POLYNOMIAL REPRESENTATIONS ASSOCIATED WITH SYMMETRIC BOUNDED DOMAINS

Masaru TAKEUCHI

(Received November 1, 1972)

Introduction. In this note we want to construct a complete orthonormal system of the Hilbert space $H^2(D)$ of square integrable holomorphic functions on an irreducible symmetric bounded domain D. A symmetric bounded domain D is canonically realizable as a circular starlike bounded domain with the center 0 in a complex cartesian space by means of Harish-Chandra's imbedding (Harish-Chandra [3]), which is constructed as follows. The largest connected group Gof holomorphic automorphisms of D is a connected semi-simple Lie group without center, which is transitive on D. Thus denoting the stablizer in G of a point $o \in D$ by K, D is identified with the quotient space G/K. Let g (resp. \mathfrak{k}) be the Lie algebra of G (resp. K) and g = t + p the Cartan decomposition of g with respect to \mathfrak{k} . Then there exists uniquely an element H of the center of \mathfrak{k} such that ad H restricted to p coincides with the complex structure tensor on the tangent space $T_o(D)$ of D at the origin o, identifying as usual p with $T_o(D)$. g^c be the Lie algebra of the complexification G^c of G and put $Z = \sqrt{-1}H \in g^c$. Let $(\mathfrak{p}^c)^{\pm}$ be the (± 1) -eigenspace in \mathfrak{q}^c of ad Z. Then they are invariant under the adjoint action of K and the complexification \mathfrak{p}^c of \mathfrak{p} is the direct sum of $(\mathfrak{p}^c)^+$ and $(\mathfrak{p}^c)^-$. Let U^c denote the normalizer of $(\mathfrak{p}^c)^+$ in G^c . Then D=G/K is holomorphically imbedded as an open submanifold into the quotient space G^c/U^c in the natural way. For any point $z \in D$, there exists uniquely a vector $X \in (\mathfrak{p}^c)^$ such that

$$\exp X \mod U^c = z$$
.

The map $z \mapsto X$ of D into $(\mathfrak{p}^c)^-$ is the desired imbedding. Note that the natural action of K on D can be extended to the adjoint action of K on the ambient space $(\mathfrak{p}^c)^-$.

Henceforth we assume that D is a bounded domain in $(\mathfrak{p}^c)^-$ realized in the above manner. Let (,) denote the Killing form of \mathfrak{g}^c and τ the complex conjugation of \mathfrak{g}^c with respect to the compact real form $\mathfrak{k}^c + \sqrt{-1}\mathfrak{p}$ of \mathfrak{g}^c . We define a K-invariant hermitian inner product $(,)_\tau$ on \mathfrak{g}^c by

$$(X, Y)_{\tau} = -(X, \tau Y)$$
 for $X, Y \in \mathfrak{g}^c$.

This defines a K-invariant Euclidean measure $d\mu(X)$ on $(\mathfrak{p}^c)^-$. Let $H^2(D)$ denote the Hilbert space of holomorphic functions on D, which are square integrable with respect to the measure $d\mu(X)$. The inner product of $H^2(D)$ will be denoted by $\langle \langle , \rangle \rangle$. K acts on $H^2(D)$ as unitary operators by

$$(kf)(X) = f(k^{-1}X)$$
 for $k \in K, X \in D$.

Let $S^*((\mathfrak{p}^c)^-)$ denote the graded space of polynomial functions on $(\mathfrak{p}^c)^-$. It has the natural hermitian inner product $(,)_{\tau}$ induced from the inner product $(,)_{\tau}$ on $(\mathfrak{p}^c)^-$. K acts on $S^*((\mathfrak{p}^c)^-)$ as unitary operators by

$$(kf)(X) = f(\operatorname{Ad} k^{-1}X)$$
 for $k \in K$, $X \in (\mathfrak{p}^c)^-$.

Now let S denote the Shilov boundary of D. It is known (Koranyi-Wolf [7]) that K acts transitively on S. Thus denoting by L the stabilizer in K of a point $X_0 \\\in S$, S is identified with the quotient space K/L. Let dx denote the K-invariant measure on S induced from the normalized Haar measure of K and $L^2(S)$ the Hilbert space of square integrable functions on S with respect to the measure dx. The inner product of $L^2(S)$ will be denoted by $\langle \ , \ \rangle$. K acts on $L^2(S)$ as unitary operators by

$$(kf)(X) = f(\operatorname{Ad} k^{-1}X)$$
 for $k \in K, X \in S$.

The space $C^{\infty}(S)$ of C-valued C^{∞} -functions on S is a K-submodule of $L^2(S)$. The restrictions $S^*((\mathfrak{p}^C)^-) \to H^2(D)$ and $S^*((\mathfrak{p}^C)^-) \to L^2(S)$ are both K-equivariant monomorphisms. Their images will be denoted by $S^*(D)$ and $S^*(S)$, respectively. They have natural gradings induced from that of $S^*((\mathfrak{p}^C)^-)$. Then the "restriction" $S^*(D) \to S^*(S)$ is defined in the natural manner and it is a K-equivariant isomorphism. Since D is a circular starlike bounded domain, a theorem of H. Cartan [2] yields that the subspace $S^*(D)$ of $H^2(D)$ is dense in $H^2(D)$ (cf. 1).

We decompose first the K-module $S^*(D)$ into irreducible components. We take a maximal abelian subalgebra t of t and identify the real part $\sqrt{-1}t$ of the complexification t^c of t with its dual space by means of Killing form of g^c . Let $\sum -1 t$ denote the set of roots of g^c with respect to t^c . We choose root vectors $X_{\alpha} \in g^c$ for $\alpha \in \Sigma$ such that

$$[X_{\mbox{\tiny α}},\,X_{-\mbox{\tiny α}}] = -rac{2}{(lpha,\,lpha)} lpha \; ,$$
 $au X_{\mbox{\tiny α}} = X_{-\mbox{\tiny α}} \; .$

A root is called *compact* if it is also a root of the complexification \mathfrak{k}^c of \mathfrak{k} , otherwise it is called *non-compact*. $\sum_{\mathfrak{k}}$ (resp. $\sum_{\mathfrak{p}}$) denotes the set of compact roots (resp. of non-compact roots). We choose and fix once for all a linear order > on $\sqrt{-1}\mathfrak{k}$ such that $(\mathfrak{p}^c)^+$ is spanned by the root spaces for non-compact positive

roots $\sum_{\mathfrak{p}}^{+}$. Two roots α , $\beta \in \sum$ are called *strongly orthogonal* if $\alpha \pm \beta$ is not a root. We define a maximal strongly orthogonal subsystem

$$\Delta = \{\gamma_1 \cdots, \gamma_p\}, \quad \gamma_1 > \gamma_2 > \cdots > \gamma_p > 0, \quad p = \operatorname{rank} D$$

of \sum_{p}^{+} as follows (cf. Harish-Chandra [3]). Let γ_{1} be the highest root of \sum and for each j, γ_{j+1} be the highest positive non-compact root that is strongly orthogonal to $\gamma_{1}, \dots, \gamma_{j}$. We put

$$X_0 = -\sum_{\gamma \in \Delta} X_{-\gamma}$$
.

Then it is known (Korányi-Wolf [7]) that X_0 is on the Shilov boundary S of D. Henceforth we shall take the above point X_0 as the origin of S. We put for $\nu \in \mathbb{Z}$, $\nu \geqslant 0$

$$\mathcal{S}^{\text{v}}(K, L) = \{ \sum_{i=1}^{p} n_i \gamma_i; \ n_i \in \mathbb{Z}, \ n_1 \geqslant n_2 \geqslant \cdots \geqslant n_p \geqslant 0, \ \sum_{i=1}^{p} n_i = \nu \} \ ,$$

and

$$S^*(K, L) = \sum_{\nu > 0} S^{\nu}(K, L)$$
.

We shall prove the following

Theorem A. Any irreducible K-submodule of $S^*(D)$ is contained exactly once in $S^*(D)$. The set $S^{\nu}(D)$ of highest weights (with respect to \mathfrak{t}^c) of irreducible K-submodules contained in $S^{\nu}(D)$ coincides with $S^{\nu}(K, L)$. Denoting by $S^*_{\lambda}(D)$ (resp. $S^*_{\lambda}(S)$) the irreducible K-submodule of $S^*(D)$ (resp. of $S^*(S)$) with the highest weight $\lambda \in S^*(K, L)$,

$$S^*(D) = \sum_{\lambda \in S^*(K,L)} \oplus S^*_{\lambda}(D)$$

and

$$S^*(S) = \sum_{\lambda \in S^*(K,L)} \bigoplus S^*_{\lambda}(S)$$

are the orthogonal sum relative to the inner product $\langle \langle , \rangle \rangle$ and \langle , \rangle , respectively. The restriction $f \mapsto f'$ of $S^*_{\lambda}(D) \to S^*_{\lambda}(S)$ is a similitude for each $\lambda \in S^*(K, L)$, i.e. there exists a constant $h_{\lambda} > 0$ such that

$$\langle \langle f, g \rangle \rangle = h_{\lambda} \langle f', g' \rangle$$
 for any $f, g \in S_{\lambda}^{*}(D)$.

Thus, if

$$\{f'_{\lambda,i}; 1 \leq i \leq d_{\lambda}\}, \quad \lambda \in \mathcal{S}^*(K, L)$$

is an orthonormal basis of $S^*_{\lambda}(S)$, then

$$\{\sqrt{h_{\lambda}}^{-1}f_{\lambda,i}; \lambda \in \mathcal{S}^*(K, L), 1 \leq i \leq d_{\lambda}\}$$

is a complete orthonormal system of $H^2(D)$.

A basis $\{f'_{\lambda,i}; 1 \le i \le d_{\lambda}\}$ is, for instance, constructed as follows. Take an irreducible K-module (ρ, V) with the highest weight λ , carrying a K-invariant hermitian inner product (,). Choose an orthonormal basis $\{u_i; 1 \le i \le d_{\lambda}\}$ of V such that the first vector u_1 is L-invariant. This can be done in view of Frobenius' reciprocity since the K-module V is K-isomorphic with a K-submodule of $C^{\infty}(S)$. Then the functions $f'_{\lambda,i}$ $(1 \le i \le d_{\lambda})$ defined by

$$f'_{\lambda,i}(kX_0) = \sqrt{\overline{d_\lambda}}(u_i, \rho(k)u_1)$$
 for $k \in K$

form an orthonormal basis of $S_{\lambda}^{*}(S)$ (cf. 2).

We compute next the normalizing factor h_{λ} . Let

$$a = \{\sqrt{-1}\Delta\}_R$$

be the **R**-span of $\sqrt{-1}\Delta$ in t and

$$\varphi: \sqrt{-1}t \to \sqrt{-1}a$$

denote the orthogonal projection of $\sqrt{-1}t$ onto $\sqrt{-1}a$. For $\gamma \in \varpi \sum -\{0\}$, the number of roots $\alpha \in \sum$ such that $\varpi \alpha = \gamma$ is called the *multiplicity* of γ . Let r (resp. 2s) be the multiplicity of $\frac{1}{2}(\gamma_1 - \gamma_2)$ (resp. of $\frac{1}{2}\gamma_1$). If follows from Theorem A and Frobenius' reciprocity that for each $\lambda \in S^*(K, L)$ there exists uniquely an L-invariant polynomial Ω_λ in $S^*_\lambda((\mathfrak{p}^c)^-)$ such that $\Omega_\lambda(X_0)=1$, where $S^*_\lambda((\mathfrak{p}^c)^-)$ denotes the irreducible K-submodule of $S^*((\mathfrak{p}^c)^-)$ with the highest weight λ . The polynomial Ω_λ is called the *zonal spherical polynomial* for D belonging to λ . Let

$$(\mathfrak{a}^-)^c = \{X_{-\gamma}; \gamma \in \Delta\}_c$$

be the C-span of $\{X_{-\gamma}; \gamma \in \Delta\}$ in $(\mathfrak{p}^c)^-$. It is identified with the complex cartesian space C^p by the map

$$-\sum_{i=1}^{p} z_{i} X_{-\gamma_{i}} \mapsto \begin{pmatrix} z_{1} \\ \vdots \\ z_{p} \end{pmatrix}.$$

Thus the zonal spherical polynomial Ω_{λ} restricted to $(\mathfrak{a}^{-})^{c}$ is a polynomial $\Omega_{\lambda}(Y_{1}, \dots, Y_{p})$ in p-variables. Let $\mu(D)$ denote the volume of D with respect to the measure $d\mu(X)$. We shall prove the following

Theorem B. For $\lambda \in S^*(K, L)$, the normalizing factor h_λ is given by

$$h_{\lambda} = c(D) \int_{0 \leqslant y_i \leqslant 1} \Omega_{\lambda}(y_1, \dots, y_p) \left| \prod_{1 \leqslant i \leqslant j \leqslant p} (y_i - y_j)^r \left| \prod_{i=1}^p y_i^s dy_1 \dots dy_p \right| \right|$$

where

$$c(D) = \mu(D) \left(\int_{0 \le y_i \le 1 (1 \le i \le p)} \prod_{1 \le i \le j \le p} (y_i - y_j)^r | \prod_{i=1}^p y_i^s dy_1 \cdots dy_p \right)^{-1}.$$

Hua [6] proved Theorem A for classical domains by decomposing the character of the K-module $S^*((\mathfrak{p}^c)^-)$ into the sum of irreducible characters of K, while Schmid [11] proved it for general domain D. Schmid proved

(a)
$$S^{\nu}(D) \subset S^{\nu}(K, L)$$

by seeing the character of the K-module $S^*((\mathfrak{p}^c)^-)$ and by making use of E. Cartan's theory on spherical representations of a compact symmetric pair. But his proof of

(b)
$$S^{\nu}(K, L) \subset S^{\nu}(D)$$

is complicated and was done after nine successive lemmas. In this note we give another proof of (a) by means of a lemma of Murakami and Cartan's theory, and give a relatively short proof of (b) by means of a theorm of Harish-Chandra on invariant polynomials for a symmetric pair.

