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Throughout R will denote a ring with identity and every R-modules con-
sidered in this note are unitary R-modules. Let M be an R-module. If Endg(M)
is a local ring, we call M a completely indecomposable module. We take a set of
completely indecomposable modules {M,},; and put M= 2 @AM, Then we

know several properties of M with respect to this decomposition. For instance,

let M= 3> @N; be another decomposition and I’ a finite subset of I, then
J

M= PMyP > @N, where @: I'— ] is a one-to-one into mapping [1].
r ¢

T =@’
H. Kanbara [8] shows that the above fact is true for any subset I’ of I if and only
if {M,}; is a locally semi-T-nilpotent (see the definition below).
In this note, we fix a subset I’ (not necessarily finite) and give criteria for
SYPH M, to satisfy the above property. If {M,}, is locally semi-T-nilpotent,
G

Z @M, satisfies it, however the converse is not true [4]. When we fix the
slubset I, the above property does depend not only on 2, @M, but also on
>3 ®M,. On the other hand, the concept of semi-T-riilpotenqy of {My}y
:i_oles depend only on 4;‘ ©M,. Hence, we shall define a new concept in this

note, namely relative semi-T-nilpotency (see the definition below) and give a
relation between relative semi-T-nilpotency and the property above.

In the final saction (Appendix), we shall generalize [6], Lemma 5 as Theorem
A.1 by virtue of K. Yamagata’s idea [12], [13] and [14] (Lemma A.1). That
theorem gives the complete proof of [5], Lemma 2 (Corollary 2) and a generaliza-
tion of [14], Theorem (Theorem A.2).

1. Definition

Let {M,}; be a set of completely indecomposable modules. We shall
recall definitions of locally semi-T-nilpotency and the induced category 2 from
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{M,};. Let {M,}T be a countable subset of {M,}; and {f;: M,—M,, }a
set of non-isomorphisms. If for any m in M, there exists a natural number 7,
which depends on m, such that f,f,_,---f,(m)=0, then the set {f;} is called
locally T-nilpotent. If every sets {f;} of non-isomorphisms for every countable
subsets {M,} of {M,}; are locally T-nilpotent, then the set {M,}; is called
locally semi-T-nilpotent (cf. [3] and [4]). In the definition above, if we allow that
a;=a; for some i1, we call {M,}; locally T-nilpotent. We shall generalize this
concept as follows: Let {M,}; and {Ng}; be sets of completely indecomposable
modules. We take countable subsets {M,}T, {Ng}T of {M,}; and {Ng},,
respectively. We take sets {f;} and {g;} of non-isomorphisms, where f;: M, —
Ng, and g;: Ng—>M,, . If for any element m in M, there exists n, which
depends on m, such that g,f, g fi(m)=0, then we call {f;, g;} (locally and)
relatively T-nilpotent. If for every countable subsets {M,}7 and {Ng}7, every
sets {f;, g:} of non-isomorphisms are relatively T-nilpotent, then we call {M,};
and {Ng} s (locally and) relatively semi-T-nilpotent (see Remark 3 in §4). We note
that if {M,}; and {Ng}, are relatively semi-T-nilpotent, there exists #’ for any
element x in Vg, such that f,/,, g,/ f.,/-- f,£,(x)=0. If we allow in the above that
a;=ay (B;=8) for some i=1’ (j+i’), we call {M,}; and {Ng}; relatively T-
nilpotent. It is clear that if either {M,}; or {Ng}, is locally semi-T-nilpotent,
then {M,}; and {Ng}; are relatively semi-T-nilpotent, however the converse is
not ture. If either I or J is finite, we assume as a definition that {M,}, and
{Ng}  are relatively semi-T-nilpotent, ({M,} ; or {Ng}  is locally semi-T-nilpotent).

Let {M,}; be as before and My, the category of right R-modules. Let A
be the full sub additive category of Mz, whose objects consist of all modules
which are isomorphic to directsums of some modules in {M,};. We define the
ideal  in A as follows: J'N[A4, Bl={feHomg(4, B)|psfi, are non-
isomorphisms for all &« and B}, where 4~ IZ, PMyeU, B~ S PMy N and

J/
i,/ My—A injection, pg’: B—Mpy projection. By /I’ we denote the factor
category of ¥ with respect to J’. Let 4 be in A and 4= >} PA,(4, are not
L
necessarily in ). Then there exist submodules 4, in A of 4, for each a such
that 3 PA,/=4 in A/Y and those 4, are unique up to isomorphism. We call
L

those A, dense submodules of A, (see [4], [5] and [6] for detail).

2. Main theorem

We recall Krull-Remak-Schmidt-Azumaya theorem. Let {M,}; be as in
§1 and M= > DM,. We take any other decomposition of M by completely
I

indecomposable modules Ng: M= 3> @Ng. In the theorem above we consider
J

the following two properties for M:
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P,1 For a direct summand > M, of M (I' 1), there exists a one-to-one
I/
mapping @ of 1’ into I such that M ~N ./, for all a1’ and M= 3} DNy, D
II
SYPM,y.

-1

P2 For a dirsect summand > DM, of M (I' 1), there exists a one-to-one

1/
mapping  of I into J such that M= 33 DM yD > DNg».
I T-9a’n

Those two properties are general cases of the exchange property in M which

is defined in [4] as follows: Let N be a direct summand of M and M= 3} DL,
K

any decomposition of M (L. are not necessarily indecomposanble). If M=
NP ) BL, for any decomposition above, where L/ L, for all €€ K, we
K

say N has the exchange property in M. If N has the above property only in case
all L, are indecomposable, we say N has the exchange property in M with respect to
indecomposable modules (briefly w. r. t. inde. modules).

