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1. Introduction

For a pointed finite CW-pair i: ACX where 4 is a connected oriented
topological manifold, a (stable) map f: X—A4 is of type 7 if the composite a45x

LA has degree r. j(X, A4) and j(X, A) denote the sets of integers 7 for which
there exists a map f: X—4 of type r and a stable map of type 7 respectively.
When j(X, 4) forms an ideal (k(X,A4)) in the ring of integers Z—here k(X, A)
denotes the non-negative generator, we call k(X, 4) the James number of the
pair (X, 4). In the stable case j (X, 4) is always an ideal of Z. So we may
define the stable James number k(X 4).

James [3] has posed the problem of determining j(SP™(S"), S™), where
SP™(S™) is the m-fold symmetric product of an n-sphere S™ with a base point x,
and 7: $"—SP™(S") is the axial embedding x—[x, %,, -, %,]. James showed for
example j(SP™(S™), S™) forms an ideal of Z and, for an even dimentional sphere
S, k(SP™(S*"), §*)=0. On the contrary & (SP™(S™), S")==0 for any positive
integers m and #. From now on we introduce the notation k7" instead of
k(SP™(S™), S™).

In this note we give lower bounds and an upper bound of k7%, That is,
we prove

Theorem. For positive integers m and n

(1) kroa0;

(2) E7HU"™is a multiple of k™

(3) kP%is divisible by all the integers m, m—1, -, 2;

(4) K212 s divisible by 2™ for m=2;

(5) k7% is a divisor of m{(m—1)!---2\, in particular none of the prime factors
of k2 is greater than m.

Corollary. The above lower estimates (3) and (4) are best possible for m=<4.
That is

R =1, R =2, B2 = Rt = 12,



362 H. OsHimMa

There is a homeomorphism SP™(S?)=~CP", the m-dimensional complex
projective space. Under this identification the natural inclusions SzéSP'”(SZ)

c SP™**(S®) become the standard ones CP'CCP™cCP™". K™% is just the
same as Conner-Smith’s d(m) [1], Example 4.

The author wishes to express his thanks to Professor S. Araki for his kind
advices.

2. Proofs of (1) and (2)

Using the group multiplication of S*, we know k7*'=1. So we assume n>2.
First we prove (1). Consider the stable Puppe exact sequence

- —=>{SP™(S"), S"}z—t{S", S"}—{SP™(S")|S", 8"},

here {X, Y} denotes the set of stable homotopy classes of stable maps X—Y.
Since {S” S"}==Z, if i* is non-trivial, then A7"=index of image *=+0. So,
for our purpose, it suffices to show that {SP™(S™)/S", S"*'} is finite. Notice
that {SP™(S")/S", S"*'}==3*(SP™(S™)[S™) is the reduced framed cobordism
group. Let Ey*=H*(SP™(S™)[S"; G_,)>=¥(SP™(S")/S") be the Atiyah-
Hirzebruch spectral sequence for SP™(S™)/S”, where G, is the stable k-stem
of spheres. Since H*(SP™(S")/S*; Z)=0 for u<n-+1, > Ey" is finite.

u+v=n+1

Then > EZ®and hence z}*'(SP™(S")/S") are finite. This implies (1).

U+v=n+1
From the equality k7""=index of image 7*, (2) is obvious. Thus (1) and (2)
follow.

3. Proof of (3)

We use the complex K-theory. Let 7, be the canonical complex line
bundle over CP™ and gc=n,—1& K(S?) be the Bott generator. Then K(CP™) is
the truncated polynomial ring with generator 7,,—1 and the relation (7,,—1)"*
=0. Choose f={CP™, S’} such that ¢*(f)=Fk7%, where ¢ denotes the identity
map of S% Let f*: K*(S*)—>K*(CP™) and f*: H*(S?; Q)—=H*(CP™; Q) be
the induced homomorphisms. Put

¥(ge) = R a(nn—1Y

where a;€Z. Since i*(f)=k%, we have a,=k7*. Let te H(CP™; Z) be the
first Chern class of 7,,. We apply the Chern character, ck, for K*(CP™) and
K*(S?. Then

ait = K%t = (f*och)(g0) = (chof*)(gc) = 2 @/(exp(t)— 1

that is
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t = 31 (ajla) (exp(t)— 1y
in H*(CP™; Q), where we used the fact that ¢/ is “stable”. On the other hand
t = log(1-+(exp(?)—1)) = g((—l)"“/j)(exp(t)—l)’-
Hence
ket =a,=(—1)y"a;;7=1,2, -, m.

This implies (3).

4. Proof of (4)

In this section we use KO-theory. We introduce the following notations:
ny=the canonical symplectic line bundle over S*; gp=ny—1 EI’{EP(S‘); gr
=gH/\gH€I’{\6(S“); p: K*( )—>KO*( ), the real restriction; &: KO*( )—=K*( ),
the complexification; u,=p(gE A (7,,— 1))EE6'6(CPm); ,uozp(n,,,—l)efé
(CP™). We require the following theorem of Fujii [2]:

IEB“’(CP"‘) is the free module with basis s, pape, *+*5 wspt™", and also, in case
m is odd, p,ui(if m=3 mod 4) or T(if m=1 mod 4), where 27=p,uf and u=[m/2]
([ ] is the Gauss notation).

