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KORTEWEG-DE VRIES EQUATION: CONSTRUCTION OF
SOLUTIONS IN TERMS OF SCATTERING DATA
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In this paper we show that the solution of the initial value problem for
the Korteweg-de Vries (KdV) equation

() Up—OUU Uy, = O u=u(t) = u(xt)
(—oo<a, 1< o0)

can be constructued by a method suggested in Gardner, Greene, Kruskal and
Miura (GGKM) [2].

GGKM have associated one dimensional Schrodinger operator
Lup = —(dfdx)"+u(x, 1)

to a solution of (1). They have found remarkable facts concerning the time
dependence of scattering data of L,,,: eigen-values are invariants and reflec-
tion coefficient 7(%,¢) of L,, is given by

r(E 1) =715 0) exp(8i §)  —ooJE<Leo

etc. In [2], the authors also have pointed out that application of inverse scatter-
ing theory leads to certain explicit realization of the solution. It is not un-
expected that use of inverse scattering theory may even lead to the construction
of general solutions of the initial value problem. However the existence of
solutions of nice properties has been a priori assumed in [2] and this possibility
has not been explored.

The results of the present paper have been announced in [7]. GGKM’s
method has been also formulated in Faddeev and Zakharov [8] in a different
form.

In §1 we describe results from scattering theory of one dimensional Schro-
dinger operator. 'The materials which connect the KdV equation and scattering
theory are described in §2. Then in §3 analytical properties of the reflection
coefficients are studied. We prove the existence of potential u(x,t) whose
scattering data depend on ¢ according to GGKM’s formulas. Finally in §4
we show that this function satisfies the KdV equation.
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Throughout the paper subscripts with independent variables denote
partial differentiations. Integrations are taken over the whole real axis unless
explicitly indicated otherwise. For a complex number ¢, c* denotes its complex
conjugate,

1. Scattering theory for one dimensional Schrodinger equation
Consider the Schrodinger equation
(2) —btu@)p =8¢  =E+tin

over (—oo, co) with potential u(x) satisfying

(3) fatixniu@dv<e .

We summarize results from scattering theory for (2). We refer to [1] for detail.

If Im >0, there exist unique solutions f.(x, ) which behave like exp
(##8x) as x—>koco. They are called Jost solutions of (2). Jost solutions are
analytic in §, Im {>0. If {=¢ is real, Wronskian [f,,f*] is equal to 2¢£. As
f+ and f* are independent solutions of (2) for £4=0, one can express f_ as

(4) f-=a@)fi+b(E)f+ -
We have

(5) a(§) = (2:8)7'[f+. f-1,
(6) b(&) = (2¢8)7'[f-, f¥]
and

(7) la(8)1* = 1+[b(%)]°.

By the above expression for a(£), it is the boundary value of the function a()
analytic in Im £>0. The functions .

7+(8) = £b(£E)a(§)™

are called right and left reflection coefficients. They are defined for £4-0 and
bounded by 1.
Put

( 8 ) h:t(x’ -Z:) = exp (:Flgx)f:l:(x, é‘) *
Then h, are expressed as
(9) halw ©) = 12 "Buln, 3) exp (£2iy)dy

The kernels B, satisfy the integral equations
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+oo

(10) B.(x,y) = :!:S " u(@)dst Sydzgi: _u(9)B(s, 2)ds.

By successive approximation, one has the estimate

+oo

|Bus, D < £ C.)| lu(e)lds,

where C.(#x) are non-increasing functions. Moreover, first derivatives of B,
exist. Potential « is reconstructed by formula

(11) u(x) = F0/0xBy(x, £0).
Lemma 1. Suppose that u(x) is n-times differentiable and
oufe) = x| 10Oy, j<m,

are finite for any x. Then BY'®=07"*B_ [0x70y* exist for j+k<n-+1 and are
estimated as

| BE® (%, y) £u* D (x+y) | < Cu(x) 222§ "o wi(x 1Y) -
Proof. First consider the case k=0. By (10), we have
¥y
(1) Budwy)tue+y) = — | u(e+y—m) Bulsty—s, 3)ds

and the estimates for B, , follow. Existence and estimates of BY'" are obtained
by repeated differentiation of (12) with respect to x.

Suppose that, in general, the statement has been proved for j4+k<m and for
j+k=m-1, k<k. Then existence of B~ #¥"~#+1 and its estimate follow from

(13) B..(%,)—Buy(%,9) = — | u(3) Bu(x, 5)dz

and its repeated differentiations.
Q.E.D.