It is clear that if IV has the exchange property in M, N is in 2 and (P,2) is
equivalent to the exchange property in M w. r. t.inde. modules. We have
already known that (P,1) is true for any subset I’ of I if and only if {M,}, is
locally semi-T-nilpotent [8]. Now we fix {M,}; and a subset I’ of I and con-
sider (P,1) and (P,2) for any decompositions of M. We shall show the following
results and give proofs in the next section.

Theorem. Let {M,},; be a set of completely indecomposable modules and
M=3®M,. Let M=SDT and S'=733 DSy, T'=2 DT, dense sub-
I I’ 17

modules of T and S, respectively. Then the following statements are equivalent.
1) S has the exchange property in M w. r. t. inde. modules.
2) T has the exchange property in M w. r. t. inde. modules.
3) {Su}r and {T,} " are relatively semi-T-nilpotent,
where S, and T, are completely indecomposable modules.
In those cases S and T are direct sums of completely indecomposable modules.

Corollary 1. Let M, S and T be as in Theorem. Then S has the exchange
property in M if and only if 3) in Theorem is satisfied and any direct summand L of
M has the following decomposition: L=L,DL, and a dense submodule L," (resp. L,)
of L, (resp. L,) is isomorphic to a summand of S (resp. T), (cf. Theorem A.2 in §4).

Corollary 2. Let M= _nZ DM and M in U for all i. Then the following

statements are equivalent.
1) M® has the exchange property in M w. r. t. inde. modules.
2) M has the exchange property in MCPMD w. r. t. inde.
modules for all i.
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If M and M have the exchange property in M w. r. t. inde. modules, then
so does MPDM.  Covnversely, if MPDM has the exchange property in M,
then M has the exchange property in M if and only if so does M. (cf. [2],
Lemma 3.11)

Corollary 3. Let {M,}; and {Ng}; be sets of completely indecomposable
modules and U, B the induced categories from {M,}, and {Ng};, respectively.
Then {M,}; and {Ng} ; are relatively T-nilpotent if any onlf if for any modules M
and N in U, B respectively, M (resp. N) has the exchange property in MEBN w. r.
t. inde. modules.

Corollary 4. Let {Sy}y (resp. {T,}1") be a set of noetherian (resp.
injective) and completely indecomposable modules. Then > DSy (and 3 BT ,)
1’ 7

have the exchange property in 33 PSP D) PTyr w. r. t. inde. modules.
17 177

Corollary 5. Let S, T and M be as in Theorem. If Homg(S, T)=0 or
Hompg(T, S)=0, then S and T have the exchange property in M w. r. t. inde.
modules.

3. Proof of Theorem

Let {M,}; and {Ng}; be as in §2. We shall rearrange them as follwows:
{M,} = {Mkj} keK,jEI, and {Ng},= {Nkj} keK ,je] where Mk,-szj'szj@’
Nk;'/ and MkjﬁMk,j,) Nkj*Nk/j, lf k:*:k/.

Lemma 1. Let {M};} ek, jer, and {Ng;}sex, jcs, be as above and K' a
subset of K.  We assume {M;} and {N,;} are relatively semi-T-nilpotent. Then
1) if I, and ], are infinite for all REK', then {M,;} ' ;, is locally T-nilpotent.
2) If either |1,|<| ]| or 1, is finite and ] .= ¢ for all REK', then {M;} i, 1, is
locally semi-T-nilpotent, where |I| means the cardinal number of a set I.

Proof. 1) and the first part of 2) are clear. We assume [, is finite and
Je¥¢. Let {M;}T bea countable subset of {M}«/,, and {f;: M;—M;,} a
set of non-isomorphisms. We assume M,=M, ;. Since I, is finite, there
exists n, such that MaAxM,, ; for all '>n,. Next, we assume M,,=M,,;,
(k,#k,). Again there exists n,>n, such that M ,/aAxM,,;, for all n’>n,. Repea-
ting those arguments, we obtain a subset {M,} of {M,}, (n,=1) such that
M,A&M,, for all i4i and a set {g,-:f,,m_lf,,‘_ﬂ_z--~f,,‘.: M”-'_)M"m}‘ It is
clear that no one of g; is isomorphic by [3], Lemma 4. Furthermore, M, ~N,;
for some k. Hence, {g;} is locally T-nilpotent from the assumption. There-
fore, {f;} is locally T-nilpotent.

Lemma 2. If {M,}, and {Ng}; are locally semi-T-nilpotent, then so is
{M ) N ﬂ} IuJ-
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Proof. Let {T;}7 be a countable subset of {M,, Ng},,; and {f;: T;—T;,.}
a set of non-isomorphisms. We assume {7;}T contains an infinite number of
modules in {M,}; say {I'} 2{M,}7. Then {g;=f,  _.fa  -2fa} islocally
T-nilpotent and hence so is {f;}. If {7} contains only a finite number of
modules in {M,},, then there exists n such that {T;};5,< {Ng};. Therefore,
{f:} is also locally T-nilpotent.

Lemma 3 ([5], Theorem 2). Let M be as before and N, a direct summand of
M: M=N,DN,. We assume N,= > PN, and {Ny}r, a set of completely
I’

indecomposable modules, is locally semi-T-nilpotent. Then N; has the exchange
property in M for i=1,2.7

Lemma 4. Let {M,}; and M be as before. Let M=T®S and N a direct
summand of M such that N= 3\ PNy and every Ny is completely indecomposable
J

and not isomorphic to any summand of S. If {Ng}; is locally semi-T-nilpotent,
M=N®DBT'DS, where T'CT.

