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1. Introduction. We consider here the problem of whether a smooth

manifold M (compact, without boundary) embeds in Euclidean space of a given

dimension. Our results are of two kinds: first we give sufficient conditions for

an orientable ^-manifold to embed in R2n~2, and we then give necessary and

sufficient conditions for RPn (=n— dimensional real projective space) to embed
in R2n~6. We obtain these results using the embedding theory of A. Haefliger
[6].

Recall that by Whitney [37], every w-manifold embeds in R2n. Combining

results of Haefliger [6], Haefliger-Hirsch [9] and Massey-Peterson [16] one
knows that every orientable /z-manifold embeds in R2n~l (n>4)y and if n is not

a power of two, every n-manifold embeds in R2n~l. Finally, if n is a power

of two («>4), by [9] and [26] one has: a non-orientable w-manifold embeds in

R2*"1 if and only if Wn.1=0. Here Wiyi^0, denotes the (mod 2) normal Stiefel-

Whitney class of a manifold M.
We give two sets of sufficient conditions for embedding an w-manifold in

R2n'2 y in order to use the theory of Haefliger, we assume

Theorem 1.1. Let M be an orientable n-manifold, with w;M_3+ί=0, for

If either α>3Φθ, or α?2Φθ andH^M; Z) has no 2-torsion, then M embeds in R2

Here w{ denotes the ith mod 2 (tangent) Stiefel- Whitney class of M. A
necessary condition for Mn to embed in R2n~2 is that Wn-2=0. Note, however,
that if n— 1 is a power of two, then RPn does not embed in R2n~2, even though

ΐv*-2=Q. (In this case M;Λ_3ΦO and H^RP"; Z)=Z2).
By Massey-Peterson [16] one has that w7Λ_3+ί =0, />0, for MΛ, provided

one of the following conditions is satisfied: n=3 mod 4; n=Q, 2 mod 4 and

a(n)^3; n=l mod 4 and α(n)>4. Here a(n) denotes the number of one's in

the dyadic expansion of the integer n.

Recall that an orientable manifold is called a spin manifold if w2=0. As

a complement to Theorem (1.1) we have:

Theorem 1.2. Let M be an n-dimensional spin manifold with Wn..5+i=Q,
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Then Mn embeds in R2"'2, provided that H^M; Z) has no 2-torsion when
rc=0 mod 4.

Again by [16] and [26] we have: let Mn be a spin manifold with n=ί
mod 8, 4<y<7; then, wn_j=0. Thus by (1.2) we obtain: if M" is a spin
manifold with #= 5, 6, 7 mod 8, M embeds in R2"~2.

We consider now the problem of embedding RPn. Quite good results
have been obtained by geometric methods. In particular, the work of Mahowald-
Milgram [15], Steer [31], and Rees [25] gives a good picture for large values of
a(n). However, we now show that for small values of a(n) the known results
are not best possible.

Theorem 1.3. Let s be a positive integer, not a power of two. Set
n=8s+t, 0<*<7. Then RPn embeds in R2n~*, provided a(n)^4 when t=l or 2.

To my knowledge this is a new result in the following cases (all congruences

are mod 8).

ίi=l, '

n=2y

n=3, 5,

n=4,

Combining results of [31] and [25] one has (cf., [12, 5.3]): If n=7 mod 8,
RPn embeds in /j*— κ">-8; thus> if n=6 mod 8> #p« embeds in #2»-*<»>-2.

Consequently by (1.3) we have:

Corollary 1.4. Let n be an integer such that «>15 and n^2, 4 mod 8.
Then RPn embeds in R2"-* if, and only if,

and n=0

and n=l, 3, 5, 6, 7.

Of course, by (1.3), if n=2 and α(w)>4 or n=4 and a(n)^3, then RP"
does embed in R2n~\ Note [29], [1], [21], [4], that when n = 2 and a(n)= 3 or
n=4 and a(ri)=2, RP" immerses in R2n~6 but not in R2n~7. Thus the following
conjecture seems reasonable.

Conjecture 1.5. Ifn=2mod 8 and a(n)=Zy or ifn=4 mod8anda(n)=2ί

then RP" does not embed in R2"~6.

The method of proof developed in this paper also gives one new result for
complex projective w-space, CP".
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Theorem 1.6. Let n be a positive integer with n=3 mod 4 and α(w)>4.
Then CPn embeds in R*n~*.

For a(n)^5 this follows by work of Steer [31].
The specific result of Haefliger that we use is the following. For a topo-

logical space X let X2 denote the product Xx X and let Δ denote the diagonal
in X2. The group of order 2, Z2, acts freely on X2— Δ by interchanging
factors; we set X*=(X2-Δ)IZ2. The projection p: X2-Δ->X* is a 2-fold
covering map; denote by ξ the associated line bundle and by Sq(ξ) the (q— 1)
sphere bundle associated to the <?-plane bundle qξ. Haefliger proves (see [5]

and [6, §1.7]):

Theorem 1.7 (Haefliger). Let M be a smooth n-manifold and let q be a
positive integer such that 2gf>3(w+l). Then M embeds in R9 if, and only if, the

bundle Sq(ξ) has a section.

REMARK. A similar theorem has been proved by Weber [36] for PL-
manifolds (and semi-linear embeddings) and by J.A. Lees [41] for topological
manifolds with locally flat embeddings (assuming 2q> 3(w+ 1)). Thus Theorems
(1.1) and (1.2) can be stated for these categories of manifolds. In connection
with Theorems (1.3) and (1.6), note the work of Rigdon [27].

Our method of proof is to use various techniques of obstruction theory to
show that the bundle Sg(ξ) has a section. Briefly, the following techniques
will occur: (i) indeterminancy, (ii) relations, (iii) naturality, (iv) generating class,
(v) Whitney product formulae.

The remainder of the paper is organized as follows: in section 2 we develop
some facts about the space M*. Section 3 is a brief survey of obstruction theory,
while in section 4 we give the proofs of Theorems (1.1) and (1.2). In section
5 we prove Theorem (1.3) and in section 6, Theorem (1.6). Finally, sections 7
and 8 contain proofs omitted in previous sections.

