Harada, M. Osaka J. Math. 10 (1973), 585-596

PERFECT CATEGORIES IV

(QUASI-FROBENIUS CATEGORIES)

MANABU HARADA

(Received November 8, 1972)

The author defined perfect Grothendieck categories and studied them [11]. In [12], [13] he developed [11] and determined hereditary perfect categories and hereditary perfect and *QF*-3 categories.

In this note, as a continuos work we define quasi-Frobenius categories (briefly QF) and generalize some properties of QF-rings.

Let \mathfrak{A} be a Grothendieck category. We always assume \mathfrak{A} contains a generating set $\{G_{\sigma}\}_{I}$ of small objects G_{σ} , e.g. functor categories. If every projective objects in \mathfrak{A} are injective, we call \mathfrak{A} a QF-category. As we see in examples of QF-categories, some important properties of QF-rings are not inherited to QF-categories.

The object of this paper is to fill those gaps. We assume mainly that G_{σ} 's are projective, then *QF*-categories are perfect. It is clear that all of results in the category \mathfrak{M}_R of modules over a ring *R* with identity are not valid in perfect categories \mathfrak{A} . However, modifying proofs in \mathfrak{M}_R , we sometimes succeed to extend some properties in \mathfrak{M}_R to \mathfrak{A} . All of theorems in this note are well known in \mathfrak{M}_R and so we shall give often only methods how to modify proofs in \mathfrak{M}_R .

In §1 we generalize the notion of Σ -injective [5] and obtain [5], Proposition 3 in \mathfrak{A} . We define a *QF*-category in §2 and generalize results in [4] and [14]. In §3 we deal with a problem whether a *QF*-category has the following property or not: every injetives are projective, (see [6]). In the final sction, we give some supplementary results of [10].

In this paper, rings S need not to have the identity, unless otherwise stated. We refer the readr to [11], [12] and [13] for notations and definitions.

1. Σ -injective

Let \mathfrak{A} be a Grothendieck category. We always assume that \mathfrak{A} has a generating set $\{G_a\}_I$ of small objects G_a .

¹⁾ See [11] and [12] for the definitions.

Let M, N be objects in \mathfrak{A} and S = [N, N]. Then [M, N] is a left S-module. Let M_0 be a subobject of M. By $l_{[M,N]}(M_0)$ (bri fly $l(M_0)$) we denote the left S-submodule of [M, N] whose elements consist of all f such that $f | M_0 = 0$. By l(M, N) we denote the set of such annihilator submodules of [M, N]. Conversely, for any left S-submodule K of [M, N] we denote the subobject $\bigcap_{k \in K} \text{Ker } k \text{ by } r_M(K)$ (briefly r(K)). Finally, by r(M, N) we denote the set of such annihilator subobjects in M.

The following lemma is well known in the category \mathfrak{M}_T of *T*-modules over a ring *T* with identity and we can prove it by modifying the proof of [7], Lemma 1 in p. 136.

Lemma 1 (Baer's condition). An object Q in \mathfrak{A} is injective if and only if any $f \in [G, Q]$ is extended to an element in $[G_{\alpha}, Q]$ for any subobject G of $G_{\alpha}, \alpha \in I$.

Following to Faith [5], we call an object $Q \Sigma$ -injective if any coproducts of Q itself are injective.

The following results are some versions of [1] and [5] in \mathfrak{A} .

Lemma 2 ([5]). Let M, N be objects in \mathfrak{A} . We assume that r(M, N) is noetherian. Then for any subobject M_1 of M there exists a small subobject M'_1 of M such that $l(M_1) = l(M'_1)$.

Proof. Since r(M, N) is noetherian, l(M, N) is artinian. From the assumption $M_1 = \bigcup M_{\sigma}$, where M_{σ} 's are small objects. Then $l(M_1) = \bigcap_{\sigma} l(M_{\sigma}) = \bigcap_{i=1}^{n} l(M_{\sigma_i})$, since l(M, N) is artinian. Hence, $l(M_1) = l(\bigcup_{i=1}^{n} M_{\sigma_i})$.

Theorem 1 ([1], [5]). Let \mathfrak{A} be a Grothendieck category with generating set $\{G_{\mathfrak{a}}\}_I$ of small objects and let $Q, \{Q_{\mathfrak{b}}\}_J$ be a set of injective objects in \mathfrak{A} . Then

If Q is Σ-injective, r(P, Q) is noetherian for any small object P. Conversely, if r(G_a, Q) is noetherian for all G_a, then Q is Σ-injective.
∑₁ ⊕Q_β is injective if and only if for any α∈ I and any chain T₁⊊T₂⊊…

2) $\sum_{J} \bigoplus Q_{\beta}$ is injective if and only if for any $\alpha \in I$ and any chain $I_1 \subseteq I_2 \subseteq \cdots$ $\subseteq T_n \subseteq \cdots$ of subobjects of G_{α} , there exist n_0 and a finite subset J_0 of J such that $[T_{n+1}/T_n, Q_{\gamma}] = 0$ for all $n \ge n_0$ and $r \in J - J_0$.