Hua [6] computed the factors h_{λ} for certain classical domains by integrating certain polynomials. Our integral formula in Theorem B will clarify the meaning of integrals of Hua.

1. Circular domains

A domain $D \subset \mathbb{C}^n$ containing the origin 0 is said to be a *circular domain* with the center 0 if together with any point $z \in D$ the point $e^{\sqrt{-1}\theta}z$ is in D for any real $\theta \in \mathbb{R}$. D is said to be a *starlike domain* with the center 0 if together with any point $z \in D$ the point rz is in D for any real $r \in \mathbb{R}$ with $0 \le r < 1$.

Theorem 1.1. (H. Cartan [2]) Let $D \subset \mathbb{C}^n$ be a circular domain with the center 0. Then any holomorphic function f on D can be developed in the sum of homogeneous polynomials P_{ν} in n-variables with degree ν ($\nu=0, 1, 2, \cdots$):

$$f(z) = \sum_{\nu=0}^{\infty} P_{\nu}(z)$$
 for $z \in D$.

The sum converges uniformly on any compact subset of D. The homogeneous polynomials P_{ν} are uniquely determined for f.

Let D be a bounded domain in C^n , $d\mu(z)$ the Euclidean measure on C^n , induced from the standard hermitian inner product of C^n . Let $H^2(D)$ denote the Hilbert space of holomorphic functions on D, which are square integrable with respect to the measure $d\mu(z)$. The inner product of $H^2(D)$ will be denoted by $\langle \langle , \rangle \rangle$. Let $S^*(C^n)$ be the graded space of polynomials in n-variables and $S^*(D)$ the subspace of $H^2(D)$ consisting of all functions on D obtained by the restriction of polynomials in $S^*(C^n)$. Then Theorem 1.1 yields the following

Corollary. Let $D \subset \mathbb{C}^n$ be a circular starlike bounded domain with the center 0. Then the subspace $S^*(D)$ of $H^2(D)$ is dense in $H^2(D)$.

Proof. If suffices to show that if $f \in H^2(D)$ with $\langle f, S^*(D) \rangle = \{0\}$, then f=0. Theorem 1.1 implies that f can be developed as

$$f = \sum_{
u=0}^{\infty} P_{
u}$$
, $P_{
u} \in S^{
u}(D)$,

uniformly convergent on any compact subset of D. Choose an orthonormal basis $\{P_{\nu,j}\}$ of $S^{\nu}(D)$ with respect to $\langle \langle , \rangle \rangle$ for each ν . Then we have

$$\langle\langle P_{\nu,i}, P_{\mu,i}\rangle\rangle = \delta_{\nu\mu}\delta_{ji}$$
.

In fact, since $d\mu(e^{\sqrt{-1}\theta}z)=d\mu(z)$ for any $\theta \in \mathbb{R}$, we have $\langle P_{\nu,j}, P_{\mu,i} \rangle = e^{\sqrt{-1}(\nu-\mu)\theta}$ $\langle P_{\nu,j}, P_{\mu,j} \rangle$ for any $\theta \in \mathbb{R}$. Then f can be developed as

$$f = \sum_{\mathbf{v},i} a_{\mathbf{v},j} P_{\mathbf{v},j}$$
 with $a_{\mathbf{v},j} \in \mathbf{C}$,

uniformly convergent on any compact subset of D. Since D is a starlike domain, the closure \overline{rD} of rD is a compact subset of D for any $r \in R$ with 0 < r < 1, so that the above series converges uniformly on rD. Therefore for any $P_{\mu,i}$ we have

$$\int_{r_D} f(z) \overline{P_{\mu,i}(z)} d\mu(z) = \sum_{\nu,j} a_{\nu,j} \int_{r_D} P_{\nu,j}(z) \overline{P_{\mu,i}(z)} d\mu(z).$$

If we put

$$z' = \frac{1}{r}z$$
 for $z \in rD$,

then z=rz', $d\mu(z)=r^{2n}d\mu(z')$ so that

$$\begin{split} &\int_{r_D} P_{\nu,j}(z) \overline{P_{\mu,i}(z)} d\mu(z) = r^{2n+\nu+\mu} \int_D P_{\nu,j}(z') \overline{P_{\mu,i}(z')} d\mu(z') \\ &= r^{2n+\nu+\mu} \langle\!\langle P_{\nu,j}, P_{\mu,j} \rangle\!\rangle = r^{2n+2\mu} \delta_{\nu\mu} \delta_{ji} \; . \end{split}$$

Hence we have

$$\int_{r_D} f(z) \overline{P_{\mu,i}(z)} d\mu(z) = a_{\mu,i} r^{2n+2\mu}$$

and

$$a_{\mu,i} = \lim_{r \uparrow 1} a_{\mu,i} r^{2n+2\mu} = \lim_{r \uparrow 1} \int_{rD} f(z) \overline{P_{\mu,i}(z)} d\mu(z)$$
$$= \langle \langle f, P_{\mu,i} \rangle \rangle = 0 \qquad \text{(from the assumption)}.$$

This implies that f=0.

2. Spherical representations of a compact symmetric pair

Let K be a compact connected Lie group, L a closed subgroup of K and S be the quotient space K/L. The space of C-valued C^{∞} -functions on S will be denoted by $C^{\infty}(S)$. We shall often identify $C^{\infty}(S)$ with the space of C^{∞} -functions f on K such that

$$f(kl) = f(k)$$
 for any $k \in K$, $l \in L$.

Let dx denote the K-invariant measure on S induced from the normalized Haar measure on K and $L^2(S)$ the Hilbert space of sequare integrable functions on S with respect to the measure dx. The inner product of $L^2(S)$ will be denoted by \langle , \rangle . K acts on $L^2(S)$ as unitary operators by

$$(kf)(x) = f(k^{-1}x)$$
 for $k \in K$, $x \in S$.

Then $C^{\infty}(S)$ is a K-submodule of $L^{2}(S)$. A (continuous finite dimensional complex) representation

$$\rho: K \to GL(V)$$

of K is said to be *spherical* relative to L if the K-module V is equivalent to a K-submodule of $C^{\infty}(S)$, which amounts to the same from Frobenius' reciprocity that the K-module V has a non-zero L-invariant vector. We denote by $\mathcal{D}(K, L)$ the set of equivalence classes of irreducible spherical representations of K relative to L. The totality of $f \in C^{\infty}(S)$ contained in a finite dimensional K-submodule of $C^{\infty}(S)$, which will be denoted by $\mathfrak{o}(K, L)$, is a K-submodule of $C^{\infty}(S)$. A function in $\mathfrak{o}(K, L)$ is called a *spherical function* for the pair (K, L). For $\rho \in \mathcal{D}(K, L)$, the totality of $f \in \mathfrak{o}(K, L)$ that transforms according to ρ , which will be denoted by $\mathfrak{o}_{\rho}(K, L)$, is a finite dimensional K-submodule of $\mathfrak{o}(K, L)$. Then

$$o(K, L) = \sum_{\rho \in \mathcal{D}(K, L)} \bigoplus o_{\rho}(K, L)$$

is the orthogonal sum with respect to the inner product \langle , \rangle . Peter-Weyl approximation theorem implies that the subspace $\mathfrak{o}(K, L)$ of $L^2(S)$ is dense in $L^2(S)$. We assume furthermore that the pair (K, L) satisfies the condition

(*) any $\rho \in \mathcal{D}(K, L)$ is contained exactly once in $\mathfrak{o}(K, L)$,

which is by Frobenius' reciprocity equivalent to that for any spherical representation

$$\rho: K \to GL(V)$$

of K relative to L, an L-invariant vector of V is unique up to scalor multiplication. Then for each $\rho \in \mathcal{D}(K, L)$, there exists uniquely an L-invariant function $\omega_{\rho} \in \mathfrak{o}_{\rho}(K, L)$ such that $\omega_{\rho}(e) = 1$. ω_{ρ} is called the zonal spherical function for (K, L) belonging to ρ . Let

$$\rho \colon K \to GL(V)$$

be a spherical representation of K relative to L. Choose a K-invariant hermitian inner product (,) on V. The equivalence class containing ρ will be denoted by the same letter ρ . Choose an orthonormal basis $\{u_i; 1 \leq i \leq d_\rho\}$ of V such that u_1 is L-invariant. Define $\varphi_i \in C^{\infty}(S)$ $(1 \leq i \leq d_\rho)$ by

$$\varphi_i(k) = (u_i, \rho(k)u_1)$$
 for $k \in K$.

We know that they are linearly independent, in view of orthogonality relations of matrix elements $(u_i, \rho(k)u_i)$. For any $k' \in K$ we have

$$\begin{split} \varphi_i(k'^{-1}k) &= (u_i, \, \rho(k'^{-1}k)u_1) = (\rho(k')u_i, \, \rho(k)u_1) \\ &= \sum_j (\rho(k')u_i, \, u_j)(u_j, \, \rho(k)u_1) \\ &= \sum_j \left(\rho(k')u_i, \, u_j\right) \, \varphi_i(k) \,, \\ k'\varphi_i &= \sum_j \left(\rho(k')u_i, \, u_j\right) \varphi_j \qquad (1 \leqslant i \leqslant d_\rho) \,. \end{split}$$

i.e.

In particular

$$l\varphi_1 = \varphi_1$$
 for any $l \in L$,

and

$$\varphi_1(e)=1$$
.

Therefore the system $\{\varphi_i; 1 \le i \le d_p\}$ forms a basis of $\mathfrak{o}_p(K, L)$ and the zonal spherical function ω_p is given by

$$\omega_0(k) = (u_1, \rho(k)u_1)$$
 for $k \in K$.

Furthermore orthogonality relations implies that the system

$$\{\sqrt{d_o}\varphi_i; 1 \leq i \leq d_o\}$$

forms an orthonormal basis of $o_{\rho}(K, L)$ and that

$$\langle \omega_{\rho}, \, \omega_{\rho'} \rangle = \delta_{\rho \rho'} \frac{1}{d_{\alpha}}.$$

Henceforth we assume that the pair (K, L) is a symmetric pair, i.e. there exists an involutive automorphism θ of K such that if we put

$$K_{A} = \{k \in K; \theta(k) = k\}$$

L lies between K_{θ} and the connected component K_{θ}^{0} of K_{θ} . Then the pair (K, L) satisfies the condition (*) (E. Cartan [1]). For example, a compact connected Lie group S admits a symmetric pair (K, L) such that S=K/L. In fact,

$$K = S \times S$$
,
 $L = \{(x, x); x \in S\}$

and

$$\theta: (x, y) \mapsto (y, x)$$
 for $x, y \in S$

have desired properties.

In the following we summarize some known facts on a symmetric pair (cf. Helgason [4]).

Let \mathfrak{k} (resp. I) be the Lie algebra of K (resp. of L). The involutive automorphism of \mathfrak{k} obtained by differentiating the automorphism θ of K will be also denoted by the same letter θ .

Choose and fix once for all a C-bilinear symmetric form (,) on the complexification \mathfrak{k}^c of \mathfrak{k} , which is invariant under both the C-linear extension to \mathfrak{k}^c of θ and the adjoint action of \mathfrak{k}^c and furthermore is negative definite on $\mathfrak{k} \times \mathfrak{k}$. Then S is a Riemannian symmetric space with respect to the K-invariant Riemannian metric on S defined by -(,). We put

$$\mathfrak{s} = \{X {\in} \mathfrak{k}; \, \theta X = -X\} = \{X {\in} \mathfrak{k}; \, (X, \, \mathfrak{l}) = \{0\}\} \; .$$

Then we have orthogonal decompositions

$$t = I + \hat{s} = c \oplus t'$$
.

where c is the center of t and t' is the derived algebra [t, t] of t. We choose a maximal abelian subalgebra a in a. Such a are mutually conjugate under the adjoint action of a. dim a is the rank of the symmetric pair a. Extend a to a maximal abelian subalgebra a of a containing a. Then we have the decomposition

$$t = b \oplus a$$
 where $b = t \cap I$.

Let $t'=t \cap t'$ and $\alpha'=\alpha \cap t'$. The real vector space $\sqrt{-1}t$ has the natural inner product (,) induced from the bilinear form (,) on t^c . We shall identify $\sqrt{-1}t$ with the dual space of $\sqrt{-1}t$ by means of the inner product (,). We have the orthogonal decomposition

$$\sqrt{-1}t = \sqrt{-1}b \oplus \sqrt{-1}a$$
.

Let σ be the orthogonal transformation on $\sqrt{-1}t$ defined by

$$\sigma | \sqrt{-1} \mathfrak{b} = -1$$
 and $\sigma | \sqrt{-1} \mathfrak{a} = 1$

and

$$\varpi = \frac{1}{2}(1+\sigma): \sqrt{-1}\mathfrak{t} \to \sqrt{-1}\mathfrak{a}$$

be the orthogonal projection of $\sqrt{-1}t$ onto $\sqrt{-1}a$. Let \sum_{i} denote the set of roots of t^c with repsect to the complexification t^c of t. Let $W_i = N_K(T)/T$ be the Weyl group of t, where T is the connected subgroup of K generated by t and $N_K(T)$ is the normalizer of T in K. \sum_{i} is a σ -invariant reduced root system in

 $\sqrt{-1}t'$. As a group of orthogonal transformations of $\sqrt{-1}t$, W_1 is generated by reflections with respect to roots in \sum_{i} . Put

$$\begin{array}{l} \sum_{\mathbf{i}}^{\mathbf{0}} = \sum_{\mathbf{i}} \cap \sqrt{-1}\, \mathbf{b} = \{\alpha \!\in\! \sum_{\mathbf{i}}; \, \mathbf{w}\alpha = 0\} \; , \\ \sum_{s} = \{\mathbf{w}\alpha; \, \alpha \!\in\! \sum_{\mathbf{i}} \!-\! \sum_{\mathbf{i}}^{\mathbf{0}} \} = \mathbf{w} \sum_{\mathbf{i}} \!-\! \{0\} \; , \\ W_{s} = N_{L}\!(A)/\!Z_{L}\!(A) \; , \end{array}$$

where A is the connected subgroup of K generated by $\mathfrak a$ and $N_L(A)$ (resp. $Z_L(A)$) the normalizer (resp. the centralizer) of A in L. An element of \sum_s is a restricted root of the symmetric space S and W_S is the Weyl group of S. \sum_s is a (not necessarily reduced) root system in $\sqrt{-1}\mathfrak a'$. As a group of orthogonal transformations of $\sqrt{-1}\mathfrak a$, W_S is generated by reflections with respect to roots in \sum_s . A linear order > on $\sqrt{-1}\mathfrak t$ is said to be *compatible* for \sum_t with respect to σ (or with respect to the orthogonal decomposition $\sqrt{-1}\mathfrak t = \sqrt{-1}\mathfrak b \oplus \sqrt{-1}\mathfrak a$) if $\alpha \in \sum_t$, $\alpha > 0$ and $\sigma \alpha \neq -\alpha$ imply $\sigma \alpha > 0$. Take a compatible order > on $\sqrt{-1}\mathfrak t$ and fix it once and for all. Let

$$\prod_{i} = \{\alpha_{i}, \dots, \alpha_{l}\}$$

be the fundamental root system of $\sum_{\mathbf{f}}$ with respect to the order > and put

$$\Pi_{\mathbf{r}}^{0} = \Pi_{\mathbf{r}} \cap \sum_{\mathbf{r}}^{0}$$
.

