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Introduction

In this paper we consider the unitary K-groups of compact homogeneous
spaces of Lie groups and in particular, we lay emphasis on the compact
symmetric spaces.

For a compact connected Lie group G with z,(G) torsion-free as a symmetric
space it is known that the K-group K*(G) of G is an exterior algebra on the
elements of K~'(G) induced by the basic representations of G [2], [3], [7].
Making use of this result Hodgkin constructed the Kiinneth formula spectral
sequence in equivariant K-theory [8], [9]. This spectral sequence is our main
tool in the present study. Besides we find some examples of the K-groups of
symmetric spaces in [5].

The main theorem of this paper is the following

Theorem A. Let G be a compact connected simply-connected Lie group
together with the involutive automorphism o and K the subgroup of G consisting of
fixed points of . When we write M for the homogeneous space G|K, we have

(1) There are elements p,, --+, p, of R(G) such that
o*(pp) = px (r+15k=<1)  for somer and
R(G) = Z[ps=*s Prs a*(pa)s =+ 0*(Pr)s Prass =+ P1] -

(ii) The natural homomorphism o: ZR((X(;)) R(K)—K°(M) becomes a mono-
morphism (Section 1) and if we identify an element of Z B%)R(K) with
its image by «, then we can write

KX (M) = MB(pi—a*(p.), > Blor—o*(p NB(Z @ RK))
where  B(pr—a*(py)) is the element of K~*(M) induced by the represen-
tations p; and o*(py) in (i) for k=1, -+, r (Section 1).

(iii) K*(M) is torsion-free.

The arrangement of this paper is as follows.



624 H. MiNnam1

In section 1 we describe the definitions of the a- and 8- elements of K*(M)
in Theorem A and summarize some of the facts on the Kunneth formula
spectral sequence.

In sections 2-4 we give a remark (Theorem 2.1) on Snaith’s collapsing
theorem ([14], Theorem 5.5) for the Kunneth formula spectral sequence in
equivariant K-theory. Professor V.P. Snaith informed the author that Theorem
2.1 is known to him and the author agreed with him in an outline of a proof.
For a proof of Theorem A we have need of Proposition 4.1 obtained as a corollary
to the proof of Theorem 2.1.

Sections 5-8 are devoted to the proof of Theorem A.

1. The a and B constructions and the spectral sequence

Let G be a compact Lie group and H a closed subgroup of G. 'The K-group
of the homogeneous space G/H has two kind of elements induced by the unitary
representations of G and H.

Over G/H we have the canonical principal H-bundle ». Then, for an H-
vector space V, the vector bundle with fibre V' associated with » defines an
element a(V) of K°(G/H). Thus % defines a homomorphism of rings «: R(H)—
K°G|H) and we see that « is clearly factored through the natural projection
RH)—Z R%)R(H ) where R(G) (resp. R(H)) is the complex representation ring

of G (resp. H) ([1], [9] §9). We shall denote this factored homomorphism
Z ® R(H)—K°%G/H) by the same letter a.
R(&)

The other elements are defined in the following way. Consider a represen-
tation of G viewed as a homomorphism of G to the unitary group U(n). If
p1, P.: G—U(n) are representations of G agreeing on H, then we can define a
map f: G/H —U(n) by f(gH)=p,(g) p.(g)"* for gH=G[H. Then the composi-
tion of f and the inclusion of U(n) to the stable unitary group forms an element
of K(G/H). We denote this element by B(p,—p,).

Suppose that G is a compact connected Lie group such that =,(G) is
torsion-free and let K& denote the equivariant K-theory associated with G [13].
In [8], [9], Hodgkin constructed a strongly convergent spectral sequence

(1.1) EF* = Torf$(K5(X), KE(Y)) = F5X; Y),

and showed that there is a natural transformation A of FE(X; Y) to KX x Y)
and if either X or Y is a free G-space then A\ is an isomorphism ([8], Proposi-
tions 6.3 and 7.2).

In particular, when X=G and Y=G/H, ahomogeneous space, in the spectral
sequence (1.1), (1.1) becomes

(1.2) E}* = Torkie(Z, R(H)) = K*(G/H)
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because of K¥(G/H)=R(H).