Proof. We assume that Q is Σ -injective and r(P, Q) is not noetherian for a small object P. Let $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_n \subseteq \cdots$ be a chain in r(P, Q). Put $P_0 = \bigcup P_i$ and let $f_i \in l(P_i) - l(P_{i+1})$. Then $f_i(P_j) = 0$ for $j \leq i$ and $f_i(P_k) \neq 0$ for $k \geq i+1$. Put $f = \prod f_i \in [P_0, \prod Q]$. Since $f(P_i) \subset \Sigma \oplus Q$ and $P_0 = \lim P_i, f(P_0) \subset$ $\Sigma \oplus Q$. However, P is small and so $\operatorname{Im} f \subset \sum_{i=1}^{m} \oplus Q$, which contradicts to a fact $f \mid P_{m+1} = \sum_{i=1}^{m+1} f_i \mid P_{m+1} \notin \sum_{i=1}^{m} \oplus Q$. Hence, r(P, Q) is noetherian. Conversely, we

assume that $r(G_{\alpha}, Q)$ is noetherian for all $\alpha \in I$. We consider a diagram for a subobject P of G_{α}

Let π_{γ} be the projection of $\sum_{j} \oplus Q$ to the γ -th component Q. From Lemma 2 we obtain a small subobject P' of G_{α} such that l(P) = l(P'). Since P' is small, $\pi_{\gamma}f|P'=0$ for almost all $\gamma \in J$. Hence, $\pi_{\gamma}f|P=0$ for almost all γ , which means that $\operatorname{Im} f \subset \sum_{1}^{m} \oplus Q$. Therefore, f is extended to an element in $[G_{\alpha}, \sum_{j} \oplus Q]$, since Q is injective. Hence, $\sum_{j} \oplus Q$ is injective by Lemma 1. We can prove 2) similarly to the case of modules.

Corollary 1. Let Q be a Σ -injective and small object in \mathfrak{A} . Then [Q, Q] is a semi-primary ring.

Proof. It is clear from Theorem 1 and [10], Theorem 1.

Corollary 2 ([2]). Let $\{Q_{\omega}\}_{J}$ be a set of Σ -injectives. If $\sum_{J} \oplus Q_{\omega}$ is injective, $\sum_{J} \oplus Q_{\omega}$ is Σ -injective.

Proof. It is clear from Theorem 1.

From Chase's method [3] and Theorem 1 we obtain

Corollary 3 ([3]). Let \mathfrak{A} be as above. Then every injectives are Σ -injective if and only if \mathfrak{A} is locally noetherian.

2. QF-categories

We have many characterizations of quasi-Frobenius rings R with identities. The categorical ones among them are

- I Every projective modules is injective [5] and
- II Every injective module is projective [6].

We shall define a quasi-Frobenius category by taking the property I. Let \mathfrak{A} be a Grothendieck category with generating set $\{G_{\mathfrak{a}}\}_I$ of small objects. \mathfrak{A} is called QF if every projectives are injective.

First, we have

Proposition 1. Let \mathfrak{A} be as above and G_{∞} projective for all $\alpha \in I$. Then \mathfrak{A} is QF if and only if \mathfrak{A} is perfect and $\sum_{\tau} \oplus G_{\infty}$ is Σ -injective.

Proof. We assume \mathfrak{A} is QF. Then G_{σ} is Σ -injective. Hence, G_{σ} is a coproduct of completely indecomposable objects $\{P_{\sigma}^{(t)}\}$ by Corollary 1 to Theorem 1. Furthermore, since $\sum_{K} \oplus G_{\sigma}$ is injective, for any K, $\{P_{\sigma}^{(t)}\}_{\sigma,i}$ is a right *T*-niloptent system by [9], Corollary to Proposition 10. Hence, \mathfrak{A} is perfect from [11], Corollary 1 to Theorem 4. Conversely, if \mathfrak{A} is perfect, \mathfrak{A} contains a generating set $\{P'_{\sigma'}\}_{I'}$ of small projectives and every projectives are coproduct of some family of $P'_{\sigma'}$ [11], §3. On the other hand $\sum_{I'} \oplus P'_{\sigma'}$ is Σ -injective if so

is $\sum \bigoplus G_{\sigma}$. Therefore, \mathfrak{A} is QF.

We know many interesting properties of a QF-ring and in this note we shall generalize some of them in \mathfrak{A} .

First, we shall give examples of QF-Grothendieck categories.

EXAMPLE 1. Let $\{K_i\}$ be a family of QF-rings. Then $\prod \mathfrak{M}_{R_i}$ is QF.

The following example is a slight modification of [18], p. 379.

EXAMPLE 2. Let K be a field and R be a vector space over K with basis $\{e_i, f_i\}: R = \sum_{i=1}^{\infty} \bigoplus (e_i K \bigoplus f_i K)$. We define a multiplication in R as follows:

$$e_i e_j = \delta_{i,j} e_i, e_i f_j = \delta_{i,j} f_i, f_i e_j = \delta_{i,j-1} f_i \text{ and } f_i f_j = 0,$$

where $\delta_{i,j}$ is the Kronecker δ .

It is easily seen that R is an associative ring and $R = \sum \bigoplus e_i R = \sum \bigoplus Re_i$. Since $e_i R = e_i K \bigoplus f_i K$ is an artinian and noetherian R-module, $\mathfrak{M}_R^{\pm 1}$ is a locally artinian and noetherian perfect Grothendieck category from [11], §3. We shall show that $e_i R$ is injective in \mathfrak{M}_R^{\pm} . Every $e_i R$ has only one proper submodule $f_i K$. Let g be in $[f_j K, e_i R]$. It is clear that g=0 if $i \neq i$. It i=j, $g(f_i)=f_i k$ for some k in K. Hence, $e_i k \in [e_i R, e_i R]$ and $e_i k \mid f_i K = g$. Therefore, $e_i R$ is injective by Lemma 1. Hence, \mathfrak{M}_R^{\pm} is a perfect QF-category by Corollary 3 and Proposition 1.

Next, we consider $_{R}\mathfrak{M}^{+}$. Let g be an element in $[Kf_{1}, Re_{1}]$ such that $g(f_{1})=e_{1}$. Then it is clear that g is not extended to an element in $[Re_{2}, Re_{1}]$. Hence, Re_{1} is not injective in $_{R}\mathfrak{M}^{+}$. On the other hand, all of other Re_{i} are injective as above. Thus, $_{R}\mathfrak{M}^{+}$ is a QF-3 perfect category from [13], but not QF. Furthermore, R is a cogenerator in $_{R}\mathfrak{M}^{+}$, but not in \mathfrak{M}_{R}^{+} .