2. Properties of M *

In order to use Theorem 1.7, we need to know the cohomology of M*,
especially mod 2. For the rest of the paper all cohomology will be with mod
2 coefficients unless otherwise indicated.

To compute /f*(M*) (mod 2 coefficients!) we use another result of Hae-
fliger [7], as reworded by Rigdon [26]. We set (cf., [19]).

where S°° is the unit sphere in jR°°, and where Z2 acts by the diagonal action.

Also, let P°° denote the infinite dimensional real projective space, and for a
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manifold M let P(M) denote the projective line bunlde associated to the tangent
bundle.

Theorem 2.1 (Haefliger). Given an n-manίfold My there is a commutative
diagram of mod 2 cohomology, as shown below, in which each row is an exact

sequence

0 -> H'~*(M) -^ Hf(Mx M) -£-» H\Mx M-A) -» 0

|r* I?* \p*

0 -» #'"%P~ x M) -¥-» #' (ΓM)) -?-* H\M*) -> 0

I** b'*
Φ9

 ψ Pz ψ

0 -* H'~*(P- X M) -^ H^P00 x M) -=-!» Hί(P(M)) -> 0

All the morphisms in the diagram, except the φ's, are induced by mappings
between spaces. φl and φ2 can be thought of as Gysin maps. Specifically,
given x^H'-*(M)9 then

(2.2) φί(x)=U (l®x), where U(ΞH"(M2)

is the mod 2 "Thorn class" of M, as given, e.g., by Milnor [20]. φ2 is computed
as follows. Let u<=H\P°°) denote the generater. Then, for x^H*(M), and

(2.3) φz(uj®x) = ΣS nί+y®w-ί(M) * .

The key space in 2.1 is ΓM; Steenrod [30] has computed the cohomology of

this as follows.
Let t be the involution of MxM which transposes the factors, and set

σ= 1 -f ** : H*(M2)-+H*(M2). Let K* and /* denote, respectively, the kernel and

image of σ. Thus K* and /* are graded groups with 7*C.SΓ*; set K*=
Using the obvious projection ΓΛf->P°°, we regard H*(TM) as an 7/(

module.

Theorem 2.4 (Steenrod). There is an isomorphism of H°°(P*)-modules,

where H*(P°°) acts trivially on /*.

Note that J?* is zero in odd dimensions. For each n^O we have an
isomorphism

where (x)2 denotes the coset of / containing x®x.
We now describe the morphisms q* and &* in (2.1).
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Proposition 2.5.

( i ) q* \(R*® I*) = identity.

(ii) q*(um®(x)2) = 0, if m>Q

(iii) **(/*) = 0,

(iv) A*(tt*®(Λ)2) = Σl!ιιlli+*-'®Sq'(Λ), if degx = q.

For the proof, see Haefliger [7] and Steenrod [30].
Note that by 2.5 (iv), k*\(H*(P°°)®R*) is injective. Thus, for

y(ΞH*(TM),

(2.5) (v) y = Q if and only if q*(y) = Q and k*(y) = 0.

Returning to diagram (2.1), the map r:M->P°°xMis simply the inclusion;

the morphism p2 is computed as follows. As before, let ξ denote the canonical
line bundle over M*; set *ι=j*ξ, v=wlη<=H1(P(M)). Recall (e.g. [11]) that
H*(P(M}) is a free #*(M)-module on 1, v--vn'\ with the relation

(2.6) v*

Given x^H*(M\ we have

(2.7) p2(

Our goal is to find ways of showing that the obstructions vanish for a section
of the bundle Sg(ξ ) over M*. For this we need ways of showing that a class
in if *(Λf *) is zero. The following result is useful for this.

Define β* to be the subspace of if *(ΓM) generated by all classes of the

form

(2.8) u'®(x)2, with y+deg#<dimM.

We set λ=p2β*=/*p, in (2.1), and write Λ*=λ(β*)c#*(P(M)). Note that

Proposition 2.9.

(a) Kernel j*=p(I*),

(b) p \ /* is injective,

(c) Imagej*=\(B*) (=A*),

(d) /> jfiΛ/w ,8*07* isomorphically onto H*(M*).

The proof is given in §7.
Set w=zvlζ^H1(M^). Since ρ(u)=w andj*w=v, we have (by 2.4),
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Corollary 2.10. w (kernel j*)= 0.

3. Obstruction theory for sphere bundles

We discuss here the general problem of finding a section to a sphere bundle.
At the end of the section we consider the special case posed by Theorem 1.7 —
the sphere bundle is one associated to a multiple of a line bundle.

Let X be a complex and ω an oriented ή'-plane bundle over X, q^8. We
assume that dim X*ζq-}-5. Then the (mod 2) obstructions to a section in the
associated sphere bundle are the following (see [14], [34]), using the fact that
the 4 and 5-stems are zero [35].

(A, β3)(ω)€ΞH«+*(X)®H'+\X)9

In our applications, ω comes from a double cover and so the mod 3 obstruction
in dim #+3 is zero ([3], [28]). Also, for such a bundle, w2ί+1(ω)=Q, i^O.

These obstructions have the following indeterminacies : for j^l, define

x-^SqJ(x)-\-Wj(ω) x.

Then, assuming that wl(ω)= α>3(ω)=0,

(3.1) Indet («„ α3) = (θ,9 Θ4)H'-\X; Z).

