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Throughout R will denote a ring with identity and every Λ-modules con-
sidered in this note are unitary Λ-modules. Let M be an Λ-module. If End^(M)
is a local ring, we call M a completely indecomposable module. We take a set of
completely indecomposable modules {MΛ}/ and put M= Σ ®MΛ. Then we

know several properties of M with respect to this decomposition. For instance,
let M= Σ ζ&Nβ be another decomposition and Γ a finite subset of /, then

M= Σ 0MΛ'φ Σ ζ&Nβ, where φ: /'->/ is a one-to-one into mapping [1].
τf j-<t>σ'ϊ

H. Kanbara [8] shows that the above fact is true for any subset Γ of / if and only
if {MΛ}f is a locally semi-T-nilpotent (see the definition below).

In this note, we fix a subset Γ (not necessarily finite) and give criteria for
Σ ®^f</ to satisfy the above property. If {My}/ is locally semi-T-nilpotent,
/'
Σ ®MΛ' satisfies it, however the converse is not true [4]. When we fix the
I'

subset /', the above property does depend not only on Σ ®MΛ* but also on
I'

Σ ®MΛ". On the other hand, the concept of semi-T-nilpotency of {Mα'}/'
I-I'

does depend only on Σ ®MΛ'. Hence, we shall define a new concept in this
I'

note, namely relative semi-T-nilpotency (see the definition below) and give a
relation between relative semi-T-nilpotency and the property above.

In the final saction (Appendix), we shall generalize [6], Lemma 5 as Theorem
A.I by virtue of K. Yamagata's idea [12], [13] and [14] (Lemma A.I). That
theorem gives the complete proof of [5], Lemma 2 (Corollary 2) and a generaliza-
tion of [14], Theorem (Theorem A.2).

1. Definition

Let {MΛ}f be a set of completely indecomposable modules. We shall
recall definitions of locally semi-T-nilpotency and the induced category Stt from
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{MJ7. Let {MΛ.}Γ be a countable subset of {MJ7 and {/,•: MΛ.->MΛ/+1} a
set of non-isomorphisms. If for any m in MΛl there exists a natural number n,

which depends on m, such that fnfn-\ "/ι(w)=0, then the set {/,-} is called
locally T-nilpotent. If every sets {/,-} of non-isomorphisms for every countable

subsets {Λfα.} of {MΛ}7 are locally Γ-nilpotent, then the set {MJ7 is called

locally semί-T-nilpotent (cf. [3] and [4]). In the definition above, if we allow that

(Xi=cij for some ί'Φ*, we call {MΛ}7 locally T-nilpotent. We shall generalize this
concept as follows: Let {MΛ} / and {Nβ} / be sets of completely indecomposable

modules. We take countable subsets {Mrtj.}Γ, {Nβj}ΐ of {MJ7 and {Nβ}j,

respectively. We take sets {/,-} and {#,•} of non-isomorphisms, where /,•: MΛ.->
Nβ. and gf: Nβ.->MΛ.+l. If for any element m in MΛl there exists w, which

depends on m, such that gnfn' gififa)^®, then we call {/,-,£,-} (locally and)
relatively T-nilpotent. If for every countable subsets {Mα.}Γ and {Nβj\ι, every
sets {/,-, gi} of non-isomorphisms are relatively T-nilpotent, then we call {MJ /

and {Nβ}j (locally and) relatively semi-T-nilpotent (see Remark 3 in §4). We note

that if {Ma}r and {Nβ}j are relatively semi-T-nilpotent, there exists nr for any

element x in Nβl, such Uιatft/+ίgt/ft/ f2gl(x)=0. If we allow in the above that

«,.=#,•> (β.=βj) for some iΦi7 (/Φ/')> we call {MΛ}7 and {Nβ}j relatively T-
nίlpotent. It is clear that if either {MJ 7 or {Λ β̂} / is locally semi-T-nilpotent,
then {MΛ} 7 and {Nβ} / are relatively semi-T-nilpotent, however the converse is

not ture. If either I or J is finite, we assume as a definition that {M#} 7 and

{JVβ}/are relatively semi-T-nilpotent, ({MΛ}7 or {Nβ}j is locally semi-T-nilpotent).

Let {MJ 7 be as before and ΪDt^ the category of right Λ-modules. Let SI
be the full sub additive category of 2Ji#, whose objects consist of all modules

which are isomorphic to directsums of some modules in {Mα}7. We define the

ideal 9T in 31 as follows: % ' f } [ A , B]={f<=HomR(A, B)\pβfiΛ are non-

isomorphisms for all a and /?}, where A^ 2 φMyeSl, B^ Σ ΘM^/eSl and
Ix Jf

ij\ Mω'^A injection, pβ'i B->Mβ' projection. By 3l/^x we denote the factor

category of Stt with respect to 3fr. Let A be in Sϊ and ^4= 2 φ^4α(^4α are not

necessarily in SI). Then there exist submodules A# in Sί of ^ίΛ for each a such
that 2 ξ&AΛ'=A in St/^ί7 and those ^4Λ

7 are unique up to isomorphism. We call
L

those AΛ' dense submodules of AΛ (see [4], [5] and [6] for detail).

2. Main theorem

We recall Krull-Remak-Schmidt-Azumaya theorem. Let {Ma}T be as in
§1 and M— 2 ®MΛ. We take any other decomposition of M by completely

indecomposable modules Nβ: M= y^ ®Nβ. In the theorem above we consider
j

the following two properties for M:
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P,\ For a direct summand Σ @MΛ' of M (i'c;/), there exists a one-to-one
I'

mapping φ of I' into I such that M^^Nφ^^for all a^Γ and Λf— Σ θ Λ^c*')®
I'

Σ m l\/ί //
\I/ -*• ' •* Λ

I-I'

P,2 For a dίrsect summand Σ ®^</ of M (I'c^I), there exists a one-to-one
I'

mapping φ of Γ into J such that M= Σ ®MΛf® Σ @Nβ".