2. A collapsing theorem for (1.2)
We have the following

Theorem 2.1. Let G be a compact connected Lie group such that =,(G) is
torsion-free and H a closed connected subgroup of G. Then the spectral sequence

E¥° = Tor¥ie,(Z, R(H) = K*(G/H)
collapses.
From now we write E}*(X; Y) for the 7-th term of the spectral sequence
(1.1) and also {E}*(X; Y)¢} for this spectral sequence.
To prove Theorem 2.1 we reduce this theorem to Theorem 5.5 of [14]

(which requires the conditions that H*(BG, Z) and H*(BH, Z) are polynomial
algebras). For this purpose we prepare two lemmas.

Lemma 2.1. Let T be a maximal torus of H in Theorem 2.1. If the spectral
sequence

EF* = Tork&:)(Z, R(T))= K*(G/T)
collapses, then so does the spectral sequence
E¥° = Tork,(Z, R(H)) = K*(G/H) .

Proof. The natural projection G/T—G/H induces a morphism of the
spectral sequences

{p}: {E}*(G, G/H)¢} — {E}*(G, G|T)c} .
For a proof of Lemma 2.1 it is sufficient to to prove that ¢, is injective.
However it follows easily from the facts that @,=Tor%&,(1, i*) where 7* is the

restriction of R(H) to R(T) and R(H) is a direct summand of R(T) as an R(G)-
module (via restriction). q.e.d.

By choosing unitary representations of G suitably, we can embed G into a
finite product of unitary groups U such that if we denote this embedding by
i: G- U, then

(2.1) *: R(U) — R(G) is surjective.

Let X be a compact, locally contractible G-space of finite covering dimen-
sion. Then we have

Lemma 2.2. Suppose that the spectral sequence
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E}* = Tork$(Z, K§(X)) = KX(Ux X)

collapses, then so does

EF* = Torkd(Z, K¥(X)) = K(X) .

3. Proof of Lemma 2.2

Here we shall give a proof of Lemma 2.2.

Let L be a compact connected Lie group. We define I(L) to be the kernel
of the augumentation &:R(L)—Z of R(L) and J(L) the quotient I(L)/(I(L))>.
Then we know that if the fundamental group of L is torsion-free then J(L)is a
free abelian group of rank / where / is the rank of L ([7], Lemma 4.2).

From (2.1) we see obviously that the homomorphism induced by 7*

3.1) i¥: J(U)— J(G) is surjective .

Define J(U, G)=Keri¥. We can choose a basis &,, -+, &,, v,, *++, v, for
J(U) such that #¥(E,), -+, i¥(&,) form a basis J(G) and v,, -+, v, a basis for
J(U, G). For brevity we denote the representatives of these elements in R(U)
by the same notation and then we may assume that

(3.2) *(vp) =0  for k=1, 5.

Then we have the Koszul complex given by
(3.3) C* = Ay, 5 %53 1505 Y1) OR(U)
where d(x;)=v; (1=:=5s), d(y,;)=E; (1=j=<!) and d is a derivation.

Proof of Lemma 2.2. The inclusion X—U 3;<X induces a morphism {¢,}
of {Ef*(U, UxX)p} to {EF*(U, X)g}.

Using (3.3) we have isomorphisms

E¥X*U, U;< X)y = Tork}(Z, K&X))
34 = H*(C*R%%KE(X))
= A%, -, ,)@Torkd(Z, K&X)) by (3.2).

Next we consider Ef**(U, X);. For this we need that
(3.5) K*(U|G) is torsion-free.
Suppose that (3.5) is true for the moment. Then we have an isomorphism

E¥*U, X)e = Torg&,(K*(U|G), K¥(X))

3.6) = K*(U|G)R@Tork#(Z, K(X))
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from (2.1) and (3.5).
From (3.4) and (3.6) we see that ¢, induces an epimorphism from the
torsion-part of Ef*(U, U X X)y to that of E¥*(U, X)g, and therefore we see by

the assumption that E¥*(U, X). consists of permanent cycles. Moreover when
we consider the morphism of the spectral sequences

V¥r: {EF (U, X)6} — {E¥*(G, X)c}

induced by the embedding of G to U, itis easy to see that E}'*(G, X), also con-
sists of permanent cycles.

It remains to prove (3.5). Put X=G in the above. Then, from Lemma
7.3 of [8], it follows that {E}*(U, U)y} collapses, and (3.6) when X=G follows
from the facts that Tor¥:&,(Z, Z) is torsion-free ([8], Lemma 7.2). Hence we see
that {E}*(U, G)¢} collapses by using the above argument and so K*(U/G) is
isomorphic to a subgroup of K*(U). This shows (3.5). Therefore Lemma 2.2
is proved.