If second derivatives exist, (13) gives
(14) Bixs, )= Biry(%, y) = u(x) Bu(x, y) -
Put (9) into (6). Then we have
2i€b(8) = exp (—2ixE) [ ILL(y) exp (—2i&9)dy

where
H;(y) = Hl(x’ y) = —B+x(x’ y)+B—x(xa y)

—I—XB_,(x, y)B.(%, y—2)dz— SBH(x, 2)B_(x,y—=z)dz.

Here we have extended B, (x, y) as 0 for +y<0.
If u is sufficiently differentiable with rapidly decreasing derivatives, by
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Lemma 1 II, (y) is differentiable except at y=0. For *3y>0 we have
II"(y) = FBE™(x, 9)+225=6B¢ (%, y) BE"~"1(x, F0)
—I—SB_,,(x, ) BO™(x, y—2)dz— SBﬂ(x, %) BO™(x, y—2) dz .
Putting (9) into (5), we have
2ita(t) = 2it—fu(y)dy+{ I () exp Qity) dy
where
I(y) = B1x(%, y)—B_.(x, —y)—B.,(%,y)
+B-(%, —3)—Bo(® 0 B(% —y)+ {[B..(x, 2)— B, 3] B(v, 3—y)ds
—SB+(x, 2)B_,(x, z—y)dz.
If a(£,)=0, Im ¢,>0, then f.(x, {,) are linearly dependent by (5). They are

square-integrable because of the asymptotic behavior. Because L, is symmetric,
&3 is real, i.e. §, is purely imaginary. One has

(15) (&) = —if flw, C)f (. L) dx.

The functions f.(x, {) being real valued for {=in, zeros of a(f) are all simple.
Number of zeros is finite because @({)—1 as |{|—>co. We denote them by
in, >+, iny . Put

ezy = fulw, inyax.
Then c,; are related by
(16) cjc-j = —a'(in;)*.

We call the triplets s.= {r.(£), 7, c+;} right and left scattering data of the
potential u. Put

(17) Fu(y) = n~*{ru(e) exp (£2i€)dE

(18) 0u(9) = 2 5oscss exp (F27,9)+Fa(3)

Then B, satisfy the Marchenko equations

(19) Bu(%, )% | Qu(ety+2)Bul, 2)ds-+ Qu(4y) = 0.

We now turn to the inverse problem. Let N be a non-negative integer and
7, **, 7y be prositive numbers different from each other. Let ¢, =+, ¢y be
positive umbers. Let 7(£) be a function which satisfies 7(—§&)=r(£)*, |7(§)| <1
for £40 and 7(£§)=0(¢7") as £ oo.

Determine a(f) by following conditions: it is analytic in §(Im £>0),
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la(€)| ~>=1—]7(£)|” on the real axis and i%,(j=1, --+, N) are its simle zeros (see
[1, p. 151] for an explicit formula). Put 7, (£)=7(£) and

r-(§) = —r(—&)a(—E)a(®)™".

Define c_; be the relations (16). Define functions F,. and Q, by the formulas
(17) and (18).

Assume that F, are absolutely continuous and (14 |x|)F,’(#x) belong to
L'(a, =) for any a. Then Marchenko equations (19) are uniquely solvable for
each x. Let B.(x, y) be their solutions. Then the estimates

| B+(x, )| < Cs(x)as(x+y),

where
a.®==+|" 1001,
hold. B, are differentiable in x and estimates
| B.o(%, )+ Qs (x+y) | < Cu(¥)as(*)a+(x+)

hold. See [1, pp. 159-160].
Define k.. by (9) and then f, by (8). Put

u.(x) = FB,.(», £0).
Then (14 | x| )u.(Z£x) are in L*(a, o) for any a and

—f tusfe = s
hold.
To show that u.(x) conincide, 7(£) should satisfy an additional condition

[1, Lemma 3.1]: if £a(£)+0 at £=0, then 7(0)=—1. In this case {r(§), 7, ¢;}
is right reflection coefficient of u(x)=wu.(x).

Lemma 2. Suppose that F.(x) are n-times continuously differentiable and
FP(xx) (j<n) belong to L'(a, o) for any a. Then continuous derivatives BY*®
exist for j+k<n and are estimated as

£ 1B (0 5) | dy<Cule)
and for (j, )% (0, 0)

| BY (s, y)+ 0 P(x-+y) | < Culw) Srhtam(x-+)
where

ai®) = = 10201y

Proof. Derivatives BY"® satisfy
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(20) BLO(w, y)% | Qu(wty+5) BE O, ) ds
[
= —QP(x+y) F 21 ,-Cms_mﬂ“_l”’(x—l—y-l—z)BSj"""°’(x, 2)dz .
o

The existence and estimates of BY"® are quite analogous to the case of B$*® and
are shown by induction based on (20). Then differentiating (20) with respect to y,
we obtain the results for BY».

