ON MULTIPLY TRANSITIVE PERMUTATION GROUPS I

Eiichi BANNAI*)

(Received October 8, 1973)

Introduction

In [5], M. Hall determined 4-ply transitive permutation groups whose stabilizer of 4 points is of odd order. (See also Nagao [11].) On the other hand, in Bannai [1] and Miyamoto [9], t-ply transitive finite permutation groups in which the stabilizer of t points is of order prime to an odd prime p have been determined for $t=p^{2}+p$ and $3 p$ respectively. The purpose of this seies of notes is to strengthen those results. In this first note, we will improve Lemma 2.1 in Miyamoto [9]. Namely, we will prove the following result.

Theorem 1. Let p be an odd prime. Then there exists no permutation group G on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following three conditions:
(i) G is $(p+2)$-ply transitive, and $n \equiv 2(\bmod p)$,
(ii) a Sylow p subgroup P_{0} of $G_{1,2, \cdots, p+2}$ is semiregular on $\Omega-\{1,2, \cdots, p+2\}$, and
(iii) $\left|P_{0}\right| \geqslant p^{2}$.

Corollary to Theorem 1. Let p be an odd prime. Let G be a $(2 p+2)$-ply transitive permutation group on a set $\Omega=\{1,2, \cdots, n\}$. If the order of $G_{1,2, \cdots, 2 p+2}$ is not divisible by p, then G must be $S_{n}(2 p+2 \leqslant n \leqslant 3 p+1)$ or $A_{n}(2 p+4 \leqslant n \leqslant 3 p+1)$.

This corollary is immediately proved by combining Theorem 1 with a result of Miyamoto [9]. To be more precise, if the order of $G_{1,2, \ldots, p+2}$ is not divisible by p^{2}, then the $2 p$-ply transitive group $G_{1,2}$ on $\Omega-\{1,2\}$ must contain $A^{Q-\{1,2\}}$ by the result of Miyamoto [9, §1], and so G must be one of the groups listed in the conclusion of the corollary. If the order of $G_{1,2, \ldots, p+2}$ is divisible by p^{2}, then the $(p+2)$-ply transitive group $G_{1,2 \ldots, i}$ on $\Omega-\{1,2, \cdots, i\}$ (if $n \equiv$ $i+2(\bmod p)$ with $0 \leqslant i \leqslant p-1)$ satisfies the three conditions of Theorem 1 , and we have a contraidction.

In our proof of Theorem 1, the following result is very important. This result is a kind of generalization of a result of Jordan [8, Chap. IV], and will be of independent interest.

[^0]Theorem A. Let p be an odd prime. Then $A_{p+2}\left(\right.$ hence S_{p+2}) is not involved in $G L(p, p)$.

Theorem A will be proved in $\S 1$ by exploiting the theory of modular representations of the symmetric groups due to Nakayama [12] together with some other results (theory of projective representations of the symmetric groups due to Schur [13], theory of p groups and so on).

In Appedix, we will discuss some partial generalization of Theorem 1.
Notation. Our notation will be standard. S^{Δ} and A^{Δ} denote the symmetric and alternating groups on a set Δ. If $|\Delta|$, the cardinality of Δ, is m, we denote them by S_{m} and A_{m} instead of S^{Δ} and A^{Δ}. If X is a permutation group on a set Ω, and if Δ is a subset of Ω which is fixed as a whole by X, we denote by X^{Δ} the restriction of X to Δ. For a subset $\Delta=\{1,2, \cdots, i\}$ of Ω, we denote by $X_{1,2, \ldots, i}$ the pointwise stabilizer of Δ in $X . \quad G L(m, K)$ denotes the general linear group of dimension m over a field $K . \operatorname{PGL}(m, K)$ denotes the projective linear group of dimension m over $K, P G L(m, K)=G L(m, K) /$ $Z(G L(m, K))$, where $Z(G L(m, K))$ denotes the center of $G L(m, K)$. When K is of cardinality p, we denote $G L(m, K)$ by $G L(m, p)$. For a group $X, \operatorname{Aut}(X)$ denotes the automorphism group of X.

1. A_{p+2} is not involved in $G L(p, p)$

The purpose of this section is to prove Theorem A that A_{p+2} is not involved in $G L(p, p)$.

We first remark the following lemma.

Lemma 1. Theorem A is true for $p=3$ and 5.

Proof. A_{5} is not involved in $G L(3,3)$, because the order of $G L(3,3)$ is not divisible by 5. Similarly, A_{7} is not involved in $\operatorname{GL}(5,5)$, because the order of $G L(5,5)$ is not divisible by 7 .

From now on, we always assume that $p \geqslant 7$. In case of $p \geqslant 7$, we can prove Theorem A in a little stronger from as in Lemma 4 mentioned later.