 $W_{\mathfrak{t}}$ is also generated by reflections with respect to roots in $\Pi_{\mathfrak{t}}$. We have the decomposition

$$\sigma = sp$$
 where $s \in W_{\mathfrak{k}}$, $p \prod_{\mathfrak{k}} = \prod_{\mathfrak{k}}$

of σ in such a way that $p^2=1$, $p(\prod_{\mathfrak{t}}-\prod_{\mathfrak{t}}^0)=\prod_{\mathfrak{t}}-\prod_{\mathfrak{t}}^0$ and $\sigma\alpha_i\equiv p\alpha_i$ mod $\{\prod_{\mathfrak{t}}^0\}_Z$ for any $\alpha_i\in\prod_{\mathfrak{t}}-\prod_{\mathfrak{t}}^0$ (Satake [10]). We put

$$\textstyle \prod_s = \{\varpi\alpha_i;\,\alpha_i {\in} \prod_{\mathfrak{k}} - \prod_{\mathfrak{k}} {}^{\scriptscriptstyle{0}} \} = \varpi\prod_{\mathfrak{k}} - \{0\} \;.$$

We may assume that $\Pi_S = \{\gamma_1, \dots, \gamma_p\}$ with $\varpi \alpha_i = \gamma_i \ (1 \le i \le p)$, changing indices of the α_i 's if necessary. Π_S is the fundamental root system of \sum_S with respect to the order >. We put

$$\sum_{s}^{*} = \{ \gamma \in \sum_{s}; 2\gamma \notin \sum_{s} \}$$
.

Then \sum_{s}^{*} is a reduced root system in $\sqrt{-1}\alpha'$. The fundamental root system \prod_{s}^{*} of \sum_{s}^{*} with respect to the order > is given by

$$\Pi_s^* = \{\beta_i, \dots, \beta_p\}$$

$$\beta_i = \begin{cases} \gamma_i & \text{if } 2\gamma_i \notin \sum_s \\ 2\gamma_i & \text{if } 2\gamma_i \in \sum_s \end{cases}$$

where

 W_s is also generated by reflections with respect to roots of Π_s or of Π_s^* . Let

 \sum_{i}^{+} (resp. \sum_{s}^{+} , $(\sum_{s}^{*})^{+}$) denote the set of positive roots in \sum_{i} (resp. \sum_{s} , \sum_{s}^{*}). Then

$$\sum_s^+ = \varpi \left(\sum_{\mathbf{i}}^+ - \sum_{\mathbf{i}}^0 \right) = \varpi \sum_{\mathbf{i}}^+ - \{0\}$$
 .

For $\lambda \in \sqrt{-1}t$, $\lambda \neq 0$, we define

$$\lambda^* = \frac{2}{(\lambda, \lambda)} \lambda.$$

Theorem 2.1. (E. Cartan) Assume that K is simply connected. Then

- 1) K_{θ} is connected.
- 2) The kernel of exp: $a \rightarrow K$ is the subgroup of a generated by $\{2\pi\sqrt{-1}\gamma^*; \gamma \in \sum_s\}$.

Theorem 2.2. (Harish-Chandra) Let $S_L^*(\$)$ (resp. $S_{WS}^*(\alpha)$) be the space of polynomial functions on \$ (resp. on α), which are invariant under the adjoint actions of L (resp. of W_S). Then the restriction map

$$S_L^*(\mathfrak{S}) \to S_{W_{\mathfrak{S}}}^*(\mathfrak{a})$$

is an isomorphism.

Now we shall consider W_S -invariant characters of a maximal torus of S. Put

$$\Gamma = \Gamma(K, L) = \{H \in \mathfrak{a}; \exp H \in L\}$$

and

$$\Gamma_c = \Gamma \cap c_\alpha$$
 where $c_\alpha = c \cap \alpha$.

Then Γ is a W_s -invariant lattice in \mathfrak{a} and $\Gamma_{\mathfrak{c}}$ is a lattice in $\mathfrak{c}_{\mathfrak{a}}$. Let $C_{\mathfrak{a}}$ be the connected subgroup of K generated by $\mathfrak{c}_{\mathfrak{a}}$. Then the A-orbit \hat{A} in S through the origin x_0 of S and the $C_{\mathfrak{a}}$ -orbit $\hat{C}_{\mathfrak{a}}$ in S through the origin have identifications

$$\hat{A} = \mathfrak{a}/\Gamma$$

and

$$\hat{C}_{\alpha} = c_{\alpha}/\Gamma_{c}$$
.

Hence both \hat{A} and \hat{C}_{α} have structures of toral groups. The toral group \hat{A} is said to be a maximal torus of the symmetric space S. The adjoint action of W_S on A induces the action of W_S on A. This action is compatible with the natural action of W_S on α/Γ relative to the identification: $\hat{A} = \alpha/\Gamma$. Put

$$Z = Z(K, L) = \{\lambda \in \sqrt{-1}\alpha; (\lambda, H) \in 2\pi\sqrt{-1} \mathbb{Z} \text{ for any } H \in \Gamma\}$$
.

Z is isomorphic with the group $\mathcal{D}(\hat{A})$ of characters of \hat{A} by the correspondence $\lambda \mapsto e^{\lambda}$, where $e^{\lambda} \in \mathcal{D}(\hat{A})$ is defined by $e^{\lambda}((\exp H)x_0) = \exp(\lambda, H)$ for $H \in \mathfrak{a}$. Put

$$D = D(K, L) = \{ \lambda \in \mathbb{Z}; (\lambda, \gamma_i) \geqslant 0 \text{ for any } \gamma_i \in \Pi_s \}$$
$$= \{ \lambda \in \mathbb{Z}; (\lambda, \gamma) \geqslant 0 \text{ for any } \gamma \in \Sigma_s^+ \}.$$

Then we have

$$D = \{ \lambda \in \mathbb{Z}; s\lambda \leqslant \lambda \text{ for any } s \in W_s \}$$
.

An element of D is called a *dominant integral form* on α . We define a lattice Γ_0 in α to be the subgroup of α generated by $\{2\pi\sqrt{-1}(\frac{1}{2}\gamma^*); \gamma \in \sum_s\}$. We define a lattice Γ_0 in α and a toral group \hat{A}_0 by

$$\Gamma_0 = \Gamma_0 \oplus \Gamma_0'$$

and

$$\hat{A}_0 = \mathfrak{a}/\Gamma_0$$
.

Put

$$Z_0 = \{\lambda \in \sqrt{-1}\mathfrak{a}; (\lambda, H) \in 2\pi\sqrt{-1}\mathbf{Z} \text{ for any } H \in \Gamma_0\}$$

and

$$D_0 = D \cap Z_0.$$

 Z_0 is isomorphic with the group $\mathcal{D}(\hat{A}_0)$ of characters of \hat{A}_0 . Put furthermore

$$Z_{\mathfrak{o}}' = Z_{\mathfrak{o}} \cap \sqrt{-1} \, \mathfrak{a}' = \left\{ \lambda \in \sqrt{-1} \, \mathfrak{a}'; \frac{2(\lambda, \, \gamma)}{(\gamma, \, \gamma)} \in 2\mathbb{Z} \text{ for any } \gamma \in \sum_{s} \right\}$$

and

$$D_{\scriptscriptstyle 0}{}' = D_{\scriptscriptstyle 0} \cap \sqrt{-1} \, \mathfrak{a}' = D \cap Z_{\scriptscriptstyle 0}{}' \, .$$

Lemma 1. If $L=K_{\theta}$, then

$$\Gamma = \{\frac{1}{2}H; H \in \mathfrak{a}, \exp H = e\}$$
.

Proof. For $H \in \mathfrak{a}$, $\exp H = e \Leftrightarrow \exp \frac{H}{2} \exp \frac{H}{2} = e \Leftrightarrow \exp \frac{H}{2} = \left(\exp \frac{H}{2}\right)^{-1} \Leftrightarrow \exp \frac{H}{2} = \theta \left(\exp \frac{H}{2}\right) \Leftrightarrow \exp \frac{H}{2} \in K_{\theta}$, which yields Lemma 1. q.e.d.

Lemma 2. 1)
$$\Gamma_0' = 2\pi \sqrt{-1} \sum_{i=1}^p \mathbf{Z}(\frac{1}{2}\beta_i^*)$$

and it is W_S -invariant. Therefore Γ_0 is W_S -invariant.

- 2) $\Gamma_0 \subset \Gamma$. Therefore $Z_0 \supset Z$ and $D_0 \supset D$.
- 3) If S is simply connected, then $\Gamma = \Gamma_0 = \Gamma_0'$ (thus $Z = Z_0 = Z_0'$, $D = D_0 = D_0'$) and \hat{A}_0 can be identified with \hat{A} .

Proof. 1) Denoting the reflection of $\sqrt{-1}\mathfrak{a}$ with respect to $\beta_i \in \Pi_s^*$ by $s_i \in W_s$, we have

$$s_i \gamma^* = (s_i \gamma)^* = \gamma^* - \frac{2(\beta_i, \gamma)}{(\gamma, \gamma)} \beta_i^*$$
 for $\gamma \in \sum_s ds$

It follows that Γ_0' is W_S -invariant. Since we have

$$(2\lambda)^* = \frac{2 \cdot 2\lambda}{4(\lambda, \lambda)} = \frac{\lambda}{(\lambda, \lambda)} = \frac{1}{2}\lambda^*$$
 for $\lambda \in \sqrt{-1}\alpha, \lambda \neq 0$,

 Γ_0' is the subgroup of \mathfrak{a}' generated by $2\pi\sqrt{-1}(\frac{1}{2}\gamma^*)$ for $\gamma\in\sum_s^*$. Thus it suffices to show that

$$\gamma^* \in \sum_{i=1}^p \mathbf{Z} \beta_i^*$$
 for any $\gamma \in \sum_s^*$.

But this follows from the first equality since there exist $\beta_{i_1}, \dots, \beta_{i_r} \in \prod_s^*$ such that $s_{i_1} \dots s_{i_r} \gamma \in \prod_s^*$.

2) Since $\Gamma_c \subset \Gamma$, it suffices to show that $\Gamma_0' \subset \Gamma'$ for $\Gamma' = \Gamma \cap \alpha'$. Let K' be the connected subgroup of K generated by \mathfrak{k}' and $L' = K' \cap L$. Then (K', L') is also a symmetric pair with respect to θ and S' = K'/L' can be identified with the K'-orbit in S through the origin x_0 of S. Let

$$\pi': K_0' \to K'$$

be the covering homomorphism of the universal covering group K_0' of K' and put

$$L_{\scriptscriptstyle 0}{}^{\prime} = \{k {\in} K_{\scriptscriptstyle 0}{}^{\prime}; \, \theta_{\scriptscriptstyle 0}(k) = k \}$$
 ,

where θ_0 is the involutive automorphism of K_0' covering the involutive automorphism θ of K'. K_0' is compact since K' is semi-simple. S' can be identified with $K_0'/\pi'^{-1}(L')$. It follows from Theorem 2.1 and Lemma 1 that L_0' is connected and

$$\Gamma_{\scriptscriptstyle 0}{'} = \{ H \!\in\! \mathfrak{a}'; \exp_{K_{\scriptscriptstyle 0}{'}} \! H \!\in\! L_{\scriptscriptstyle 0}{'} \} \; .$$

Let A' (resp. A_0') be the connected subgroup of K' (resp. of K_0') generated by \mathfrak{a}' and \hat{A}' (resp. \hat{A}_0') be the A'-orbit in S' (resp. the A_0' -orbit in $S_0'=K_0'/L_0'$) through the origin. Then we have identifications

$$\hat{A}' = \mathfrak{a}'/\Gamma'$$

and

$$\hat{A}_{\scriptscriptstyle 0}{}' = \alpha'/\Gamma_{\scriptscriptstyle 0}{}'$$
 .

On the other hand, since $\pi'^{-1}(L')\supset L_0'$, the covering homomorphism π' induces the commutative diagram

$$\begin{array}{ccc} S_{\mathfrak{o}'} & \xrightarrow{\pi'} & S' \\ \cup & & \cup \\ \hat{A}_{\mathfrak{o}'} & \xrightarrow{\pi'} & \hat{A}' \end{array}.$$

It follows that

$$\Gamma_0' \subset \Gamma'$$
.

3) Under the notation in 2), we have a covering map

$$\hat{C}_{\alpha} \times S' \to S$$
.