Proof. We have M=N®T'®S’, T=T'DT” and S=S'PS” by the
assumption and Lemma 3. Since T”®S”~N, §”=(0).

Lemma 5. Let M=M,®M,ON,®N, and M;= > DM, ;, N;=

KiD0; ITw;

> 2 DNgu; the M, ;, Ng, are completely indecomposable. We assume

LiSB; Jg.

M, ;AM,,; and M, ;AN,, ", Ng ;AxNg,;; and Ng AMg, » for any j,j' and
j’. Let M=T®S and T’, S’ dense submodules of T and S, respectively. If
{My} i, 10, @ locally semi-T-nilpotent and T'~M,DBM,, S’~N,DN,, then we
have the following decompositions:

M= M,®T,YDM,PN,/DPN, = (M,BT,/)DT"HS",

where 1) T= T]/@ TI/’ Tl/: T1/I® TIII/ (T: TI//® T//@ TI///), 2) S=S//®S///’
3) N\=N,/®N,", 4 T,”, T,/”, S"" and N, are in N and 5) T" (resp. S’’) con-
tains a dense submodule which is isomorphic to M, (resp. N/ DN, ; N, is in W and
is a summand of N,).

Proof. Since T'~M DM, and {M,} «,, 14, is semi-T-nilpotent, T'=T,'P

1) Correction to the proof of [5], Theorem 2.

Replace the following words on the left side by ones on the right.
“p” on 4, 5 and 6 th lines (from the bottom)=pp. “SIPT 8"’ on 5th line=Tg". “Ker §=DTp"”’
on 4th line=Ker ppg= Tp’@?_,:;ﬁEB Ty. “L=3®Tg*and L=Kerp” on 3rd line=Tg*CKerpsTp

= Tpg’. ‘““Therefore” on 2nd line=Finally, let p be the projection of M onto %EBT&” with
Ker p= %‘, @Tpe*. Then
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T,); T/~M; and T=T/DT” by [4], Proposition 2. Now, we consider all
modules in A=U/Y’. By A we shall denote the residue class of 4 in A. If B
is a direct summand of A, B means the image of & in 2, where e is the projection
of Ato B. Then T=T/®T"'=T'=T,/®T, and hence T"~T,/~M, in 2.
Accordingly T” contains a dense submodule isomorphic to M,. If we apply
Lemma 4 to the decomposition M=T/@ST"DS, then M=M,pT,”PHS”,
where T)/CT, and S”<S. We put T/=T/PT,/”, S=S"dS"”, and
]l=4=M/M1. Then S”"DT,/~M|(S”"DT")~M,DT,”=U and hence, S’ A
by Lemma 3. Further

M~ T/®T'HS" ~ M,®N,BN,  ooeeeen (*).

We may assume those modules are equal to each other through isomorphisms.
Since T, is isomorphic to summand of M, M=T,®M,HN,DN, form ™
and Lemma 4, where N,.=N/®N,”. M|T/'~M,ON,/DN,~T"HS”. On
the other hand, T,”~M, /(M,®N,’®N,)~N,” and hence, N, is in ¥ by Lemma
3. Since T contains a dense submodule isomorphic to M, and S” is a direct
summand of S, S contains a dense submodule isomorphic to N,/@®N,’, where
N, is in A and a direct summand of N,. Therefore, M=M,BT,"PM,PN,/D
N,=M, BT/ PS”"PT" are the desired decompositions.

Lemma 6. Let {M,},; and M be as in the theorem. We assume M=N,D
N, N=2 DMy, N,= X DMy and My &=M, for any pair (o, a’')E
I/ I//

I'x1”,(I=I'UI"). We assume further that M=TDS, T=T,DT, and T (resp.
S) contains a dense submodule which is isomorphic to N, (resp. N,). Then for any

element t in T, there exists a direct summand i DTy of T, such that t< 5”_,‘ DTy
1 1

and Ty~M,; for som o/ €I

Proof. Lette( ‘2‘, DM, D :‘i‘, DM, )=M’'. Then M=M'DT,/ DT, D
S’ by Lemma 3, where ’.;“,-= T/® T,-’:, S=S8"®S"and T\/"=T,N(M'BT,PS")>
t. Since T,”®T,PS"~M’', T,= i DTy, Tiy~M,; by the assumption and
Lemma 3.

Lemma 7. Let M=N,®N, beasin Lemma 6. Then M=THPN,=N,DS
for any decomposition M=T DS as in Lemma 6 if and only if {M}, and {M 7}
are relatively semi-T-nilpotent. In this case T~N, and S~N,, (cf. Corollary 2
to Theorem A.l in §4).

Proof. We assume M=N,PS=TEPN, as in the lemma. We may assume
that I’ and I” are infinite. Let {M,_,}T and {M,;}T be countable subsets of
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M}y and {M,7},r, respectively and let {f,: M,—~M,.} be a set of non-
isomorphisms. We shall make use of the same argument as the proof in [3],
Lemma 9 and [5], Lemma 2. Put M,/= {x-+f.(x)|xeM,} M,PM,,, <M.