Lemma 2. Let $p \geqslant 7$. Then S_{p+2} is not a subgroup of $G L(p, K)$, where K is an algebraically closed field of characteristic p.

Proof. We have only to prove that S_{p+2} has no faithful p-modular (absolutely) irreducible representation of degree $\leqslant p$ over K. Lemma 2 will be proved through the following steps (1) and (2).
(1) The degree of any not 1 dimensional ordinary irreducible representation of $S_{k}(k \geqslant 5)$ is $\geqslant k-1$. Therefore, the degree of any irreducible p-modular representation of S_{p+2} over K which is contained in a p-block of defect 0 is more than p.

The first assertion is immediately proved by using the Schur's recursive formula (a special case of Murnaghan-Nakayama's recursive formula) (see [13, $\S 44]$). The last assertion is obvious from an elementary properties of a p-block of defect 0 .
(2) The degree of any not 1 dimensional p-modular irreducible representation of S_{p+2} over K which is contained in a p-block of defect 1 is more than p.

By Nakayama [12], we obtain that there exist just two p-blocks of defect 1 for S_{p+2}. Moreover, one block (say B_{0}) with p-core of type [2] consists of p ordinary irreducible representations $T_{0, r}$ with $0 \leqslant r \leqslant p-1$, where $T_{0, r}$ is the representation associated with the Young diagram of type $[p+2]$ (for $r=0$), $\left[p-r, 3,1^{r-1}\right]$ (for $1 \leqslant r \leqslant p-3$), $\left[2,2,1^{p-2}\right]$ (for $r=p-2$) and [2, $\left.1^{p}\right]$ (for $r=$ $p-1$). While, the other block (say B_{1}) with p-core of type [1^{2}] consists of p ordinary irreducible representations $T_{1, r}$ with $0 \leqslant r \leqslant p-1$, where $T_{1, r}$ is the representation associated with the Young diagram which is obtained by transposing that of $T_{0, p^{-1-r}}$. Also by a result of Nakayama [12], $T_{i, r}$ and $T_{i, r+1}$ $(i=0,1, r=0,1, \cdots, p-1)$ have just one p-modular irreducible representation (over K) in common, say, let us denote it by $\phi_{i, r}(0 \leqslant r \leqslant p-2)$, and $T_{i, r}$ and $T_{i, s}$ with $s>r+1$ have no p-modular irreducible representation in common. That is to say, the Brauer graphs associated with the p-blocks $B_{i}(i=0,1)$ are trees without branches and their nodes are arranged on natural order on r. (For the definition of Brauer graphs, see, e.g., [3, §68].) Therefore, we can calculate the degree $\left|\phi_{i, r}\right|$ of $\phi_{i, r}$ inductively for $r=0,1,2, \cdots$ (and for $r=p-2$, $p-3, p-4, \cdots)$, because the degree $\left|T_{i, r}\right|$ of $T_{i, r}$ is given explicitly by the following formula:
$\left|T_{i, r}\right|=(p+2)!/\left(\right.$ the product of all hook lengths of the Young diagram of $\left.T_{i, r}\right)$.
In the case of $p=7$, we can immediately calculate all the values of $\left|\phi_{i, r}\right|$ ($i=0,1, r=0,1, \cdots, 5$), and we obtain that they are all $\geqslant 8>7$ except $\left|\phi_{0,0}\right|$ and $\left|\phi_{1,5}\right|$ which are equal to 1 . Thus, in the following we may assume that $p \geqslant 11$. Now, we obtain that $\left|T_{0,0}\right|=1,\left|T_{0,1}\right|=\frac{(p+2)(p+1)(p-3)}{6} \geqslant p^{2},\left|T_{0, p-3}\right|=$ $\frac{(p+2)(p+1)(p-2)(p-3)}{12} \geqslant p^{2},\left|T_{0, p-2}\right|=\frac{(p+1)(p-1)}{2}$ and $\left|T_{0, p-1}\right|=p+1$. Therefore, we obtain $\left|\phi_{0,0}\right|=1,\left|\phi_{0, p^{-3}}\right|>p,\left|\phi_{0, p^{-2}}\right|=p+1>p$. Moreover, when $1 \leqslant r \leqslant p-4$, we obtain that $\left|T_{0, r}\right| /\left|T_{0, r+1}\right|=\frac{r(r+3)(p-r-2)}{(r+2)(p-r)(p-3-r)}$. Now, we obtain that $\frac{1}{p}<\frac{r(r+3)(p-r-2)}{(r+2)(p-r)(p-3-r)}<p$ for any $r=1,2, \cdots, p-2$, and $\frac{r(r+3)(p-r-2)}{(r+2)(p-r)(p-3-r)}<1$ when $r \leqslant \frac{p-1}{2}$, and >1 when $r \geqslant \frac{p+1}{2}$. Therefore, we obtain that $\left|T_{0,1}\right|<\left|T_{0,2}\right|<\cdots<\left|T_{0,(p+1) / 2}\right|$, and $\left|T_{0,(p+1) / 2}\right|>\cdots>\left|T_{0, p-2}\right|>$ $\left|T_{0, p-1}\right| \cdot$ Hence, we obtain that $\left|\phi_{0, r}\right|>p$ (for $r=1,2, \cdots, p-4$), because of the
fact that the Brauer graph of the block B_{0} is a tree without branches and of natural order on r. Therefore, we obtain that $\left|\phi_{0, r}\right|>p$ for any $r \neq 0$ $(1 \leqslant r \leqslant p-2)$. Since $\left|T_{0, r}\right|=\left|T_{1, p-1-r}\right|$ and $\left|\phi_{0, r}\right|=\left|\phi_{1, p-2-r}\right|$ for any r, we also obtain that $\left|\phi_{1, r}\right|>p$ for any $r \neq p-2(0 \leqslant r \leqslant p-3)$ and $\left|\phi_{1, p-2}\right|=1$. Thus, we have proved the assertion of (2).