It follows from the assumption that $\hat{C}_{\mathfrak{a}} = \{e\}$ and S' is simply connected. Thus the covering map π' is trivial and $\Gamma' = \Gamma_{\mathfrak{o}}'$. Moreover $\mathfrak{c}_{\mathfrak{a}} = \{0\}$ implies that $\Gamma = \Gamma'$ and $\Gamma_{\mathfrak{o}} = \Gamma_{\mathfrak{o}}'$.

REMARK. Define $\Lambda_i \in \sqrt{-1} t' (1 \le i \le l)$ by

$$(\Lambda_i, \alpha_j^*) = \delta_{ij} \quad (1 \leqslant i, j \leqslant l).$$

Then define M_i $(1 \le i \le p)$ by

$$M_{i} = \begin{cases} 2\Lambda_{i} & \text{if} \quad p\alpha_{i} = \alpha_{i} \quad \text{and} \quad (\alpha_{i}, \ \prod_{t=1}^{0}) = \{0\} \\ \Lambda_{i} & \text{if} \quad p\alpha_{i} = \alpha_{i} \quad \text{and} \quad (\alpha_{i}, \ \prod_{t=1}^{0}) \neq \{0\} \\ \Lambda_{i} + \Lambda_{i}, & \text{if} \quad p\alpha_{i} = \alpha_{i}, \neq \alpha_{i}. \end{cases}$$

Then it can be verified (cf. Sugiura [12]) that $M_i \in \sqrt{-1} \mathfrak{a}'$ ($1 \leq i \leq p$) and

$$(M_{i,\frac{1}{2}}\beta_j^*) = \delta_{ij} \quad (1 \leqslant i, j \leqslant p).$$

It follows that

$$Z_0' = \sum_{i=1}^p ZM_i$$

and

$$D_0' = \left\{ \sum_{i=1}^p m_i M_i; m_i \in \mathbb{Z}, m_i \geqslant 0 (1 \leqslant i \leqslant p) \right\}.$$

It follows from Lemma 2,1) that W_s acts on $\hat{A}_0 = \mathfrak{a}/\Gamma_0$ and from Lemma 2,2) that we have a W_s -equivariant homomorphism

$$\pi_0: \hat{A}_0 \to \hat{A}$$
.

Let $\mathcal{R}(\hat{A})$ denote the character ring of \hat{A} . Then W_s acts on $\mathcal{R}(\hat{A})$ (or more generally on the space $C^{\infty}(\hat{A})$ of C-valued C^{∞} -functions on \hat{A}) by

$$(s\chi)(\hat{a}) = \chi(s^{-1}\hat{a})$$
 for $s \in W_S$, $\hat{a} \in \hat{A}$.

This action coincides on $Z=\mathcal{D}(\hat{A})\subset \mathcal{R}(\hat{A})$ with the adjoint action of W_S on Z. Let $\mathcal{R}_{W_S}(\hat{A})$ be the subring of W_S -invariant characters of \hat{A} and $\mathcal{R}_{W_S}(\hat{A})^C$ the C-span of $\mathcal{R}_{W_S}(\hat{A})$ in $C^{\infty}(\hat{A})$. Let $\mathcal{R}(\hat{A}_0)$, $\mathcal{R}_{W_S}(\hat{A}_0)$ and $\mathcal{R}_{W_S}(\hat{A}_0)^C$ denote the same objects for \hat{A}_0 . Then π_0 induces a W_S -equivariant monomorphism

$$\pi_0^* \colon \mathcal{R}(\hat{A}) \to \mathcal{R}(\hat{A}_0)$$

and monomorphisms

$$\pi_0^* \colon \mathcal{R}_{W_S}(\hat{A}) \to \mathcal{R}_{W_S}(\hat{A}_0)$$
,
 $\pi_0^* \colon \mathcal{R}_{W_S}(\hat{A})^c \to \mathcal{R}_{W_S}(\hat{A}_0)^c$.

Henceforth we shall identify $\mathcal{R}_{W_S}(\hat{A})$ with a subring of $\mathcal{R}_{W_S}(\hat{A}_0)$ and $\mathcal{R}_{W_S}(\hat{A})^c$ with a subalgebra of $\mathcal{R}_{W_S}(\hat{A}_0)^c$ by means of these monomorphisms π_0^* .

For $\lambda \in \sqrt{-1}\alpha$, we shall denote by λ_c the $\sqrt{-1}c_\alpha$ -component of λ with respect to the orthogonal decomposition

$$\sqrt{-1}\alpha = \sqrt{-1}c_{\alpha} \oplus \sqrt{-1}\alpha'$$
.

The following facts can be proved in the same way as the classical results for a compact connected Lie group S, so the proofs are omitted.

We define an element δ in Z_0 by

$$\delta = \sum_{\gamma \in (\Sigma_{\mathcal{S}^*})^+} \gamma$$
 .

For $\lambda \in Z_0$, we define $\xi_{\lambda} \in \mathcal{R}(\hat{A}_0)$ by

$$\xi_{\lambda} = \sum_{s \in W_s} (\det s) e^{s\lambda}.$$

For $\lambda \in \mathbb{Z}$, ξ_{λ} is divisible by ξ_{δ} in the ring $\mathcal{R}(\hat{A}_{0})$ and

$$\chi_{\lambda} = \frac{\xi_{\lambda+\delta}}{\xi_{\delta}}$$

is in $\mathcal{R}_{W_S}(\hat{A})$. If χ_{λ} has the expression

$$\chi_{\lambda} = \sum m_{\mu} e^{\mu}$$
 with $\mu \in \mathbb{Z}, m_{\mu} \in \mathbb{Z}, m_{\mu} \neq 0$,

then μ_c are the same for any μ . In particular, if $\lambda \in D$, then the highest component in the above expression of χ_{λ} is e^{λ} with $m_{\lambda}=1$. Any W_S -invariant character $\chi \in \mathcal{R}_{W_S}(\hat{A})$ of \hat{A} has an expression

$$\chi = \sum m_{\lambda} \chi_{\lambda}$$
 with $\lambda \in D$, $m_{\lambda} \in \mathbf{Z}$.

The expression is unique for χ . In particular, the system $\{\chi_{\lambda}; \lambda \in D\}$ forms a basis of the space $\mathcal{R}_{W_S}(\hat{A})^c$.

Now we come back to spherical representations of a symmetric pair (K, L).

Theorem 2.3. (E. Cartan [1]) Let $\rho \in \mathcal{D}(K, L)$ have the highest weight $\lambda \in \sqrt{-1}t$ and ω_{λ} be the zonal spherical function for (K, L) belonging to ρ . Then

- 1) $\lambda \in D$,
- 2) ω_{λ} restricted to \hat{A} is in $\mathcal{R}_{W_S}(\hat{A})^c$ and has an expression

$$\omega_{\lambda} = \sum a_{\mu} e^{-\mu}$$
 with $\mu \in \mathbb{Z}$, $a_{\mu} \in \mathbb{R}$, $a_{\mu} > 0$, $\sum a_{\mu} = 1$,

with the lowst component $a_{\lambda}e^{-\lambda}$.

Proof. Proof of E. Cartan [1] was done in the case where K is semi-simple and $L=K_{\theta}$. His proof can be applied for our case without difficulties. But his proof of $\lambda \in \sqrt{-1} \alpha$ is not complete. A correct proof is seen, for example, in Schmid [11].

Lemma 3. For any $\lambda \in D$, there exists an irreducible representation ρ of K such that the highest weight of ρ on t^{C} is λ .

Proof. Let $H \in t$ with $\exp H = e$. Decompose H as

$$H = H' + H''$$
 with $H' \in \mathfrak{b}, H'' \in \mathfrak{a}$.

Then $\exp H'' = (\exp H')^{-1} \in L$, i.e. $H'' \in \Gamma$. It follows from $\lambda \in Z \subset \sqrt{-1} \alpha$ that $(\lambda, H) = (\lambda, H') + (\lambda, H'') = (\lambda, H'') \in 2\pi \sqrt{-1} Z$. Moreover $(\lambda, \alpha_i) = (\lambda, \varpi \alpha_i) \ge 0$ for any $\alpha_i \in \prod_{\P} \text{ since } \lambda \in D$. Thus e^{λ} is a dominant character of the maximal torus T of K. Then the classical representation theory of compact connected Lie groups assures the existence of ρ .

Lemma 4. Let $Z_L(A)$ be the centralizer in L of A and $Z_L(A)^\circ$ the connected component of $Z_L(A)$. Then

$$Z_L(A) = Z_L(A)^0 \exp \Gamma$$
.

Proof. The centralizer $\mathfrak{F}_{\mathbf{r}}(a)$ in \mathfrak{k} of a has the decomposition

$$g_{\mathbf{r}}(\alpha) = g_{\mathbf{r}}(\alpha) \oplus \alpha$$
,

where $\mathfrak{F}_{\mathbf{I}}(\mathfrak{a})$ is the centralizer in \mathbf{I} of \mathfrak{a} . Since the centralizer $Z_K(A)$ in the compact connected Lie group K of the torus A is connected, we have the decomposition

$$Z_K(A) = Z_L(A)^0 A$$
.

It follows that any element $m \in Z_L(A)$ can be written as

$$m = m'a$$
 with $m' \in Z_L(A)^0$, $a \in A$.

Then $a=m'^{-1}m\in L$ so that $a\in\exp\Gamma$. Thus $m\in Z_L(A)^0\exp\Gamma$, which proves Lemma 4. q.e.d.

Lemma 5. Let K^c denote the Chevalley complexification of K. Put

$$K^* = L \exp \sqrt{-1} \mathfrak{S}$$

and

$$(K^*)^{\scriptscriptstyle 0} = L^{\scriptscriptstyle 0} \exp \sqrt{-1} \, \mathfrak{s}$$
 ,

where L^0 denotes the connected component of L. Then $(K^*)^0$ is a closed subgroup of

 K^c normalized by K^* and

$$K^* = (K^*)^0 \exp \Gamma$$
.

Therefore K^* is a closed subgroup of K^c with the connected component $(K^*)^0$.

Proof. The first statement is clear. Take any element $l \in L$. From the conjugteness of maximal abelian subalgebras in 3 under the adjoint action of L^0 , there exists $l_1 \in L^0$ such that $l_1 l \in N_L(A)$. Since

$$N_{\it L}(A)/Z_{\it L}(A)=N_{\it L}$$
o $(A)/Z_{\it L}$ o $(A)=W_{\it S}$,

we can choose $l_2 \in L^0$ such that $l_2 l_1 l \in Z_L(A)$. It follows from Lemma 4 that there exist $l_3 \in Z_L(A)^0$ and $a \in \exp \Gamma$ such that $l_2 l_1 l = l_3 a$. Therefore $l = l_1^{-1} l_2^{-1} l_3 a$ with $l_1^{-1} l_2^{-1} l_3 \in L^0 \subset (K^*)^0$, i.e. $l \in (K^*)^0 \exp \Gamma$. This completes the proof of Lemma 5.

Now we can prove the following

Theorem 2.4. (E. Cərtan [1], Sugiura [12], Helgason [5]) For any $\lambda \in D$, there exists an irreducible spherical representation ρ of K relative to L such that the highest weight of ρ on \mathfrak{t}^C is λ .

Together with Theorem 2.3 we have the following

Corollary. For $\rho \in \mathcal{D}(K, L)$, let $\lambda(\rho)$ denote the highest weight of ρ on \mathfrak{t}^{C} . Then the correspondence $\rho \mapsto \lambda(\rho)$ gives a bijection:

$$\mathcal{D}(K, L) \to D(K, L)$$
.

Proof of Theorem 2.4. This theorem for the case where K is semi-simple and $L=K_{\theta}$ was stated in E. Cartan [1] but its proof is not complete. It was stated for simply connected K without proof in Sugiura [12]. It was proved in Helgason [5] for the case where K is semi-simple and L is connected. Helgason's proof can be applied for our case without difficulties, so we shall confine ourselves to point out necessary modifications.

Let

$$\rho: K \to GL(V)$$

be the irreducible representation of K with the highest weight λ (Lemma 3). By extending ρ to the Chevalley complexification K^c of K and restricting it to the closed subgroup K^* of K^c (Lemma 5), we have an irreducible representation of K^* , which will be denoted by the same letter ρ . It suffices to show that ρ has a non-zero L-invariant. Let N be the connected subgroup of K^* generated by the subalgebra

$$\mathfrak{n}=\mathfrak{k}^*\cap\sum_{\alpha\in\Sigma^+_{\mathfrak{k}}-\Sigma^0_{\mathfrak{k}}}\mathfrak{k}^C_{\alpha}\,,$$

where \mathfrak{t}^* is the Lie algebra of K^* and \mathfrak{t}^c_{α} is the root space of \mathfrak{t}^c for α . We shall first prove that the representation ρ of K^* is a conical representation of K^* in the sense of Helgason [5], i.e. if $v_{\lambda} \in V$, $v_{\lambda} \neq 0$, is a highest weight vector for ρ with representation of \mathfrak{t}^c , we have

$$\rho(mn)v_{\lambda}=v_{\lambda}$$
 for any $m\in Z_L(A), n\in N$.

Denoting the infinitesimal action of t^c on V by the same letter ρ , we have

$$\rho(\mathfrak{n})v_{\lambda} = \rho(\mathfrak{F}_{\mathbf{r}}(\mathfrak{a}))v_{\lambda} = \{0\} .$$

In fact, $\rho(\mathfrak{n})v_{\lambda} = \{0\}$ since $\mathfrak{n} \subset \sum_{\alpha \in \Sigma_{\mathfrak{t}}^+} \mathfrak{t}_{\alpha}^C$. $\rho(\mathfrak{b}^C)v_{\lambda} = \{0\}$ for the complexification \mathfrak{b}^C of \mathfrak{b} since $(\sqrt{-1}\,\mathfrak{b},\,\lambda) = \{0\}$. $\rho(\mathfrak{t}_{\alpha}^C)v_{\lambda} = \{0\}$ for $\alpha \in \Sigma_{\mathfrak{t}}^0,\,\alpha > 0$. It follows from $(\alpha,\,\lambda) \in (\sqrt{-1}\,\mathfrak{b},\,\lambda) = \{0\}$ for $\alpha \in \Sigma_{\mathfrak{t}}^0$ that $\lambda - \alpha$ is not a weight of ρ for $\alpha \in \Sigma_{\mathfrak{t}}^0,\,\alpha > 0$. Since the complexification of $\mathfrak{F}_{\mathfrak{t}}(\alpha)$ is spanned by \mathfrak{b}^C and the \mathfrak{t}_{α}^C 's for $\alpha \in \Sigma_{\mathfrak{t}}^0$, we have $\rho(\mathfrak{F}_{\mathfrak{t}}(\alpha))v_{\lambda} = \{0\}$. Therefore it suffices from Lemma 4 to show that

$$\rho(\exp H)v_{\lambda} = v_{\lambda}$$
 for any $H \in \Gamma$.