Indet (A, A) =

Indet (7.) =

In the case of the /3's and γ, this is just the indeterminancy obtained by
passing from one stage of the Postnikov resolution to the next — not the "full"
indeterminancy in the sense of [18]. At one point we will need the full
indeterminancy for (A> A) Specifically, one can show (see [17], [18]):

Indet (ft, A)(ω) = ΨωH^(X; Z),

where Ψω is a "twisted" secondary cohomology operation [17], [32] defined on
Kernel (92Π Kernel θtnH«-\X; Z), taking values in H"+\X)®Ht+\X), and
with Indet Ψω=(έ>2, Sq2Sq1)H9(X)+Sq1H9+2(X). Note the simple, but
important, fact:

if Kernel Θ2 Π Kernel 04 Π Hf'\X; Z) = 0,

then

Indet (βt, β3) = Indet Ψω = (Θ2, S
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A second useful fact about these obstructions is that they satisfy certain
universal relations, see [14], [33], [34, 4.2]. Namely

= 0

(3.2) Sq'Sq^H+Sq'Λsίω) = 0

(92A(ω)+Sq1A(ω) = 0,

assuming, as above, that a;1(ω)=w8(ω)=0. Moreover, if w, (ω)=0 for 1
we then have

(3.3) Sqβ

αι(ω)+Sq4α8(ω) = 0.

Suppose now that Y is a second complex and /: Y-+X a map. One then
has naturality relations for the obstructions: e.g.,

(3.4) ( i) // %(ω)=0, then (aly a3) f*ω is defined and

/*(«» «3)(ω) (=(«„ a3)f*ω.

(ii) IfX(ω) = Q and (a19 a9)(ω) = Q, then

(/32, A)(/*ω) is defined and /*(&, /8,)ωC(/92, &)/*ω.

We consider now the special case ω=qξ, ξ a line bundle over Jί. We take
q even, say q=2s, so that ω is orientable. Let v=w1ξ^H1(X). Also, denote

X 2
by δ2 the Bockstein coboundary associated with the exact sequence Z - >Z->Z2.
Since %(2ξ)=82v, one has

(3.5) %(jf) = δ^ -1)-

To compute a^qξ) (assuming X(?f)=0), we use the theory of "twisted"
cohomology operations, as developed in [17] and [32], Write Θ2 for Θ2(qξ). One
then has a secondary operation Φ3,, of degree 3, asociated with the following
relation (see p. 206 in [32]):

(3.6) Φ3: 02o#2=0, on integral classes.

Our result is:

Proposition 3.7. Let ξ be a line bundle over X, with v=w£. Suppose that
=Q, for some q=2s, s^2. If ΘJS -\X\ Z}=ΘJΆq~\X\ then a,(qξ) =

This is proved at the end of the section, using the "generating class"
theorem of [32].

One final technique we will need is the Whitney product formula for higher
order obstructions: see [22] and [34, 4.3]. We keep the notation of 3.7.
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Proposition 3.8.

(i) Suppose that X(qξ) = 0. Then

a,(q+2)ξ=a,(qξ) v2+a,(qξ) zΛ

(ii) Suppose that X(qξ)=Q and that (al9 a3)(qξ) = 0.

Then,

βj(q+2)ξ=β.(qξ).v\ j=2, 3.

Proof of 3.7. Let η denote the canonical oriented 2-plane bundle over
CP°°. The sphere bundle associated to sη is

s2*-1 -ί-> CPS~I -̂ U CP~,

where π is homotopic to the inclusion. Let x=<X,(η)^H2(CP00; Z) denote the
Euler class of η. Thus, X(srj)=xs^H2s(CP00

 9 Z). Consider now the first stage
in a Postnikov resolution of π.

Let a^H2s+1(E) denote the second obstruction. Then a arises because of the
relation

Θ2(xs) = 0.

(Note §§3-5 of [32]). But

xs mod 2 = Θ2(xs~l).

Thus, in the language of §5 of [32], xs~l is a "generating class" for a\ and hence,
by Theorem 5.9 of [32].,

( * ) a e Φι(p*of~l, sx mod 2).

To prove 4.4, let/: Jί-^CP00 be a map such that f*(x)=82v. Then, qξ=f*(sτ})
— since q=2s. By hypothesis, %(ί£)=0 and so / lifts to a map g: X-+E.
Moreover, g*a<^ a^qξ). But by (*), g*a e Φs^δ^)*'1, ί̂ 2). By the hypotheses
of 4.4, #! and Φ3 have the same indeterminacy, and so the theorem is proved.

REMARK. A similar result has been obtained independently by Rigdon [26].
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4. Embedding //-manifolds in R2n 2

If M is an w-manifold, then M* has the homotopy type of a (2n— 1)-
complex, and so to see whether (2n — 2)ξ has a section (i.e., by 1.7, whether
M embeds in R2n~2) we need only consider X(2n— 2)ξ and a1(2n—2)ξ. To
compute % we use the following important result of Haefliger [7],

Theorem 4.1 (Haefliger). If M is an n-manifold, then vn+k=Q if, and only

The following result implies Theorem (1.1).

Proposition 4.2. Let M be an oήentable n-manifold. If SqΉn~2(M\ Z)=
Hn(M)y then Θ2H

2"-3(M*', Z)=H2n~\M*).

We give the proof at the end of the section.

Proof of Theorem 1.1. Since Wn_3+i= 0, for />0, it follows from (4.1) and

(3.5) that X(qξ)=Q, where q=2n—2. We will show that α^ίfjΞO by showing
that Sq2#M-2(M; Z)=Hn(M). For then by (4.2), flr2w-1(M*)-Indet a^qξ) and

hence #ι(ίf)=0.
Let μ^Hn(M) denote the generator. Suppose first that ^3ΦO. Then

there is a class y^Hn~\M) such that y wz=μ. But by Wu [38], μ=y w3=
Sq2Sq>, and so μ €Ξ Sq2#n'2(M; Z). On the other hand, suppose that H^M; Z)
has no 2-torsion. Then by Poincare duality, Hn~l(M] Z) has no 2-torsion and
so Hn-\M)=Hn-2(M\ Z) mod 2. Assume that m,Φθ, and let z^Hn~\M] be
a class such that //,=#• α;2=Sq2#. But z=z mod 2. for some z^Hn~\M\ Z),
and so again μ,eSq2ίf"~2(M; Z), which completes the proof of the Theorem.

We turn now to the proof of Theorem (1.2). Since M is a spin manifold,
SqW~2(M)=0, and so we cannot use Proposition (4.2); instead we have the

following :

Proposition 4.3. Let M be an n-dimensional spin manifold. If n^βO mod 4
or ifH^(M\ Z) has no 2-torsion, then Θ2H

2"-\M*\ Z)=Θ2H
2"-\M*).