Since any p-block of S_{p+2} is either of defect 0 or 1 , we have completed the proof of Lemma 2 by (1) and (2).

We also have
Lemma 2'. Let $p \geqslant 7$. Then $A_{p^{+2}}$ is not a subgroup of $G L(p, K)$, where K is an algebraically closed field of characteristic p.

Proof. The assertion corresponding to step (1) in Lemma 2 is easily obtained similarly by using the Schur's recursive formula for the characters of the symmetric groups. Namely, we have
(1') The degree of any (p-modular) irreducible representation of A_{p+2} over K which is contained in a p-block of defect 0 is more than p.

Since $T_{i, r}(i=0,1, r=0,1, \cdots, p-1)$ are all irreducible representations of A_{p+2}, we immediately obtain the following assertion.
(2') The degree of not 1 dimensional (p-modular) irreducible representation of $A_{p^{+2}}$ over K which is contained in a p-block of defect 1 is more than p.

Thus, we have proved Lemma 2^{\prime}.
Lemma 3. Let p be an odd prime $\geqslant 7$. Then S_{p+2} is not a subgroup of $\operatorname{PGL}(p, K)$, where K is an algebraically closed field of characteristic p.

Proof. We have only to prove that S_{p+2} has no not 1 dimensional projective irreducible representation of degree $\leqslant p$ over K. Since we have already proved in Lemma 2 that $S_{p^{+2}}$ is not a subgroup of $G L(p, K)$, we have only to prove that S_{p+2} has no projective representation of degree $\leqslant p$ over K which is not a linear representation. As is easily seen from a result of Schur (and a slight extension of it) (cf. Yamazaki [15, §3.3, Corollary 1]), there is a finite group (which is a central extension of S_{p+2} and is called a representation group of S_{p+2} over K) such that any projective representation of S_{p+2} is induced by a linear representation of the representation group. Movreover, by Yamazaki [15, §3, e.g., Proposition 3.3, 2) and Proposition 3.5], we may take as a representation group of S_{p+2} over K the following group T_{p+2} defined by the generators

$$
\left\{J, X_{i}(i=1,2, \cdots, p+1)\right\}
$$

with the defining relations

$$
\begin{aligned}
& J^{2}=1 \\
& X_{\alpha}^{2}=J(\alpha=1,2, \cdots, p+1)
\end{aligned}
$$

$$
\begin{aligned}
& \left(X_{\beta} X_{\beta+1}\right)^{3}=J(\beta=1,2, \cdots, p) \text { and } \\
& X_{\gamma} X_{\delta}=J X_{\delta} X_{\gamma}(\gamma=1,2, \cdots, p-1, \delta=\gamma+2, \cdots, p+1) .
\end{aligned}
$$

(Note that $Z\left(T_{p+2}\right)=\langle J\rangle$ (which is contained in the commutator subgroup of $\left.T_{p+2}\right)$ is a cyclic group of order 2, and $T_{p+2} / Z\left(T_{p+2}\right)=S_{p+1} . \quad T_{p+2}$ is the group denoted \mathfrak{T}_{p+2} in Schur [13]. Also note that $H^{2}\left(S_{p+2}, K^{*}\right)=H^{2}\left(S_{p+2}, \boldsymbol{C}^{*}\right)=Z_{2}$.)