This example shows that a perfect QF-category does not inherit some properties of QF-rings, Furthermore, the example given in [9], p. 331 is a QF-Grothendieck category with generator and cogenerator object, however it is neither locally noetherian nor artinian (this category does not contain a generating set of small objects).

We do not know whether QF-categories with generating set of small objects are locally noetherian (or artinian).

Let \mathfrak{A} be the category as above. Put $G = \sum_{I} \oplus G_{\mathfrak{a}}$ and $S = [G, G] = \prod_{\alpha} [G_{\alpha}, G]$. Then S contains the ring $R = \sum_{\alpha,\beta} \oplus [G_{\alpha}, G_{\beta}]$. Let $\prod_{\alpha} f_{\alpha}, \prod_{\alpha} g_{\alpha}$ be elements in S. Since G_{α} is small, $\sum_{\gamma} f_{\gamma} g_{\alpha}$ is in $[G_{\alpha}, G]$. Hence, $(\prod f_{\alpha})(\prod g_{\alpha}) = \prod_{\alpha} (\sum_{\gamma} f_{\gamma} g_{\alpha})$. If $\prod g_{\alpha}$ is in $R, g_{\alpha} = 0$ for almost all α . Hence, $(\prod f_{\alpha})(\prod g_{\alpha}) \in R$ and $SR \subset R$. For any subobject Q of G we put $l_{R}(Q) = l_{S}(Q) \cap R$.

Lemma 3. Let G and G_{α} be as above. For any subobject Q of G_{α} we have $r(l_R(Q))=r(l_S(Q))$.

Proof. Put $G_{\alpha} = G_1$, $G_2 = \sum_{\substack{\alpha \neq \beta \\ i \neq \beta}} \bigoplus G_{\beta}$ and $S_{ij} = [G_j, G_i]$. Then $S = \sum_{\substack{i,j=1 \\ i,j=1}}^2 \bigoplus S_{ij}$ and S_{i_1} are in R. $l_S(Q) = \sum_{\substack{i=1 \\ i=1}}^2 S_{i_2} \bigoplus \sum_{\substack{i=1 \\ i=1}}^2 (l_S(Q) \cap S_{i_1})$. Then $r(l_S(Q)) = r(\sum_i \bigoplus S_{i_2}) \cap$ $r(T) = G_1 \cap r(T)$, where $T = \sum_{\substack{i=1 \\ i=1}}^2 (l_S(Q) \cap S_{i_1})$. On the other hand, $l_R(Q) =$ $(R \cap \sum_{\substack{i=1 \\ i=1}}^2 S_{i_2}) \oplus T$ and $r(l_R(Q)) = G_1 \cap r(T) = r(l_S(Q))$.

Proposition 2. Let \mathfrak{A} be the Grothendieck category with $G_{\mathfrak{a}}$. If $G_{\mathfrak{a}}$ is Σ injective for all α and G is an injective cogenerator, then \mathfrak{A} is locally noetherian.

Proof. Let S and R be as above. Then $r(l_s(Q))=Q$ for any subobject Q of G by the assumption, (cf. [10], §2). Put $R=[G_{\alpha}, G] \oplus \sum_{\alpha \neq \beta} \oplus [G_{\beta}, G]$. Then for any subobject Q' of $G_{\alpha}, l_R(Q')=l_R(Q') \cap [G_{\alpha}, G] \oplus \sum_{\alpha \neq \beta} \oplus [G_{\beta}, G]$. Hence, $Q'=r(l_s(Q'))=r(l(Q'))=r(l_R(Q') \cap [G_{\alpha}, G]) \cap r(\sum_{\alpha \neq \beta} \oplus [G_{\beta}, G])=G_{\alpha} \cap r(l_{[G_{\alpha}, G]}(Q'))$ $=r_{G_{\alpha}}(l_{[G_{\alpha}, G]}(Q'))$. Since G is Σ -injective, G_{α} is noetherian from Theorem 1.

Corollary. Let $R = \sum_{I} \bigoplus e_{\alpha}R = \sum_{I} \bigoplus Re_{\alpha}$ be the induced ring from a category.¹) We assume that \mathfrak{M}_{R}^{+} is QF and R is a cogenerator in \mathfrak{M}_{R}^{+} . If for a given α , $e_{\alpha}Re_{\beta}=0$ for almost all $\beta \in I$, $e_{\alpha}R$ is artinian and noetherian.

Proof. There exists an idempotent $E = e_{\alpha} + e_{\alpha_2} + \cdots + e_{\alpha_n}$ such that $e_{\alpha}R = e_{\alpha}RE \subset ERE$. ER is noetherian by Proposition 2. Hence, ERE is right noetherian and semi-primary by [10], Theorem 1. Therefore, ERE is right artinian and so $e_{\alpha}R$ is artinian as an R-module.

The following theorem is a version of [14] in \mathfrak{A} .

Theorem 2 ([14]). Let \mathfrak{A} be a locally noetherian category with generating set $\{P_{\mathfrak{a}}\}_I$ of small projectives. We put $P = \sum_I \bigoplus P_{\mathfrak{a}}$ and S = [P, P]. Then \mathfrak{A} is QF if and only if

1) For any $\alpha \in I$ and any finitely generated S-module 1 of $[P_{\alpha}, P]$ l(r(1))=1.

2) For any $\alpha \in I$ and any subobjects P_1 , P_2 in P_{α} $l(P_1 \cap P_2) = l(P_1) + l(P_1)$ in $[P_{\alpha}, P]$.