Here Θ2=θ2(2n—2)ξ. We give the proof at the end of the section.

Proof of Theorem 1.2. Since wn_5+i= 0 (*>0), X(2n— 2)ξ =0, using (3.5)
and (4.1), and so a1(2n-2)ξ is defined. By (4.3) and (3.7), a^qξ)^
ΦΆ(8?(vg-*),sv2), where q=2n—2, s=n—\. Since Wn_5+ί=0 (ί>0), then by 4.1
v2"-5=v9~3=Q, and so al(qξ) = 09 which gives an embedding of Mn in Λ2Λ~2, by
Theorem (1.7).

Proof of Proposition 4.2. Note that by (2.8), B2n~1=Q, and hence by (2.9),
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Let ς denote the line bundle over ΓM with w£=u, and let $2=
Then,

A = Θ*P, h(I*) = Sq2(/*).

To prove (4.2), let y^H**~\M*) and let seE/2*'1 with p(z)=y. Then,
q*z=σ (μ®b), for some b^H"~l(M). By hypothesis, there is a class

"\M\ Z) with Sc\2ά=μ. Also, since Mis orientable, b=ϊ> mod 2 for some
\M\ Z). By analyzing H*(ΓM; Z) (e.g. [2]), one sees that there is a

class *GΞ#2W-3(ΓM; Z) such that ?*(i)=^(g)έ+^(g)^eJfί
2M-3(M2; Z), and

£mod2EE/2*-3. Thus,

σ(μ®b) = q*(z).

Since *, Sq2^e/* this means that .s'̂ Sq2^ and so

y = PW = pSq2^ = p6j = θΛp(*)>

as desired.

Proof of Proposition 4.3. Let Θ2=θ2(2n—2)ξ, Θ2 = 02(2n—2)£, as above.

Letx<=H2n-3(M*). Then (see (2.9)), one may choose b^H2n~\TM) so that

p(b)=x and

k*(b) = un-l

for some h^Hn~2(M). Since M is spin, Sq2λ=0 and q*d2(b)=Q. Moreover,

Note that

H«+1® A = φ2(u®h) = k*φ(u®h)y

and *tt®A)=0. Set

Then,

( * ) p(/3) = (?,(*), ?*(/3) - 0, k*(β) = (M~2)M''®Sq1/l.

Case /, nΐ 0 mod 4. If w=2, 3 mod 4, then (w~2)=0 mod 2 and so /9=0,

which means that ^2(ίc)=0. If W Ξ 1 mod 4, then tt*<g)Sq1/r=$2Sq1(tt''~2<g>&), and

&*Sq1(l<8>(/02)=Sq1(w"-2<g>λ). Set

β' = β-S2S2(l®(hγ).
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Then, q*β'=q*β=Q, k*β'=Q, so /8'=0. Thus,

Θ2(x) = p(β) = ΘS2p(l®(hy)ϊΞθ2H
2n-\M* , Z);

this completes the proof in this case.
Case II, H^M; Z) has no 2-torsion. By Poincare duality, H*~\M\ Z) has

no 2-torsion and so Sq1Hn~2(M)=0. Thus, in equation (*), Sq1A=0 and so
β=0. This means that θ2(x)=Q, which completes the proof.

One can deduce other embedding results from (4.2), such as:

Theorem 4.4. Let M be an n-dimensional, non-orientable manifold, such
that Wn_3+i=Q, *>0. // SqΉn-\M)=Hn~\M) and if w,=w^ then M embeds
in R2*-\

Note that this gives as a special case the result of Handel [10]: if w=4&+2,
Λ>2 then RP" embeds in R*»-*^

5. Embedding real projective space

Before proving Theorem (1.3) we develop some preliminary material. For
convenience we write Pn for RP*, #>1. In order to use Theorem (1.7), we
need some rather detailed information about H*(P**). We obtain this mainly
by studying Λ* and /*— see (2.4) and (2.8).

We begin with some notation. In H*(P°° X PM), we set

(5.1) [</, e] = Σf-o u*"'® Sq'V,

where d, e are positive integers and x generates H\Pn). By an abuse of nota-
tion, we use the same symbol to denote the image of |W, e] by p2: thus, in
H*(P(P«)),

[d, β] = ΣJ.ββ*-'.SqV.

Note that by (2.5) (iv),

(5.2) k*(v*®(x'γ) = [d+e, «].

Also, from (2.8), (2.9) we have

(5.3) In H*(P(P")), Λ* is spanned by the classes [d, e], where e<d<n.

In §8 we prove:

Proposition 5.4. In H*(P~ X P") and H*(P(P")),

, e]+e[d+ί, e+l].

*) Remark (added in proof). These results overlap some with recent work of D. Bausam (Trans.
A.M.S. 213 (1975), 263-303).
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Similarly, in /*C//*(ΓM), we write σ(d, e) for σ(xd®xe). By the Cartan
formula we have:

Proposition 5.5. SqV(rf, e)=dσ(d+l, e)+eσ(d, e+l),

SqV(rf, e) = (*)σ(d+2, e)+deσ(d+l,

Combining (5.4) and (5.5) we prove in §8:

Proposition 5.6.

At one point we will need to know something about the integral cohomology
of P(P"). The following result (proved in §8) suffices.

Proposition 5.7. If n is even and k=l mod 4, then

We now can give the proof of Theorem 1.3. We do this by a series of
lemmas that fit together to prove all parts of the Theorem.

Lemma 5.8. Let q be a power of two, #>8. Then,

=0 in H*+\M*\ M = P«-\

Proof. Since q is a power of two, Wί(Pg~ί)=Oy z>0, and so by 4.1, vg=0
in H\M*}, M=Pq-\ Thus by (3.5) %(ϊ+4)f=0, and so a^q+^ξ is defined.
But by (3.7) and (5.6),

since vg+ί=Q. This completes the proof.
Now let s be an integer that is not a power of two, as in (1.3), and set

k=s — 1, so that

8s+t = 8k+8+t, 0<ί<7.