The ordinary irreducible representations of T_{p+2} were completely determined by Schur [13]. As in [13], let us call an ordinary irreducible representation of T_{p+2} is of the first kind (resp. of the second kind) if the kernel of the representation contains $Z\left(T_{p+2}\right)$ (resp. does not contain $Z\left(T_{p^{+2}}\right)$). The proof of Lemma 3 will be done through the following steps (1), (2) and (3).
(1) The degree of any ordinary irreducible representation of T_{p+2} of the second kind is more than $2^{[(p+1) / 2]}$. Moreover $2^{[(p+1) / 2]}>p$.

The degree of any ordinary irreducible representations of $T_{p^{+2}}$ of the second kind is given as follows (Schur [13]):

$$
f_{v_{1}, v_{2}, \ldots, v_{m}}=2^{[(p+2-m) / 2]} g_{\nu_{1}, v_{2}, \cdots, \nu_{m}},
$$

with

$$
g_{\nu_{1}, \nu_{2}, \cdots, \nu_{m}}=\frac{(p+2)!}{\nu_{1}!\nu_{2}!\cdots \nu_{m}!} \prod_{\alpha<\beta} \frac{\nu_{p^{\prime}}-\nu_{\beta}}{\nu_{a}+\nu_{\beta}},
$$

where $\nu_{1}+\nu_{2}+\cdots+\nu_{m}=p+2$ and $\nu_{1}>\nu_{2}>\cdots>\nu_{m}>0$. Moreover, by Schur [13, §44], it is proved that

$$
f_{v_{1}, v_{2}, \cdots, \nu_{m}} \geqslant 2^{\left[(p+2-1) / /^{2}\right]}=2^{[(p+1) / 2]}
$$

for any $f_{v_{1}, v_{2}, \ldots, v_{m}}$. Thus we obtain the first assertion. The last assertion is clear, because $p \geqslant 7$.
(2) The degree of any ordinary irreducible representation of T_{p+2} of the second kind which is not divisible by p is divisible by $2^{[(\rho-1) / 2]}$. Moreover, $2^{[(p-1) / 2]}>p$.

Since $f_{v_{1}, v_{2}, \cdots, v_{m}}$ is not divisible by p, we obtain that $m \leqslant 3$, by noticing the formula of $f_{\nu_{1}, \nu_{2}, \cdots, \nu_{m}}$. Since $f_{\nu_{1}, \nu_{2}, \cdots, \nu_{m}}=2^{[(p+2-m) / 2]} g_{\nu_{1}, \nu_{2}, \cdots, \nu_{m}}$ and $g_{\nu_{1}, \nu_{2}, \cdots, \nu_{m}}$ is an integer (Schur [13, §40], we obtain the first assertion. The last assertion is clear, because $p \geqslant 7$.
(3) The degree of any not 1 dimensional (p-modular) irreducible representation of T_{p+2} over K is more than p.

Let ϕ be an irreducible representation of T_{p+2} over K of degree >1. If ϕ is contained in a p-block of defect 0 of T_{p+2}, then by step (1) and the step (1) in Lemma 2, we obtain that the degree of ϕ is more than p. Now, let us assume that ϕ is contained in a p-block of defect 1 . Since any block of defect 1 contains at most p ordinary irreducible representations in general (and in this case) (cf. [3, §68]), B_{0} and $B_{1}\left(p\right.$-blocks of S_{p+2}) themselves also become p-blocks
of T_{p+2} of defect 1 (all representation of S_{p+2} are naturally regarded as representations of T_{p+2}). Therefore, any ordinary irreducible representation of T_{p+2} which is contained in a p-block of defect 1 and not contained in B_{0} and B_{1} (as blocks of T_{p+2}) must be of the second kind. Therefore, the degree of any ordinary irreducible representation of $T_{p^{+2}}$ contained in a p-block of defect 1 and not contained in B_{0} and B_{1} must be divisible by $2^{[p-1) / 2]}$ by step (2). Since p is to the first power in the order of T_{p+2}, the Brauer graph of any p-block of defect 1 of $T_{p^{+2}}$ must be a tree (cf. [3, §68]), and so the degree of any irreducible representation of T_{p+2} over K is divisible by $2^{[(p-1) / 2]}>p$. Thus, we obtain the assertion of (3).

Thus, we have completed the proof of Lemma 3.
We also have
Lemma 3'. Let $p \geqslant 7$. Then A_{p+2} is not a subgroup of $P G L(p, K)$, where K is an algebraically closed field of characteristic p.

Proof. The commutator subgroup $T_{p^{+2}}{ }^{\prime}$ of $T_{p^{+2}}$ with index 2 becomes a representation group of A_{p+2} over K.
(1') The degree of any ordinary irredubicle representation of $T_{p+2}{ }^{\prime}$ of the second kind is more than $2^{[(p+1) / 2]-1}>p$.