Those two properties are general cases of the exchange property in M which

is defined in [4] as follows: Let N be a direct summand of M and M= 2 0Lε
K

any decomposition of M (Lς are not necessarily indecomposanble). If M =

s for any decomposition above, where L/c:Lε for all £^K, we

say N has the exchange property in M. If N has the above property only in case

all Lε are indecomposable, we say N has the exchange property in M with respect to

indecomposable modules (briefly w. r. t. inde. modules).

It is clear that if N has the exchange property in M, N is in Si and (P,2) is

equivalent to the exchange property in M w. r. t. inde. modules. We have

already known that (P,l) is true for any subset Γ of / if and only if {ΛfΛ}/' is
locally semi-T-nilpotent [8]. Now we fix {Λfα}/ and a subset Γ of /and con-
sider (P,l) and (P,2) for any decompositions of M. We shall show the following

results and give proofs in the next section.

Theorem. Let {MΛ}/ be a set of completely indecomposable modules and

Let M=S®T and S'= Σ θ-SV, Γ'= Σ ΘΓ," dense sub-

modules of T and S, respectively. Then the following statements are equivalent.
1) S has the exchange property in M w. r. t. inde. modules.
2) T has the exchange property in M w. r. t. inde. modules.

3) {5V}/' and {TV'}/" are relatively semί-T-nίlpotent ,

where SΛ' and TV' are completely indecomposable modules.
In those cases S and T are direct sums of completely indecomposable modules.

Corollary 1. Let M, S and T be as in Theorem. Then S has the exchange

property in M if and only if 3) in Theorem is satisfied and any direct summand L of
M has the following decomposition: L=L1φL2 and a dense submodule L/ (resp. L2')
of L! (resp. L2) is isomorphίc to a summand of S (resp. Γ), (cf. Theorem A.2 in §4).

Corollary 2. Let M= Σ θMCί) and M™ in SI /or all i. Then the following

statements are equivalent.

1) Mα) has the exchange property in M w. r. t. inde. modules.

2) Mα) has the exchange property in Mα)φM(f') w. r. t. inde.

modules for alii.
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If MC£) and Mcy) have the exchange property in M w. r. t. inde. modules, then
so does M(ί)φMcy). Covnversely, if MCί)φMcy) has the exchange property in My

then M(ί° has the exchange property in M if and only if so does M^. (cf. [2],
Lemma 3.11)

Corollary 3. Let {MJ / and {Nβ}j be sets of completely indecomposable

modules and Si, 93 the induced categories from {M#} 7 and {Nβ} Jy respectively.
Then {MΛ} 7 and {Nβ} / are relatively T-nilpotent if any onlf if for any modules M

and N in SI, 33 respectively y M (resp. N) has the exchange property in M®N w. r.
t. inde. modules.

Corollary 4. Let {SO/}/' (resp. {ΓΛ"}/") be a set of noetherian (resp.

injective) and completely indecomposable modules. Then Σ Φ*SV (and Σ Θ7V')
i' τ"

have the exchange property in ̂  ®SΛ'φ Σ ®^V' w r *• inde. modules.
I' I"

Corollary 5. Let Sy T and M be as in Theorem. If HomR(S, T)=0 or

HomR(Ty S)= 0, then S and T have the exchange property in M w. r. t. inde.

modules.

3. Proof of Theorem

Let {MJ / and \Nβ}j be as in §2. We shall rearrange them as follwows:

j-ίM^^^^.^and {Nβ}j= {N kj} k(ΞKtj^Jk, where Mkj^Mk/^NkJ^
and M

Lemma 1. Let {Mkj} k^κ >jξ=Ik and {Nkj} kζΞK)jξΞjk be as above and Kr a

subset of K. We assume {Mkj} and {Nkj} are relatively semί-T-nίlpotent. Then

\}iflk

andjk are infinite for all k^K', then {Mkj} κ' Jk is locally T-nilpotent.
2) If either \Ik < | Jk \ or Ik is finite and Jk^φ for all k e K' y then {Mkj} κ f t Ik is
locally semί-T-nilpotenty where \ I \ means the cardinal number of a set I.

Proof. 1) and the first part of 2) are clear. We assume Ik is finite and
Jk^pφ. Let {Mf} i be a countable subset of {Mkj}κ^Jk and {/,-: M,->Mt +1} a
set of non-isomorphisms. We assume Ml=Mklj1. Since Ikl is finite, there
exists nz such that Mn'^MklJ^ for all n'^n2. Next, we assume Mn2=Mk2J-2

(k^kz). Again there exists n^n2 such that Mn^Mk2j2 for all n'^-n^. Repea-
ting those arguments, we obtain a subset {MM.} of {Λf, }, (n^=\) such that

Mn&Mnj for all iφi and a set {gi=fn.+1-Jn.+1-2~'fnr MM.-^Mrt.+ι}. It is

clear that no one of gi is isomorphic by [3], Lemma 4. Furthermore, Mn. ^Nkj
for some k. Hence, {gf} is locally T-nilpotent from the assumption. There-

fore, {/,-} is locally T-nilpotent.

Lemma 2. If {MJ / and {Nβ}j are locally semi-T-nίlpotenty then so is
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Proof. Let {ΓJ Γ be a countable subset of {MΛ, Nβ} WJ and {/,- : T^ Ti+1}
a set of non-isomorphisms. We assume {ΓjΓ contains an infinite number of

modules in {MΛ}7; say {7\} 3 {MΛ,}Γ. Then {^=/Λ+ι-J».+ι-2 •••/»,.} is locally

T-nilρotent and hence so is {/,-}. If {7\} contains only a finite number of
modules in {MJ /, then there exists n such that {Tj/^c: {Nβ}j. Therefore,
{/,•} is also locally T-nilpotent.

