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1. Introduction

For a pointed finite CW-pair i: AaX where A is a connected oriented
i

topological manifold, a (stable) map/: X—>A is of type r if the composite A-+X

->A has degree r. j(X, A) and js(Xy A) denote the sets of integers r for which

there exists a map / : X->A of type r and a stable map of type r respectively.

When j(X, A) forms an ideal (k(X,A)) in the ring of integers Z— here k(X> A)

denotes the non-negative generator, we call k{X, A) the James number of the

pair (X, A). In the stable case js(X, A) is always an ideal of Z. So we may

define the stable James number ks(X, A).

James [3] has posed the problem of determining j(SPm(Sn), Sn), where

SPm(Sn) is the m-fold symmetric product of an w-sphere Sn with a base point x0

and /: Sn-^SPm(Sn) is the axial embedding x->[xy xoy •••, x0]. James showed for

example j(SPm(Sn)> Sn) forms an ideal of Z and, for an even dimentional sphere

S2n, k(SPm(S2n), S2n)=0. On the contrary ks(SPm(Sn)y S n ) φ 0 for any positive

integers m and n. From now on we introduce the notation k™>n instead of

ks(SPm(Sn), Sn).

In this note we give lower bounds and an upper bound of k™'2. That is,

we prove

Theorem. For positive integers m and n

(1) £ Γ w φ 0 ;

(2) k?+1-n is a multiple ofk? n;

(3) k™'2 is divisible by all the integers m, m—1, •••, 2 ;

(4) * Γ " l i 2 is divisible by 2m for m ^ 2 ;

(5) k™>2 is a divisor of m \(m— 1)! 2!, in particular none of the prime factors

of k™'2 is greater than m.

Corollary. The above lower estimates (3) and (4) are best possible for m^4.

That is

k)'2 = 1, k2'2 = 2, kf2 = kΐ>2 = 12 .
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There is a homeomorphism SPm(S2)~CPm, the m-dimensional complex

projective space. Under this identification the natural inclusions S2dSPm(S2)

(zSPm+1(S2) become the standard ones CP1czCPm(zCPm+\ k™'2 is just the
same as Conner-Smith's d(m) [1], Example 4.

The author wishes to express his thanks to Professor S. Araki for his kind
advices.

2. Proofs of(l) and (2)

Using the group multiplication of S1, we know k™Λ=\. So we assume w^2.
First we prove (1). Consider the stable Puppe exact sequence

Sn), Sn}^{Sn, Sn}->{SPm(Sn)ISn, SΛ+1}-> . ,

here {X, Y} denotes the set of stable homotopy classes of stable maps X-> Y.
Since {Sn,Sn}s*Z, if ί* is non-trivial, then &Γw=index of image £*φθ. So,
for our purpose, it suffices to show that {SPm(Sn)ISn

y Sn+1} is finite. Notice
that {SPm(Sn)/Sn, Sn+1}=πn

s

+1(SPm(Sn)ISn) is the reduced framed cobordism
group. Let EΓ=βu(SPm(Sn)/Sn; G_t^π*(SPm(Sn)ISn) be the Atiyah-
Hirzebruch spectral sequence for SPm(Sn)ISn> where Gk is the stable Λ-stem
of spheres. Since ffu(SPm(Sn)/Sn; Z)=0 for u^n+ί, Σ EψΌ is finite.

Then Σ E~v and hence πn

s

+1(SPm(Sn)ISn) are finite. This implies (1).

From the equality k™'n= index of image £*, (2) is obvious. Thus (1) and (2)

follow.

3. Proof of (3)

We use the complex ^-theory. Let ηm be the canonical complex line
bundle over CPm and gc=V^-1 ei?(S 2) be the Bott generator. Then K(CPm) is
the truncated polynomial ring with generator ηm— 1 and the relation (vm— l)m+1

=0. Choose/e{CPm, S2} such that i*{f)=k™ 2c, where ι denotes the identity
map of Sz. Let/*: K*(S2)->K*(CPm) and / * : i/*(S2; Q)->H*(CPm; Q) be
the induced homomorphisms. Put

where «,<=Z. Since i*(f)=k?\ we have a^k?-2. Let t<=H\CPm; Z) be the
first Chern class of vm. We apply the Chern character, ch, for K*(CPm) and
g*(S2). Then

alt = KH = (f*och)(gc) = (cfto/*)^) = Σ α'O

that is
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Σ
in H*(CPm; Q), where we used the fact that ch is "stable". On the other hand

t = log(l+(exp(ί)-l)) = Σ ((-l) ' + 1 //)(«p(i)-l)>.

Hence

k7* = ax = {-\γ^ja. j = 1, 2, - , m .

This implies (3).

4. Proof of (4)

In this section we use ^ΓO-theory. We introduce the following notations:

ηH= the canonical symplectic line bundle over S4; gH=vH—l^KSp(Si); gR

=gHΛgHίΞKO(S8);p:K*( )^KO*( ), the reah-estriction 6: KO*{ ) - > ^ * Π ,

the complexifΐcation; μ^p{gl/\{ηm-\))^KO-\CPm)\ μ0=p(vm-\)<=ΞKO

(CPm). We require the following theorem of Fujii [2]:

KO~\CPm) is the free module with basis μ3, μ3μ0, •••, μ-aμo"1, and also, in case

mis odd, μ3μo(ifm = 3 mod 4) or τ(ifm=l mod 4), where 2τ=μ3μ% and u=[m/2]

([ ] is the Gauss notation).