Proof. Let Q be an injective object. Then 1) and 2) are valid if we replace P and S by Q and [Q, Q] (cf. [10]). We assume 1) and 2) and show that P_{α} is injective. Let P_1 be a subobject of P_{β} such that $P_1 = \text{Im } x$; $x \in [P_{\gamma}, P_{\beta}]$, We may assume $x \in [P_{\gamma}, P]$. Let f be in $[P_1, P_{\alpha}]$. $x: P_{\gamma} \xrightarrow{x'} P_1 \xrightarrow{i} P_{\beta}$ and put K = Ker x'. Then $r_{P_{\gamma}}(x) = K$. Since l(K) = l(r(x)) = Sx and $fx_1 \in l(K), fx' = sx$ for some $s \in S$. We may assume $s \in [P_{\beta}, P_{\alpha}]$. Then, f = si and $s \mid P = f$. Since P_{β} is noetherian, every subobject of P_{β} is of form $\bigcup_{i=1}^{n} \text{Im } x_i$; $x_i \in [P_{\gamma_i}, P]$. We can prove, analogously to the case of modules, from 2) that every element in $[P', P_{\alpha}]$ is extended to one in $[P_{\beta}, P_{\alpha}]$, (cf. [10]). Hence, P_{α} is injective by Lemma 1. Since \mathfrak{A} is locally noetherian, \mathfrak{A} is perfect from Corollary 3 to Theorem 1 and [9], Corollary to Proposition 10. Hence, \mathfrak{A} is QF by Proposition 1.

Let T be a ring with identity. If T is right artinian and self injective as a right T-module, then T is QF and T is left artinian and self injective as a left T-module. However, as shown in Example 2, this fact is not true for \mathfrak{A} .

Theorem 3. Let $R = \sum_{I} \bigoplus e_{\alpha}R = \sum_{I} \bigoplus Re_{\alpha}$ be the induced ring from the category \mathfrak{A} . Then the following are equivalent.

- 1) \mathfrak{M}_{R}^{+} and $_{R}\mathfrak{M}^{+}$ are QF.
- 2) \mathfrak{M}_{R}^{+} is locally noetherian and R is injective in \mathfrak{M}_{R}^{+} and $_{R}\mathfrak{M}^{+}$.
- 3) \mathfrak{M}_{R}^{+} is QF and R is injective in $_{R}\mathfrak{M}^{+}$.
- 4) \mathfrak{M}_{R}^{+} is QF and locally artinian and R is a cogenerator in \mathfrak{M}_{R}^{+} , (cf. [4]).

Proof. We first show the following fact. If \mathfrak{M}_R^+ is QF and R is injective in ${}_R\mathfrak{M}^+$, then R is a cogenerator in \mathfrak{M}_R^+ . We may assume e_a 's are primitive. From the remark before Lemma 3 and the first part of the proof of Theorem 2, we have $rl(\mathfrak{r}')=\mathfrak{r}'$ for any finitely generated right R-module \mathfrak{r}' in $[Re_a, R]=e_aR$. Let \mathfrak{r} be any right R-module in e_aR . Then $l(\mathfrak{r})=\cap l(\mathfrak{r}')$, where \mathfrak{r}' runs through all finitely generated R-modules. Since \mathfrak{M}_R^+ is perfect from the assumption and Proposition 1, ${}_R\mathfrak{M}^+$ is semi-artinian by [11], Theorem 5. Hence, Re_a contains a unique minimal submodule S_a . Since $l(\mathfrak{r}') \neq 0$, $l(\mathfrak{r})=\cap l(\mathfrak{r}')\supseteq S_a \neq 0$. Therefore, $e_a R/\mathfrak{r}$ is contained in R and hence, R is a cogenerator in \mathfrak{M}_R^+ .

1) \rightarrow 2), 3) and 4). Since $_{R}\mathfrak{M}^{+}$ is perfect, \mathfrak{M}_{R}^{+} is semi-artinian. On the other hand, R is a cogenerator in \mathfrak{M}_{R}^{+} from the above. Hence, \mathfrak{M}_{R}^{+} is locally neotherian and artinian by Proposition 2. Therefore, 1) implies 2), 3) and 4).

2) \rightarrow 3) and 4). Since $e_{\alpha}R$ is injective and noetherian, $e_{\alpha}Re_{\alpha}$ is semi-primary by [10], Theorem 1. Furthermore, we may assume that $e_{\alpha}R$'s are indecomposable. Then so are the Re_{α} 's. Since $R = \sum_{I} \bigoplus Re_{\alpha}$ is injective, $\{Re_{\alpha}\}_{I}$ is a semi-T-niloptent system by [9], Corollary to Proposition 10. However, $e_{\alpha}Re_{\alpha}$ is semi-

primary and hence, $\{Re_{\alpha}\}_{I}$ is a *T*-nilpotent system. Therefore, ${}_{R}\mathfrak{M}^{+}$ is perfect. Similarly, we obtain from Corollary 3 to Theorem 1 that \mathfrak{M}_{R}^{+} is QF. Hence 2) implies 3) and 4) from the first statement. 3) \rightarrow 2). *R* is a cogenerator in \mathfrak{M}_{R}^{+} from the first remark. Hence, \mathfrak{M}_{R}^{+} is locally noetherian.

4) \rightarrow 1). We may assume that $e_{\alpha}R$ is perfect for all α . We note $[e_{\alpha}R, R] = Re_{\alpha}$ and $[Re_{\alpha}, R] = e_{\alpha}R$. Since R is an injective cogenerator in $\mathfrak{M}_{R}^{+}, r_{e_{\alpha}R}(l_{Re_{\alpha}}(\mathfrak{r})) = \mathfrak{r}$ for any R-submodule \mathfrak{r} in $e_{\alpha}R$ and $l_{Re_{\alpha}}(r_{e_{\alpha}R}(\mathfrak{l})) = \mathfrak{l}$ for a finitely generated left R-submodule \mathfrak{l} of Re_{α} . Hence, Re_{α} is noetherian by the assumption and artinian from Proposition 2 and the above. Moreover, the above facts imply, from Theorem 2 and the remark, that ${}_{R}\mathfrak{M}^{+}$ is QF.