Then M= 3B M, BN*DN,=N,® S BM,’ ®N,*, where N *=
/2 @Mw,’ RO/Z {11 37 "'72i_—1’ "'} and N2*= 2 @Mm’/’ RO/,= {2’ 4’ "%y
I _RO’ 77

"Ry

2, ---}. Itis clear that i‘, DM,;_, Z :.2 DM,;./. We define an automorphism
® of M by setting ¢=‘¢+I(1/—ZROI®M“®N2)' Then M=®'(M)=d'(N,)P
NP (M, )PP (N,*). Hence we have M=N, D 3 DD (M, )PP (N, *)
from the assumption. Therefore, M=®(M)=D(N,) P> PM,;/ PN, 2*=§]€BM i
[y i DOM,; /PN, *PN,*. We can easily show from this decomlposition

that {f;} is locally T-nilpotent, (cf. [3], Lemma9). Hence, {M},”and {M "} ,»
are relatively semi-T-nilpotent. We shall show the converse. Put M*=N, U S.
Let s&N,N S, then there exists a direct summand S, of S (and hence of M)

such that s&€ S, and S,~ é @®M,/ by Lemma 6. On the other hand, M=.S,P
1

N,®BN,” from Lemma 4. Hence, N, S=(0). If either I’ or I” is finite,
M=N,$S’®T’ by Lemma 3. where S’C.S and 7"CT. Since N,~M|N,~
S'PT’, T’=(0) and so M=N,PS’'cM*<M. We assume I’ are infinite and
M=+=M*. Since M*2N,, there exists a,”&1” such that M, EM*. Let
my " EM,»—M*. From the decomposition

M=T®S e (1)

my=t+s; t€T, s€S. Since s€ScM*, teT—M*. We obtain, from
Lemma 6, a direct summand i @T; of T (and hence of M) such that T;~M,/

and te 31 DT;. Let p,” be the projection of M to T; in that decomposition.
Then there exists ¢ (=a,’) such that p,/(m,’)=t,/ET,/—M*. From
Lemma 3 and the assumption, S contains a summand S,,, isomorphic to M, /.
We obtain again from Lemma 3

M= N&Bﬂgl DM PSSy 0 eeeeeeeeeen (2),

where, &, is some index.

Let p,/”® be the projection of M to M, in (2). Since N,PS ", < M*, there
exists o’ E€1”—€, such that p, (1, )=m,rEM,r—M?*, (it is possible
a,"=ay”. In this case (2) implies M contains at least two summands isomorphic
to M,). We may assume T,,/~M,/,, for some a’(2)1’. Then again from

Lemma 3 and (1) we have
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M= Mm/(z)GaTI@S ......... ( 3 )’

where TC T. Thenm,y=x+t; x&€M*,t&T'—M*. Similarly to the argument
after the decomposition (1), we obtain ¢,/ and a homomorphism p,/ of M to T,/
such that p,/“(m,”)=t,'ET,—M* and T,/ is a summand of 7" (it is
possible T,,~T, /. In this case (3) implies M contains at least two summands
isomorphic to M,,,). From the remark after (2) and Lemma 3, there exists a”(3)
such that

M=N,D 3 BMyBSryPDSyra eeeeeeee (4 )’

I/I _(ell’ez/)

where S28,/~M,,, and Sy ,,~S,”,,. Hence, weobtain o/’ I”— {€/, &,'}
such that p, (¢, )=m, €M, »—M*. Similarly we have

M= My My PBT'HS e (5),

where My y~T,/, Myoy~M /o, and T”CT. Repeating those arguments, we
have a series of indecomposable modules; M, ”, Ty, M,, T,z and a series

of homomorphisms p,=p,/ | M, ", py=pa,"®| T4y, -+ (it is possible o, = ;"

resp. T,'~T,’) for i=j(resp. k*l). Put M»= > ®eM,, ", T™=
P 3 ! J (resp 2

¥2i+1

SVDT,,; (external directsum). Then M and T are isomorphic to direct
1

summands of M for all #» from the decompositions (7). We now concentrate
to find a contradiction to the assumption of relative semi-T-nilpotency and
hence, after replacing M, (resp. T,,) by another isomorphic summands when
a/'=a;” (resp. a'(kR)=a’(l)) for i+1 (resp. k=1), we may assume o, /" (resp.
o'(R)+ca’(l)). Itis clear that any p; are non-isomorphic and p,p,—, - p,(m,,”)+0
for all n. This is a contradiction to the relative semi-T-nilpotency. Therefore,
M=M?*. Similarly, we have M=T®N,,.

Lemma 8. Let M and {M}, be as in the theorem and I’ a subset of 1. Put
M=) S M,=)N,DN,, where N,= > DM, and N,= > BM . Then the
I I’ -1’

following statements are equivaletnt.

1) N, satisfies (P,2), (equivalently N, satisfies (P,1)).

2) N, satisfies (P,2), (equivalently N, satisfies (P,1)).

3) {My}y and {M '} ;_y are relatively semi-T-nilpotent.

Proof. Since the condition in 3) is symmetric, we may show 1) is equivalent
to 3). We know already from [5], Lemma 2 that 1) implies 3) (see Corollary 2

to Theorem A.l in §4). Now we assume 3)and {M,} ;= {My;} scx,jer, 28 in
the beginning and N,= 3131 ®M,,;, N,= 3133 BN,;. We consider a parti-
E T, K T

tion of K as follows:
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K,={keK|I, and J; are infinite},

K,={keK|I +¢ and J, is finite},

K,={keK|I, is finite and J, is infinite},

K,={keK|I[,=¢} and

K= {keK|],=¢}.