Lemma 3 ([5], Theorem 2). Let M be as before and N^ a direct summand of
M: M=N1®N2. We assume N,= Σ φΛ/y and {Λ/V}/, a set of completely

indecomposable modules, is locally semί-T-nilpotent. Then Nf has the exchange
property in M for i= 1,2.°

Lemma 4. Let {MJ / and M be as before. Let M= T"0S and N a direct
summand of M such that N= Σ ($Nβ and every Nβ is completely indecomposable

and not ίsomorphίc to any summand of S. If {Nβ}j is locally semi-T-nilpotent,
M=N@T'®S, where T'^T.

Proof. We have M=N®T'®S'9 T=T'@T" and ιS=5/05// by the
assumption and Lemma 3. Since T"@S"^N, S"=(ϋ).

Lemma 5. Let M==Mί®M2®Nί®N2 and M{= "Σ 2 0MΛ. ., Nf =
JζfΞϊatj loύi

ikl the MΛij, Nβ.k are completely indecomposable. We assume

and MΛlJ^NU2/', NβlJ.^Nβ2.> and NβlJ.^Mβ2/' for anyjyj' and
j". Let M=T®S and T \ Sf dense submodules of T and S, respectively. If
{MΛl}Kl>Iaι is locally semi-T-nilpotent and Γ/«Af10M2, S

r^N^®N2y then we
have the following decompositions:

where 1) T=T1'®T"y T^T^'^T,"' (Γ=71

1

//0Γ//0Ϊ1

1

///), 2) S=S"@S'",
3) Λ^ΛVΘΛ/V', 4) Γ/7, Γ/77, Sx// and N^ are in W and 5) T" (resp. S") con-
tains a dense submodule which is isomorphic to M2 (resp. -/V/0Λ/2'; N2 is in$ί and
is a summand of N2).

Proof. Since T^Ml®M2 and {MJ Kjt lΛι is semi-T-nilpotent, T'= Γ/0

1) Correction to the proof of [5], Theorem 2.
Replace the following words on the left side by ones on the right.

"p" on 4, 5 and 6 th lines (fromthe_ bottom) =$pβ. "Σθ^j"" on 5th line=»Γβ". "Ker£ =
on 4th line^Ker^β-Tβ'eΣΘ^Y. "L^ΣIΘ^β* and L = Kerp" on 3rd line

= Tβx. "Therefore" on 2nd line => Finally, let p be the projection of M onto ΣΘTβ" with
s.

Ker/>=Σ®?>*. Then
K.
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TV; T/^Mf and 71=71

1

/eΓ// by [4], Proposition 2. Now, we consider all

modules in 21=21/3?'. By ^4 we shall denote the residue class of A in 21. If B

is a direct summand of A, B means the image of e in 21, where e is the projection

of A to 5. Then T = f /θ f"= f'= f/θ ?/ and hence T"« T2'^M2 in «.
Accordingly T" contains a dense submodule isomorphic to M2. If we apply
Lemma 4 to the decomposition Λf=71

1

/φΓ//05, then Λf=M10Γ1

//0S//,
where Γ/'cΓ/ and S"cS. We put Γ/=T/'07Y", S=S"0,S"ί, and

ΛΓ=M/Mlβ Then S'//ΘT1'^M/(S//θ:Γ/0~M1θ:Γ1

/'EΞ2ϊ and hence, S'
by Lemma 3. Further

We may assume those modules are equal to each other through isomorphisms.

Since Γ/' is isomorphic to summand of M19 M=Tl"®M2®Nί'®N2 form (*)

and Lemma 4, where N^NJΦNS'. MlTi"**M2@N1'@N2**T"®S". On
the other hand, T1'**MI(M2®N1®N2)***N1" and hence, JV/ is in 21 by Lemma
3. Since T" contains a dense submodule isomorphic to M2 and S" is a direct
summand of 5, S" contains a dense submodule isomorphic to Λf/θ /V/, where
N2 is in 21 and a direct summand of N2. Therefore, M=Mlξ&T1"ξ&M2®Nl'(&
N2=M1®T1

//®S//ΦT// are the desired decompositions.

Lemma 6. Let {MJ / #/w/ M δ^ as in the theorem. We assume M—N^
N2, N,= Σ @Mj, N2= Σ 0Mβ// βnrf My φMΛ// /or miy /wίr (a', α")eΞ

/' x /'', (/=/' U /7/) H^ assume further that M= T®S, T= T,®T2 and T (resp.
S) contains a dense submodule which is isomorphic to Nl (resp. N2). Then for any

element t in Tl there exists a direct summand 2 07> of Tl such that t^ 2 07V

and Ti'ttMΛ.' for som a/

Proof. Let f (=( Σ 0MΛ./0 Σ 0MΛ//)=M/. Then Λf=Λί/0Γ1

/071

2

/0

Sx by Lemma 3, where Γ,= Γ/0 Γ/x, S=S'®S" and Γ/7- Γ, Π (M70 7Y0S') 3

ί. Since Γ/'ΘΓ/'ΘS^^M7, Γ1

//= Σ 0?1/, Tt^MΛf by the assumption and

Lemma 3.

Lemma 7. L*tf M=N^®N2 be as in Lemma 6. 77^/z M=
for any decomposition M= TQ)S as in Lemma 6 if and only if {My} /' and {My/} 7"
are relatively semί-T-nίlpotent. In this case T^N1 and S^N2, (cf. Corollary 2
to Theorem A.I in §4).

Proof. We assume M=N1Q)S=TQ)N2 as in the lemma. We may assume
that /' and I" are infinite. Let {M^jΓ and {M2t }Γ be countable subsets of
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and {My}//', respectively and let {/„: Mn->Mw+1} be a set of non-
isomorphisms. We shall make use of the same argument as the proof in [3],
Lemma 9 and [5], Lemma 2. Put MΛ'={x+fΛ(x)\xGM^^MH(BMH+l^M.

