra .

Let L be a holomorphic representation of G in a complex vector space W.
L is a holomorphic homorphism of G into GL(W). The representation L of
G defines a representation L’ of the complex Lie algebra g in W such that

(2) exp tL'(X) = L(exp tX)

for all te R.

The restriction M of L to K is a representation of K in W and since K is
a compact group, W decomposes into direct sum W=W,+----+ W, of simple
K-modules and the representation M; of K on W; induced by M is irreducible.
Each W; is a g-module and also a G-modlue, i.e. L'(X)W,CW; and L(g)W;
cW, for Xeg and g&G. In fact, let M;’ the representation of the Lie
algebra ¥ defined by the rperesentation M; of K. Then M, (Y)=L'(Y) for
all Y&, bacause M is the restriction of L to K. Every X&g is written uni-
quely as X=Y,+iY,, Y,, Y,€t and so L'(X)=M,(Y,)+iM;(Y,). Then
as M;/(Y)YW;cW,; for YEt, we have also L'(X)W;CW; and W; is a g-
module. It follows then from (2) that L(exp tX)W;C W, for all Xeg. Then
we have L(g)W,CW; for all g&G, because G is generated by 1-parameter
subgroups. We show that W; is a simple g-module. Let W," be a subspace
of W; such that L(X)W,/c W, for all Xeg. Then we have L(g)W;/CW;
for all g€ G and in particular M(g)W;/cC W for all g K. Since W; is simple
as K-module, we have either W,/=W; or W;/={0} and this shows that W,
is simple as g-module.

Conversely let W=V 4.4V, be a decomposition of W into direct sum
of simple g-modules. We can show in a similar way that each V; is also a
simple K-module. Thus a decomposition of W into simple K-modules and
into simple g-modules is the the same thing and as W is always semi-simple
(or completely reducible) as K-module, it is so as well as g-module.

A linear function A on the Cartan subalgebra ) is called a weight of the
holomorphic representation L of G in W, if there exists we W, w0, such that

(3) L/(Xyo = A(X)w

for all Xe§. A vector w satisfying (3) is called a weight vector for the weight
A. The weight vectors for A form a subspace of W, the eigen space for A, and
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the dimension of the eigen space is called the multiplicity of A. The Cartan
subalgebra § is spanned by the matrices e, (k=1, 2, ---,m) and we have

A(X) =Nt N,

where X=\.e,,+ " +Nplsm and n,=A(ey,). It follows from (2) and (3)
that L(exp X)w=(exp A(X))w for X&€Y). Let X=2nie,,. Then exp AX=I
and A(X)=2nin, and hence exp 2win,=1. This proves that n, is an integer
for k=1, ---,m and a weight A is an integral hinear form of \,, =+, N,

Let now Xeg and x=G. Then the matrix xXx™' belongs also to g
and we define the adjoint representation Ad of G in the vector space g by

Ad(x)X = xXx™*.
The representation Ad’ of g is denoted by ad and we have
ad(V)X =1[Y,X].

A weight (weight vector) of the adjoint representation is called a root (root vec-
tor). The Lie algebra g is spanned by the matrices e;; and e, ,+s, Where
1=<i,j<p and 15, t=gq, p+g=m, and we have ad(X)e;;=(\;—27;)-¢;; and

ad(X)epis, prt=(N prs— N pr1)€prs, p+1» Where ngxkek,,e h. Hence a;;=N,—N\;

and Qi pre=Nprs—Npre (154, j<p, 1=<s, t=q) are roots of g and ¢;; and
€y+s,p++ are the corresponding root vectors. Moreover these roots exhaust the
roots of g. If « is a root of g, e, denotes the matrix ¢;; or e, ,+; according
as A=a;; OF A=0lpis, pis-

We mention here the following simple result as Lemma 1.

Lemma 1. Let A be a weight of a representation L of G in W and w a
weight vector for A. If o is a root and L'(e,)w=+0, then A+a is also a weight of
L and L'(es)w is a weight vector for A+a .

In fact, let X&), Then L'(X)L/(ey)=L’(es)L'(X)+L'([X, es]) and [X, e,]
=ad(X)ea=a(X)e,. Hence L'(X)L'(e,)=L'(e,)L'(X)+a(X)L(e;). Then L'(X)
(L' (ew)w)=L'(es) (AM(X)w)+ (X)L’ (ey)w=(A+a) (X)L (e,)w and this proves that
A+« is a weight and L’(e,)w is a weight vector.

We now introduce the lexicographic order on the Z-module of integral
linear forms of the variables \,, ---, \,,. Let A=3n,\, and A’=3n,/\,. Then
A> A’ if there exists an index k,=1 such that n,=n,’ for k<k, and n, >mn, .