We put M(i)=3 g} ®M,,;and N()=3] ; DN, {M,}kor, (Nest oty

are locally T-nilpotent and {My;} k,.1,» {Ni;} k.7, 2re locally semi-T-nilpotent

by the assumption and Lemma 1. Hence, {M}x,ux,1, is locally semi-T-

nilpotent from Lemma 2. Let M= > @L, be any decomposition with L,
I

indecomposable. Then M=M(1)®M(3)D > DL, for some I’ by Lemma
I
3. We put M=M/|(M(1)®M(3)) then
B~ MQOME)D 3} ONG) ~ 5 ®Ly oo (**).
Since {N;}x, s, is locally semi-T-nilpotent, we obtain from (*¥) and
Lemma 3 M~M(22)OM(5)PD 3} DN(E)D 3} DL,y for some I”CI’. Hence,
it2 17
M|(S) BL)~MQR)BMGB)D 3 BN@)~ 3 D Ly, where I"'=I'"—1". We
I iF2 g
consider a partition of I’ as follows: I,””={¢”’&I"”"|Ly~M,; for some
keK, UK} and I,”’=I""—1I". 'Then 3} @ Ly isadense submodule of itself,
7
which satisfies the assumption in Lemma 7. Hence, M/(3) @Ly»)~M(2)D
7"

M(5)D ) DLy. Therefore, M=N,P SY PLB 3 DLyr.
) 17 7"

Lemma9. Let M and {M,}; be as in Theorem. We assume M=T®DS, and
T’, S’ are dense submodules of T and S, respectively: T'= 3\ BTy S'= D) DSy.
I’ II/

If {Ty}p and {Sy} are relatively semi-T-nilpotent, then T and S are in U,
where T,y and S+ are completely indecomposable.

Proof. Let M=T@®S and T”, S” dense submodules of T and S, respec-
tively. Then M Zr @S’. We shall use the same notations as in the proof of
Lemma 8 and put N,=¢ (T"), N,=¢ *(S’). Since {My;}x,ux, is locally
semi-T-nilpotent,

M = M(1)®M@3)DT,” DM(2)DM(5)D(N(1)DNQ3)) DN(2)DN4)

= MQ1)PMQB)DT,"®T"PS”, T=T/BT"®T,” and S = S”"BS"”’

by Lemma 5, where (N(1)®N(3)) <N(1)@N(3) and T” (resp. S”) contains a

dense submodule isomorphic to M(2)DM(5) (resp. (N(1)DN(3)Y DN(2) D
N(4)), where N(2) is a summand of N(2); N(2)~ > 2/ @DNg,;, (N(4)Y=N(4)

K2 Jg,
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in this case). Then a dense submodule of 7" is isomorphic also to M(2)&
MOSE T @Nes Put NOY'=F 3 SNoy, and HA=M[MD)&

K, Tg,~Tg,

M@G)DT,”)(~M(2)DM(5)D( (1)@N(3))’@N(2)G9N(4)~T"EBS") {Ne} ko,
is locally semi-T-nilpotent. We apply Lemma 5 to a decomposition (N(2)")&D
((N(D)BNQB)Y DNA)B(M(2)DN2)"YB(M(5))=S"DT”, then M~N(2YD
S, PB(N(1)DN3)Y DN(#)D(M(2)BN(2)"y DM(5)=N(2) B S, DS ST,
where S® contains a dense submodule isomorphic to (N(1)BN(3)y BN(4) and
T does a dense submodule isomorphic to (M(2)BN(2)"YDM(5) from the
structure of M(z) and N(j), and $”"=S8,PS®CPS,®, T"=THT®. Accor-
dingly (N(1)@NQ3)Y DNEA)D(M2)PNR2)YPM(B)~SPPHT®. Since J is
finite for k€ K, and {N,,} «,, 5, is locally semi-T-nilpotent, (N(1).N(3))' ©N(4)
and (M(2)DN(2)"Y B M(5) satisfy the assumption in Lemma 7 (cf. the proof of
Lemma 2). Hence, S“~(N(1)®N(3)Y DN4) and T~(M(2)DN(2)"YDM(5)
by Lemma 7. Since T=T,"PT"DT,” and T"=T®PT®, T is in A from
Lemma 5. Similarly, S=S"@®S"” and S”"=S,PSPPHS®.

Proof of Theorem. Since the condition 3) is symmetric, we may show that
1) is equivalent to 3). We assume 1). Then 7T and S are in % and hence, we
obtain 3) from Lemma 8. We assume 3). Then T and S are again in % from
Lemma 9. Hence, we have 1) from Lemma 8.

Proofs of Corollaries.

1: We assume S has the exchange property in M. Let M=L@®L’. Then
M=S®L,PL, and L=L,PL, L'=L'DL,. Since L,PL’~T and L,’D
L,~S, L, (resp. L,) contains a dense submodule isomorphic to a direct summand
of T (resp. S). Conversely, we assume the above fact and 3) in Theorem. Then
S~ 2 DM, and T~ S DN, from Lemma 9. We use the same notations

17

as in the proof of Lemma 8, and put S=N, and T=N,. Let M= Z DL,
be any decomposition of M. Then Ma~M(2)PM(5)P E DN(G)~ 2 L by

Lemma 3, where L,=L,/®L,”. Again from Lemmas 2 and 3 we have
M%M(Z)EBM(S)EBZEBN(:)@ZEBLE’”, where L/=L,"®L,®. Hence,

M — M/(; EBLEHI) ~ M(Z)@M(S)@‘;;L@N(z) ~ ; L® eoovenenn (***)

Now we shall apply the assumption to L,>. Put L, ’=L. Then L=L,DL,
and L; contains a dense submodule L, which is isomorphic to a direct summand
of N;. Hence, L/=M*(2)®M*(5)PN*(3) and L,’=M*(2)DN*(3YDN*4)
from (***), where M*( ) and M*( ) (resp. N*( ) and N*( )’) are isomorphic to
direct summands of M( ) (resp. N()). On the other hand, N*(3) is isomorphic
to a direct summand of N, and hence of M*(3). Therefore, N*(3) has the
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exchange property in M by Lemma 3. Similarly, M*(2)" has the same property.
Therefore, N*(3) and M*(2)" are direct summands of M (and hence of L) by
[4], Proposition 2: L,=N*(3)®L,”, L,=M*2)Y®L,” and L,” (resp. L,”) con-
tains a dense submodule isomorphic to M*(2)PM*(5) (resp. N*(3)Y DN*(4)),
(see the proof of Lemma 5). Accordingly M(2)@M(5)BNG)BN#= 3 L,