Let q be the largest power of two such that q/2<8s. Then, #+4< 16&+4, and
so using the embedding p^+^cP*'1, together with (3.8), we have:

Corollary 5.9.

a2(l6k+4)ξ=Q in £Γ6*+5(M*), M = P8*+15.

Recall the map j: P(M)->M*, given in diagram (2.1).

Lemma 5.10. Taking M=P8k+15, we have: There is a class a3 such that
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(0, βajefo, a3)(l6k+8)ξ and j*a3=r[8k+W, 8A+1], in Hl6k+11(P(M))9 r€ΞZ2.

Proof. By (5.9), a1(l6k+8)ξ=Q; let α3eίί16Λ+11(M*) be such that (0, 03)<Ξ
(#!, α3)(16&+8)f. To prove (5.10) we show that #3 can be chosen so that

Note that wf(l 6k+ 8)f=0, l<ί*<7, and so by (3.2), and (3.3),

SqX = 0, Sq4α3 == 0.

Using (5.3) and (5.4), we have (since Sq1y*Λ8=0), y*03=Σί-o c, [8£+6+2ί,
8k+5—2i], where £,eZ2. Now Sq4(y*Λ8)=0, and so the proof of (5.10) is
complete when we show:

A) Sq4[8&+10,

B) Sq4 is injective on the subspace spanned by [8A+14, 8ft— 3],

[8Λ+12, 8k- 1], [8ft+8, 8ft+3], [8ft+6, 8Λ+5].

We will use one more piece of notation: we set (i9j)=vi xj in Hi+J(P(Pn)).
Thus,

[8*+ 10, 8Λ+1] - (8Λ+10, 8ft+l)+(8ft+9, 8k+2)+

k(8k+2, 8k+9)+k(8k+l, 8A+10),

and so Sq4[8A+10, 8ft+l]=0, as claimed.

To prove (B), note that

Sq4[8£+14, 8Λ-3] = [8Λ+14,

Sq4[8ft+12, 8A-1] = [8Λ+12,

Sq4[8£+8, 8k+3] = [8Λ+11, 8Λ+4]+-

Sq4[8£+6, 8k+5] = [Sft+10, 8ft+5]+- ,

where in each case the terms omitted have a left-hand coordinate smaller than
that of the term shown. Thus Sq4 is injective as claimed, which completes the
proof of (5.10).

REMARK. In doing calculations such as above, we continually use the fact
that, by (2.6),

(5.11) (n,0) = 2 S . 1 ( « - i f f ) f in

Also, note that (i,0) [</, e]=[d+i, e\.

Lemma (5.10) will suffice to calculate the obstructions (al9 a3) in all the
cases of Theorem (1.3).

We now jump ahead to compute the obstruction 73.
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Lemma 5.12. For n>15, if γ3(2w— 6)ξ is defined on Pn\ then
Ύ3(2n-6)ξ=0.

This follows at once from (3.1), using the following fact, which we prove in

§8.

(5.13) H2n-3(PH*) = 0ftf*"-''(P"*)+Sq1#l"-4(P-), where θt = Θ2(2n-6)ξ.

We now come to the proof of Theorem (1.3): we divide the proof into
three cases. As before, set n=8s+t=8k-\-8+t, 0</<7, s not a power of two.

Case I. n=3, 4, 5 mod 8.

Let q=8k+l5, we do all our calculation on P**.

(5.14) On P"', («„ a3)(ί6k+l6)ζ=0.

By (5.10) and the Whitney formula, (3.8), there is a class βie#H*flτ(P *)
such that (0, «,)€=(«„ «,)(16&+14)£ and )*(0, β«)=(0, r[8ft+16,8ft+l]). But
by (5.11),

[8A+16, 8Λ+1] = (8A+16,

, 8Λ+10)=0,

and soy*α,=0. Thus, by (3.8) and (2.10), («„ a3)(16k+16)ξ=0, as desired.
We now show

(5.15) (A,A)(16Λ+16)fΞθ, on

Note first that

(C) O

This is a simple calculation using (5.4) and (5.3)-e.g., [8A+14, 8k+5]=
Sq'[8Λ+13, 8ft+5], [8Λ+13, 8Λ+6]=Sq2Sq1[8ft+ll, 8Λ+5]. Thus, by (3.1),
y*A,(16A+16)£==0, on p(p?). Choose classes (ft,, b3)(Ξ(β2, β3)(\6k+l6)ξ such

thatj**,=0. Since β2(16A+16)^=Sq2, wehaveby (3.2),;*Sq2i2=0. By (5.3),
;**2=Σ3?-o c, [8Λ+9+ί, 8Λ+9— t], c,eZ2. Using (5.4), one finds that Kernel
Sq2 on Λ16*+lβ is generated by [8Λ+12, 8k+6]. Since,

Sq2[8Λ+10, 8k+6] = [8A+12, 8ft+6],

Sq1Sq1[8ft+10,8Λ+6]=0,

this means that one can alter b2 to a class b2' (without changing b3), so that
(V, *ί)e(/S2, /8,)(16Λ+16)f and j*b2'=j*b3=Q. Hence, by (2.9) there are
classes (c2, c3)e/* with ρ(c2)=b2', ρ(c3)=b3. Using (5.5) one easily shows:
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(5.16) On ΓP , /lβ*+19 = Sq1/lβ*+18+Sq2Sq1/I6*+lβ.

This shows that p(c3)elndet βa, and so we may choose c3 to be zero-i.e.,

P(c2, 0)e(/32, β3)(16k+l6)ξ. By (3.2), p(Sq2<;2)=0, and so by (2.9), Sq2c2=0.
Using (5.5) one finds that on 716*+18, Kernel Sq2 is generated by σ(8k+14, 8k+4)
and <r(8k+12, 8A+6)+σ(8A+10, 8k+8). Since SqV(8&+14,
<r(8£+14, 8k+4) and SqV(8A+10, 8A+6)=<r(8A:+12, 8A+6)+
8k+8), we see that (£2, έ3)elndet (β2, β3), and so (/32, /33)(16A+16)|Ξθ, as
claimed.