Then M= Σ 0 M2,_/ 0 Λ^x* 0 N2=N, 0 Σ ΘM2/ 0 N2*, where JV1*=

Σ ®MΛ>, K0'={1,3, -,2ί-l, .-} and 7V2*= Σ ΘMβ//,K0"={2, 4,-,
Γ / ' l T / T-// _ ^j //
7 ~**0 co <£> co 7 *0

2z, ••} . It is clear that Σ ®M2i^ « Σ ΘΛf^-i' We define an automorphism
1 1

Φ of M by setting Φ=φ+I< Σ /9MaeN2,. Then M=Φ-1(M)=Φ~1(N1)®
I ^o

Σ 0Φ"1(Λf2/)0φ-1(Λ^2*). Hence we have M=N^® Σ 0Φ"1(M2/)0Φ-1(Λ^2*)

from the assumption. Therefore, M=Φ(M)=Φ(Nl)®^@Mχ'@N2*='Σ®M2i'
1

0 Σ (SMtf-iξ&N^ξ&Nt*. We can easily show from this decomposition

that {/,-} is locally Γ-nilpotent, (cf. [3], Lemma 9). Hence, {My} 7/ and {MΛ//}7//
are relatively semi-T-nilpotent. We shall show the converse. Put M^ί=N1 U S.
Let s^NlΓ\ S, then there exists a direct summand *SΊ of S (and hence of M)

such that j e Sl and 5Ί« Σ @MΛ." by Lemma 6. On the other hand, M=S^

N,®N2' from Lemma 4. Hence, Λ^1Π5f=(0). If either /' or //x is finite,
M=Nl®S'®T/ by Lemma 3. where S'^S and Γ'cΓ. Since N2^M/N^

S'ΘΛ r7=(0) and so M=7V10S/eM*cM. We assume 7X are infinite and
MΦM*. Since M*^Nly there exists α/'e/" such that Λfβ I//£Af*. Let

^/' — M* . From the decomposition

M= T®S ......... ( 1 )

mΛl"=t-}-s\ t<=Ty s<=S. Since ίe5cM*, t^T— M*. We obtain, from
n

Lemma 6, a direct summand Σ ®Tt of Γ (and hence of M) such that Γ^M^/

and ίe Σ ®Ti. Let ̂ /1} be the projection of M to Tt- in that decomposition.
Then there exists ί (= α2

7) such that pΛ/
1\mΛί') = tΛ2'GTΛ2'—M*. From

Lemma 3 and the assumption, 5 contains a summand *SΛ

/xcι) isomorphic to MΛl".
We obtain again from Lemma 3

(2),

where, εl is some index.

Let ̂ α/
/C2) be the projection of M to MΛ/' in (2). Since N&Sj'ω^M*, there

exists &"<=!"—£! such that p^^t^^m^^M^— M*, (it is possible
a !'=^a^ '. In this case (2) implies M contains at least two summands isomorphic
to MΛ1"). We may assume T^^Mj^ for some α/(2)e//. Then again from
Lemma 3 and (1) we have
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M = Mβ/(a)eres ......... (3),

where 7"Q Γ. Then m^= x+t #<EM*, £ e T — M*. Similarly to the argument
after the decomposition (1), we obtain α/ and a homomorphism pΛ^ of M to TΛ4'

such that pΛS*\mΛs")=tΛ/GTΛ4'—M* and Γβ/ is a summand of T" (it is
possible T^'^T^'. In this case (3) implies M contains at least two summands
isomorphic to Mα'(2)). From the remark after (2) and Lemma 3, there exists a"(3)

such that

(4),

where S3 Sa/'ca^M^/, and 5^u)«5y/(1). Hence, we obtain αB"e /"—{£/, £/}
such that pΛ5"

ζ 4\tΛ4')=mΛs»^MΛs»—M*. Similarly we have

(5),

where M^(4)«71

α>4/, M^(2)«My(2) and T"<Ξ,T. Repeating those arguments, we

have a series of indecomposable modules; ΛfΛl", !ΓΛ2', MΛ3", 7\»4V
 and a series

of homomorphisms p1=pΛ2^\MΛί^9 p2=pΛ^ \ ?V» — (it is possible α/'=α/'

(resp. re/«r-/) for ίΦjίresp.ftΦ/)). Put MCM)- Σ ΘM^/7, T(Λ)=

Σ ®^t»2i (external directsum). Then M(Λ) and Γcn) are isomorphic to direct

summands of M for all w from the decompositions (ri). We now concentrate
to find a contradiction to the assumption of relative semi-T-nilpotency and

hence, after replacing MΛ." (resp. TΛk') by another isomorphic summands when
a//=a// (resp. a?(k)=a(l)) for /Φ ι (resp. &Φ /), we may assume α/'Φα/' (resp.

α^ΛJΦα^/)). It is clear that any/>t are non-isomorphic and pnpn-\"'P\(m<*"}^ 0
for all #. This is a contradiction to the relative semi-T-nilpotency. Therefore,
M=M*. Similarly, we have M= T®N2.

Lemma 8. Let M and {M J 7 be as in the theorem and Γ a subset of I. Put

M=(Σ ® Λfβ=)JV10JV2, w/^rβ ̂ = Σ ®^α> «wrf 7V2= 5] 0MΛ//. ΓA^w ίfe
j r j-jχ

following statements are equivaletnt.

1) N! ίΛίίgfeί (P,2), (equivalently N2 satisfies (P,l)).
2) JV2 Λrfώ/fo (P,2), (equivalently N, satisfies (P,l)).
3) {My}// ^n^ {ΛfΛ//}j_// αr^ relatively semi-T-nίlpotent.