Q.E.D.

2. Time dependence of scattering data

Put
L,= —D*+u D = d/dx
and
B, = —4D*+3uD-+3Du .

Then the operator [B,, L,]=B,L,—B,L, is the multiplication by the function
6uu,—u,,,. Thus the equation

(21) dLu/dt = [Bm Lu]

for u=u(t)=u(x, t) is equivalent to (1). This observtion is due to Lax (See [4]
and [5]).

We now describe a formal procedure to determine time dependence of
Jost functions and scattering data of L,,, for smooth real-valued solution u=u(t)
=u(x, t) which is rapidly decreasing in x for each ¢. Relations found here will
be used later to construct solutions.

We differentiate the relation L,f,=¢% . with respect to . Making use of
(21), we see that df./dt—B,f. again satisfies (2). Because they behave like
4(x1¢)’ exp (£ifx) as x— = co, by the uniqueness of Jost functions, we have

(22) df|dt—B,f. = 4(£i0)s .

Differentiating the relation (4) with respect to ¢ and eliminating z-derivative
of Jost functions by (22), we obtain an identity

(da/dt)f*+(dbjdt—8iEb)f, = 0.
Thus we have

a(g’ t) = a(f’ 0)
b(§, 1) = b(&, 0) exp (8:E%) .

a(t, t) is independent of ¢ and so are its zeros 77,, --*,i7y. Reflection coefficients
vary as

(23) ro(, 1) = ra() oxp (£8iE%).
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Differentiating
f-(%,in;) = d; (%, in;)
with respect to ¢ and eliminating df, /d¢ by (22), we have
d;(t) = 8n3d(t) .

Because the relation d;=ia’(i7,)c; hold by (15), ¢; satisfy the same differential
equation as d; and consequently we have

(24) ci(t) = ¢;(0) exp (87%) j=1,-,N.

Formulas (23) and (24) have been discovered by GGKM [2]. See also Lax
[5]. Present derivation is somewhat different from those of [2] and [5].

3. Properties of the reflection coefficients

In this section, we study the analytical properties of the reflection coefficients
in detail.

Assume that #(x) is a real differentiable function such that «“(x) (j<6)
are rapidly decreasing. Then BY ®(x,y)(j+k<7) exist and estimated as in
Lemma 1.

fi(x, £) and f./(x, £) are C~ in £. By (5) and (6), £a(§) and Eb(E) are C~.
If 0, Ea(£) is not zero by (7). So 7(§) is C~ for €0 and even at £=0 if
£a(E)|t-,+0. Suppose that £a(£)|;-,=0. Then by (5) and (6), a(£) and b(§)
are smooth at £=0. By (7), a(0)==0 and .. are smooth at £=0.

We next study the behavior of @, b and 7. as |£|—co. By integral repre-
sentation each derivatives of £(a(£)—1) are bounded. TI{’(y)(n<6) exist and
are continuous except at y=0. They have right and left limits at y=0 and are
rapidly decreasing as |y|—oo.

Lemma 3. [I{"(y) (n<5) are continuous even at y=0.

Proof. By the expression for the derivatives of II,(y), it is sufficient to
show that

(25) FBE™(x, £0)+SWIIBE P(x, +0)BL"—ID(x, F0)

do not depend on signs. Using (14), we replace B¢ ”(x, +0) by derivatives of
u(x) and BY P(x, £0). We get thus rather complicated expressions for (25).
We describe here only two of them: (25) is equal to

F[Fu'(x)—u(x) Bi(x, £0)]Fu(x)B=(x, F0)

for n=1 and to
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F[—u(x)B.y(%, £0)—u'(x) B.(x, £0)tu(x)’]
Fu(x)Bzy(x, F0)+[Fu'(x)—u(x) Bi(x, £0)]B:(x,F0)
for n=2.

Q.E.D.
So we have

(218)'B(&) = exp (—Zixf)jl'ﬂ‘”(y) exp (—2i£y)dy

after integration by parts. Therefore £'56(£) is bounded and belongs to L. Also
E(EB(E)) and E£°(Eb(E))” are bounded and belong to L% It follows that £'7.(E),
E'r+/(€) and £'7.."/() also are bounded and belong to L.