Combining (5.14), (5.15) and (5.12), we see (cf. §2) that on (P"*+11)* the
sphere bundle associated to (16&+16)|? has a section and hence, by (1.7), P"*+u

embeds in R"**16. Similarly, using (3.8), we see that P8*+12 embeds in
and P8*+13 in R1**™, thus proving Theorem (1.3) in Case I.

Case II. τι=0mod8.

We first prove:

(5.17) (a» α3)(16*+8)f =0, on

By (5.10) there is a class α3 such that (0, α3)e(α1( α3)(16A:+8)f (on P8*+8*)
andy*Λ3=r[8Λ+10, 8Λ+1], reZ2. But by (5.11),

[8^+10, 8k+ί] = (8k+W, 8k+l)+(8k+9, 8k+2) = 0,

which shows thaty*α3=0.
We now use the fact [15], [25] that P8*+7 embeds in Λ16**8; thus, if ί: P8*+'*^

P8*+M is induced by the inclusion P8*+'CP8*+8, we have (by (1.7)), ί*(α1( α3)
(I6k+8)ξ =Q and hence, by (3.1), there is a class yeH1*1*^**"*; Z) such that

(0, i*αs)e(Sq2,

Let z be a (mod 2) class in ΰ*@/* such that p(z)=y mod 2, and let

We have

b = s(u*®(x*k+l)z)+t(u*®(x*k+^)^^

and so &*(έ)=Σf-ι r,(8A+7--ί, 8Λ+z), r, eZ2. Consequently,

A+l)+ί2(8Jfe+9, 8k+2)+

, 8k+3),

Thus, by (2.5) (ii) and (iv),



178 E. THOMAS

Sq4b = 0, mod Image φ.

Since /*=kernel &*, we have Sq4/*c/*. A simple calculation shows that

Sq4/16*+7=0, in #*(ΓP8*+7) Consequently, Sq4#=0, mod image, φ and so

i**, = Sq4j = p(Sq4*) = 0.

Recall that back on P8J5f+8*, j*a9=Q. Hence there is a class d<=I16k+7 (on ΓP8jfe+8),
with p(d)=a3; since i*rf also is in /*, and since p(/*rf)=i*03=0, it follows that
i*rf=0. Thus, rf=rσ-(8&+8, 8£+3), reZ2. But by (3.2), since αι=0,

and hence, SqW=0. Since SqV(8&+8, 8k+3)=σ(8k+8, 8&+4)Φθ, this shows
that r=0, and so #3=0, completing the proof of (5.17).

By (5.17), (/32, β3)(16k+8)ξ is defined, on P8*+8*. We now show:

(5.18) /*(&, β3)(l6k+8)ξ=Q.

This follows easily from (3.1), (3.2) and (5.3). We leave the details to the
reader.

Finally, by (2.10) and (3.8), (5.18) implies that (&, &)(16Λ+10)f = 0, and
so, by (5.12) and (1.7), P8*+8 embeds in /Zie*+10, as desired. This completes
the proof for Case II.

Case III. n= 1, 2 mod 8, α(n)>4.

We do all the argument on P8*+10; set m= 8A+10. The firstr result is:

(5.19) (*„ α,)(16ft+10)f Ξθ, on Pm*.

As before, by (5.10), there is a class az such that (0, az)^(alί α3)(16Λ+8)|
(on Pw*) andy*αa=r[8*+10, 8k+l] in ίί 16A+11(P(Pm)), reZ2. Thus by (3.8),
;*(«» a9)(16k+10)ξ=(0, r[8k+l2, 8k+l]). Let /: p—l*-*F»*, /: PίP^-1)-
P(Pm) denote the maps induced by the inclusion Pm-1dPm. We now use the
fact that P*k+9 immerses in Rl*k+10

y see [23]. (It is at this point that we require
tf(rc)>4.) Thus the bundle /*/*(16&+10)g has a (nowhere zero) section on
P(Pm-1), by Haefliger-Hirsch [8]. Consequently, by (3.1),

(*) (0, r[8k+ 12, 8k+ 1]) e (Θ29 Sq4)//16^9(P(P8Λ+9) Z).

Using (5.11) one sees that [8A+12, 8k+l]=[8k+8, 8k+5] on P(P8k+g). More-

over, by (5.4), Θ2 is an injection on Kernel Sq1 Π //16*+9(P(P8Λ+9)), ^2 = ̂ 2(16*+
10) f. Since [8Λ+12, 8A+1JΦO, it follows from (*) that r=Q. Thus,;*α3-=0
and soy*(α!, ^3)(16*+8)|^0; consequently, by (3.8) and (2.10), (aly a3)(l6k+

= 0, on Pm\ which proves (5.19).
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The obstruction (β2y β3)(l6k-\-lO)ξ is consequently defined, and we now
show:

(5.20) y*(&, &)(16*+10)?==0, on Pm\ m=8k+W.

The first step is to show:

A) We may choose classes (£2, £3)e(/32, /33)(16&+10)| so that

J*(*2, *a) = (r[8k+6, 8A+6], 0),

Note that

, 8k+5]+

t[8k+8, 8k+4]+q[8k+9, 8Λ+3],

8Λ+4],

where the coefficients all lie in Z2. Since

Scf[8k+7, 8k+5] = [8k+8, 8Λ+5],

Sq2Sq1[8A+7, 8Λ+3] - [8k+9, 8k+4], and

Sq'Sq^SA+S, 8k+5] = [8k+8, 8k+5]+[8k+7, 8k+6],

we see that ό3 can be chosen so that j*J3=0. Thus, by (3.2), J*(θ2b2)=0y

where 02=02(16&+10)£. Using (5.4) and (5.11) one finds that this implies:

j=0, ί=g. But (92[8A+8, 8A+2]=[8A+9, 8&+3]+[8&+8, 8k+4 ]+[8k+6,
8A+6]. Hence, ό2 can be altered (without changing b3) so thaty*&2=r[8A+6,
8Λ+6], as claimed.