Proof. Since the condition in 3) is symmetric, we may show 1) is equivalent
to 3). We know already from [5], Lemma 2 that 1) implies 3) (see Corollary 2
to Theorem A.I in §4). Now we assume 3) and {Ma}T={Mkj} k^KfJGlk as in

the beginning and Nl= Σ Σ ®Mk1, N2= Σ Σ ®Nki. We consider a parti-
K Ik K Jk

tion of K as follows:
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K1= {&e K I Ik and Jk are infinite} ,
K2= {k<=K\Ik^Fφ and Jk is finite} ,
K3= {k^K I Ik is finite and Jk is infinite} ,

k=φ} and

We put M(i)=Σ Σ ΘMΛ, and ΛΓ(i)=Σ3 Σ Θ^V {M*,}̂ , {NkJ}Kl,jk
κi *k -Kf Jk

are locally Γ-nilpotent and {Mk.}KzJk, {Nkj}KzJk are locally semi-T-nilpotent
by the assumption and Lemma 1. Hence, {Mkj} Kι\jκ3,ιk *s locally semi-T-
nilpotent from Lemma 2. Let M= Σ ®A> be any decomposition with Lz

indecomposable. Then Λf==M(l)®Λf(3)Φ Σ ®L8' for some Γ^I by Lemma

3. WeputM=M/(M(l)®M(3))then

M » M(2)0M(5)Θ Σ ®ΛΓ(ί) « Σ ®Lj ......... (**).

Since {Nkj}κ2,jι, is locally semi-T-nilpotent, we obtain from (**) and
Lemma 3 M«M(2)ΘM(5)Θ Σ φJV(ί)φ ̂  0L8// for some /"£/'. Hence,

^/( Σ ΘLS//)«M(2)ΘM(S)Θ Σ ΦN(0« Σ θ iβ'", where /"'= I'-Γ. We
J/x ίφ2 Jw

consider a partition of /'" as follows: 71

///={£///e////|Lβ///»Λί jky for some
Λ e ίΓ2 U ./Q and I2"'=Γ" - //". Then Σ θ LJ» is a dense submodule of itself,

V"
which satisfies the assumption in Lemma 7. Hence, Λf/(Σ 0JV")^^f(2)®

Λf(S)θ Σ ®ie

//7. Therefore, M=Nl@ Σ θ^® Σ ®£ε'"ι2

w i^ /g^

Lemma 9. Le* M Λ«ίί {MJ / be as in Theorem. We assume M= ΓΦ*5, and
T, S' are dense submodules of T and Sy respectively: T'= Σ ΘΓΛ/ S'= Σ ®S»"

T/" {T1^/}// αwrf {S^//}//^ are relatively semi-T-nilpotent, then T and S are in Sϊ,
where TΛr and SΛ'f are completely indecomposable.

Proof. Let M=T®S and Γx, S' dense submodules of T and 5, respec-
Φtively. Then M^T'®S'. We shall use the same notations as in the proof of

Lemma 8 and put Nl=φ'1(T% N2=φ~1(S/). Since {Mkj}κ^κ^ is locally
semi-T-nilpotent,

M

- M(l)ΘM(3)θ:Γ1"θ:Γ"ΘS", T = r/® T"®Tι" and S = S"®S'"

by Lemma 5, where (N(1)®N(3))' cΛΓ(l)®JV(3) and Γ" (resp. Sx/) contains a
dense submodule isomorphic to M(2)φAf(5) (resp. (N(1)®N(3))'®N(2)'®
N(4)), where N(2)' is a summand of N(2)\ N(2)'™ Σ Σ ΘJVβ-y, (N(4)'=N(4)
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in this case). Then a dense submodule of T" is isomorphic also to M(2)0

is locally semi-T-nilpotent. We apply Lemma 5 to a decomposition
then
S1^ 0 S(4) 0

where SC4) contains a dense submodule isomorphic to (N(1)(BN(3))'®N(4) and
ΓC4) does a dense submodule isomorphic to (M(2)0ΛΓ(2)")'®M(5) from the
structure of M(ί) and #(/), and S"=S^®S^®SS5\ T"=T^®T™. Accor-
dingly (ΛΓ(l)07V(3))/eΛ^(4)0(M(2)ΘΛΓ(2)//)/0M(5)«5(4)0Γ(4). Since /* is
finite for &ej£2 and {Nkj}κ^Jkf is locally semi-T-nilpotent, (N(1)07V(3))'0JV(4)
and (Λf(2)0ΛΓ(2)")'0Λf(5) satisfy the assumption in Lemma 7 (cf. the proof of
Lemma 2). Hence, S(4^(ΛΓ(1)ΘΛΓ(3))'0ΛΓ(4) and Γ(4)~(M(2)0JV(2)")'0M(5)
by Lemma 7. Since Γ=Γ1

//ΘΪV/Θ71

1

/// and T"=T^®T^\ Γ is in St from
Lemma 5. Similarly, Sf=5//0ιS/// and S'̂ S^ΘS^ΘS .̂

Proo/ of Theorem. Since the condition 3) is symmetric, we may show that
1) is equivalent to 3). We assume 1). Then T and S are in St and hence, we
obtain 3) from Lemma 8. We assume 3). Then T and S are again in Si from
Lemma 9. Hence, we have 1) from Lemma 8.

Proofs of Corollaries.

1 : We assume S has the exchange property in M. Let M=L@L' . Then
M=S@L,@L,' and L=L1ΘLa, L^L/ΘL/. Since L,®L^T and L/0
L2ϊ&S, Lλ (resp. L2) contains a dense submodule isomorphic to a direct summand
of Γ(resp. S). Conversely, we assume the above fact and 3) in Theorem. Then
5^ Σ ΘMΛ/ and Γ^ Σ 0 *̂" from Lemma 9. We use the same notations

I' I"

as in the proof of Lemma 8, and put S=Nl and T=N2. Let M= Σ 0^ε
*

be any decomposition of M. Then M^M(2)®M(5)0 Σ ΘΛΓ(*Ή Σ V bY
ι = l J£

Lemma 3, where Ls— L/φL/'. Again from Lemmas 2 and 3 we have
M~M(2)ΘM(5)® Σ 0ΛΓ(/)0 Σ 0£/"> where L/=L/"0LE<4). Hence,

M = M/(Σ ΦL/") « M(2)0M(5)φ Σ φJV(ί) « Σ ^/4> ......... (***)•

Now we shall apply the assumption to Lε

(4). Put L^=L. Then L=Llξ&L2

and Lt contains a dense submodule L/ which is isomorphic to a direct summand
o f N t . Hence, L1