Proof is clear.
(2') The degree of any ordinary irreducible representation of $T_{p+2}{ }^{\prime}$ of the second kind which is not divisible by p is divisible by $2^{[(p-1) / 2]-1}$ and divisible by 8 if $p=7$. Moreover, $2^{[(p-1) / 2]-1}>p$ when $p \geqslant 11$.

Proof of the first assertion is clear. The second assertion for $p=7$ is proved directly and easily.
(3') The degree of not 1 dimensional (p-modular) irreducible representation of $T_{p+2}{ }^{\prime}$ over K is more than p.

The proof is quite the same as that of step (3) in Lemma 3.
Thus, we have proved Lemma 3'.
Lemma 4. $A_{p^{+2}}$ is not invloved in a finite subgroup of $G L(p, K)$, where K is an algebraically closed field of characteristic p.

Proof. Let us assume that l is the smallest integer $\leqslant p$ such that $A_{p^{+}}$is involved in a finite subgroup X of $G L(l, K)$. Moreover, let us take X being of the least order among them, then X contains a normal subgroup Y such that $X / Y=A_{p+2}$. Now, we will derive a contradiction. By the assumption, we may assume that X is an irreducible subgroup of $G L(l, K)$, and moreover that X is a primitive subgroup of $G L(l, K)$, because $A_{p^{+2}}$ is obviously not involved in S_{l}. (Cf. Dixon [2, §4], see also [2] for some fundamental properties of (finite) linear groups). By Lemma 2 and Lemma 3, we may assume that Y is not contained in $Z(G L(l, K)$). Thus, there exists a Sylow q subgroup Q (for some prime
$q)$ of Y such that Q is not contained in $Z(G L(l, K))$. By the theorem of Sylow (Frattini argument), and since $A_{p^{+2}}$ is not involved in Y by the minimality of the order of X, we obtain that X normalizes the Sylow q subgroup Q which is not contained in $Z(G L(l, K))$. The proof of Lemma 4 will be completed through the following steps (1) to (6).
(1) $p \neq q$.

Otherwise, X becomes not irreducible as a subgroup of $G L(l, K)$, and this contradicts the minimality of l. (Cf. Dixon $[2, \S \S 2.2$ and 2.8 , or $\S 4.2]$).
(2) Q does not contain any characteristic abelian subgroup of rank $\geqslant 2$.

Otherwise, X becomes imprimitive or not irreducible as a subgroup of $G L(l, K)$, and this contradicts the minimality of l. (Cf. Dixon [2, §4.2].)
(3) Q is a central product of groups Q_{1} and Q_{2}, where Q_{1} is either 1 or extraspecial q group, say of order $q^{2 r+1}$, and Q_{2} is either cyclic or $q=2$ and isomorphic to one of dihedral, generalized quaternion and semidihedral groups of order $\geqslant 2^{4}$.

Since Q contains no characteristic abelian subgroup of rank $\geqslant 2$, we obtain the assertion by a result of P. Hall (cf. Gorenstein [4, Theorem 5.4.9]).

Next, we utilize the following important result of Jordan.
Lemma of Jordan ([8, Chap. (V, page 56, (3)]). Let q be a prime. If r is a prime such that $r \neq q$ and $r \leqslant k-2$, then A_{k} is not involved in $G L(r-2, q)$.

As a special case of Lemma of Jordan, we obtain the following assertion.
(4) A_{p+2} is not involved in $G L(p-2, q)$, where q is a prime different from p.
(5) Let x be an element of $G L(l, K)$ which is of order prime to p and not lying in $Z(G L(l, K))$. Then A_{p+2} is not involved in $C_{G L(l, K)}(x)$.

This assertion is well known and immediately proved, e.g., by Dixon [2, §4.2], because $C_{G L(l, K)}(x)$ becomes either not irreducible or imprimitive as a subgroup of $G L(l, K)$.
(6) A_{p+2} is not involved in $\operatorname{Aut}(Q)$.