To complete the proof of (5.20), we use the map ί : pw-2*-^p'M*. Jn Case

II we proved that i*(£2, &)(16A+ 10)^^0 on Pw-2*, and so ί*(6a, b3)^ΨωHlβk+g

(Pw-2*; Z), (see discussion following (3.1)), where ω=(16A+10)g. Now by
(5.7), a class in ff16fe+\Pm~2*y Z) is determined by its mod 2 reduction. Suppose
then that y is in domain ψω, and let y=y mod 2. Then (see §3), Sq1j;=0,
Θ2y=0, Sq4jv=0. But a calculation shows that

-2*) n Kernel Sq1 Π Ker Θ2 Π Ker Sq4 = 0,

and so y mod 2=0. Thus, y=G, and so by §3,

ί*(i2, *3)

Also, by what we have already proved, j*i*(b2, i3)=(r[8^+6, 8A+6], 0), in

P(Pm-2). Thus, there is a class y<=Hlw(Pm~*) with (92(;*j)-r[8^+6,
8Λ+6]. A simple calculation using (5.4) shows that this is possible only if

j*y=0 and r=0. Hence, back on Pm*, ;*(/32, /93)(16Λ+ 10)f = 0, as claimed.



180 E. THOMAS

Therefore, by (3.8) and (5.11), (&, /98)(16ft+12)f=0 on Pm*, and hence
on P"-1*. Thus by (5.12) and (1.7), Pn embeds in R2n-\ for n=8k+9 and
8A+10, completing the proof of Theorem (1.3).

6. Embedding complex projective space

Our goal is to show that if n=4s+3, s not a power of two, then CP" embeds
in R4n~β. We do this by showing that the sphere bundle over CP"*, associated
to (4n— 6)ξ, has a section. Since the methods here are very similar to those
used in §5, we only sketch the proof.

We use the following notation: y^H2(CPn) denotes the generator, and in
H*(P(CPn)) we set

As before, Λ*C#*(P(CPΛ)) denotes j*H*(CP~), and as in (5.3) we have:

(6.1) The classes [d,2i] generate A*, where 2i*ζd*ζ2n—l.

Finally, we set s=k-\-ly so that n=4k-}-7. The first step in the proof of (1.5)
is to show:

(6.2) the obstruction (al9 α3)(16£+12)f is defined and there are classes
(a» a9)&(a19 a3)(16k+12)ξ such that

, 8k]+s[8k+9, 8Λ+4]

j*a3 = j[8ft+H, 8Λ+4], r,

This is proved using (3.1) and (3.2). Now α>4(16&+12)£Φθ, while
Wi(16k-\-l2)ξ=09 for 1<*'<7, ίΦ4. Thus, one hasarelation analogous to (3.3):

Using this on (6.2) one finds that s=G (in (6.2)). But by a formula analogus
to (5.11), [8Λ+15, 8Λ]=0, and hence j*(al9 a3)(l6k+ 14) f=0, using (3.8).
Therefore, by (2.10) and (3.8), (αlf α,)(16Λ+16)f =0.

The next step is to show:

(6.3) (&, /9,)(16*+22)f =0.

Starting with classes (ό2, b3)^(β2y /S3)(16Λ+18)|, one finds that by using
the indeterminancy of /52(i.e., 02), έ2 can be chosen so that /*£2— r[8k-\- 12, 8Λ+8].
And by (3.2), one basj*bΛ=s[8k+l3, 8k+8]. But

[8Λ+14, 8k+8] = [8Λ+15, 8^+8] = 0,

and so ;*(A, /S8)(16A+20)f =0. Consequently, by (2.10) and (3.8), (/32, /88)
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(16Λ+22)| = 0, as desired.
By an indeterminancy argument (use Θ2) one shows that/*fy3(16A+22)| = 0.

But /16*+25=0, and so by 2.9, <y3(16Λ+22)f =0, which means by (1.7) that
CPn embeds in R2n~6.

7. The cohomology of M*

This section contains the proofs that were omitted in sections 2 and 4.
We begin with the proof of Proposition (2.9.)

(a) Kernel;* = p(/*).

This follows at once from the exactness of (2.1), given that kernel A*=/*

(see (2.5)).

( b ) p \ /* is injective.

Set D*=H*(P°°)®K*y see (2.4). Note that Z>* Π /*=0 and that φ(u*®x)<=
Z>*, if *>0 and x<=H*(M). Suppose that *<Ξ/* with ρ(e)=0. Then, by (2.1)
and the above remarks, e=φ(ί® y)y for some y^H*(M). By (2.5) and (2.1),
since

0 = k*(e) =

But φ2 is injective, and so y— 0, which proves e=0y as claimed.

(c) Image/* = λ(J3*) = A*.

Note that by (2.3), Image φ2=un®H*(M)®un+1®H*(M)® , where
w=dim M. Thus, if we set C=Σ<-o uf®H*(M), we have that p2 maps C iso-
morphically onto £Γ*(P(Λf )). Set C= C (Ί pr^Image y*). Note that &*(5*)c C
and hence £*(β*)c(?, we show:

which proves (c). Moreover, by (*), λ maps B* isomorphically onto Image/*
and hence p|B* is an inverse to/*, which proves (d), in (2.9).

To prove (*) all we need show is that Λ* maps B* onto C. This is a con-
sequence of the following:

Proposition 7.1. GώiH jχeίί*(ΓM), there is a class b^B* such that

Before proving this we develop some preliminary material. Given a class y
in H*(TM) we associate with it a unique class in H*(P°°)®K, called the leading
term of y. Suppose that degree y=d, and set s=[d/Z\. Then we can write

2'(g)(%)2+/, where /e/and where degree #*=*", 0<t'<f. Let/ be
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the integer such that x. Φ 0 and #,-=() for / <?'. We define leading term y=ud~2j®
(Xj)2. If y=ly we set leading term y—0.

We will need the following key fact.

(7.2) Let x^Hg(M), #ΦO, and let j be a non-negative integer. Then, leading
term φ(uj®x)=un-q+j®(x)2.