Corollary. Let R be as above. We assume that R is a cogenerator in \mathfrak{M}_R^+ and \mathfrak{M}_R^+ , and \mathfrak{M}_R^+ is locally noetherian. Then the following are equivalent.

- 1) R is injective in $_{R}\mathfrak{M}^{+}$.
- 2) $_{R}\mathfrak{M}^{+}$ is locally noetherian.
- 3) \mathfrak{M}_{R}^{+} is locally artinian.

In those cases \mathfrak{M}_R^+ and $_R\mathfrak{M}^+$ are QF, (cf. [17], p. 406).

Proof. We first show that \mathfrak{M}_R^+ is QF from the assumption. We quote here the idea of Kasch [17]. Let E be an injective hull of R in \mathfrak{M}_R^+ . We put $\mathfrak{r} = \bigcup$ Im $f, f \in [E, R]$, then \mathfrak{r} is a two-sided ideal of R. If $\mathfrak{r} \neq R$, there exists $s \neq 0$ in [R, R] as left R-modules such that $r^s = 0$, since R is a cogenerator in ${}_R\mathfrak{M}^+$. We take an idempotent e_{α} in R such that $e_{\alpha}^s \neq 0$. Then for any $f \in [E, R]$, $0 = (f(e_{\alpha}))^s = (f(e_{\alpha})e_{\alpha})^s = f(e_{\alpha})e_{\alpha}^s = f(e_{\alpha}^s)$. On the other hand, R is a cogenerator in \mathfrak{M}_R^+ . Hence, we have shown $\mathfrak{r} = R$, which implies that R is a retract of $\sum_{i} \oplus E$. Since R is locally noetherian, R is injective in \mathfrak{M}_R^+ . Therefore, \mathfrak{M}_R^+ is QF. Similarly, we can prove that ${}_R\mathfrak{M}^+$ is QF if ${}_R\mathfrak{M}^+$ is locally noetherian. Hence, 2) implies 1) and 3). The remaning parts are clear from Theorem 3.

3. Property II

In this section, we shall study a relation between the property II and a QFcategory. Faith and Walker [6] showed that a ring T with identity is QF if and only if II is satisfied. However, the following examples show that the above fact is not true for Grothendieck categories.

EXAMPLE 3. In Example 2 we replace relations $f_i e_j = \delta_{i,j+1} f_i$ and $e_i f_i = f_i$ by $e_j f_i = \delta_{j-1,i} f_i$ and $f_i e_i = f_i$, respectively. Then $R = \sum \bigoplus e_i R = \sum \bigoplus R e_i$ is perfect and locally artinian and noetherian. We can show that $e_i R$ for $i \ge 2$ are injective. Let E be an injective object in \mathfrak{M}_R^+ . Then E contains non-zero homomorphic image of some $e_i R$. Hence, E contains $e_i R$ or $e_{i+1} R$ as an isomorphic image. Therefore, $E \approx \sum_{i=1}^{\infty} \bigoplus e_i R^{(\alpha)}$, since R is locally noetherian. Thus, *R* satisfies II and $\sum_{i\geq 2} \bigoplus e_i R$ is an injective cogenerator in \mathfrak{M}_R^+ . On the other hand, $e_i R$ is not injective and hence, \mathfrak{M}_R^+ is not QF.

In Example 2 an injective hull $E(e_1R/e_1N)$ of e_1R/e_1N is not projective and hence, \mathfrak{M}_R^+ does not satisfy II. On the other hand,

EXAMPLE 4. Let R be a vector space over a field K with basis $\{e_i, f_i\}_{-\infty}^{\infty}$ and define the multiplication in R in Example 2. Then \mathfrak{M}_R^+ and $_R\mathfrak{M}^+$ are QF and R is a cogenerator in \mathfrak{M}_R^+ and $_R\mathfrak{M}^+$.

Let \mathfrak{A} be a Grothendieck category with a generating set $\{P_{\alpha}\}_{I}$ of small projectives. We assume \mathfrak{A} satisfies II. Then considering the induced ring from \mathfrak{A} , we can show from [6], Theorem 1.1 that \mathfrak{A} is locally noetherian. Thus, we have from the argument in Example 3

Proposition 3. Let \mathfrak{A} be as above. Then \mathfrak{A} satisfies II if and only if \mathfrak{A} is locally noetherian and every indecomposable injective object is projective.

Corollary 1. Let \mathfrak{A} be as above. If \mathfrak{A} satisfies II, $P = \sum_{I} \bigoplus P_{\alpha}$ is a cogenerator in \mathfrak{M}_{R}^{+} . Conversely, if \mathfrak{A} is locally noetherian and artinian and P is a cogenerator, then \mathfrak{A} satisfies II.

Proof. We assume \mathfrak{A} satisfies II. Then for any minimal object $S_{\mathfrak{a}}$ in $\mathfrak{M}_{R}^{+}, E_{\mathfrak{a}} = E(S_{\mathfrak{a}})$ is projective indecomposable. Hence, $E_{\mathfrak{a}}$ is isomorphic to a retract of some P_{β} by [21], Lemma 2. Since $P_{\mathfrak{a}}$'s are finitely generated, $\sum \bigoplus E_{\mathfrak{a}}$ is a cogenerator. Therefore, P is a cogenerator. Conversely, we assume \mathfrak{A} is locally noetherian and artinian. Every indecomposable injetive E is the injective hull of its socle. If P is a cogenerator, E is a retract of P. Hence, E is projective. Therefore, \mathfrak{A} satisfies II by Proposition 3.