/-M*(2)0M*(5)0N*(3) and L2

/-M*(2)/ΘΛ^*(3)/07V*(4)/

from (***), where M*( ) and M*( )x (resp. ΛΓ*( ) and 7V*( )') are isomorphic to
direct summands of M( ) (resp. N( )). On the other hand, JV*(3) is isomorphic
to a direct summand of Λ/Ί and hence of M*(3). Therefore, Λf*(3) has the
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exchange property in M by Lemma 3. Similarly, M*(2)' has the same property.
Therefore, N*(3) and M*(2)' are direct summands of M (and hence of L) by
[4], Proposition 2: L1-ΛΓ*(3)0L//, L2=M*(2)'0L2" and L/' (resp. L2") con-

tains a dense submodule isomorphic to M*(2)0M*(5) (resp. JV*(3)'ΘW*(4)'),
(see the proof of Lemma 5). Accordingly M(2)0M(5)0N(3)0ΛΓ(4)= Σ L«\

_
Σ (W*(3)80L8

C4Y'). Therefore, we obtain from Lemma 7 that M«M(2)0

M(5)0Σ(N*(3)εΘLε

cV). Thus, M=JV1ΘΣ(V//ΘΛΓ*(3)0Lf

C4V/) and
J£ .£

L///0Λ/r*(3)ε0Lε

cV is a direct summand of Lε.
2 and 3 : They are clear from Lemma 8.
4: Let {-S^/.!} and {N2i} be countable subsets of {SΛ'}j' and {Λf <//}///,

respectively and {/z,--!: S2i_1-^N2ί}, {g2ί: N2ί-+S2i+1} sets of non-isomorphisms.
Since N2i is injective, Ker £2ί φO is essential in N2i. Hence, Ker f2i-ιg2i-2'"fι^
Ker^2//2i-r-/i and so {Λί-»ftί} is T-nilpotent.

5 : Let 7" and *S" be dense submodules of T and 5, respectively. We take
indecomposable summands T, and S1 of Γ' and S'. Then T=T^®T" and

" by [4], Proposition 2. Hence, Hom^, TJ^O or

EXAMPLES. 1 . Let Z be the ring of integers and p, q primes. Then {Zfp*} Γ
and {Z/qJ}~ are relatively T-nilpotent, but {Z/q*}™ is not T-nilpotent. Put

N,= Σ ®Zlp2t-* and ̂ 2= Σ ΘZ/p2<. Then all Z\pn have finite composition
1 1

oo

series, but Nf does not have the exchange property in Σ @Z\p*

2. Let K be a field and R the ring of lower tri-angular and column sum-
mable matrices over K with degree. K0 Let {tf/y} be a set of matrix units in R.

We put N1= Σ θ*2f-ι 2i-ιR and ̂ 2= Σ ®^2/ 2iR Then all ̂ -,-Λ are projective
1 1

and noetherian (artinian), but Nf does not have the exchange property in N

4. Appendix (The finite exchange property)

In §3 we have used Lemma 2 in [5]. However, I gave, in [5], only an idea
of the proof of this lemma. In this section we shall give its proof as a more
general form for the sake of completeness. Making use of a remark by K.
Yamagata [12], [13], and [14], we shall deal with a relation between the finite
exchange property and the exchange property and give generalizations of [6],
Lemma 5 and [14], Theorem.

Let M be an Λ-module. In §2 we have defined the exchange property in
M for a direct summand N. If we consider only decompositions M= Σ ®^ε

with \K\^m in that definition, we say TV has the m-exchange property in M. In
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[2] we have several properties on modules with m-exchange property (not nece-
ssarily in M), however they are note valid in our restricted case. Hence, we shall
give proofs for some results in [2], if we are necessary to change some parts of

proofs.
The following lemma is substantially due to K. Yamagata [9].

Lemma A.l. Let T be an R-module and T^Al@A2=M@N. We assume
M= 2j ®MΛ and every MΛ has the finite exchange property (in the usual sense) and

κ>

A1Γ\M^(0). Then there exists a finite subset {1,2, "^m} in K such that

T= 2 @Mi*@A*@A2, where M^^M{ (Afy*Φ(0) for some j) and A^^A,.

Proof. There exists a finite subset {1, 2, •••, w} in K such that AtΓ\

(Σ ΘM, )Φ(0). We put MΔ= 2 ΘΛf,, then MΔ has the finite exchange pro-
I 1

perty by [2], Lemma 3.10. Hence, Γ=MΔΘ^1

/Θ^/, where At=A/®A/f.

Since _MΔΠ AΦ(0), A'ΦA and so A"Φ(0). Put T=71/(Λ'ΘΛ')=A"Θ
Ά2"=M^. By [2], Lemma 3.10 A" has the finite exchange property and hence

TW/'Θ Σ3 θfi/, where M^M/ΘM/'.25 Then f=?/Σ ®S/=4//=

. We may assume M/^(0). Then A^=A^'®Afr and J/"=

), Jiv= 2 ΘM/7. Accordingly T = f] ΘM/Θ^^ΘM/7. On the
>2 1

other hand, ^42" has also the finite exchange property. Hence, we have

T =-52

//θ2Ϊ1

iτ*θφeΛfΛ where ^^e^ί^ and M,* cM,. Since

^^c^ί^c^/', f j ΘM,*Φ(0). Hence, T= |] 0Mί*θ(^1

lv*θ^ι/)®^2

is a desired decomposition.

Lemma A.2 ([5], Lemma 1). Leί T be an R-module and T=N1®N2. We

assume that N1 has the m-exchange property in M and T=N^®N2\ N/^Niy

i=l,2. Then N/ has the m-exchange property in M.

It is clear (cf. the proof of Lemma 7).

Lemma A.3 ([2], Lemma 3.10). Let T=Bl®B2®B3 be R-modules. We

assume B1 has the m-exchange property in T and B2 has the m-exchange property

in jB2φβ3. Then B^B2 has the m-exchange property in T.

It is clear.