We obtain that all irreducible components of the natural representation of Q in $G L(l, K)$ are equivalent (cf. [2, §4.2]), and so it is a faithful representation of Q. Now, any faithful ordinary absolutely irreducible representation of Q (and hence any faithful absolutely irreducible representation of Q over a field of characteristic $p \neq q$ (cf. Dixon [2, §3.8]) is) either of degree q^{r} (when Q_{1} is extraspecial of order $q^{2 r+1}$ and Q_{2} is cyclic) or q^{r+1} (when Q_{1} is extraspecial of order $q^{2 r+1}$ and Q_{2} is one of dihedral, generalized quaternion and semidihedral and $q=2$), or $\leqslant 2$ (when $Q_{1}=1$) (cf. Gorenstein [4, Theorem 5.5.5 and Theorem 3.7.2]). If $Q_{1}=1$, then we easily have that $A_{p^{+2}}$ is not involved in $\operatorname{Aut}(Q)$, and so in the following we assume that $Q_{1} \neq 1$. Thus, we obtain in every case that $q^{r} \leqslant l(\leqslant p)$ or $q^{r+1} \leqslant l(\leqslant p)$. Now, investigating the structures of the group
Q in every posible case, we obtain that Q contains a series of characteristic subgroups $Q_{(i)}$ such that

$$
Q=Q_{(0)}>Q_{(1)}>\cdots>Q_{(k)}=1
$$

and $Q_{(i)} / Q_{(i+1)}(i=0,1, \cdots, k-1)$ are elementary abelian q subgroups of rank $\leqslant 2 r$. Here, note that in every case $Q / Z(Q)$ is a direct product of $Q_{1} / Z(Q)$ (an elementary abelian group of order $q^{2 r}$) and a group $Q_{2} / Z(Q)$ which is either trivial or one of cyclic subgroups of order $\geqslant q^{2}$ (since, if of order q then Q becomes an extraspecial q group of order $q^{2 r+2}$, and this is a contradiction) or $q=2$ and dihedral group of order $\geqslant 2^{3}$. Therefore, in any way, since $q^{r} \leqslant p$ or $q^{r+1} \leqslant p$, we obtain that $p-2 \geqslant 2 r$ whenever $p \geqslant 7$. Therefore, in order that A_{p+2} is involved in $\operatorname{Aut}(Q), A_{p+2}$ must be involved in $G L(2 r, q)$, because $\operatorname{Aut}(Q) /($ the stabilizer group of the above chain of characteristic subgroups) is a subgroup of the direct product of $G L\left(l_{i}, q\right)$'s with $l_{i} \leqslant 2 r$, and the stabilizer group of the chain is a q group (cf. Gorenstein [4, §5.3]). But, since $p-2 \geqslant 2 r$, this contradict the assertion of (4). Thus, we have obtained the assertion of (6).

Now, we will complete the proof of Lemma 4. Since A_{p+2} is not involved in $C_{G L(l, K)}(Q)$ by step (5), and since $\operatorname{Aut}(Q)$ is a subgroup of $N_{G L(l, K)} / C_{G L(l, K)}(Q)$, we obtain that A_{p+2} is not involved in $N_{G L(l, K)}(Q)$. But this is a contradiction, and we have completed the proof of Lemma 4.

Thus, we have completed the proof of Theorem A.
Remark 1. Theorem A improves Lemma of Jordan (stated preceding step (4) in Lemma 4) a little. That is, we can omit the assumption that $r \neq q$ in Lemma of Jordan.

Remark 2. Since it will be not easy for us to follow the proof of Lemma of Jordan along the original paper [8] of Jordan, because of its old fahsionedness of its way of description and its terminologies (but not of its context), we give a sketch of an alternative proof.
(a) Let q be a prime $\neq p$. Then A_{p+2} is not a subgroup of $G L(p-2, F)$, where F is an algebraically closed field of characteristic q.
A_{p+2} contains a Frobenius group H of order $p(p-1)$ whose any Sylow subgroups are cyclic. Since the Schur multipliers of any cyclic subgroups are trivial, $H^{2}\left(H, K^{*}\right)$ also becomes trivial (cf. Yamazaki [15, §3]). Therefore, we obtain the assertion by Lemma 1.4 in Harris and Hering [6].

The next assertion will be of independent interest.
(b) Let G be a finite simple group which is not involved in $A_{8} \cong G L(4,2)^{1)}$. If the degree of any not 1 dimensional projective (including linear) irreducible

[^1]representation over any (algebraically closed) field of any characteristic is more than t, then G is not involved in a finite subgroup of $G L(t, K)$, where K is any (algebraically closed) field of any characteristic.

Proof. Let $l(<t)$ be the smallest integer such that G is contained in a finite subgroup X of $G L(l, K)$ with some algebraically closed field K of characteristic, say s. Among them, let us take X to be of the least order. Because of the assumption, we obtain by quite the same argument as used in the proof of Lemma 3, that X contains a nontrivial normal Sylow $q(\neq s)$ subgroup Q which is not contained in $Z(G L(l, K))$, and that X is not involved in $C_{G L(l, K)}(Q)$. Moreover, since G must be involved in $\operatorname{Aut}(Q), G$ must be involved in $G L(2 r, q)$, where $l \geqslant q^{r}$ (or q^{r+1}) holds. From the minimality of $l, q^{r} \leqslant 2 r$. This asserts that $q=2$ and $r=2$ and $l=4$. Hence G must be involved in $G L(4,2)$.