Choose feΞ{CPm

y S2} such that i*(f)=k™'2t. L e t / * : KO*(S2)->KO*(CPm)

be the induced homomorphism. By Fujii's theorem we may write

f*(g«) =

Cm/2)-l

Σ ajμ3μl if m = 0 mod 2

[m/2]

Σ a5μ3μl if W Ξ 3 mod 4

[m/2]-l

Σ ajμ3μi+aίm/2jir if m = l mod 4
y=-o

where Λ , G Z . In case w = l , we have μ3=2gR^KO-\S2). This and **(/)

—k™2ι imply 2ao=k™'2. We write ch for ί:Aô . Then we have

ch(μ3) = exp(ί)—exρ(—t) = 2 sinh(ί)

and

ch(μ0) = exp(ί)+exp(—ή—2 = 2(cosh(*)— 1).

Since

2a0t = K H = (f*och)(gR) = (chof*)(gR),

we obtain
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Cw/2)-l

sinh(ί) 2 2Jaj(cosh(t)—iy Ίϊ m = 0 mod 2

[m/2]

sinh(ί) Σ 2J'aj(cosh(t)—iγ if m = 3 mod 4

2J"1α[lw/2](cosh(ί)—l)[w/2ί}, if m=ί mod 4

in H*(CPm\ Q). In case m = 0 mod 2, if we differentiate the two sides of (#) by
ΐf then we have

and elementary calculation shows that we obtain the same information on k™'2

=2a0 as (3). This and (#) imply that we obtain the same information about
kl3+1'2 and kl3+ι>2 fo r/^ l . Hence,in case m=l mod 4, we obtain nothing more
than (3). In case m = 3 mod 4, that is w=4/—1 for some j , we have the same
information about k*3"1'2 and k*3>2. If j is a power of two, 2g, from (3) we see
that 2q+1 divides *f+2-1 2

> but the aboves imply that 2*+2 divides &f+2"1 2. Thus
(4) follows. Remark, in case j is not a power of two, we obtain nothing more
than (3).

5. Proofs of (5) and Corollary

Choose fm^ϊΞ{CPm-\ S2} such that i*(Jm-1)=k7-1-2ι. Let pm^: S2"-1

^Qpm-\ k e t j i e c a n o n j c a i fibration and ord {pm-^j be its order as a stable map.
The composite (ord(pm_1))ιofm_1opm_1 is null homotopic. Hence there exists
fd{CP-y S2} such that/oy=(ord(p l l i . 1 )>%-ie{CP- 1

f S
2}, where;: C P - 1

aCPm. This implies that Λ̂  2 is a divisor of ordfp,,,-^-*?"1'2. Inductively we
know that k™'2 is a divisor of ord(jpw_1) ord(/)w_2) ord(j^1)/ίj>2. Obviously k]'2

= 1. By Toda [4], page 1103, o r d ^ , ^ ) is a divisor of m!. Thus (5) follows.
And we complete the proof of Theorem.

We prove Corollary. For m^3, the estimates (3), (4) and (5) imply that
*ϊ 2 = l , k2

s-
2=2 and Aϊ a =12. We show Aί 2=^12. Choose / 3 EE{CP 3 , S2} such

that /*(/ 3 )=12Λ. The composite f3

opz: S7-+S2 represents an element of G5, five-
stem of spheres. It is well known that G5=0. Hence there exists/e {CP4, S2}

such that the composite CP3dCP4^S2 coincides with/3. This implies that k*s'
2

is a divisor of 12. By (2) k4

s'
2 is a multiple of β* 2 =12. Therefore # 2 =12.

This completes the proof of Corollary.

6. Addendum

The same technique is applicable to the stable James number dH{m)=ks
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(HPm, S4) of the pair of symplectic projective spaces. Using the complex K-
theory, a lower bound of dH(m) can be obtained from

aj = Σ Vas{ Σ tkl(2k) !)>, a, = dH(m),

where t e H \ H P m Z) is a generator and a$ e Z. For example, we have 121 dH(2).
Since the order of the canonical fibration S7-+S4 as a stable map is 24, we have
£^2)=24. So that this estimate is not best possible.

The unstable James numbers of the pairs (RPm

y S1), (CPm, S2), (HPm, S4)
and the stable James number of (RPm, S1) are all zero for m^>2, where RPm

denotes the ̂ -dimensional real projective space.
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Added in proof. After completed this manuscript, the author has found a
paper of J. Ucci "Symmetric maps of spheres of least positive James number,
Indiana Univ. Math. J. (1972), 709—714" which gives an upper bound of un-
stable James numbers km'n=k(SPm(Sn), Sn). Combining his estimate with ours,
we obtain

Theorem A.

(ii) m^v2(k2 ~1>2)tί2m—2 for nι^>2,

(iii) vp(k™'2) = βp(m) for an odd prime p,

where vp{ri) denotes the exponent of p in the prime factorization of n and βp(m) is

defined by pβρQm^ ^ m <pβρQmw.

Proof. Identifying S(Sn) with Sn+\ S(SPm(Sn)) can be embedded in SPm

(Sn+1) so that the inclusion S"+1^SPm(Sn+1) factorizes as the composition S(Sn)

s(SPm(Sn))c:SPm(Sn+1), where S(X) denotes the reduced suspension of a
pointed space X. This implies that k™'n is a factor of k? n+1. By definition,
k™'n is a factor of km'n for odd /*, So, in particular, k™'2 is a factor of km'\ Ucci's
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estimates of km'z are vz(km'3)^2β2(m) and vp(km'3)=βp{m) for an odd prime p.
Therefore we have v2(k™'2)^2β2(m) and vp{k™'2)^βp{m) for an odd prime p.
On the other hand the estimates (3) and (4) imply that βp(m)^vp(kf'2) for a
primep and n^v2(k*n~lt2) for n^2. Thus Theorem A follows.