2) added in proof: Use Άj' instead of J/' and we obtain T = Λ/X0Σ 0M/. Hence,
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Lemma A.4 ([2], Lemma 3.11). Let T be an R-module and N a direct
summand of T. If N has the 2-exchange property in Ty then N has the finite
exchange property in T.

Proof. It is sufficient to show that N has the 3-exchange property in T.

Let T=N®Nl= Σ ΘA Then

where A^A^A,", An®A9=(At@A9)'®(A,®A9)" and (A2®A3)"=(A2®A3) Π
(WΘA ). On the other hand, N^A^@(A2®A,)f/ and N^A^®(A2@A^.
Hence, A"@(A2®Az}" has the 2-exchange property in T by Lemma A.2.
Accordingly T = (A, 0 A2) ®AZ = A," 0 (A2 0 A$' 0 (A, 0 Ajf@AJ, where

and A9'^A9. Hence, since (

where D=(At®A9)f}(Al

//®(A1®A9)
/)c(At®A9)Γ}(A1®A9)=An namely D is

a direct summand of A2. Put N®A1

/=(A2®Atγ
/®K. Then Γ==

= (A2 0 A

The following theorem is a generalization of [6], Lemma 5.

Theorem A.l. Let {PΛ} 7 be an infinite set of R-modules which have the finite
exchange property and P= 2 Φ^α>- Let Γ be an infinite subset of I with infinite

complement /-/'. We assume P/'= 2 0/V has the 2 (finite)-exchange property in
I'

P. Then if we take any countable subsets {P2/-ι}Γ and {P2/}Γ of {PΛ}ι' and
{PC} ι-ι'y respectively and any sets of homomorphisms f ',•: P, - >Pi+l such that for any
direct summands Xίn P2t _1 (or Y in P^f^.^X) (or /2> lί(y)) is not a direct sum-
mand, provided f2i_ι(X)*((S) (or/2ίi;(y)ΦP2ί_1)/or all i (e.g. Imf2i^ is small in
P2i or Ker f2i.l is large in P2i--^y then there exists n, depending on x in Px such that

Proof. We can prove the theorem similarly to [6], Lemma 5 and so we shall
give a sketch of the proof. We shall use the same notations as in the proof of

Lemma 7, changing MΛ by PΛ. Put P/= {/>,-+/,-(/>,-) lA eP. } c

Then P= f} θ/Vι'θPα)® Σ Φ-P2, ®^<2)= Σ ΦP2, -1Φ^α)θ Σ
1 1 1 1

PC2). Since § 0P2I _2

/0P(1) has the finite exchange property in P from the

assumption and Lemma A.2, we obtain from the decomposition above

= f]
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where X^ Σ ΘP*_ι, Y £ Σ ΦP2/ and ZcP<». We shall show X=(Q). We
1 1

assume contrary ^TΦ(O). Then we have from Lemma A.I

p = £ ep^e Σ Θ/WΘP^ΘJΓ'ΘYΘZ ......... (2),

where P^ .̂ cP.,,.̂  (Ptj_*^((ί) for some ) and X'cX, We consider the

following modules and a decomposition of P:

Σ ΦP2, -/ΦPCΌ and P = P,Φ(Σ ΦPa -

ΦP2/)©PC2) '" ......... (3).
Since the former module has the finite exchange property in P by Lemma A. 3
and [2], Lemma 3.10, we obtain from (3)

p = (pα*φ Σ ΦP2, -1'©Pα))ΦP1**Φ,4ΦP2'*Φ£©C ,

where P,**cP1( A c Σ ΦP*-!, P2'*£P2', ΰ£ Σ ΦP2/ and CcP(2). Hence

P= (P^ΦΛOΦCP/^ΦD) ......... (4),

where P.^P^ΦP,** andZ)= Σ θ/V/ΘP^ΘΛΘJBΘCc Σ ΦP. . Using
ί>2 ι>3

only a fact D^ Σ 0P, in (4), we shall show that P*= (0). Let x be in Px

§.
ί>3

If /^Λ:) e (P2

/*0D), jc=-0 from (4). Hence, /, \ Px

§ is monomorphic and

Λ-Λ(Λ§)Θ^V ......... (5),

where N= {x^P2\f2(x)^D} , (see [6], Lemma 5). Furthermore

Λ-Λ§Θ/ΓW) ......... (6),

since /JP,5 is monomorphic. Hence, Pj§=(0) from (5), (6) and the assump-
tions. Therefore, Pj*=(0) in (2). Next, we consider similarly to (3)

P3*Φ Σ ΦP2,--/ΦPm and P = ΛΦP3φ(Σ ΦP2, -,)

ΦP^ΦP/ΦP/ΦCΣ ΦP2/)ΦPC2) '" ......... (3')
i>3

ThenP=(P3*φ ΣΦP2, -ι/ΦPα))ΦPιΔΦP3ΔΦ^'ΦP2/*ΦP/!|!Φ-B'ΦC'/, where

P2/*£P2, ', Λί-,ΔSPrt-ι, A'c Σ ©P.,--,, &<=, Σ ΘP2/ and C'&P™.
i>3 ί>3

From the argument after (4) we know P1

Δ=(0). Thus, we have

where P3

§ = P3* θ P3

Δ and V = Σ θ ̂ 2ί -/ θ P™ θ ̂  θ J57 θ Cx c J] 0 P, .
ί>3 ί>5
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Applying the same arguments on P3

§0P3' and P4 in (4') as ones after (4), we
obtain P3§=P3*=(0). Continuing those arguments, we have a contradiction to

the assumption ^ΓΦ(O) in (1). Therefore, we have from (1)

and F^ΣΦ*V ......... (7).
Hence, {/,-} is locally T-nilpotent.

From Theorem A.I and [10], [11] we have

Corollary 1. Let E be an injective module. Iffl ®E2i has the finite exchange
1

eo

property in 2 @E* \ Ef^E (e.g. E is ^-injective), then the radical of EndR(E) is

locally T-nilpotent.