But it is clear since $\lambda \in \mathbb{Z}$, i.e. $(\lambda, H) \in 2\pi \sqrt{-1} \mathbb{Z}$ for any $H \in \Gamma$.

Thus we can prove in the same way as Helgason [5] that V has a non-zero L-invariant vector, by constructing a K^* -submodule V' of the K^* -module $C^{\infty}(K^*)$ of C^{∞} -functions on K^* , having a non-zero L-invariant, and by constructing a K^* -equivariant isomorphism of V onto V'.

Next we shall describe zonal spherical functions in terms of the basis $\{\chi_{\lambda}; \lambda \in D\}$ of $\mathcal{R}_{W_S}(\hat{A})^c$.

For $\hat{a} = (\exp H)x_0 \in \hat{A}$, $H \in \mathfrak{a}$, we put

$$D(\hat{a}) = \left| \prod_{\alpha \in \Sigma_{\mathfrak{p}}^+ - \Sigma_{\mathfrak{p}}^0} 2 \sin(\alpha, \sqrt{-1}H) \right|.$$

Let $d\hat{a}$ denote the normalized Haar measure of \hat{A} and $|W_S|$ the order of the Weyl group W_S . For W_S -invariant functions χ , χ' on \hat{A} , we define

$$\langle \chi, \chi' \rangle = \frac{c}{|W_S|} \int_{\hat{A}} \chi(\hat{a}) \overline{\chi'(\hat{a})} D(\hat{a}) d\hat{a} ,$$

where

$$c = \left(\frac{1}{|W_S|} \int_{\hat{A}} D(\hat{a}) d\hat{a}\right)^{-1}.$$

c=1 in the case where S is a compact connected Lie group. In particular, if χ and χ' can be extended to L-invariant functions f and f' on S, then $\langle \chi, \chi' \rangle$ coincides with the inner product $\langle f, f' \rangle$ in $L^2(S)$ (cf. Helgason [4]).

Fix a dominant integral form $\lambda \in D$. We define a finite subset D_{λ} of D by

$$D_{\lambda} = \{ \mu \in D; \, \mu_{c} = \lambda_{c}, \, \mu \leqslant \lambda \}$$
.

Since the system $\{\chi_{\mu}; \mu \in D\}$ forms a basis of $\mathcal{R}_{W_S}(\hat{A})^c$, the matrix

$$(\langle \chi_{\mu}, \chi_{\nu} \rangle)_{\mu,\nu \in D_{\lambda}}$$

is a positive definite hermitian matrix. Let

$$(b^{\mu\nu})_{\mu,\nu\in D_{\lambda}}$$

be the inverse matrix of the above matrix. In particular $b^{\lambda\lambda} > 0$. For any $\mu \in D_{\lambda}$, we put

$$c^{\mu}_{\lambda}=rac{b^{\lambda\mu}}{\sqrt{d_{\lambda}\,b^{\lambda\lambda}}}$$
 ,

where d_{λ} is the degree of an irrducible representation of K with the highest weight λ . Then we have

Theorem 2.5. Let $\lambda \in D$ and ω_{λ} be the zonal spherical function belonging to the class of an irreducible representation of K with the highest weight λ . Then ω_{λ} restricted to \hat{A} is given by

$$\omega_{\lambda} = \sum_{\mu \in \mathcal{D}_{\lambda}} c_{\lambda}^{\mu} \bar{\chi}_{\mu} \,.$$

Proof. The idea of the following proof owes to Hua [6]. Let $\mu \in D_{\lambda}$. Then ω_{μ} restricted to \hat{A} is in $\mathcal{R}_{W_S}(\hat{A})^c$ by Theorem 2.3. It follows by Theorem 2.3 and Corollary of Theorem 2.4 that ω_{μ} has an expression

$$\omega_{\mu} = \sum_{\nu \in \mathcal{D}_{\lambda}} c'^{\nu}_{\mu} \bar{\chi}_{\nu}$$
 with $c'^{\nu}_{\mu} \in \mathbf{R}$, $c'^{\mu}_{\mu} > 0$, $c'^{\nu}_{\mu} = 0$ if $\nu > \mu$.

We define an upper triangular matrix C' by

$$C'=(c'^{\nu}_{\mu})_{\nu,\mu\in\mathcal{D}_{\lambda}}.$$

Then we have

$$(\langle \omega_{\mu}, \omega_{\nu} \rangle)_{\mu,\nu \in D_{\lambda}} = {}^{t}C'(\langle \chi_{\mu}, \chi_{\nu} \rangle)_{\mu,\nu \in D_{\lambda}}C'.$$

Since $\langle \omega_{\mu}, \omega_{\nu} \rangle = d_{\mu}^{-1} \delta_{\mu\nu}$ we have

$$(d_{\mu}\delta_{\mu\nu})_{\mu,\nu\in D_{\lambda}}=C'^{-1}B'^{t}C'^{-1}$$
,

where

$$B' = (b'^{\mu\nu})_{\mu,\nu \in D_{\lambda}} = (\langle \overline{\chi}_{\mu}, \overline{\chi}_{\nu} \rangle)_{\mu,\nu \in D_{\lambda}}^{-1}.$$

It follows that

$$C'(d_{\mu}\delta_{\mu\nu})_{\mu,\nu\in D_{\lambda}}{}^{t}C'=B'$$
.

Comparing (μ, λ) -components of both sides, we have

$$c^{\prime\mu}_{\lambda}d_{\lambda}c^{\prime\lambda}_{\lambda}=b^{\prime\mu\lambda}$$
.

In particular

$$(c'^{\lambda}_{\lambda})^2 d_{\lambda} = b'^{\lambda\lambda}, \quad \text{i.e.} \quad c^{\lambda}_{\lambda} = \sqrt{\frac{\overline{b'^{\lambda\lambda}}}{d_{\lambda}}},$$

hence

$$c'^{\mu}_{\lambda} = rac{b'^{\mu\lambda}}{d_{\lambda}c'^{\lambda}_{\lambda}} = rac{b'^{\mu\lambda}}{\sqrt{d_{\lambda}b'^{\lambda\lambda}}}.$$

Since $b^{\prime\mu\nu} = b^{\nu\mu}$, we have

$$c'^{\mu}_{\lambda} = \frac{b^{\lambda\mu}}{\sqrt{d_{\lambda}b^{\lambda\lambda}}} = c^{\mu}_{\lambda}$$
. q.e.d.

EXAMPLE. If S is a compact connected Lie group and (K, L) the symmetric pair with K/L = S as mentioned before, then the set $\mathcal{D}(S)$ of equivalence classes of irreducible representations of S is in the bijective correspondence with $\mathcal{D}(K, L)$ by the assignment $\rho \mapsto \rho \boxtimes \rho^*$, where ρ^* denotes the contragredient representation of ρ . \hat{A} is a maximal torus of the compact Lie group S. Let \mathcal{X}_{ρ} be the invariant character of \hat{A} for the dominant integral form in D(K, L) corresponding to $\rho \boxtimes \rho^*$ by the bijection in Cororally of Theorem 2.4. Then it is nothing but the character of ρ . It follows from orthogonality relations of irreducible characters that the matrix $(b^{\lambda\mu})$ is the identity matrix. Thus the zonal spherical function $\omega_{\rho\boxtimes\rho^*}$ belonging to $\rho\boxtimes\rho^*$ is given by

$$\omega_{
hooxtimes
ho^*}=rac{1}{d_{
ho}}\,ar{oldsymbol{\mathcal{I}}}_{
ho}$$
 ,

where d_{ρ} is the degree of ρ .

3. Polynomial representations associated with symmetric bounded domains

Let D be an irreducible symmetric bounded domain with rank p realized in $(\mathfrak{p}^c)^-$ as in Introduction. We shall use the same notation as in Introduction.

Let

$$\Pi = \{\alpha_1, \dots, \alpha_l\}$$

be the fundamental root system of \sum with respect to the order > and let $\prod_{\mathfrak{t}} = \prod \cap \sum_{\mathfrak{t}}$. It is known that $\prod_{\mathfrak{t}}$ is the fundamental root system of $\sum_{\mathfrak{t}}$, $\prod - \prod_{\mathfrak{t}}$ consists of one element, say α_1 , which is the lowest root in $\sum_{\mathfrak{p}}^+$, and for any

 $\alpha = \sum_{i=1}^{l} m_i \alpha_i \in \sum_{\mathfrak{p}}^+, m_i = 1$. Let $\sum_{\mathfrak{k}}^+$ denote the set of positive compact roots. Put

$$\mathfrak{b} = \{ H \in \mathfrak{a}; (\sqrt{-1}H, \Delta) = \{0\} \}.$$

Then we have the orthogonal decomposition

$$\sqrt{-1}t = \sqrt{-1}b \oplus \sqrt{-1}a$$

with respect to (,). We define an orthogonal transformation σ on $\sqrt{-1}t$ by $\sigma | b = -1$ and $\sigma | \sqrt{-1}a = 1$. Let

$$\varpi = \frac{1}{2}(1+\sigma): \sqrt{-1}\mathfrak{t} \to \sqrt{-1}\mathfrak{a}$$

be the orthogonal projection of $\sqrt{-1}t$ onto $\sqrt{-1}a$. Let κ be the unique involutive element of the Weyl group $W_{\mathfrak{t}}$ of K such that $\kappa \prod_{\mathfrak{t}} = -\prod_{\mathfrak{t}}$. Since $\sum_{\mathfrak{p}}^{+}$ is the set of weights on \mathfrak{t}^{c} of the irreducible K-module $(\mathfrak{p}^{c})^{+}$, we have $\kappa \sum_{\mathfrak{p}}^{+} = \sum_{\mathfrak{p}}^{+}$ and $\kappa \gamma_{\mathfrak{t}} = \alpha_{\mathfrak{t}}$. Put

$$\Delta' = \kappa \Delta = \{\gamma_1', \dots, \gamma_n'\}, \qquad \gamma_i' = \kappa \gamma_i \ (1 \leq i \leq p), \ \gamma_1' = \alpha_1.$$

It is the original maxiaml strongly orthogonal subsystem of \sum_{p}^{+} of Harish-Chandra [3]. For the system Δ' , the orthogonal projection

$$\varpi': \sqrt{-1}t \to \sqrt{-1}a'$$

onto the **R**-span $\sqrt{-1}a'$ of Δ' is defined in the same way as for Δ . Put

$$\begin{split} & \boldsymbol{P_1}' = \{\alpha \in \sum_{\mathfrak{p}}^+; \, \boldsymbol{\varpi}'(\alpha) = \frac{1}{2}(\gamma_i' + \gamma_j') \text{ for some } 1 \leqslant i \leqslant j \leqslant p \} \text{ ,} \\ & \boldsymbol{P_1}' = \{\alpha \in \sum_{\mathfrak{p}}^+; \, \boldsymbol{\varpi}'(\alpha) = \frac{1}{2}\gamma_i' \text{ for some } 1 \leqslant i \leqslant p \} \text{ ,} \\ & \boldsymbol{K_0}' = \{\alpha \in \sum_{\mathfrak{p}}; \, \boldsymbol{\varpi}'(\alpha) = \frac{1}{2}(\gamma_i' - \gamma_j') \text{ for some } 1 \leqslant i, j \leqslant p \} \text{ ,} \\ & \boldsymbol{K_1}' = \{\alpha \in \sum_{\mathfrak{p}}; \, \boldsymbol{\varpi}'(\alpha) = \frac{1}{2}\gamma_i' \text{ for some } 1 \leqslant i \leqslant p \} \text{ .} \end{split}$$

Then (Harish-Chandra [3]) \sum is the disjoint union of P_1' , $-P_1'$, P_1' , $-P_1'$, K_0' , K_1' , $-K_1'$ and we have

$$egin{aligned} & \varpi' P_1' = \{ \frac{1}{2} (\gamma_i' + \gamma_j'); \ 1 \leqslant i \leqslant i \leqslant p \} \ & \varpi' P_1' = \{ \frac{1}{2} \gamma_i'; \ 1 \leqslant i \leqslant p \} \ & \text{if} \quad P_1' + \phi \ , \\ & \varpi' K_0' - \{ 0 \} = \{ \pm \frac{1}{2} (\gamma_i' - \gamma_j'); \ 1 \leqslant i \leqslant p \} \ , \\ & \varpi' K_1' = \{ \frac{1}{2} \gamma_i'; \ 1 \leqslant i \leqslant p \} \ & \text{if} \quad P_2' + \phi \ . \end{aligned}$$

Furthermore the multiplicity (with respect to ϖ') of any γ_i' is 1 and that of any $\frac{1}{2}\gamma_i'$ is even. It follows that

$$\varpi'\Sigma - \{0\} = \left\{ \begin{array}{l} \{\pm\frac{1}{2}(\gamma_i'\pm\gamma_j');\ 1\leqslant i < i\leqslant p,\ \pm\gamma_i;\ 1\leqslant i\leqslant p\} \ \ \text{if}\ \ \textbf{\textit{P}}_{\pmb{i}}' = \phi \\ \{\pm\frac{1}{2}(\gamma_i'\pm\gamma_j');\ 1\leqslant i < i\leqslant p,\ \pm\gamma_i',\ \pm\frac{1}{2}\gamma_i';\ 1\leqslant i\leqslant p\} \ \ \text{if}\ \ \textbf{\textit{P}}_{\pmb{i}}' \pm\phi \, . \end{array} \right.$$

Moreover we have (Moore [8])

$$\boldsymbol{\varpi}' \prod -\{0\} = \begin{cases} \{\gamma_1', \frac{1}{2}(\gamma_2' - \gamma_1'), \cdots, \frac{1}{2}(\gamma_p' - \gamma_{p-1}')\} & \text{if } \quad \boldsymbol{P_1'} = \phi \\ \{\gamma_1', \frac{1}{2}(\gamma_2' - \gamma_1'), \cdots, \frac{1}{2}(\gamma_p' - \gamma_{p-1}'), -\frac{1}{2}\gamma_p'\} & \text{if } \quad \boldsymbol{P_1'} \neq \phi \end{cases},$$

and

$$\varpi' \prod_{\mathbf{!}} - \{0\} = \begin{cases} \{\frac{1}{2}(\gamma_2' - \gamma_1'), \, \cdots, \, \frac{1}{2}(\gamma_p' - \gamma_{p-1}')\} & \text{if} \quad \mathbf{P}_{\underline{!}}' = \phi \\ \{\frac{1}{2}(\gamma_2' - \gamma_1'), \, \cdots, \, \frac{1}{2}(\gamma_p' - \gamma_{p-1}'), \, -\frac{1}{2}\gamma_p'\} & \text{if} \quad \mathbf{P}_{\underline{!}}' \neq \phi \end{cases}.$$

Lemma 1. 1)

2) (Schmid [11]) If $P_{\frac{1}{2}}' \neq \phi$ and

$$\sum_{\beta \in P_{\frac{1}{2}}} m_{\beta} \beta \quad \text{with} \quad m_{\beta} \geqslant 0$$

is in the R-span $\{P_1'\}_R$ of P_1' , then $m_\beta=0$ for any β .