@ngz: 2 (Lz“)ll/ @N*(3)e) @ 2 (Le(t)z//@M*(z)E/)z E (M*(Z)EI@LECDIU)@
K K. K —_
ZK] (N*(3),®L,®,”). Therefore, we obtain from Lemma 7 that M~M(2)P
M(5)D ;} (N*(3);BL®,”). Thus, M=N,P (L PN*3)PL,*,”) and
K

L/)"®N*(3),PL,*®,” is a direct summand of L,.

2 and 3: They are clear from Lemma 8.

4: Let {S,;,.,} and {N,;} be countable subsets of {S,},; and {Ny} 7,
respectively and {f,;_,: Sy, =Ny}, {gsi: Noi— S} sets of non-isomorphisms.
Since N,; is injective, Ker g,;+0 is essential in N,;. Hence, Ker f,;_ gy "[rS
Ker g,:fsi_1-+f1 and so {f.;_,, g.:} is T-nilpotent.

5: Let TV and S’ be dense submodules of T and S, respectively. We take
indecomposable summands T, and S, of 77 and S’. Then T=T,®T” and
S=S,BS"” by [4], Proposition 2. Hence, Homg(S,, T',)=0 or Homg(T',, S;)=0.

ExampLes. 1. Let Z be the ring of integers and p, g primes. Then {Z/p’}T
and {Z/¢’}T are relatively T-nilpotent, but {Z/¢?}7 is not T-nilpotent. Put
N,= f} BZ[p**~ and N,= i‘ @Z|[p*. Then all Z[p* have finite composition

1 1
series, but INV; does not have the exchange property in f} DZ[p’.
1

2. Let K be a field and R the ring of lower tri-angular and column sum-
mable matrices over K with degree. 8, Let {¢;;} be a set of matrix units in R.

We put N,= i Pey;_y 2R and N,= i @Pe,; ,;R. Then all¢;;R are projective
1 1

and noetherian (artinian), but N; does not have the exchange property in N, DN,.

4. Appendix (The finite exchange property)

In §3 we have used Lemma 2 in [5]. However, I gave, in [5], only an idea
of the proof of this lemma. In this section we shall give its proof as a more
general form for the sake of completeness. Making use of a remark by K.
Yamagata [12], [13], and [14], we shall deal with a relation between the finite
exchange property and the exchange property and give generalizations of [6],
Lemma 5 and [14], Theorem.

Let M be an R-module. In §2 we have defined the exchange property in
M for a direct summand N. If we consider only decompositions M= ;‘ ®L,

with | K| <m in that definition, we say N has the m-exchange property in M. In
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[2] we have several properties on modules with m-exchange property (not nece-
ssarily in M), however they are note valid in our restricted case. Hence, we shall
give proofs for some results in [2], if we are necessary to change some parts of
proofs.

The following lemma is substantially due to K. Yamagata [9].

Lemma A.l. Let T be an R-module and T=A,DA,=MPN. We assume

M= 3" DM, and every M, has the finite exchange property (in the usual sense) and
K

A, NM=£(0). Then there exists a finite subset {1,2,---,m} in K such that

T= E"j DM *DA,*DA,, where M* < M; (M ;*=£(0) for some j) and AXCA,.

Proof. There exists a finite subset {1, 2, ---,m} in K such that 4,N
(é DM;)£(0). We put M2= zm] @M;, then M4 has the finite exchange pro-

pérty by [2], Lemma 3.10. Hence, T=M*®A4,'DA,’, where 4,=A4/DA,".
Since M*NA,+(0), 4,/=*4, and so 4,”=#(0). Put T=T|(A4,/ DA )=A4"D
A/"=M?. By [2], Lemma 3.10 4,” has the finite exchange property and hence

T:Al"eail: @M/, where M;=M;/®M;’> Then T=T| ®M/=A4/=
i@ﬁ'ﬂ' We may assume ﬁl”:iz(()). Then A,"=A"®A}" and A=
M"+(0), A= X ®M/". Accordingly T =3\ ®M/DSA,"®M,”. On the
other hand, 4, ?zhas also the finite exchamge1 property. Hence, we have
T=A4/DA*DIVBM,* where A *CAN and M*CM, Since
AM*CAVE A/, il @M*+(0). Hence, T= i DBM*D(A,"*DA,)DA,
is a desired decompcl)sition. 1

Lemma A.2 ([5], Lemma 1). Let T be an R-module and T=N,DN,. We

assume that N, has the m-exchange property in M and T=N,DN, ; N/~N;,
it=1,2. Then N, has the m-exchange property in M.

It is clear (cf. the proof of Lemma 7).

Lemma A.3 ([2], Lemma 3.10). Let T=B,®B,PB, be R-modules. We
assume B, has the m-exchange property in T and B, has the m-exchange property
in B,@®B,. Then B,PB, has the m-exchange property in T.

It is clear.

2) added in proof: Use A,” instead of A4;” and we obtain 7—‘=;12"@$€B]171,»’. Hence,
m
T=4/® 2;_‘. DOM;/DA4,.
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Lemma A4 ([2], Lemma 3.11). Let T be an R-module and N a direct
summand of T. If N has the 2-exchange property in T, then N has the finite
exchange property in T.