Corollary 2. Let \mathfrak{A} be as above. We assume \mathfrak{A} is QF and semi-artinian. Then $P = \sum \bigoplus P_{\mathfrak{a}}$ is a cogenerator if and only if \mathfrak{A} satisfies II.

Proof. If P is a cogenerator, \mathfrak{A} is locally noetherian, and hence, locally artinian by the assumption.

The following lemma is essentially due to Faith and Walker [6]. However, we shall give the proof as an application of [9], Theorem 1.

Lemma 4 ([6]). Let R be the induced ring from a category and let $\{E_{\alpha}\}_L$ be a set of projective, injective and indecomposable objects in \mathfrak{M}_R^+ . Then every coproducts P of any family of E_{α} 's are injective if and only if E(P) is projective for all P.

Proof. "Only if" part is clear. We denote the cardinal number of a set K' by |K'|. Let $\zeta = |R|$ and K a countably infinite set. We put $M = \sum_{i \in K} \bigoplus E_i$;

PERFECT CATEGORIES IV

$$\begin{split} E_i &\in \{E_i\}_L, (E_i \text{ may be equal to } E_j). \text{ Since } E_i \text{ is projective, } E_a \approx f_a R \text{ for some primitive idempotent } f_a \text{ in } R \text{ by [11]}, \text{ Corollary to Lemma 2. Let } J \text{ be a set of } |J| &= \max(\zeta, \aleph_0) = \xi \text{ and put } M^{\xi} = \sum_{\alpha \in J} \oplus M^{(\alpha)}; M^{(\alpha)} \approx M. \text{ Then } M^{\xi} = \sum_{\beta \in K} \sum_{\beta \in J_{\beta}} \oplus (f_{\beta}R)^{(\delta)}; (f_{\beta}R)^{(\delta)} \approx f_{\beta}R \text{ and } |J_{\beta}| = \xi. \text{ Let } E = E(M^{\xi}). \text{ Since } E \text{ is projective by the assumption, } E \text{ is a retract of a form } \sum_{e \in T} \oplus e_{\delta}R. \text{ Hence, } E \approx \sum \bigoplus \oplus g_e R \text{ and } e_e R = g_e R \oplus g_e' R \text{ by [21]}, \text{ Lemma 2. Now, we consider those injective modules in the category <math>\mathfrak{C}$$
 of injective modules modulo the radical of \mathfrak{C} defined in [9], §1. \text{ Then } \sum_{K \subset F_{\beta}} \sum_{F_{\beta}} \oplus (\overline{f_{\beta}R})^{(\delta)} = \sum_{T} \oplus g_e R, \text{ where } \overline{f_{\beta}R} \text{ and } \overline{g_e R} \text{ mean the residue classes of } f_{\beta}R \text{ and } g_e R, \text{ respectively. Since } \overline{f_{\beta}R} \text{ is minimal in } \mathfrak{C}, \overline{g_e}R \approx \sum_{K \in \mathfrak{G}} \sum_{J_{\beta}} \bigoplus \oplus (\overline{f_{\beta}R})^{(\delta)}, \int_{J_{\beta}} \oplus (f_{\beta}R)^{(\delta)}] \text{ is extended to } \varphi' \text{ in } [g_e R, g_e R] = g_e R g_e. \text{ On the other hand, } [\sum_{J_{\beta'}} \oplus (f_{\beta}R)^{(\delta)}, \sum_{J_{\beta'}} \oplus (f_{\beta}R)^{(\delta)}] = \prod_{J_{\beta'}} [(f_{\beta}R)^{(\delta)}, \sum_{J_{\beta'}} \oplus (f_{\beta}R)^{(\delta)}] = \prod_{J_{\beta'}} [(f_{\beta}R)^{(\delta)}, \sum_{J_{\beta'}} \oplus (f_{\beta}R)^{(\delta)}] \supset \prod_{J_{\beta'}} f_{\beta}R f_{\beta} \text{ and } \zeta \geqslant |g_e R g_e| \ge 2^{|J'_{\beta}^{(e)|}|. \text{ Hence, } |J_{\beta'}(\xi)| < \zeta \leqslant \xi. \text{ Next, we take an index } \beta \text{ in } K \text{ and consider the subset } T_{\beta} = \{\varepsilon \in T, J_{\beta'}(\varepsilon) \pm \phi\}. \text{ Since } J_{\beta} = \bigcup_{t \in T_{\beta}} J_{\beta'}(\varepsilon) \pm \phi\}. \text{ Since } J_{\beta} = \bigcup_{t \in T_{\beta}} J_{\beta'}(\varepsilon) \oplus (f_{\beta}R) \in (f_{\beta'}) \text{ if } \beta \pm \beta'. \text{ Therefore, } \sum_{a \in K} \oplus f_a R \text{ is a retract of } E \text{ and hence, } M \text{ is injective. Thus, we have proved the lemma by virtue of the proof of Theorem 2, (see [5]). \end{array}

Proposition 4. Let \mathfrak{A} be the Grothendieck category with generating set $\{P_{\mathfrak{a}}\}_I$ of small projectives. We assume \mathfrak{A} satisfies II. Then the representative class $\{S_{\gamma}\}_K$ of the minimal objects is a set. Furthermore, $\mathbb{E}(\sum_{K} \oplus S_{\gamma})/(J(\mathbb{E}(\sum_{K} \oplus S_{\gamma}))) \approx \sum_{K} \oplus S_{\gamma}$ if and only if \mathfrak{A} is QF and every projective contains the non-zero socle, where J() means the Jacobson radical.