Proof. For any $\alpha \in \sum_{n}^{+} = P_{1}' \cup P_{1}'$, $\varpi'\alpha$ can be writen as

$$\varpi'\alpha = \frac{1}{2}m_{1}(\gamma_{2}' - \gamma_{1}') + \frac{1}{2}m_{2}(\gamma_{3}' - \gamma_{2}') + \dots + \frac{1}{2}m_{p-1}(\gamma_{p}' - \gamma_{p-1}')
- \frac{1}{2}m_{p}\gamma_{p}' + m_{p+1}\gamma_{1}'
= \frac{1}{2}(2m_{p+1} - m_{1})\gamma_{1}' + \frac{1}{2}(m_{1} - m_{2})\gamma_{2}' + \dots + \frac{1}{2}(m_{p-2} - m_{p-1})\gamma_{p-1}'
+ \frac{1}{2}(m_{p-1} - m_{p})\gamma_{p}'$$

where $m_i \in \mathbb{Z}$, $m_i \geqslant 0$, $m_{p+1} = 1$. Since $\varpi' \alpha = \frac{1}{2} (\gamma_i' + \gamma_j')$ or $\frac{1}{2} \gamma_i'$ for some i, j, we have

$$2 \geqslant m_1 \geqslant m_2 \geqslant \cdots \geqslant m_{p-1} \geqslant m_p \geqslant 0$$
.

Furthermore $\alpha \in P_1'$ (resp. $\alpha \in P_2'$) if and only if $m_p = 0$ (resp. $m_p = 1$).

- 1) If $P_{\underline{i}}'=\phi$, then $\gamma_1 \in P_{\underline{i}}'$. For $\alpha=\gamma_1$, the coefficients in the above expression are $m_1=\dots=m_{p-1}=2$, $m_p=0$ and $\varpi'\gamma_1=\gamma_p'$. If $P_{\underline{i}}'=\phi$, then for $\alpha=\gamma_1$, the coefficients are $m_1=\dots=m_{p-1}=2$, $m_p=1$ and $\varpi'\gamma_1=\frac{1}{2}\gamma_p'$. Now the assertion 1) follows from $\varpi\alpha_1=\kappa^{-1}\varpi'\kappa\alpha_1=\kappa^{-1}\varpi'\gamma_1$.
 - 2) Let

$$\alpha = \sum_{i=1}^{l} n_i \alpha_i$$
 with $n_i \in \mathbb{Z}, n_i \geqslant 0$

be in \sum_{p} ⁺. It follows from the first argument that

- (a) if $\alpha \in P_1'$, $\varpi' \alpha_i = -\frac{1}{2} \gamma_p'$, then $n_i = 0$,
- (b) if $\alpha \in P_i$, then there exists $\alpha_i \in \prod_i$ such that $n_i > 0$ and $\varpi' \alpha_i = -\frac{1}{2} \gamma_p'$. This implies the assertion 2).

Now P_1 , $P_{\frac{1}{2}}$, K_0 and $K_{\frac{1}{2}}$ are defined for Δ in the same way as for Δ' . Then κ transforms P_1 (resp. $P_{\frac{1}{2}}$, K_0 , $K_{\frac{1}{2}}$) onto P_1' (resp. $P_{\frac{1}{2}}'$, K_0' , $K_{\frac{1}{2}}'$). It follows that the above mentioned properties due to Harish-Chandra are also satisfied by our objects for Δ . But Moore's results should be modified as follows.

$$\mathbf{v}\Pi - \{0\} = \begin{cases} \{\frac{1}{2}(\gamma_1 - \gamma_2), \cdots, \frac{1}{2}(\gamma_{p-1} - \gamma_p), \gamma_p\} & \text{if} \quad \mathbf{P}_{\frac{1}{2}} = \phi \\ \{\frac{1}{2}(\gamma_1 - \gamma_2), \cdots, \frac{1}{2}(\gamma_{p-1} - \gamma_p), \frac{1}{2}\gamma_p\} & \text{if} \quad \mathbf{P}_{\frac{1}{2}} \neq \phi. \end{cases}$$

$$\varpi \Pi_{\mathfrak{k}} - \{0\} = \begin{cases} \{\frac{1}{2}(\gamma_1 - \gamma_2), \, \cdots, \frac{1}{2}(\gamma_{p-1} - \gamma_p)\} & \text{if} \quad \boldsymbol{P}_{\underline{i}} = \phi \\ \{\frac{1}{2}(\gamma_1 - \gamma_2), \, \cdots, \frac{1}{2}(\gamma_{p-1} - \gamma_p), \, \frac{1}{2}\gamma_p\} & \text{if} \quad \boldsymbol{P}_{\underline{i}} \neq \phi. \end{cases}$$

They follows from Lemma 1, 1) and

$$\mathbf{w} \prod_{\mathbf{r}} = \kappa^{-1} \mathbf{w}' \kappa \prod_{\mathbf{r}} = -\kappa^{-1} \mathbf{w}' \prod_{\mathbf{r}}$$
.

Note that $K_{\frac{1}{2}} \subset \sum_{\mathbf{f}}^+$ while $K_{\frac{1}{2}}' \subset -\sum_{\mathbf{f}}^+$.

Lemma 2. 1) The order > is a compatible order for \sum with respect to σ in the sense of 2.

2) $\varpi K_0 - \{0\}$ is a root system with the fundamental root system

$$\{\frac{1}{2}(\gamma_1-\gamma_2),\cdots,\frac{1}{2}(\gamma_{p-1}-\gamma_p)\}$$

with respect to the order >.

3) If $P_k \neq \phi$ and

$$\sum_{\beta \in P_{\frac{1}{2}}} m_{\beta} \beta$$
 with $m_{\beta} \geqslant 0$

is in the R-span $\{P_1\}_R$ of P_1 , then $m_\beta=0$ for any β .

Proof. 1) is clear from the form of $\varpi \Pi - \{0\}$ above.

2) is clear since

ಹ
$$K_{\scriptscriptstyle 0} - \{0\} = \{\pm \frac{1}{2} (\gamma_i - \gamma_j); \, 1 \leqslant i < j \leqslant p \, \}$$
 .

3) follows from Lemma 1, 2) and $\kappa P_{\underline{i}} = P_{\underline{i}}'$, $\kappa P_{\underline{i}} = P_{\underline{i}}'$. q.e.d.

For $\lambda \in \sqrt{-1}t$, $\lambda \neq 0$, we define as in 2

$$\lambda^* = \frac{2}{(\lambda, \lambda)} \lambda$$

and put

$$Z_0 = \frac{1}{2} \sum_{B \in \Delta} \gamma^*$$
.

Since $(\frac{1}{2}\gamma_i, \gamma_j^*) = \delta_{i,j}$ for $1 \le i, j \le p$, we have

$$P_1 = \{\alpha \in \sum_{\mathfrak{p}}; (\alpha, Z_0) = 1\}$$
,

$$P_{\frac{1}{2}} = \{ \alpha \in \sum_{\mathfrak{p}}; (\alpha, Z_{\mathfrak{o}}) = \frac{1}{2} \},$$

$$\mathbf{K}_{\scriptscriptstyle{0}} = \{ \alpha \! \in \! \sum_{\scriptscriptstyle{\parallel}} ; \, (\alpha, Z_{\scriptscriptstyle{0}}) = 0 \}$$
 ,

$$\mathbf{K}_{\frac{1}{2}} = \{ \alpha \in \sum_{\mathbf{r}}; \ (\alpha, Z_{\mathbf{0}}) = \frac{1}{2} \}$$
 .

Hence eigenvalues of ad Z_0 are ± 1 , $\pm \frac{1}{2}$ on \mathfrak{p}^c , 0, $\pm \frac{1}{2}$ on \mathfrak{k}^c . Let $\mathfrak{p}^c_{\pm 1}$, $\mathfrak{p}^c_{\pm \frac{1}{2}}$, \mathfrak{k}^c_{0} , $\mathfrak{k}^c_{\pm \frac{1}{2}}$ denote the corresponding eigenspaces. Note that the origin X_0 of the Shilov boundary S is in \mathfrak{p}^c_{-1} .

The following results are due to Korányi-Wolf [7]. We define an element c of G^c , which is called *Cayley transform*, by

$$c = \exp\left(-\frac{\pi}{4}\sum_{\gamma\in\Delta}(X_{\gamma}+X_{-\gamma})\right)$$

and define an automorphism of G^c by

$$\theta(x) = c^2 x c^{-2}$$
 for $x \in G^c$.

The automorphism $\operatorname{Ad} c^2$ of \mathfrak{g}^c obtained by differentiating θ will be also denoted by the same letter θ . Then $\theta^4=1$ and on $\sqrt{-1}\mathfrak{t}$ it coincides with $-\sigma$. Put

$$g_0 = \{X{\in}g;\, heta^2 X = X\}$$
 , $f_0 = g_0 \cap f$,

and

$$\mathfrak{p}_0 = \mathfrak{q}_0 \cap \mathfrak{p}$$
.

Then \mathbf{t}_0 is θ -invariant and

$$\mathbf{t}_0 = \{X \in \mathbf{t}; [Z_0, X] = 0\}$$
.

Hence \mathfrak{k}_0 is a real form of \mathfrak{k}_0^C containing t as a maximal abelian subalgebra. K_0 is nothing but the set of roots of \mathfrak{k}_0^C with respect to \mathfrak{k}_0^C . The complexification \mathfrak{p}_0^C of \mathfrak{p}_0 is the direct sum of \mathfrak{p}_{+1}^C and \mathfrak{p}_{-1}^C . \mathfrak{g}_0 is a reductive subalgebra of \mathfrak{g} with a Cartan decomposition

$$g_0 = \mathbf{f}_0 + \mathbf{p}_0$$
.

Let G_0 (resp. K_0) be the connected subgroup of G generated by \mathfrak{g}_0 (resp. by \mathfrak{t}_0) and let

$$L_0 = \{k \in K_0; \operatorname{Ad} k X_0 = X_0\} = K_0 \cap L.$$

Put

$$D_0 = D \cap \mathfrak{p}_{-1}^c$$

and

$$S_0 = S \cap \mathfrak{p}_{-1}^c$$
.

Then G_0 acts on D_0 transitively and $K \cap G_0$ coincides with K_0 , so that D_0 is identified with the quotient space G_0/K_0 . Furthermore K_0 acts on S_0 transitively so that S_0 is identified with K_0/L_0 . D_0 is totally geodesic in D with respect to Bergmann metric of D and it is also an irreducible symmetric bounded domain with the same rank as D. S_0 is the Shilov boundary of D_0 . The complex structure of D_0 is given at the origin by ad H_0 with $\sqrt{-1}H_0=Z_0$. We have

$$\omega Z = Z_{\circ}$$
.

The inclusion $D_0 \subset \mathfrak{P}_{-1}^{\mathcal{C}}$ is nothing but the Harish-Chandra's imbedding of $D_0 = G_0/K_0$. (K_0, L_0) is a symmetric pair with respect to θ , having the same rank as D. Hence

$$\mathfrak{l}_{0} = \{X \in \mathfrak{k}_{0}; \theta X = X\}$$

is the Lie algebra of L_0 and α is a maximal abelian subalgebra of

$$\mathfrak{S}_0 = \{X \in \mathfrak{k}_0; \theta X = -X\}$$
.

We can define a semi-linear transformation $X \mapsto \overline{X}$ of \mathfrak{p}_{-1}^c by

$$\bar{X} = \tau \theta X = \theta \tau X$$
 for $X \in \mathfrak{p}_{-1}^c$.

Put

$$\mathfrak{p}_{-1} = \{X \in \mathfrak{p}_{-1}^c; \bar{X} = X\}$$
.

It is a real form of \mathfrak{p}_{-1}^{c} and is invariant under the adjoint action of L_{0} on \mathfrak{p}_{-1}^{c} . The correspondence $X \mapsto [X, X_{0}]$ gives an isomorphism

$$\psi: \sqrt{-1} \mathfrak{S}_0 \rightarrow \mathfrak{p}_{-1}$$
,

which is equivariant with respect to the adjoint actions of L_0 .