Proof. It is sufficient to show that N has the 3-exchange property in T.
Let T=N@®N,= 3'®4,. Then

T=N@A,'BA,DA4,) ,

where 4,=A4,/®A,”, A,DA=(4,DA,) D(A,DA,)" and (4,DA4,)"=(4,DPA4;)N
(NA4,). On the other hand, N~4,”P(4,PA4,)’ and N,~A,’D(4,DPA4,) .
Hence, A4,”®(A4,P4;)"” has the 2-exchange property in T' by Lemma A.2.
Accordingly T = (4, P 4,)DA,= A" B (4, D 4:) B (A4, P A4,) DA/, where
(4,A4,) c(A,P4,) and 4/<A,. Hence, since (4,PA4,)' DA, <A,DA,,

A,B A, = (4,DA)'®A;/BD ,

where D=(4,DA4,)N (4, B(4,PA,))=(4,DA,)N(A,DA,)=A4,, namely D is
a direct summand of 4,. Put NPA/'=(4,PA4,)’PK. Then T=NDA,/’D
(4.:24,) = (4,PA4,)" PKP(4,D4,) = (4,DPA)PK=(4,PA4,)’ DA/ BPDD
K=N®A/'BDDA, .

The following theorem is a generalization of [6], Lemma 5.

Theorem A.1. Let {P,}, be an infinite set of R-modules which have the finite

exchange property and P= >\ ®P,. Let I’ be an infinite subset of I with infinite
I
complement I-I'.  We assume Pp=3S\@P,s has the 2 (finite)-exchange property in
Il

P. Then if we take any countable subsets {P,;_}7 and {P,}7 of {P.}r and
{P,} 1- 1, respectively and any sets of homomorphisms f;: P;—P; ., such that for any
direct summands X in Py;_, (or Y in Py;) foi_(X) (or f=X(Y)) is not a direct sum-
mand, provided f,;_(X)=(0) (or fu=(Y)=*Py-,) for all i (e.g. Im f,;_, is small in
P,; or Ker f,;_, is large in P,;_,), then there exists n, depending on x in P, such that
fnfn—x"'fl(x)=0-

Proof. We can prove the theorem similarly to [6], Lemma 5 and so we shall
give a sketch of the proof. We shall use the same notations as in the proof of
Lemma 7, changing M, by P,. Put P/={p;+f(p))|p;EP:;} P, DP;,,.

Then P= 3 @®P,_/OPVD 31 DPyHPP= 3} ®P,,, DPOD 3) P,/ D
1 1 1 1

P®_ Since D) DP,_,/BP® has the finite exchange property in P from the
1

assumption and Lemma A.2, we obtain from the decomposition above

P= i @Pz,-_II@P(DEBX@ Y@Z ......... ( 1 ),
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where XC 3V ®P,;_,, Y 3 BP,’and ZCP®. We shall show X=(0). We

assume contrary X =(0). Then we have from Lemma A.1
P= 2: ®P2‘.-1*® ﬁ @Pzi—ll@Pm@X,@ YDZ  eeeeens ( 2 ):

where Py;_*CP,_, (P,;_,*#(0) for some j) and X’'cX, We consider the
following modules and a decomposition of P:

P*d i PP, /PP® and P = Pl@(z ®P,;_)DP®
@Pz,@(g @Pzg,)@P(z) ......... ( 3 ).

Since the former module has the finite exchange property in P by Lemma A.3
and [2], Lemma 3.10, we obtain from (3)

P = (P*® i DP,;_/DPV)DP**PADP,/*PBDC,
where P **CP,, AC ;;2 @P,;_, P,/*CP,, BC ; @P,; and CCP?®. Hence
P = (PS®P)B(P,*PD)  eeeeeee (4),
where P3=P*®P **and D= 3 ®P,;./ DPYDAGBDCC 3 ©P;. Using
only a fact DS 3} DP; in (4),‘>\zzve shall show that P,5=(0). 'iset x bein PS.
If fi(x)e(P, *EBS)S, x=0 from (4). Hence, f;|P,’ is monomorphic and

P,=f(PHBN e (5),
where N={x€P,| f,(x) D}, (see [6], Lemma 5). Furthermore
P,=PS®f(N) e (6),

since f, | P,% is monomorphic. Hence, P,5=(0) from (5), (6) and the assump-
tions. Therefore, P,*=(0) in (2). Next, we consider similarly to (3)

P*® i ®P,;_/®P® and P = P,OP.S(Z] BPu-)
®PODP,DP, EB(; ®P,)®P® e (3).
Then P=(P*® X1 DP,;_,/DPV)DPADP DA DP,*DP,/*DB PC’, where
P,/*CP,/, Pzi_lAlng,-_l, A'S Py, B'S 7 BP,/ and C'CP®.
From the argument after (4,) we know P,#=(0). Thus, we have
P = (P/OP,/*)D{(PSDP)+(P/*DD)}  wooeeeee (4),
where PS=P*PP> and D=3 g}aPz,-_l’ BPYPDAPB DC'C I DP,.

i2>5
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Applying the same arguments on PS@P, and P, in (4) as ones after (4), we
obtain P§S=P,*=(0). Continuing those arguments, we have a contradiction to
the assumption X 3=(0) in (1). Therefore, we have from (1)

P=3®P, /OPYOYSP® and YC SI@P, wooeoe (7).

Hence, {f;} is locally T-nilpotent.
From Theorem A.1 and [10], [11] we have

Corollary 1. Let E be an injective module. If i @DE,; has the finite exchange
1
property in 3 PE;; E;~E (e.g. E is 3-injective), then the radical of Endg(E) is
1
locally T-nilpotent.