Proof. "Only if". We take the induced ring R from \mathfrak{A} . Let S_{α} be an minimal object (cf. [11], Proposition 2) and $E_{\alpha} = E(S_{\alpha})$. Then $E_{\alpha} \approx f_{\alpha}R$ by the assumption. Hence, $\{S_{\alpha}\}_{K}$ is a set. It is clear that $\bigcup_{K} E_{\alpha} = \sum_{K} \bigoplus E_{\alpha}$ and $\sum \bigoplus E_{\alpha}$ is injective by Lemma 4. Therefore, $E(\sum \bigoplus S_{\alpha}) = \sum \bigoplus E_{\alpha}$. We assume any $S_{\alpha} \approx E_{\alpha}'/J(E_{\alpha}') = f_{\alpha}'R/f_{\alpha}'J(R)$. Let P be projective. Then P contains a maximal subobject P_{0} by [11], Proposition 2. $P/P_{0} \approx E_{\alpha}/J(E_{\alpha})$ for some α by the assumption. Since E_{α} is perfect, E_{α} is a retract of P. We consider the set of submodules in R which are coproducts of some E_{α} 's. Using the Zorn's lemma and the above fact, we know $R = \sum \bigoplus E_{\alpha}$. Hence, \mathfrak{M}_{R}^{+} is QF and every projective contains a minimal module. "If". We assume the above properties, then $E = E(\sum_{K} \bigoplus S_{\alpha}) \approx \sum_{K} \bigoplus e_{\alpha}R$ and every indecomposable projective P is isomorphic to $e_{\alpha}R$ for some $\alpha \in K$. Hence, $E/J(E) \approx \sum \bigoplus S_{\alpha}$.

We shall apply the above to a ring with identity.

Theorem 4 ([6]). Let S be a ring with identity. Then S is a QF-ring if and only if II is satisfied in \mathfrak{M}_R .

Proof. "Only if" part is clear from Corollary 1 to Proposition 3. We assume II. Then $\sum_{\alpha} \bigoplus E_{\alpha}$ is a direct summand of S as the proof of Proposition

4. Hence, K is finite. Therefore, $E/J(E) \approx \sum_{\sigma} \bigoplus S_{\sigma}$.

Finally, we shall consider the category of covariant additive functors (\mathfrak{C} , Ab), where \mathfrak{C} is a small abelian category.

Proposition 5. Let & be a small abelian category. Then the following are equivalent.

1) (\mathfrak{C} , Ab) is semi-simple (completely reducible).

2) (\mathfrak{C} , Ab) is QF.

3) (C, Ab) satisfies II.

In such a case, every object in C is a finite coproduct of minimal objects.

Proof. Put $\mathfrak{A} = (\mathfrak{C}, Ab)$ and $H^c = [C, -]$ for $C \in \mathfrak{C}$, then $\{H^c\}_{c \in \mathfrak{C}}$ is a generating set of small projectives of \mathfrak{A} . We assume \mathfrak{A} is QF. Then \mathfrak{A} is perfect By Theorem 1. Hence, every object C in \mathfrak{C} is a finite coproduct of completely indecomposable objects $\{C_a\}$ by [11], Proposition 5. Furthemore, since H^c is injective in \mathfrak{A} , C is projective in \mathfrak{C} by [15], p. 100, Proposition 2.3. Hence, every C_a is minimal and \mathfrak{A} is semi-simple by [20], Proposition 5. Next, we assume \mathfrak{A} satisfies II. Then \mathfrak{A} is locally noetherian by Proposition 3. Hence, \mathfrak{C} is artinain. Let C be minimal in \mathfrak{C} . Then we can easily see that H^c is minimal in \mathfrak{A} , (cf. [20]). Let $C \supset C_1$ be objects in \mathfrak{C} and C_1 minimal. Then $0 \rightarrow H^{c/c_1} \rightarrow H^c \rightarrow H^{c_1} \rightarrow 0$ is exact, since H^{c_1} is minimal. Hence, C_1 is a retract of C, since H^{c_1} is projective. Therefore, \mathfrak{C} is semi-simple and artinian, which implies \mathfrak{A} is semi-simple from [20], Proposition 5.

We note that every perfect Grothendieck category \mathfrak{A} is equivalent to (\mathbb{C}° , Ab) by [11], Theorem 4, where \mathbb{C} is a small amenable preadditive category. Hence, if \mathfrak{A} is non semi-simple QF, \mathbb{C} is not abelian.

4. Projective and injective objects

From the definition of a QF-category, every projectives are injective and so we shall study, in this section, projective, injective objects in the Grothendieck category \mathfrak{A} with generating set $\{G_{\alpha}\}_{I}$ of small objects. Which is a supplement of [10].

As a dual of weakly distinguished objects [9], we define a weakly codistinguished object. If an object P in \mathfrak{A} has a property $[P, P_1/P_2] \neq 0$ for

any subobjects $P_1 \supset P_2$ of P such that P_1/P_2 is minimal, then P is called *weakly* co-distinguished. Since \mathfrak{A} has $\{G_{\alpha}\}$, if P is projective, then P is weakly co-distinguished if and only if $[P, P_1] \supseteq [P, P_2]$ for any subobjects $P_1 \supseteq P_2$ of P.

Put S=[P, P]. For any subset T of $S r_S(T)=\{s \mid \in S, Ts=0\}$, $l_S(T)=\{s \mid \in S, sT=0\}$ and $TP=\bigcup_{f\in T} \operatorname{Im} f$.

Lemma 5. Let P be projective and S = [P, P]. For any left ideal \mathfrak{l} and right ideal \mathfrak{r} of S, $r_{s}(\mathfrak{l}) = [P, r_{P}(\mathfrak{l})]$ and $l_{s}(\mathfrak{r}P) = l_{s}(\mathfrak{r}P)$.