Put

Fu(x, t) = n“Sri () exp (£8i &%+ 2iEx)dE .

Recall that if a function and its first derivative are square integrable, then its
Fourier transform is integrable. By the properties of r, just described, we have

Lemma 4. Continuous derivatives F ¥ (x, t) (j+3k<5) exist and are inte-
grable. xF.,(x,t) and xF.,,(x,t) are also integrable.

Define c. () by the formula (24). Put

Qu(x, 8) = 2 23 jc.5(2) exp (F2n,%)+Fu(x, t) .

Then by Lemma 4, Marchenko equation (19) is solvable for each 2. Denote by
B.(x, y; t) the solutions. Put

ui(x) t) = :FB:tx(x’ :l:O; t) °

As r.(0, £)=r.(0), the additional condition required to show u,(x, t)=u_(x, ) is
clearly satisfied. We have thus proved

Theorem 1. For each t there exists the unique potential u(x, t) which satisfies
(3) such that {r.(£, 1), 1), c+;(t)} are its scattering data.

By Lemma 2 and 4, B, are C°in x. Its x-derivatives are integrable with
respect to y. So the corresponding Jost functions f.(x, ¢; ) are C®in x.

Next we study the differentiability in . Note that Q. satisfy the differ-
ential equations

(26) (Qi)t+(ﬂi)xxx =0.

Differentiation of (19) with respect to ¢ and (26) lead to the integral equation
for the t-derivative:

@) Bl 3)# [ Qulaty+s) Buls, 9)ds+ Dal 3) = 0,
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where
Dy(%3) = F| Oureslwty+2) Bulw, 2)d—Qrs(w+9)
]
(we omit the variable # when confusion does not occur).

Comparing (27) with (20) and arguing analogously, we conclude that conti-
nuous drivatives BY"*¥(x, y; t) (j+k+3/<5) exist and integrable with respect
toy. Soj-th x and k-th #(j+3k<5) derviatives of f.(x, {; t) exist. Also #“"#
(%, t) (j+3k<4) exist and are continuous.

Lemma 5. u“®(x,1)(j+3k<3) are integrable with respect to x and tend to
2ero as | x| —>oo,

Proof. By putting results of Lemma 2 again in (20), we obtain finer estimates
for x-derivatives of u:

| F /(%) +Q." ()| < Co(x)ars, ()
| Fu"(x)+QL(x)[, | FuD(x)+QP (%)
< C () [ors(®)+asy(*)] -

Then the assertion follows from Lemma 4. The argument for the z-derivative is
quite similar.

Q.E.D.
4. Solution of the initial value problem

Having studied the analytical properties, we are now in a position to prove
Theorem 2. The function u(x,t) in Theorem 1 satisfies the KdV equation.

Proof. It is sufficient to show that the relation (22) hold. In fact, differen-
tiating L, f.=&*f. with respect to ¢ and eliminating df. /dt by (22), we obtain

(dL.Jdt—[B,, L])f. =0

(40— 6un,+1u,..)f+ = 0.

We prove the equation (22) for f,. We omit the plus sign from the quantiites
involved.
(22) is equivalent to dh/dt=g where g=g(x, {; t) is defined by

g = 128°h,—124th,,—4h,,,
+6u(ith+h,)+3uh .

After repeated applications of (14) and integration by parts we get

w550 = Cly; 1 exp 2ity)dy,
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where
C= —B,,.+3uB,.

The kernel C satisfies the same integral equation as B,:
(28) Cw )+ 2@+y+2)C(x,5) = —D(x,).

In fact, denote the left hand side of (28) by E(x, y). We differentiate Marchenko
equation (19) with respect to x, multiply 3x and then substract three times x-
differentiations of (19). We obtain thus

E(x, y)+3S:Q’(x—|—y+z) [1(%) B(x, z)— B..(x, 2)]dz

—3{ 0" (wy+2) Bu(w, 2)ds+ 30 (v-+y)u(®)+D(x,) = 0.
The identity (14) and integration by parts lead to
E(x,y)+D(%y)=0.

The homogenous equation associated with the Marchenko equation has only
trivial solution. Thus by (27) and (28), we have B,=C and consequently A,=
has been established.

Q.E.D.

ReEMARK. For the special case of 7.(£)=0, results analogous to Theorem 2
have been proved by Hirota [3] and the present author [6] by different methods.

By Lemma 5, the solution constructed in this paper satisfies the conditions
which is needed for the uniqueness of solutions of the initial value problem. See

Lax [4 pp. 467-468].
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