Corollary 1'. Let P be a projective module with finite exchange property. If
i @P,; has the finite exchange property in i @P;; P;~P, then the radical of
1 1
Endg(P) is locally T-nilpotent.

Corollary 2 ([5], Lemma 2). Let {M,} be a set of completely indecomposable
modules and M= >3 DM ,. Put N;= > PM,s, where I=1, U1, and I,N1,=¢.
I I;

If N, has the 2-exchange property in M,, then {M y},, and {M 4} ,, are relatively
semi-T-nilpotent.

Proof. We may assume that I; are infinite. Let {M,;_,}7 and {M,;}T be
any countable subsets of {M}, and {M,},, respectively and {f,: M,—~M,,,}
a set of non-isomorphisms. We shall show that f,;_, satisfies the assumptions
in Theorem A.1. Since M; is completely indecomposable, M; has the (finite)
exchange property by [9], Proposition 1. If Ker f,;_, is a direct summand of
M,;_,, Ker f,;_;=M,;_, or Ker f,;_,=(0). The former case implies f,;_,=0.
We assume Ker f,;_,=(0). If Im f,;_, is a direct summand of M, then f,;_, is
isomorphic. Hence, Im f,;_, is not direct summand of M,;. Therefore, f,;_,
satisfies the assumptions in Theorem A.1.

Corollary 3. Let {M,}; and M be as in Corollary 2. For any subset I’ of
I we put Mpy= 33 PM,. Then the following statements are equivalent.
1

1) {M,}, is locally semi-T-nilpotent.

2) My has the 2-exchange property in M for any I' 1.

3) My has the finite exchange property in M for any I’ < 1.

4) My has the exchange property in M for any I' 1, (cf. [14]).

Proof. It is clear from Lemma A.5 and [§8], Theorem.
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Theorem A.2. Let {M,}, be a set of completely indecomposable modules and
M=PM,. We put M= DM, for some I'CI. Then the following
I I’

statements are equivalent.

1) M s has the 2-exchange property in M.

2) My has the finite exchange property in M.
3) My has the exchange property in M.

4) M;_y has the exchange property in M.

Proof. 3)—2)—1)areclear. Weassume1). Then {M,};and {M}; y
are relatively semi-T-nilpotent by Corollary 2 to Theorem A.1. Hence, My
(resp. M;_y) satisfies conditions in Corollary 1 of Theorem (cf. its proof) and so
My and My_;s have the exchange property in M.

Corollary 1. Let M be as above and M=T@S. Then T has the exchange
property in M if and only if so does S.
Corollary 2. Let M= DM, be as above. We assume M=SDT and any

I
indecomposable direct summands of S are not isomorphic to direct summands of T.

Then S has the 2-exchange property in M if and only if S has the exchange property
in M.

Proof. Let S’ and T be dense submodules of S and T, respectively.
Since S’@T'~M, M=3"PM' yD I DPM'r; SXPM’'y~S' and JPM’
I/ II/ I/ III
~T’. Weassume S has the 2-exchange property in M. Then M=S@®> DM’
§i4
from the assumption, (cf. the proof of Lemma 6). Hence, S=~>1®M’, and
I/

T~3 ®M ys. Therefore, S has the exchange property in M by Theorem A.2.
I
Corollary 3. Let M= 3\ ®M,. We assume M, &M, if asa'. Then
a direct summand S of M has the 2-exchange property in M if and only if S has the
exchange property in M.

Corollary 4. Let M= 3\ M ,=SDT. We assume S has the exchange pro-
I

perty in M. If M=S,DT, and a dense submodule of S, (resp. T,) is isomorphic to
S (resp. T), then S, has the exchange property in M.

Proof. We may assume S=M,’and T=M,». Then {M} and {M z}
are relatively semi-T-nilpotent. Hence, S; and T, are in 2 by the assumption
and Theorem. Therefore, S,~S’'~S (T,~T'~T).

Remarks. 1. If every direct summand of M is in A (e.g. all M, are
countably generated), then Theorem 4.2 shows that 2-exchange property in M
of a direct summand is equal to the exchange property in M. Furthermore, it
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is eqivalent to a fact that {M,},» and {M};_ps are relatively semi-T-nilpotent.
2. Let M= > ®M,=SPT be as before. We assume that S has the
I

2-exchange property in M. Then the proof of Theorem A.1 shows that for any
direct summands 33 @®M’y and 3} ©M'y of S and T, respectively M}
K K

and {M’,} g+ are relatively semi-T-nilpotent.

3. In the definition of relative semi-T-nilpotency in §1, we took a set of
non-isomorphisms {f;, g;}. However, this definition is equivalent to a stronger
one in which we assume only {f;} or {g;} is a set of non-isomorphisms, (cf.
Theorem A.1).

4. Let {M,}; be a set of completely indecomposable modules such that
{M,} is locally semi-T-nilpotent. Weassume M= >} PM, and T=MPN=

I
S1@A;. Then we obtain, from [6], Lemma 8, decompositions 4;=A,/DA;”
1
such that (3} ©4;)N M=(0) and > DA4,” is isomorphic to a a direct summand
1 1
of M. We further assume that N does not contain any direct summands isomor-
phic to some M, in {M,};. Then if we make use of the same argument in the
proof of Lemma 7, we can prove T=M® >\ PA;/, namely M has the R,-
exchange property in 7, because if T+ M 3} A/, there exist a subset {M,}

of {M,};, an element x&M,, and a set of homomorphisms f,;_,: M,, ,—N
and f,;: N—M,,, such that f;f,;_,---f,(x)=0 for all .
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