Choose fe{CP™, S*} such that *(f)=Fk%. Letf*: KO*(S*)—KO*(CP™)

be the induced homomorphism. By Fujii’s theorem we may write

(m/2) -1

2 ajuspd if m=0 mod 2
j=0
[m/2] .
fHer) =\ 23 ajpont if m=3 mod 4
[m/Z]—l 3
2_0 a; pspd+ Apms21™ if m=1 mod 4

where a;Z. In case m=1, we have p3=2gReI%6’“(S2). This and #*(f)
=k7% imply 2a,=k7*. We write ch for chof. Then we have

ch(ps) = exp(t)—exp(—t) = 2 sinh(z)
and

ch(p,) = exp(t)+exp(—t)—2 = 2(cosh(z)—1).
Since

2at =K't = (f*och)(gr) = (cho [*)(gx) »

we obtain
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sinh(t) S 27a,(cosh(t)— 1)’ if m=0 mod 2
[m 2]
& ag | SO 83274, (cosh(t)— 1)/ if m=3 mod 4
at = =

[m/2]-1
sinh(f){ >} 27a;(cosh(t)—1)
7=0
+2["‘/2]—1a[m/2](cosh(t)——1)['"/2]}, if m=1 mod 4

in H*(CP™; Q). In case m=0 mod 2, if we differentiate the two sides of (#) by
t, then we have

jlay = (—1)727-3-5.+(2j+1)a; for 1<j<m/2—1,

and elementary calculation shows that we obtain the same information on k72
=2a, as (3). This and (4) imply that we obtain the same information about
ky*1? and k§/*1? for j=1. Hence,in case m=1 mod 4, we obtain nothing more
than (3). In case m=3 mod 4, that is m=4j—1 for some j, we have the same
information about k3’~*% and k3’2, If j is a power of two, 27, from (3) we see
that 27+ divides £2'"*~1%, but the aboves imply that 2¢** divides k2 "*~:2, Thus
(4) follows. Remark, in case j is not a power of two, we obtain nothing more

than (3).

5. Proofs of (5) and Corollary

Choose f,,_,€{CP™*, S} such that i*(f,_,)=k7 "%. Let p,_,: S
—CP™"" be the canonical fibration and ord (p,,-,) be its order as a stable map.
The composite (ord(p,,-,))cofm-1°Pm-, is null homotopic. Hence there exists
fe{CP™, 8?} such that foj=(ord(pm-,))ecofrm-€{CP™*, S?}, where j: CP™}
c CP™. 'This implies that &7 is a divisor of ord(p,,-,)-k7 "% Inductively we
know that k72 is a divisor of ord(p,,-,)-ord(p,,—.)---ord(p,)ks%. Obviously k}?
=1. By Toda [4], page 1103, ord(p,,-,) is a divisor of m!. Thus (5) follows.
And we complete the proof of Theorem.

We prove Corollary. For m<3, the estimates (3), (4) and (5) imply that
k=1, k*?=2 and k¥?=12. We show k¥?=12. Choose f,{CP?, S*} such
that *(f,)=12¢. The composite f,op,: S™—S? represents an element of G, five-
stem of spheres. It is well known that G;=0. Hence there exists f = {CP*, S*}

such that the composite CPacCP‘LSZ coincides with f;. This implies that kj-?
is a divisor of 12. By (2) k%2 is a multiple of k3?=12. Therefore k3?*=12.
This completes the proof of Corollary.

6. Addendum

The same technique is applicable to the stable James number dy(m)=k,
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(HP™, S*) of the pair of symplectic projective spaces. Using the complex K-
theory, a lower bound of dg(m) can be obtained from

at =32 2a( SI4(2R)Y, a,= dy(m),

where te H(HP™; Z) is a generator and ¢, Z. For example, we have 12|dy(2).
Since the order of the canonical fibration S’—S* as a stable map is 24, we have
dy(2)=24. So that this estimate is not best possible.

The unstable James numbers of the pairs (RP™, S"), (CP™, S?), (HP™, S*)
and the stable James number of (RP™, S') are all zero for m=2, where RP™
denotes the m-dimensional real projective space.
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Added in proof. After completed this manuscript, the author has found a
paper of J. Ucci “Symmetric maps of spheres of least positive James number,
Indiana Univ. Math. J. (1972), 709—714” which gives an upper bound of un-
stable James numbers k™ *=Fk(SP™(S"), S”). Combining his estimate with ours,
we obtain

Theorem A.

(1) By(m)=vy(k*)=28y(m),

(i) m=Zv (R 13 <2m—2 for m=2,

(ili) v, (K7"?) = B,(m) for an odd prime p,
where v (n) denotes the exponent of p in the prime factorization of n and (3 ,(m) is
defined by pPr@™® <m < pPr™ 1,

Proof. Identifying S(S™) with S"**, S(SP™(S™)) can be embedded in SP™

(S™*) so that the inclusion S"“LSP’"(S"“) factorizes as the composition S(S™)

Si
—(QS(SP'”(S"))CSP"‘(S”“), where S(X) denotes the reduced suspension of a

pointed space X. This implies that £7" is a factor of k"*'. By definition,
k7™ is a factor of k™ for odd 7, So, in particular, ky? is a factor of &™*. Ucci’s
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estimates of kK”* are v,(k™°)<28,(m) and v ,(k™°)=g@,(m) for an odd prime p.
Therefore we have v,(ky"*)<28,(m) and v ,(k7"*)<p,(m) for an odd prime p.
On the other hand the estimates (3) and (4) imply that B ,(m)=<v (k{"?) for a
prime p and n=<w,(k3"""?) for n=2. Thus Theorem A follows.