Proof. It is clear that $r_S(\mathfrak{l})P\subseteq r_P(\mathfrak{l})$ and $r_S(\mathfrak{l})\subseteq [P, r_P(\mathfrak{l})]$. Let f be in $[P, r_P(\mathfrak{l})]$. Then $\mathfrak{l}f(P)\subseteq \mathfrak{l}r_P(\mathfrak{l})=0$. Hence $f\in r_S(\mathfrak{l})$. The last statement is clear.

Proposition 6. Let P be projective and weakly co-distinguished in \mathfrak{A} and S=[P, P]. Then

- 1) $r_P(l) = r_S(l)P$ for any left ideal l in S.
- 2) $P_0 = [P, P_0]P$ for any suboject P_0 of P.

Furthermore, we assume P is injective and weakly distinguished, then

- 3) $I_S(r_S(l)) = I_S(r_P(l)) = l$ for any finitely generated left ideal l of S.
- 4) $r_{s}(l_{s}(x)=x \text{ for any finitely generated right ideal } x \text{ of } S.$
- 5) $r_P(l_S(\mathfrak{r})) = \mathfrak{r}P$ for any right ideal \mathfrak{r} of S.

Proof. We assume that P is projective and co-distinguished. We have from Lemma 5 that $r_S(I) \subseteq [P, r_S(I)P] \subseteq [P, r_P(I)] = r_S(I)$. Hence, $r_P(I) = r_S(I)P$. Similarly, we have 2). We further assume P is injective. Then $l_S(r_S(I)) =$ $l_S(r_S(I)P) = l_S(r_P(I))$ by Lemma 5 and 1). If I is finitely generated, $l_S(r_P(I)) =$ I, (Theorem 2). Finally, we further assume P is injective and distinguished. $r_P(l_S(\mathfrak{r})) = r_P(l_S(\mathfrak{r}P)) = \mathfrak{r}P$ for any right ideal \mathfrak{r} by Lemma 5 and [10]. Hence, if \mathfrak{r} is finitely generated, $\mathfrak{r} = [P, \mathfrak{r}P] = [P, r_P(l_S(\mathfrak{r}))] = r_S(l_S(\mathfrak{r}))$ by Lemma 5 and [8], Lemma 2.6.

Corollary. Let P and S be as above. Then P is artinian if and only if S is right artinian. Furthermore, if P is injective, the following are equivalent.

- 1) P is artinian.
- 2) P is noetherian.
- 3) S is right noetherian, (artinian).

If P is projective, injective, weakly distinguished and co-distinguished, then the following are equivalent.

1)~3).

- 4) S is left noetherian, (artinian).
- 5) S is a QF-ring. (cf. [10], Theorem 2, [16], Satz and [19], §3).

Proof. The first statuent is clear from Proposition 6, 2) and [11], Corollary 2 to Lemma 2. We assume P is injective. $1)\rightarrow 3$). Since S is

right artinian from the above, S is noetherian. $3)\leftrightarrow 2$). It is evident from Proposition 6, 2) and [8], Proposition 2.7. $2)\rightarrow 1$). S is semi-primary by [10], Theorem 1 and hence, S is right artinian. Therefore, P is artinian from the first statement. Finally, we assume further that P is weakly distinguished. $1)\rightarrow 4$). It is clear from Proposition 6, 3). Furthermore, S is left artinian, since S is semi-primary. $4)\rightarrow 1$). P is artinian, since P is injective and weakly distinguished. $1)\leftrightarrow 5$). It is clear from the proof of Theorem 2 and Proposition 6, 3) and 4).

OSAKA CITY UNIVERSITY

References

- [1] J. Beck: *Σ*-injective modules, J. Algebra 21 (1972), 232-249.
- [2] A. Caillear: Une caractérisation des modules Σ-injectifs, C.R. Acad. Sci. Paris Ser. A. 269 (1969), 997-999.
- [3] S.U. Chase: Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457– 473.
- [4] S. Eilenberg and T. Nakayama: On the dimension of modules and algebras II, Nagoya Math. J. 9 (1955), 1-16.
- [5] C. Faith: Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179–191.
- [6] —— and E.A. Walker: Direct-sum representations of injective modules, J. Algebra 5 (1967), 203-221.
- [7] A. Grothendieck: Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957), 119-221.
- [8] M. Harada: On semi-simple abelian categories, Osaka J. Math. 7 (1970), 89-95.
- [9] and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 8 (1971), 309-321.
- [10] —— and T. Ishii: On endomorphism rings of noetherian quasi-injective modules, Osaka J. Math. 9 (1972), 217–223.
- [11] M. Harada: On perfect categories I, Osaka J. Math. 10 (1973), 329-341.
- [12] ———: On perfect categories II, Osaka J. Math. 10 (1973), 343–355.
- [13] ———: On perfect categories III, Osaka J. Math. 10 (1973), 357–367.
- [14] M. Ikeda and T. Nakayama: On some characteristic properties of quasi-Frobenius and regular rings, Proc. Amer. Math. Soc. 5 (1954), 15-19.
- [15] B. Mitchell: Theory of Categories, Academic Press, New York and London, 1965.
- [16] T. Onodera: Ein Zatz über koendlich erzeugte RZ-modules, Tohoku Math. J. 23 (1971), 691-695.
- [17] ———: Über Kogeneratoren, Arch. Math. 19 (1968), 402–410.
- [18] B. Osofsky: A generalization of quasi-Frobenius rings, J. Algebra 3 (1966), 37-386.
- [19] A. Rosenberg and D. Zelinsky: Annihilators, Portugal. Math. 20 (1961), 53-65.
- [20] Y. Sai: On regular categories, Osaka J. Math. 7 (1970), 301-306.
- [21] R.B. Warfield: Decomposition of injective modules, Pacific J. Math. 31 (1969), 263–276.