Proof. Write d=n-\-q-}-j, and set s=[d/2]. There are classes /e/ and
2i such that

φ(u'®x) = ΣU*-2'

Also, by 2.3,

φ2(uj®x) = Σo Mli+y

Thus the term in φ2(uj®x) with highest power of u is ud~9®x. But φ2= A*φ,
and so yi=0 for ̂ ^ and

k*(ud~2g®yq) = ud~9®x+ terms with lower degree in u.

Using 2.5 (iv), and recalling that Sq°(#)— x, we have yq=(χ)2 (mod /), which

implies that

leading term φ(uj®x) = ud~2q®(xf

as claimed. This completes the proof of (7.2).

Proof of 7.1. Let y<=H*(ΓM). Since \(/)=0, we may suppose that
y^H*(P°°)®K. Let leading term j>=w*®(#)2, where Λ>0 and degree x=q>
say. If /j+^<w, then y^B* and there is nothing to prove, so suppose that
k+q^n. Let y^φ(u^q-n®x). Then, by (2.1)

But by (7.2), 3; and yx have the same leading term, and so

leading term (y—yj = uk*®(xw)2,

where k^k—2 and kλ+2 deg Λ?(1)=deg y. Thus,

Continuing in this way we obtain classes j\, y2, •• ,ιyr, say, such that

X(y)=\(y-(yl+...+yr))9 and y-(yι+ .

thus completing the proof of (7.1) and hence of (2.9).
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8. The cohomology of Pn*

This section contains the proofs that were omitted in §5. We begin with
the following useful fact.

Lemma 8.1. Let d^Hq(TPn), q>0, and let
where Λ, eZ2. // a^Qfor 2i^g, then k*(d)=Q.

This is an immediate consequence of (5.2). Using this we have:

Proof of 5.4. We do the proof in H*(P°°χPn)y giving the details only for

Sq2. Suppose then that d and e are positive integers with d^e. Note that

Sq2|W+4, e} = Sq*(u* [d, e]) = *ΛSqK *],

and so to prove (5.4) we may assume £<J<e+3, since ί ^ ) = ( 2 ) moc^ '̂

Now for;>0, [e+j, e]elmage Λ*, by (5.2). Also, if d<έ?+3, we find that

, e+l] = Σ *,(«'®*>),

where the sum is over all, i-\-j=d-\-e-\-2 and where α, =0 for z>ή Thus by (8.1),

SqK e]+(£\[d+29 e]+e[d+l, e+ί]=0 as claimed.

The proof for Sq1 is similar, using the fact that

Sq1[rf+2, e] = Sq^ μ, e]) = fi' Sq1 ,̂ e].

Hence, we need only take d=e, e-\-\.

REMARK. A proof for Sq1 is given in [40], and [2, section 7]; note also

[13].

Proof of 5.6. Since tf *(Pn*)=p#*(ΓP*), and since H*(ΓP") is determined
by A* and q*9 (5.6) will follow when we show:

(8.2) (i) Sq2

(ii) Sq2?*/4*-1 =

Now (i) follows at once from (5.4), while (ii) may be proved by an inductive

argument using (5.5). We omit the details.
To prove (5.6), let y^H4k~l(TPn). By (8.2) (i), we may choose

rfe#4*-2(ΓP") SQ that ^*(Sq2SqW)-ft*(Sq23;). Set $=y—Scfd. By (8.2)(ii),

there is a class <?<EΞ/* such that 2*(Sq2SqV)=2*Sq2j>. Since Sq'Sq^C/* and
Λ*/*=0, we see that k*Sq2Sq\d+e)=k*Sq2y, ^Sq'SqX^+^-^Sq2^, and

hence Sq2y=Sq2Sq1(rf+^), completing the proof of (5.6).



184 E. THOMAS

We will need the following well-known fact in the proof of (5.7).

Lemma 8.3. Let X be a space and k a positive integer such that Hk(X\ Z)

is finitely generated and has no odd torsion, then, Hk(X\ Z)=ΰ2H
k~\X\ Z2) if,

and only if,

Kernel Sq1 = Image Sq1 on Hk(X; Z2).

Proof of 5.7. Note that Sq1/*C/*, and since k is odd, Sq1JΪ*cβ*+1. Thus
by (8.3), (5.7) is proved when we show:

SqΉ*-1 = ker Sq1 Π B*9 Sq1/*-1 = Ker Sq1 Π /*.

Since λ :jB*^Λ* (see 2.9), we do the argument for B* in Λ*. Define Fc Λ*
to be the subspace spanned by generators [d, e]y with e^d^n—2. Since n is
even (in 5.7), Sq'ΓcF, by (5.4). Let k (in 5.7) be written, k=4s+l. We
assume k>n, since this is the only case of interest to us. Then,

Λ* = {[ίi-1, k-n+l]}®V. But

Sq'tfi-l, k-n+1] = [n, k-n+l] =

[n— 1, k— n+2]+v, where v^V.

(We use here 5.11 and the fact that k— n+ 1 is even.) Thus Sq1[n—l,k—n+ 1] <ί
V and so Ker Sq1 Π ΛΛ=KerSq1 Π V. An easy calculation shows that Ker Sq1 Π

*-1. Finally, since

A*Sq1(l®(Λr)2) = j*Sql(l®(*r)f) = 0,

where r=(A— 1)/2, we see that Sq^-'cfi* and hence Ker Sq1Π-B*=Sq1β*-1,
as claimed. Similarly, one shows that Sq1/*-1— Ker Sq1 Π /*, thus proving (5.7).

Proof of (5.13). For this it suffices to show:

-4 = 2Λ-3-4 = Λ

recalling that #2=Sq2 on /*. Now the first equation follows by a straight-
forward calculation (consider the cases, n odd and n even) for the second equa-
tion, note that Λ2Λ~3 is generated by [rc— 1, n—2]. But if n is odd, then
Sql[n— 2, n—2]=[n—l, n—2], while if n is even, one shows that Θ2[n— 2, n— 3]=
[n— 1, n— 2]. This completes the proof of (5.13).
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