Now we shall consider the polynomial representation $S^*((\mathfrak{p}^c)^-)$ of K. Let $S_*((\mathfrak{p}^c)^+)$ be the symmetric algebra over $(\mathfrak{p}^c)^+$. K acts on $S_*((\mathfrak{p}^c)^+)$ by the natural extension Ad of the adjoint action of K on $(\mathfrak{p}^c)^+$. On the other hand, the non-degenerate pairing

$$(\mathfrak{p}^c)^+ \times (\mathfrak{p}^c)^- \to C$$

by means of the Killing form (,) induces the identification

$$S_*((\mathfrak{p}^c)^+) = S^*((\mathfrak{p}^c)^-)$$
.

This identification is compatible with the actions of K, since the Killing form is invariant under the adjoint action of K. In the same way we have a K_0 -equivariant identification

$$S_*(\mathfrak{p}^c_{+1}) = S^*(\mathfrak{p}^c_{-1})$$
.

 $S_*(\mathfrak{p}^c_{+1})$ can be considered as a K_0 -submodule of $S_*((\mathfrak{p}^c)^+)$ by means of the natural monomorphism $S_*(\mathfrak{p}^c_{+1}) \to S_*((\mathfrak{p}^c)^+)$ induced from the inclusion $\mathfrak{p}^c_{+1} \subset (\mathfrak{p}^c)^+$.

Theorem 3.1. (i) Any irreducible K-submodule of $S_*((\mathfrak{p}^c)^+)$ (resp. K_0 -submodule of $S_*(\mathfrak{p}^c_{+1})$) is contained exactly once in $S_*((\mathfrak{p}^c)^+)$ (resp. in $S_*(\mathfrak{p}^c_{+1})$).

(ii) For an irreducible K-submodule V of $S_*((\mathfrak{p}^c)^+)$, we put

$$V_0 = V \cap S_*(\mathfrak{p}^c_{+1})$$
.

Then $V \mapsto V_0$ is the one to one correspondence between the set of irreducible K-sub-modules of $S_*((\mathfrak{p}^c)^+)$ and the set of irreducible K_0 -submodules of $S_*(\mathfrak{p}^c_{+1})$ in such a way that

- 1) The highest weights on t^{C} of V and V_{0} are the same.
- 2) The subspace of L-invariants in V is 1-dimensional and contained in V_0 .
- (iii) The highest weight $\lambda \in \sqrt{-1}t$ of an irreducible K-submodule V of $S_*((\mathfrak{p}^c)^+)$ is of the form

$$\lambda = \sum_{i=1}^{p} n_i \gamma_i, \qquad n_i \in \mathbb{Z}, n_1 \geqslant n_2 \geqslant \cdots \geqslant n_p \geqslant 0.$$

If $\sum_{i} n_{i} = \nu$, then V is contained in $S_{\nu}((\mathfrak{p}^{c})^{+})$. i.e. $S^{\nu}(D) \subset S^{\nu}(K, L)$ under the notation in Introduction.

For the proof of the theorem, we need the following

Lemma 3. (Murakami [9]) Let \mathfrak{k} be a Lie algebra over R and \mathfrak{k}^c the complexification of \mathfrak{k} . Assume that there exists $Y \in \sqrt{-1} \mathfrak{k}^c \subset \mathfrak{k}^c$ such that \mathfrak{k}^c is the direct sum of 0-eigenspace \mathfrak{k}^c_0 , (+1)-eigenspace \mathfrak{k}^c_+ and (-1)-eigenspace \mathfrak{k}^c_- of ad Y, respectively. Let (ρ, V) be a complex irreducible \mathfrak{k} -module with \mathfrak{k} -invariant hermitian inner product. Denoting the extension to \mathfrak{k}^c of ρ by the same letter ρ , let $a_1 > a_2 > \cdots > a_m$ ($a_i \in R$) be eigenvalues of $\rho(Y)$, and S_t be a_t -eigenspace of $\rho(Y)$ ($1 \le t \le m$). Put $\mathfrak{k}_0 = \mathfrak{k}^c_0 \cap \mathfrak{k}$ (, which is a real form of \mathfrak{k}^c_0). Then

- 1) $a_t = a_1 t + 1 \ (1 \le t \le m)$.
- 2) Each S_t is a \mathfrak{t}_0 -submodule of V and

$$V = S_1 + \cdots + S_m$$

is the orthogonal direct sum.

3) S_1 and S_m are irreducible \mathfrak{t}_0 -submodules of V and characterized by

$$S_1 = \{v \in V; \ \rho(X)v = 0 \text{ for any } X \in \mathfrak{k}^0_+\},$$

 $S_m = \{v \in V; \ \rho(X)v = 0 \text{ for any } X \in \mathfrak{k}^0_-\}.$

Proof of Theorem 3.1. The infinitesimal action of \mathfrak{k}^c on $S_*((\mathfrak{p}^c)^+)$ induced from the adjoint action Ad of K will be denoted by ad.

Let V be an irreducible K-submodule of $S_*((\mathfrak{p}^c)^+)$. Since Z is in the center of \mathfrak{k}^c , it follows from Schur's lemma that V is contained in an eigenspace of ad Z in $S_*((\mathfrak{p}^c)^+)$. But since ad Z is the scalor operator v on $S_*((\mathfrak{p}^c)^+)$, V is contained in $S_*((\mathfrak{p}^c)^+)$ for some v. Let $\lambda \in \sqrt{-1}\mathfrak{t}$ be the highest weight of V. Put $Y=2Z_0\in \sqrt{-1}\mathfrak{k}\subset \mathfrak{k}^c$. Then the decomposition

$$t^c = t^c_0 + t^c_1 + t^c_1$$

satisfies the assumption in Lemma 3. So we have a decomposition

$$V = S_1 + \cdots + S_m$$

into K_0 -submodules, where S_1 is an irrducible K_0 -submodule and is the eigenspace for the maximum eigenvalue of ad Y in V. It is characterized by

$$S_1 = \{v \in V; \operatorname{ad}(X)v = 0 \text{ for any } X \in \mathfrak{k}_i^C\}$$
.

Thus a highest weight vector v_{λ} of the K-module V is contained in S_1 because of $K_{\frac{1}{2}} \subset \sum_{\mathbf{l}}^+$. It follows that putting $V_0 = S_1$, V_0 is an irreducible K_0 -submodule of $S_{\nu}((\mathfrak{p}^C)^+)$ with the highest weight λ .

We shall show that $V_0 = V \cap S_*(\mathfrak{p}_+^c)$. We have the decomposition

$$S_{
u}((\mathfrak{p}^c)^+) = \sum_{r \in \mathfrak{p}_1} S_r(\mathfrak{p}_1^c) \otimes S_s(\mathfrak{p}_{rac{1}{2}}^c)$$

as K_0 -modules. ad Z_0 is the scalar operator $r+\frac{1}{2}s=\frac{1}{2}(r+\nu)$ on $S_r(\mathfrak{p}_1^c)\otimes S_s(\mathfrak{p}_{\frac{1}{2}}^c)$. In the same way as the first argument, we can get the decompsotion

$$V = V_1 + \cdots + V_k$$

into irreducible K_0 -submodules such that any V_i is contained in $S_r(\mathfrak{p}_1^C) \otimes S_s(\mathfrak{p}_2^C)$ for some (r, s). Since $S^*((\mathfrak{p}^C)^-)$ is K-isomorphic with $S^*(S) \subset C^{\infty}(S)$, V has an L-invariant $w \neq 0$. Decompose w as

$$w = w_1 + \cdots + w_k, \quad w_i \in V_i \ (1 \leqslant i \leqslant k).$$

At least one of the w_i 's, say w_1 , is not zero. Let $\lambda_1 \in \sqrt{-1}t$ be the highest weight of the irreducible K_0 -module V_1 . Since w_1 is a non-zero L_0 -invariant of V_1 , V_1 is a spherical K_0 -module relative to L_0 . (K_0, L_0) is a symmetric pair, α is a maximal abelian subalgebra of \mathfrak{F}_0 and the order > on $\sqrt{-1}t$ is a compatible order for K_0 with respect to σ by Lemma 1, 1), so we shall use the notations

 $\Gamma(K_0, L_0)$, $Z(K_0, L_0)$, $D(K_0, L_0)$ in 2. Then it follows from Theorem 2.3 that $\lambda_1 \in D(K_0, L_0)$. On the other hand, if $V_1 \subset S_r(\mathfrak{p}_1^c) \otimes S_s(\mathfrak{p}_*^c)$, λ_1 is of the form

$$\lambda_1 = \sum_{\alpha \in P_1} m_{\alpha} \alpha + \sum_{\beta \in P_1} m_{\beta} \beta, \qquad m_{\alpha}, m_{\beta} \in \mathbb{Z}, m_{\alpha} \geqslant 0, m_{\beta} \geqslant 0$$

with $\sum m_{\alpha} = r$, $\sum m_{\beta} = s$. Since $D(K_0, L_0) \subset \sqrt{-1} \alpha = \{\Delta\}_R \subset \{P_1\}_R$, we have

$$\sum_{\beta\in P_{\frac{1}{2}}} m_{\beta}\beta \in \{P_{\scriptscriptstyle 1}\}_{R}$$
.

It follows from Lemma 2,3) that $r=\nu$, s=0, i.e. $V_1 \subset V \cap S_{\nu}(\mathfrak{p}_1^c)$. On the other hand, $V \cap S_{\nu}(\mathfrak{p}_1^c) \subset V_0$ since the possible maximum eigenvalue of ad Y on V is 2ν . Thus we have that $V_0 = V_1 = V \cap S_{\nu}(\mathfrak{p}^c)$.

The above argument shows also that any L-invariant in V is contained in V_0 . It is unique up to scalor since (K_0, L_0) is a symmetric pair.

Conversely, let V_0 be an irreducible K_0 -submodule of $S_*(\mathfrak{p}_{+1}^c)$ with the highest weight $\lambda \in \sqrt{-1}\,\mathfrak{t}$. In the same way as the first argument, we know that V_0 is contained in $S_{\nu}(\mathfrak{p}_{+1}^c)$ for some ν . Let $v_{\lambda} \in V_0$ be a highest weight vector. Then ad $\mathfrak{t}_{\frac{1}{2}}^C v_{\lambda} = \{0\}$ because of $[\mathfrak{t}_{\frac{1}{2}}^C, \mathfrak{p}_{+1}^C] = \{0\}$. Hence ad $X_{\alpha} v_{\lambda} = 0$ for any $\alpha \in \Sigma_{\mathfrak{t}}^+$. We define V to be the C-span of $\{\operatorname{Ad} k \, v_{\lambda}; k \in K\}$ in $S_{\nu}((\mathfrak{p}^c)^+)$. Then V is an irreducible K-submodule of $S_*((\mathfrak{p}^c)^+)$ with the highest weight $\lambda \in \sqrt{-1}\,\mathfrak{t}$.

It is easy to see that each of the above correspondences $V \mapsto V_0$ and $V_0 \mapsto V$ is the inverse of the other. This proves assertions (i) and (ii).

(iii) We have $\left[\frac{1}{2}\gamma_i^*, X_{-\gamma_j}\right] = -\delta_{ij}X_{-\gamma_j}$ $(1 \le i, j \le p)$ because of $\left(\frac{1}{2}\gamma_j^*, \gamma_i\right)$ $=\delta_{ij}$ $(1 \le i, j \le p)$. It follows that for $H = 2\pi\sqrt{-1}\sum_{i=1}^{p} x_i(\frac{1}{2}\gamma_i^*) \in \mathfrak{a}$ we have

Ad (exp H)
$$X_0 = -\sum_{i=1}^{p} \exp(-2\pi\sqrt{-1}x_i)X_{-\gamma_i}$$
.

Thus we have

$$\Gamma(K_{\scriptscriptstyle 0},\,L_{\scriptscriptstyle 0})=2\pi\sqrt{-1}\sum_{i=1}^{p}oldsymbol{Z}(rac{1}{2}\,\gamma_{i}^{*})$$

and

$$Z(K_{\scriptscriptstyle 0},\,L_{\scriptscriptstyle 0})=\sum\limits_{i=1}^{p}oldsymbol{Z}\gamma_{i}\,.$$

It follows from Lemma 2,2) that

$$D(K_0, L_0) = \left\{ \sum_{i=1}^p n_i \gamma_i; n_i \in \mathbb{Z}, n_1 \geqslant n_2 \geqslant \cdots \geqslant n_p \right\}.$$

Therefore λ is of the form

$$\lambda = \sum_{i=1}^{p} n_i \gamma_i$$
 with $n_i \in \mathbb{Z}, n_1 \geqslant \cdots \geqslant n_p$.

On the other hand, λ is of the form

$$\lambda = \sum_{\alpha \in P_1} m_{\alpha} \alpha$$
 with $m_{\alpha} \in \mathbb{Z}, m_{\alpha} \geqslant 0$,

which implies that $n_1 \geqslant \cdots \geqslant n_p \geqslant 0$. If $V \subset S_{\nu}((\mathfrak{p}^c)^+)$, then $V_0 \subset S_{\nu}(\mathfrak{p}^c_{+1})$ and ad Z_0 is the scalar operator ν on V_0 , which equals $(\lambda, Z_0) = \sum_{i=1}^p n_i$.

REMARK. In terms of polynomial functions $S^*((\mathfrak{p}^c)^-)$, for an irreducible K-submodule V of $S^*((\mathfrak{p}^c)^-)$, V_0 is obtained by restriction to \mathfrak{p}^c_{-1} of functions in V.

Proof of Theorem A. Orthogonality relations for the $S^*_{\lambda}(D)$'s (resp. for the $S^*_{\lambda}(S)$'s) and the assertion that the restriction $S^*_{\lambda}(D) \to S^*_{\lambda}(S)$ is a similitude follow from Schur's lemma. So it suffices to show that the cardinalities of $S^{\nu}(D)$ and $S^{\nu}(K, L)$ are the same.