4. Proof of Theorem 2.1 and a corollary

Proof of Theorem 2.1. Putting X=G/T in Lemma 2.2 where T is a maximal
torus of H, Lemmas 2.1 and 2.2 imply that {E}**(G, G/H)s} collapses because
{E**(U, U|T)y} does so by Theorem 5.5 of [14]. q.e.d.

Next we describe a result obtained from the proof of Lemma 2.2.

Proposition 4.1 (Cf. [5], Proposition 2.3).
Let G and H be asin Theorem2.1. Suppose that = (H) is torsion-free and the
restriction i*: R(G)—R(H) is surjective. Then we have

(1) There exist elements v,, -+, v, of R(G) such that i*(v,)=0 for k=1, -+, s
and n(v,), -+, n(v,) form a basis for the free abelian group Ker (J(G)—
J(H)) where = is the composition of the natural projections R(G)—1(G)—

J(G).
(i) K*(G/H) is an exterior algebra on B3(v,), -+, B(v,).

Proof. By Theorem 2.1 the spectral sequence
B} = Torkie,(Z, R(H)) = K*(G/H)
collapses. Here we consider the E,-term of this spectral sequence. In section

3 we can substitute the pair (G, H) for the pair (U, G) by the assumption and
put X=a point. Then we have an isomorphism

E¥(G, G/H)g = A%, -+, x;)

by using the notation of (3.4) and we see that the edge homomorphism of this
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spectral sequence sends x; to B(v;) for j=1, ---, s (See [9], §10). 'This completes
the proof.

5. The classification of symmetric spaces

Let G, K, o and M be as in Theorem A and let j: K—G be the inclusion
of K throughout the remainder of this paper.

We know that K is connected ([11, I], Theorem 3.4 in Chapter IV). Now
if K is of maximal rank, then we can easily check Theorem A as follows: Since
the restriction 7*: R(G)—R(K) is injective, all elements of R(G) are fixed by o*,
and since R(K) is a stably-free module as an R(G)-module [12], we see that

(5.1 a: ZR® R(K) - K*(G|K) is an isomorphism
(@)
from the spectral sequence (1.2) ([9], §9) and Z Q R(K) is trorsion-free.
R(&)

Therefore it suffices to prove Theorem A when rank G>rank K. When M
is a simply-connected Lie group as a symmetric space, we refer the reader to
[2] and [3] or [7]. M is simply-connected and so it is a direct product of irre-
ducible symmetric spaces. Hence we consider only the irreducible symmetric
spaces such that rank G>rank K. According to the classification of irreducible
symmetric spaces [6], such irreducible symmetric spaces are the following six

types:

Al SU(n)[SO(n)

All SU(2n)[Sp(n)

BDI(a)  Spin(p+q)/Spin(p) X Spin( q) (where p and q are odd and
(5.2) Z={(1,0), (=1, —1))}

BDII(a) Spin (n)/Spin (n—1) (where n is even)

EI E,PSp (4)

EIV E,F,

6. Proofs for AIl, BDII(a) and EIV

The symmetric spaces of types AII, BDII(a) and EIV have the properties
such that 7,(K) is torsion-free and ¢*: R(G)—R(K) is surjective. Hence we can
apply Proposition 4.1 to this case.

Here we describe Proposition 4.1 for the above three symmetric spaces
explicitly.

Type AII (M=SU(2n)/Sp(n)). Let I, denote the Xz unit matrix and put

0 1,
J=\_1 o ) Then ¢ is given by
o(g)=Jg]" for geSU(2n)
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where g is the complex conjugate of g.
Using the notation in [10] we have
(6.1) R(SUQ2n)) = Z[\yy 'y Maw-y]  and  R(Sp(n)) = Z[Ayy++5 )
([10], Theorems 3.1 and 6.1 in §13). Then it is clear that
(6.2) *(Ng) = t*(Non-p) = Ap and  o*(Np) = Npuose for k=1,-,n.