Corollary 1'. Let P be a projective module with finite exchange property. If
CO CO

Σ 0P2* has the finite exchange property in 2 Θ/V, Pt***P9 then the radical of

EndR(P) is locally T-nilpotent.

Corollary 2 ([5], Lemma 2). Let {MΛ} 7 be a set of completely indecomposable

modules and M= 2 ®MΛ. Put Nt= 2 ®Mj, where 1=1, U /2 and 7t Π /2=φ

If Nl has the 2-exchange property in My then {MΛ/}7l and {MΛ//}/2 are relatively
semi-T-nίlpotent.

Proof. We may assume that /,• are infinite. Let {M2i.1}ΐ and {M2i}ι be
any countable subsets of {MΛ/}7land {MΛ//}/2, respectively and {/,: MW->MM+1|
a set of non-isomorphisms. We shall show that f2i^l satisfies the assumptions
in Theorem A.I. Since Mi is completely indecomposable, Mi has the (finite)
exchange property by [9], Proposition 1. If Kerf2i.1 is a direct summand of
Λfg/-!, Ker/2t _1=M2t _1 or Ker/2f _1=(0). The former case implies f2ί.1—0.
We assume Ker/2f _1=(0). If Im /.,,•_! is a direct summand of M2iy UiGnf2i_l is
isomorphic. Hence, Imf2i_l is not direct summand of M2i. Therefore, f2i_l

satisfies the assumptions in Theorem A.I.

Corollary 3. Let {MJ / and M be as in Corollary 2. For any subset Γ of

I we put Mj'= 2 @Maf. Then the following statements are equivalent.

1) {MΛ}/ is locally semi-T-nilpotent.
2) Mjf has the 2-exchange property in M for any Γ <^I.
3) Mjf has the finite exchange property in M for any /'c:/.
4) Mj' has the exchange property in M for any /'<Ξ/, (cf. [14]).

Proof. It is clear from Lemma A. 5 and [8], Theorem.
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Theorem A.2. Let {MΛ}/ be a set of completely indecomposable modules and
M= 2 0MΛ. We put M7/= ]FJ 0MΛ/ /or sow* /'e/. Then the following

statements are equivalent.

1) M/> A<2ί ίλe 2-exchange property in M.
2) M!' has the finite exchange property in M.
3) M/> has the exchange property in M.
4) Mj-jf has the exchange property in M.

Proof. 3)->2)-̂  1) are clear. We assume 1). Then {M Λ/} 7 and {MΛ//} /_/>
are relatively semi-T-nilpotent by Corollary 2 to Theorem A.I. Hence, M//
(resp. M/_//) satisfies conditions in Corollary 1 of Theorem (cf. its proof) and so
M// and M/_// have the exchange property in M .

Corollary 1. Let M be as above and M= T®S. Then T has the exchange
property in M if and only if so does S.

Corollary 2. Let M=^@MΛ be as above. We assume M=S®T and any

indecomposable direct summands of S are not isomorphic to direct summands of T.
Then S has the 2-exchange property in M if and only if S has the exchange property
in M.

Proof. Let S' and T' be dense submodules of S and Γ, respectively.
Since S'ΘΓ'wM, M-20MVΘΣΘMV'', ΣΘMV^S'' and ̂ 0M>

» T. We assume S has the 2-exchange property in M. Then M= S02® ̂ '*"
I"

from the assumption, (cf. the proof of Lemma 6). Hence, *5«2 0M'Λ/ and

Γ«2 0MVX. Therefore, S has the exchange property in M by Theorem A.2.

Corollary 3. Let M= ]Γ] @MΛ. We assume MΛφMΛ/ if αφα'.
a direct summand S of M has the 2-exchange property in M if and only if S has the
exchange property in M.

Corollary 4. Let M= 2 MΛ=S® T. We assume S has the exchange pro-

perty in M. If M=S1®Tl and a dense submodule of S1 (resp. TΊ) is isomorphic to
S (resp. Γ), then Sl has the exchange property in M.

Proof. We may assume S=Mj' and T=Mf". Then {MΛ/} // and {MΛ//} ///
are relatively semi-T-nilpotent. Hence, Sl and T1 are in Sί by the assumption
and Theorem. Therefore, S^S'^S (T^T'** T).

REMARKS. 1. If every direct summand of M is in SI (e.g. all MΛ are
countably generated), then Theorem A.2 shows that 2-exchange property in M
of a direct summand is equal to the exchange property in M. Furthermore, it
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is eqivalent to a fact that {MΛ/}// and {MΛ//}/_j/ are relatively semi-T-nilpotent.
2. Let M= 2 ΘMΛ=50Γ be as before. We assume that S has the

2-exchange property in M. Then the proof of Theorem A.I shows that for any
direct summands 2 ΘMV and Σ ΘΛ/V' of S and T, respectively {M'j}κ

and {M'a//}^-/ are relatively semi-T-nilpotent.
3. In the definition of relative semi-T-nilpotency in §1, we took a set of

non-isomorphisms {/,-, £,•} . However, this definition is equivalent to a stronger
one in which we assume only {/,•} or {gf} is a set of non-isomorphisms, (cf.
Theorem A.I).

4. Let {MΛ}/ be a set of completely indecomposable modules such that
{Mω}f is locally semi-T-nilpotent. We assume M= 2 ®MΛ and T=M@N=

2 ®Aι. Then we obtain, from [6], Lemma 8, decompositions Ai==A/®A//

1

such that (2 ®Aι) Π M=(0) and 2 ®A/' is isomorphic to a a direct summand

of M. We further assume that N does not contain any direct summands isomor-
phic to some MΛ in {MΛ}f. Then if we make use of the same argument in the
proof of Lemma 7, we can prove T— M@ 2 ®^/> namely M has the K0-
exchange property in Γ, because if TΦMΦ 2 ̂ /> there exist a subset {MΛ.}
of {MJ /, an element x^MΛl and a set of homomorphisms /2t-_!: Mrt2i-1->JV
and/2, : N-+MΛ2. such that^/a. .̂  /^^ΦO for all i.
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