Proof of Lemma of Jordan follows immediately from steps (a) and (b) together with Lemma 3^{\prime} and Lemma 1.

2. Proof of Theorem 1

Let us assume that G satisfies the three conditions of Theorem 1. Now, we will derive a contradiction.

There is an element a of G of order p such that

$$
a=(1)(2)(3, \cdots, p+2)(p+3) \cdots(2 p+2) \cdots,
$$

i.e., a fixes $p+2$ points. Then there exists a Sylow p subgroup of $G_{1,2, \ldots, p+2}$ which is normalized by the element a. We may denote it by P_{0} without loss of generality. Now, let us set P be the subgroup generated by a and P_{0}. Then P is a Sylow p subgroup of G.
(1) $\quad P$ is of maximal class (in the sense of Blackburn). Therefore, $|Z(P)|=p$.

Since we obtain that $\left|C_{P_{0}}(a)\right|=p$ from the semiregularity of P_{0} on $\Omega-\{1,2, \cdots, p+2\}$ (cf. Lemma of Nagao [11]), we have $\left|C_{P}(a)\right|=p^{2}$, and so we have the first assertion (cf. [7, Kapital III, Satz 14.23]). The last assertion is immediate from the assumption that $\left|P_{0}\right| \geqslant p^{2}$.
(2) $N_{G}\left(P_{0}\right)^{\{1,2, \cdots, p+2\}}=S^{[1,2, \cdots, p+2\}}$.

This assertion is an immediate consequence of Lemma of Witt (cf. [14. Theorem 9.3]).
(3) $C_{G}\left(P_{0}\right)^{\{1,2, \cdots, p+2\}} \geqslant A^{\{1,2, \cdots, p+2\}}$.

Otherwise, $C_{G}\left(P_{0}\right)^{(1,2, \cdots, p+2\}}=1$ (because $p+2 \geqslant 5$), and S_{p+2} must be involved in $\operatorname{Aut}\left(P_{0}\right)$, because $N_{G}\left(P_{0}\right) / C_{G}\left(P_{0}\right)$ is a subgroup of $\operatorname{Aut}\left(P_{0}\right)$. Now, P_{0} has an automorphism σ (induced from the element a) such that the following condition (*) is satisfied:

$$
\begin{equation*}
\sigma \text { is of order } p \text { and }\left|C_{P_{0}}(\sigma)\right|=p \tag{*}
\end{equation*}
$$

If a p group X has an automorphism σ satisfying the condition (*), then any σ-invariant subgroup of X and any factor group X / Y for a σ-invariant normal subgroup Y of X have the automorphism (naturally induced by σ) satisfying the condition (*) provided σ acts nontrivially on them (cf. Huppert [7, Kapital III, §14], or the argument in Zassenhaus [16, pp. 18-19]), because the map τ of X to X defined by $\tau(x)=x^{-1} x^{\sigma}$ is p to 1 , and if $(x Y)^{\sigma}=x Y$ then $\tau(x)$ is contained in Y. Moreover, by a lemma of Ito in Nagao [10], an elementary abelian p group which has an automorphism with the property $(*)$ is of rank $\leqslant p$. Thus, if we take a chain of Frattini subgroups $\Phi^{(i)}\left(P_{0}\right)$ of P_{0} :

$$
P_{0}>\Phi^{(1)}\left(P_{0}\right)>\Phi^{(2)}\left(P_{0}\right)>\cdots>\Phi^{(k)}\left(P_{0}\right)=1,
$$

where $P_{0}=\Phi^{(0)}\left(P_{0}\right)$ and $\Phi^{(1)}\left(P_{0}\right)$ is the Frattini subgroup of P_{0} and $\Phi^{(i+1)}\left(P_{0}\right)=$ $\Phi^{(1)}\left(\Phi^{(i)}\left(P_{0}\right)\right)$ for $i \geqslant 2$, then $\Phi^{(i)}\left(P_{0}\right) / \Phi^{(i+1)}\left(P_{0}\right)$ is an elementary abelian p group of rank $r_{i} \leqslant p(i=0,1, \cdots, k-1)$. Therefore, we obtain that

$$
\text { Aut }\left(P_{0}\right) /(\text { the stabilizer group of the above chain) }
$$

is a subgroup of the direct product of the groups $G L\left(r_{i}, p\right)$ with $r_{i} \leqslant p$ ($i=0,1, \cdots, k-1$), and the stabilizer group of the chain is a p group. Therefore, since S_{p+2} is not involved in $G L(p, p)$ by Theorem A, we obtain that S_{p+2} is not involved in $\operatorname{Aut}\left(P_{0}\right)$. But, this is a contradiction.