From (6.2) we see easily that ¢* is surjective and z(Ap—Ny0_z) (1=Zk<n—1)
form a basis for the free abelian group Ker(J(SU(2n))— J(Sp(n))). Therefore
we get from Proposition 4.1 that

Proposition 6.1. The notation being as in (6.1)),
KHSU@n)ISHm) = ABO—Nan_)s -+ BOm1—Nonss)) -
Type BDII(a) (M=Spin(2n)/Spin(2n—1)). o is given by
a(g) = —eyngesn for any ge Spin(2n)

where e,, is the generator of the Clifford algebra C,, in the 2n-th position
([10], §11).
From Theorem 10.3 in §13 of [10],

( ) R(Spi”(zn)) = Z[N(P2n)s s N H(P2n)y Bimr Azl

. R(Spin(2n—1)) = Z[N'(P2n-1)s ***s N (Pan-1)s Azp-i]
using the same notation. Then we can easily verify that
(M (P2n) = M(Pen-1) M T (P2n-)  (1=k=n—-2),
*(A) = Azn-1)
THMH(po) = M) (1Sk=n—2) and
a*(AL) = A .

(6.4)

From (6.4) we see that 7* is surjective and the element Aj,—Aj, holds the
conditions required in (i) of Proposition 4.1 and therefore we have by Proposi-
tion 4.1

Propositiom 6.2. The notation being as in (6.3),
K*(Spin(2n)/Spin(2n—1)) = A(B(AH—AL)) -

Type EIV (M=EF,). We look at the Dynkin diagrams of E, and F,
with the irreducible representations corresponding to the vertexes and their
dimensions written next to the vertexes:
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E,
(6.5)
27 351
o A’ A’ Adp,
O“Of:,hﬂ; -0 1;‘4
26 273 1277 52

where \*p’ (k=1 or 2) is the greatest component of A¥p’ (See Supplement and
Table 30 of [4]).

The involutive automorphism o of E¢ for EIV is the normal extension of a
symmetry of the Dynkin diagram E, indicated by the arrow in the diagram (6.5)
(See [11, II], p. 130). Hence it follows immediately that

(6.6) o*(\kp,) = Nep, (1=k=3) and o*(A4dg) = Adg,.
Consider the highest weights of p, and p’ and their dimensions, then we get

(6.7) i*(p) = p'+1

and moreover we obtain

(6.8) i*(Adyg) = Adp +p'

by enumerating the all weights of the adjoint representations Adg, and Adp,.

From (6.7) and (6.8) we see that i*: R(E)—R(F,) is surjective because of
R(F)=Z[p’, N*p’, N*p’, Adp,] [15], and therefore from (6.6) and Proposition
4.1 follows

Proposition 6.3 (Cf. [5]). The notation being as in the diagram (6.5),

K*(Eo[F,) = A(B(p:—p2), BV pi—N’py)) .

7. Proofs for BDI(a) and EI

Let L be a compact connected Lie group, H be a closed connected subgroup
of maximal rank of L and j: H—L the inclusion of H. Then,

Proposition 7.1. For a compact L-space X, there is a natural homomorphism
of K¥(X)-modules jx: K}(X)—K¥(X) such that j«(1)=1, and therefore j4j* is an
identity isomorphism where j* is the restriction K¥(X)—K#(X).

Proof. The proof is immediate from Proposition (3.8) of [13].
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Type BDI(a) (M = Spin(2m+ 2n + 2)[Spin(2m + 1) X Spin(2n 4 1)). o is
given by
a(g) = —(e, -+, Coms1)E(Comrr e )

for any g= Spin(2m-+2n-+2) where ¢, is the generator of the Clifford algebra
Cim+, In the k-th position for k=1, .-+, 2m+1 ([10], §11). Then we have

U*()"k(sz+zn+z)) = 7\'k(f’zm+2n+2) (1 sksmtn— 1) ’
¥ (Asomrants) = Dimtonts

(7.1)

using the notation in (6.3).
Put  G=Spin(2m+2n+2), K=Spin(2m+1)xSpin(2n+1), G,=Spin
23
(2m+-2n+-1) and K,=Spin(2m-+1) X Spin(2n), then we have an isomorphism
Z2

induced by the external product homomrphism
(7.2) K*(G/GI)R(%) )R(Kl) =~ K*(G|K))
Gy
by use of the Kunneth formula spectral sequence in K&, ([8], [9] and [12]).
Furthermore, since the restriction R(G)—R(G,) is surjective, we have isomor-
phisms
K*(GIK,) = K¥G|G)B(Z @ RK)) by (1.2)
(7.3) &= A(B(A;m+2n+2_A;m+2n+z))®(ZR§ )R(Kl)) by Prop. 6.2
== A(B(A;m+zn+z“A;m+2n+z))®(ZR§)R(K1))