Since weights of a representation L are integral forms we have an order
relation among weights of L. A weight A (root ) is positive, if A>0 (a>0).
The lowest weight (highest weight) of L is a weight A of L such that A <A'(A>A’)
for any weight A’ of L distinct from A.

We also have the notion of simple roots of g. A root « is said to simple,
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if @ is not a sum of two positive roots.

We can see easily that {a,, otz ***y Qpoy, 8y Apia, pros %y Aprgor, prqt 1S @
maximal set of simple roots of g.

We have the following theorem which we have used in §3 and §4.

Theorem 1. Let L be an irreducible holomorphic representation of G in
a complex vector space W. Then

1) The multiplicity of the lowest (or the highest weight) is one.

2) Let w(=0) be a weight vector for the lowest weight A. Then W is
spanned by w and by the vectors of the form

L' (ea) L',

where a,, -+, oy are simple roots of g.

3) The irreducible representation L is completely determened by the lowest
weight A of L. This means that, if L, is another irreducible holomorphic repre-
sentation of G with the same lowest weight A, then L and L, are equivalent.

For the proof of this theorem, see [5, Chapter VII].

Let M be the complex vector space consisting of all p X g complex matrices.
We identify M with the subspace of gl, (m=p+g) consisting of all matrices
O of the form

4 = (O D) D: px tri

(4) 0= 0 o) ! pXg-matrix .

We define a holomorphic representation T of G in M by
T(®)Q =2Q¢ "

(7 sl
e=\y

oo (, % ).

If

and Q is of the form (4), then

We have
T'Xx)-0=1[% 0] Xeg,
and if X is of the form (1), then

(5) rooe=(; 77 "%).



268 Y. MATSUSHIMA

The vector space M is spanned by the matrices ¢; ,.,(1=i<p, 1=<s=<q) and

(6) T'(X)ei, prs = (Mi— N pro)ei, pis

for all X =é x,.e,-,.—[—é N pis€pis prs il b Hence N;—N 4, is a weight and ¢; .
i=1 ST

is a weight vector.
We extend T to a representation of G in the exterior algebra AM by de-

fining

T(g) (O - AQ,) =T ()0 A+ ANT()O, .
Then
(7) T(X)(Qi A AQ) =2 Qu A AT(X)Q, A -+ A D, .
The elements of the form
( 8 ) E= Cirprsi N Neipis,

with (i, 5,)<--- <(3,, s,) form a basis of AM, where < means the lexicographic
order for the double indices (7, s) with 1<i<p, 1=s=q. It follows from (6)
and (7) that E is a weight vector for the weight

(9) AE=§7\“’[—_§7\'9+S:'

It can be proved easily that a weight A of T is always of the form Ay for some

E and that the multiplicity of A is equal to the number of the basis elements

E such that A=Ay. Clearly AM is a G-module and AM=3AM is a direct

sum of G-modules.
Let A={a,, a,, -*-, a,} be a p-tuple of integers such that 0=q,<aq, <
<a,<gq(see §1). We define E, by

(10) EA = A é:’.p+s ’
lgﬂl‘

where the exterior product extends over all e; ,., such that s=<a;,i=1,2, -+, p
and the order of the product is the lexicographic order as in (8). Then E, is
one of the basis element (8) and as there are | 4| (=Z=a4;) elements in the product

(10). E 4 belongs to IKIIW We dentoe Ag, by A,. Then
Ag= ‘2 S’EQ‘(M—XPH)
= aM+ A A, —b Ny ——b N iy
where b, is the number of the a; satisfying a;=s. Hence we have

0<a,<-<a,<q, 0=b,<b, ,<-=<b=<p.
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It follows then that, if A== A4’, then
A A * A A’ .

We formulate the main theorem of Ehresmann and Kostant (see [3, a, §8]) in
the following form.

Theorem 2.

1) The multiplicity of the weight A, in AM 1is one.

2) The subspace M, of AM spanned by E, and by elements of the form
T'(eq,) T'(€a,)E 4, where o, -+, ay are simple roots of g, is a simple g-module
and A, is the lowest weight of the representation of G in M, induced from T.

3) Two simple g-modules M, and M, are isomorphic only if A=A'.

4)  AM is the direct sum of simple g-modules M 4; in particular AM= M,

A,|4)=7
where the summation extends over all A satisfying the condition |A|=r.

Remark. If N is a simple g-submodule of AM, then N=M, for a unique
A. For N is isomorphic to one of M, by 4) and by 3), A is unique. Then
the lowest weight of N is A,. Since the multiplicity of A 4 is one by 1), E, is
then contained in N together with T"(e,,)---T'(e4,)E4a. Then M, is contained
in N by 2) and as N is simple, we get N=M,.
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