Since $C_{G}\left(P_{0}\right)^{[1,2, \cdots, p+2\}} \geqslant A^{(1,2, \cdots, p+2\}}$ we obtain that $|Z(P)| \geqslant p^{2}$. But, this contradict the fact (1) that P is of maximal class.

Thus, we have completed the proof of Theorem 1.

Appendix

In this appendix, we will prove the following result.
Theorem 2. Let p be an odd prime $\geqslant 11$. Let G be a permutation group on a set $\Omega=\{1,2, \cdots, n\}$ which satisfies the following conditions:
(i) G is $(p+1)$-ply transitive, and $n \equiv 1(\bmod p)$,
(ii) a Sylow p subgroup P_{0} of $G_{1,2, \ldots, p+1}$ is semiregular on $\Omega-\{1,2, \cdots, p+1\}$, and
(iii) $\left|P_{0}\right| \geqslant p^{2}$.

Then we obtain that P_{0} is an elementary abelian p group of order p^{p} and that a Sylow p subgroup P of G is isomorphic to $\boldsymbol{Z}_{p} \int \boldsymbol{Z}_{p}$ (wreathed product).

The next Theorem B is proved by quite the same argument as in Theorem A, and so we omit the proof.

Theorem B. Let p be an odd prime $\geqslant 11$. Then S_{p+1} is not involved in $G L(p-1, p)$.

Proof of Theorem 2. Let P be a Sylow subgroup of G which contains P_{0}. Then P is of maximal class. We obtain that $\left|P_{0} / \Phi\left(P_{0}\right)\right| \leqslant p^{p}$, because of Lemma of Ito in Nagao [10]. Since S_{p+1} must be involved in $\operatorname{Aut}\left(P_{0}\right)$ (cf. the proof of Theorem 1) and since $S_{p^{+1}}$ is not involved in $G L(p-1, p)$ by Theorem B, we obtain that $\left|P_{0} / \Phi\left(P_{0}\right)\right|=p^{p}$, because of a result of Burnside (cf. Gorenstein 4, Theorem 5.1.4.) (The use of the result of Burnside simplifies the argument of the proof of Theorem 1 a little, i.e., in step (3) we have only to show that S_{p+1} is not involved in $\operatorname{Aut}\left(P_{0} / \Phi\left(P_{0}\right)\right)$.) Now, $P / \Phi\left(P_{0}\right)$ is a homomorphic image of P and is isomorphic to $\boldsymbol{Z}_{p} \int \boldsymbol{Z}_{p}$. Therefore, by a result of Blackburn (cf. Huppert [7, Kapital III, Satz 14.20]) we obtain that $\Phi\left(P_{0}\right)=1$, and so we obtain the assertion of Theorem 2.

University of Tokyo

References

[1] E. Bannai: A note on multiply transitive permutation groups (to appear in J. Algebra).
[2] J.D. Dixon: The Structure of Linear Groups, Van Nostrand Reinhold Math. Studies 37, London, 1971.
[3] L. Dornhoff: Group Representation Theory, Part B, Dekker, New York, 1972.
[4] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
[5] M. Hall, Jr.: On a theorem of Jordan, Pacific. J. Math. 4 (1954), 219-226.
[6] M.E. Harris and C. Hering: On the smallest degrees of projective representations of the groups $\operatorname{PSL}(n, q)$, Canad. J. Math. 28 (1971), 90-102.
[7] B. Huppert: Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1967.
[8] C. Jordan: Sur la limite de transitivité des groupes non alternés, Bull. Soc. Math. France 1 (1875), 40-71.
[9] I. Miyamoto: Multiply transitive permutation groups and odd primes, Osaka J. Math. 11 (1974), 9-13.
[10] H. Nagao: On multiply transitive groups, Nagoya Math. J. 27 (1966), 15-19.
[11] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
[12] T. Nakayama: On some modular properties of irreducible representations of a symmetric group II, Japanese J. Math. 17 (1940), 411-423.
[13] I. Schur: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen, Crelle J. 139 (1911), 155-250.
[14] H. Wielandt: Finite Permutation Groups, Academic Press, New York and London, 1964.
[15] K. Yamazaki: On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo 10 (1963-4), 147-195.
[16] H. Zassenhaus: Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh, Math, Sem, Univ, Hamburg, 11 (1934), 17-40.

[^0]: *) Supported in part by the Sakkokai Foundation. Present address: The Ohio State University.

[^1]: 1) The assumption that G is not involved in A_{8} is unnecessary in practice, as we can easily see by the case by case considerations of such simple groups.