Let j*: K*(G/K)—K*(G/K,) be the homomorphism induced by the pro-
jection G/K,—G/K and j4«: K*(G/K,)—>K*(G/K) the homomorphism of
K*(G/K)-modules mentioned in Proposition 7.1. K*(G/K,) is torsion-free by
(7.3) and j* is injective by the property of jx. Therefore,

7.4 K*(G/K) is torsion-free.
Here we have a natural homomorphism of rings

P AB(Admsini—Bimsans ) Z @ R(K)) = K¥(G|K)

which is well-defined by (7.4). Then ¢ is injective because j*@ is so, and also
it is easy to see that ¢ is surjective by the fact that j,j*=identity. Hence we
conclude that

Proposition 7.2. The notation being as in (6.3), K*(Spin(2m-+2n+2)/
Spin(2m-1) X Spin(2n-+-1)) is torsion-free and equals the ring
23
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AB(Bimranse—Bimsam)B(Z @ R(Spin(2m+1) X Spin(2n+1))) .

R(Spin(zm+21n+2))

Type EI (M=E,/PS(4)). o is the composition of the involutive automor-
phism of E, for EIV and the inner automorphism (See [11, II], p. 131). So we
have from (6.6)

(7.5) o*(\kp,) = Np, (1Sk=3) and o*(adg,) = Adg,
using the notation the diagram (6.5).

From the argument in p. 131 of [11, II] we know that E, has Sp(3) %<2SU(2)

as a subgroup which is contained in PSp(4) and F, where Z, is the subgroup of
Sp(3) X SU(2) consisting of (1,1) and (—1, —1).

Setting G=E,, K=PSp(4), G,=F, and K1=Sp(3)2>é SU(2) the similar
argument to BDI(a) shows that

Proposition 7.3.  The notation being as in the diagram (6.5), K*(E,/PSp(4))
is torsion-free and equals the ring

A(B(p.—p2. (NP~ NP )B(Z,D RPSPH)-

8. Proof for A1

In the case of AI-type, o is given by o(g)=g for any g& SU(n) where g is
the complex conjugate of g.
From Theorems 3.1 and 10.3 in §13 of [10], we have

R(SUm)) = Z[N\1, **s Anal s

R(SO(2m—+1)) = Z[Ay, ***5 Ays]  Where Ny = N4(poppsy) (1=k=m),
R(SO2m)) = Z[Ayy ***s Am—15 My Mml/~ where Ag = N¥(pspm)
(I1=k=m—1) and A% = A7(p.m)

(8.1)

using the same notation.
First we consider the case when n is odd. Put n=2m-1. Then,

(8.2) *(Mg) = *Nomrr-k) = M and 0F(Ng) = N1 for k=1, -, m
clearly.

Using the Koszul complex
C* = A(x,, *+, %,,,) QR(SU(2m+-1))

where d(x4) = M1 = Namrr-s—ENams1-)) (1=<Ek=2m) and d is a derivation,
we shall show

(8-3) Tor;’;iosu(zmﬂ))(Z’ SO(2m+1)) = A(%,— X3y **, KX 41) -
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For a proof we define E, (1</<2m) to be the subcomplex Agcsoczm+1
(% =, %) of C* ® R(SO(2m+1)). Then there exist a natural short exact

R(SU(2m+1))
sequence of complexes

0—~E,—~E,,—~E,E —0
and an isomorphism of complexes
E,~F,,.|E,

defined by the correspondence 2—z%,,,, € E, for =1, ---, 2m—1. This permits
us to apply the induction on / and then we obtain

H*E) = R(SO(2m+1))/(7\.l,~--, 7\.,) ,
H*(Em+l) = A(xm—l+1_xm+h R xm_xm+l)

for /=1, ---;m. 'Thus (8.3) is proved.
From [9], §10 it follows that the element x,—x,,,,-, converges to
B(M&—Nom+1-x) in the spectral sequence (1.2) for k=1, «--,m. Hence we have

Proposition 8.1.  The notation being as in (8.1),
K*(SU(2m+-1)[SO(2m~+1)) = A(BR1—Nzm)s ***s BAm—Npm11)) -

In a similar way when # is even, we can prove the following

Proposition 8.2. The notation being as in (8.1),

K*(SU(2m)[SO2m)) = ABN—Nam-1); ***s BMm1— A1) O A(A7)

where X;,:x;,——l-(g’ﬁ).
2\m

This completes the proof of Theorem A.
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