From the first argument in the proof of Theorem 3.1 (iii), we see that $\psi(\frac{1}{2}\gamma^*)=X_{-\gamma}(\gamma\in\Delta)$ for the L_0 -equivariant isomorphism $\psi:\sqrt{-1}\,\mathfrak{S}_0\to\mathfrak{p}_{-1}$. We put

$$\mathfrak{a}^- = \psi(\sqrt{-1}\,\mathfrak{a}) = \{X_{-\gamma}; \gamma \in \Delta\}_R \subset \mathfrak{p}_{-1}.$$

Since the Weyl group W_{S_0} of S_0 is isomorphic with the group of permutations of Δ by Lemma 2,2), the "Weyl group" $W_{S_0}=N_{L_0}(\mathfrak{a}^-)/Z_{L_0}(\mathfrak{a}^-)$, where $N_{L_0}(\mathfrak{a}^-)$ (resp. $Z_{L_0}(\mathfrak{a}^-)$) is the normalizer (resp. centralizer) of \mathfrak{a}^- in L_0 , is isomorphic with the group of permutations of $\{X_{-\gamma}; \gamma \in \Delta\}$. On the other hand, since $S_{L_0}^*(\mathfrak{F}_0)$ is isomorphic with $S_{W_{S_0}}^*(\mathfrak{a}^-)$. Hence $S_{L_0}^*(\mathfrak{p}_{-1}^c)$ is isomorphic with $S_{W_{S_0}}^*(\mathfrak{a}^-)$. It follows from Theorem 3.1, (ii), 2) that the cardinality of $S^{\nu}(D)$ is equal to dim $S_{L_0}^{\nu}(\mathfrak{p}_{-1}^c)$ =dim $S_{W_{S_0}}^{\nu}((\mathfrak{a}^-)^c)$ =the number of linearly independent symmetric polynomials in p-variables with degree ν , which is known to be the cardinality of $S^{\nu}(K, L)$.

4. Normalizing factor h_{λ}

Let $\hat{A} = \operatorname{Ad} A(X_0)$, denoting by A the connected subgroup of K_0 generated by \mathfrak{a} . \hat{A} has a natural group structure induced from that of \mathfrak{a} . Let

$$T = \{t \in C^*; |t| = 1\}$$

be the 1-dimensional torus. Under the identification in Introduction of $(\alpha^-)^c$ with C^p , α^- is identified with R^p and \hat{A} with T^p . We see that the latter identification is compatible with group structures and complex conjugations, in view of the expression of $Ad(\exp H)X_0$ in the proof of Theorem 3.1, (iii). Moreover, under the same identification we have (Moore [8])

$$D \cap \mathfrak{a}^- = \{x \in \mathbb{R}^p; |x_i| < 1 \ (1 \leq i \leq p)\},$$

denoting by z_i ($1 \le i \le p$) the *i*-th component of $z \in C^p$. By means of this

identification we define a measure on a by

$$dH = dx_1 \cdots dx_n$$

and a function D(H) on \mathfrak{a}^- by

$$D(H) = \prod_{i=1}^{p} (2x_i) x_i^{2s} \prod_{1 \le i \le b} ((x_i + x_j)(x_i - x_j))^r \quad \text{for} \quad H \in \mathfrak{a}^-,$$

where r, 2s are multiplicities defined in Introduction. Then we have the following

Lemma 1. There exists a constant c' > 0 such that

$$\int_{\mathcal{D}} f(X) d\mu(X) = c' \int_{\mathcal{D} \cap \mathcal{Q}^-} f(H) |D(H)| dH$$

for any integrable K-invariant function f on D.

Proof. It is easy to see that $\operatorname{Ad} cH = H$ for any $H \in \mathfrak{b}$ and $\operatorname{Ad} c\gamma^* = X_{\gamma} - X_{-\gamma} \in \mathfrak{p}$ for any $\gamma \in \Delta$. Put

$$\alpha^{0} = \operatorname{Ad} c(\sqrt{-1}\alpha) = \{X_{\gamma} - X_{-\gamma}; \gamma \in \Delta\}_{R},$$

$$\beta = \operatorname{Ad} c(b \oplus \sqrt{-1}\alpha) = b \oplus \alpha^{0}$$

and

$$\mathfrak{h}_{R} = \sqrt{-1} \mathfrak{b} \oplus \mathfrak{a}^{0}$$
.

Then α^0 is a maximal abelian subalgebra of \mathfrak{p} , \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} containing α^0 and \mathfrak{h}_R is the real part of the complexification \mathfrak{h}^C of \mathfrak{h} . We define lienear forms h_i $(1 \leq i \leq p)$ on α^0 by

$$h_i(X_{\gamma_i}-X_{-\gamma_j})=\delta_{ij} \qquad (1\leqslant i,j\leqslant p).$$

If h_i is identified with an element of \mathfrak{a}^0 by means of the Killing form, we have $\operatorname{Ad} c(\frac{1}{2}\gamma_i)=h_i$ $(1 \leq i \leq p)$. The linear order on \mathfrak{h}_R induced by $\operatorname{Ad} c$ from the order > on $\sqrt{-1}t$ is a compatible order for $\operatorname{Ad} c \Sigma$ with respect to the decomposition $\mathfrak{h}_R = \sqrt{-1}\mathfrak{b} \oplus \mathfrak{a}^0$. This follows from 3, Lemma 2,1). Thus positive restricted roots on \mathfrak{a}^0 of the symmetric space D=G/K are

$$\begin{aligned} &\{h_i \pm h_j; \ 1 \leqslant i < j \leqslant p, \ 2h_i; \ 1 \leqslant i \leqslant p\} & \text{if} \quad \boldsymbol{P}_{\frac{1}{2}} = \phi \ , \\ &\{h_i \pm h_j; \ 1 \leqslant i < j \leqslant p, \ 2h_i, \ h_i; \ 1 \leqslant i \leqslant p\} & \text{if} \quad \boldsymbol{P}_{\frac{1}{2}} \neq \phi \ . \end{aligned}$$

The multiplicity of $h_i \pm h_j$ ($1 \le i < j \le p$), i.e. the number of roots in Ad $c \sum$ projecting to $h_i \pm h_j$, is the same as that of $\frac{1}{2}(\gamma_i \pm \gamma_j)$. Since the Weyl group W_D on \mathfrak{a}^0 of D = G/K is generated by reflections with respect to $h_1 - h_2, \dots, h_{p-1} - h_p, h_p$, hence transitive on the set $\{\pm h_i \pm h_j; 1 \le i < j \le p\}$, it follows that

multiplicities of these roots are the same r. By the same reason, multiplicities of h_i $(1 \le i \le p)$ are the same 2s, which is even from the results of Harish-Chandra mentioned in 3. In the same way we know that multiplicities of $2h_i$ $(1 \le i \le p)$ are 1. Thus the product D^0 of positive restricted roots (multiplicity counted) is given by

$$D^{0}(H^{0}) = \prod_{i=1}^{p} 2h_{i}(H^{0})h_{i}(H^{0})^{2s} \prod_{1 \leq i \leq j \leq p} ((h_{i} + h_{j})(H^{0})(h_{i} - h_{j})(H^{0}))^{r} \quad \text{for} \quad H^{0} \in \mathfrak{a}^{0}.$$

Let dX (resp. dH^0) denote the Euclidean measure of \mathfrak{p} (resp. of \mathfrak{a}^0) induced from the Killing form (,), and dk the normalied Haar measure of K. Then (cf. Helgason [4]) under the surjective map $K \times \mathfrak{a}^0 \to \mathfrak{p}$ defined by $(k, H^0) \mapsto \operatorname{Ad} kH^0$, these measures are related as follows:

$$dX = c'' |D^0(H^0)| dk dH^0$$
 with some constant $c'' > 0$.

Now we define a K-equivariant R-isomorphism $j: \mathfrak{p} \to (\mathfrak{p}^c)^-$ by

$$j(X) = \frac{1}{2}(X - [Z, X])$$
 for $X \in \mathfrak{p}$.

It is easy to see that $j(X_{\gamma}-X_{-\gamma})=-X_{-\gamma}$ for any $\gamma \in \Delta$, hence $j\mathfrak{a}^0=\mathfrak{a}^-$. Since K acts irreducibly on \mathfrak{p} , the map j is a similitude with respect to inner products (,) and the real part of (,)_{\tau}. Therefore under the surjective map $K \times \mathfrak{a}^- \to (\mathfrak{p}^c)^-$ defined by $(k, H) \mapsto \operatorname{Ad} kH$, we have

$$d\mu(X) = c' |D(H)| dk dH$$
 with some constant $c' > 0$.

Seeing Ad $K(D \cap \mathfrak{a}^-) = D$, we get the proof of Lemma 1. q.e.d.

Take a form $\lambda \in \mathcal{S}^*(K, L)$. Choose an orthonormal basis $\{u_i; 1 \leq i \leq d_{\lambda}\}$ of $S_{\lambda}^*((\mathfrak{p}^c)^-)$ with respect to $(\ ,\)_{\tau}$ such that $\{u_i; 1 \leq i \leq d_{\lambda,0}\}$ spans $S_{\lambda}^*((\mathfrak{p}^c)^-) \cap S^*(\mathfrak{p}_{-1}^c)$ and u_1 is L-invariant. Put

$$\begin{split} \rho_{j}^{i}(k) &= (\operatorname{Ad} k u_{j}, u_{i})_{\tau} & \text{for } k \in K \quad (1 \leqslant i, j \leqslant d_{\lambda}) , \\ \varphi_{i}^{i}(k) &= \overline{\rho_{1}^{i}(k)} & \text{for } k \in K \quad (1 \leqslant i \leqslant d_{\lambda}) , \\ f_{i}^{i} &= \sqrt{d_{\lambda}} \, \varphi_{i}^{i} & (1 \leqslant i \leqslant d_{\lambda}) . \end{split}$$

The arguments in **2** show that $\{f_i'; 1 \le i \le d_{\lambda}\}$ form an orthonormal basis of $S_{\lambda}^*(S)$ with respect to $\langle \cdot, \cdot \rangle$ and φ_1' is the zonal spherical function ω_{λ} for (K, L) belonging to λ , identifying $C^{\infty}(S)$ with the space of right L-invariant C^{∞} -functions on K. The zonal spherical polynomial Ω_{λ} for D belonging to λ defined in Introduction is characterized by that its restriction to S coincides with ω_{λ} . Ω_{λ} restricted to \mathfrak{P}_{-1}^{C} is the zonal spherical polynomial for D_{0} belonging to λ and ω_{λ} restricted to S_{0} is the zonal spherical function for (K_{0}, L_{0}) belonging to λ . Ω_{λ}

restricted to $(\mathfrak{a}^-)^c$ is a symmetric polynomial since it is $W^-_{s_0}$ -invariant. Let $f_i \in S^*_{\lambda}((\mathfrak{p}^c)^-)$ $(1 \leq i \leq d_{\lambda})$ be the unique polynomial such that its restriction to S is f_i . Then $\{f_i; 1 \leq i \leq d_{\lambda}\}$ form an orthogonal basis of $S^*_{\lambda}((\mathfrak{p}^c)^-)$ with respect to $(\ ,\)_{\tau}$ such that $\{f_i; 1 \leq i \leq d_{\lambda,0}\}$ form an orthogonal basis of $S^*_{\lambda}((\mathfrak{p}^c)^-) \cap S^*(\mathfrak{p}^c_{\tau})$. They satisfy relations

$$f_i(\operatorname{Ad} k^{-1}X) = \sum_{i=1}^{d_{\lambda}} \rho_i^j(k) f_j(X)$$
 for $k \in K$, $X \in (\mathfrak{p}^c)^ (1 \leqslant i \leqslant d_{\lambda})$.

We put

$$\Phi_{\lambda}(X) = rac{1}{d_{\lambda}} \sum_{i=1}^{d_{\lambda}} |f_i(X)|^2 \quad \text{for} \quad X \in (\mathfrak{p}^c)^-.$$

Then for any $k \in K$ we have

$$\begin{split} \Phi_{\lambda}(\operatorname{Ad} k^{-1}X) &= \frac{1}{d_{\lambda}} \sum_{i} \left(\sum_{j} \rho_{i}^{j}(k) f_{j}(X) \right) \left(\sum_{k} \overline{\rho_{i}^{k}(k)} \overline{f_{k}(X)} \right) \\ &= \frac{1}{d_{\lambda}} \sum_{j,k} \left(\sum_{i} \rho_{i}^{j}(k) \overline{\rho_{i}^{k}(k)} \right) f_{j}(X) \overline{f_{k}(X)} \\ &= \frac{1}{d_{\lambda}} \sum_{j,k} \delta_{jk} f_{j}(X) \overline{f_{k}(X)} = \Phi_{\lambda}(X) \quad \text{ for } X \in (\mathfrak{p}^{c})^{-}, \end{split}$$

i.e. Φ_{λ} is a K-invariant C^{∞} -function on $(\mathfrak{p}^{c})^{-}$. Note that

$$\Phi_{\lambda}(X) = \frac{1}{d_{\lambda}} \sum_{\alpha=1}^{d_{\lambda,0}} |f_{\alpha}(X)|^2 \quad \text{for} \quad X \in \mathfrak{p}_{-1}^C.$$

Lemma 2.

$$h_{\lambda} = c' \int_{D \cap \mathfrak{a}^{-}} \Phi_{\lambda}(H) |D(H)| dH$$

Proof.

$$\int_{\mathcal{D}} \Phi_{\lambda}(X) d\mu(X) = \frac{1}{d_{\lambda}} \sum_{i=1}^{d_{\lambda}} \langle \langle f_i, f_i \rangle \rangle = \frac{1}{d_{\lambda}} \sum_{i=1}^{d_{\lambda}} h_{\lambda} \langle f_i', f_i' \rangle = h_{\lambda}.$$

On the other hand, by Lemma 1 we have

$$\int_{\mathbb{R}} \Phi_{\lambda}(X) d\mu(X) = c' \int_{\mathbb{R} \cap \mathfrak{q}^{-}} \Phi_{\lambda}(H) |D(H)| dH. \qquad \text{q.e.d.}$$

Proof of Theorem B. Making use of the complex conjugation $X \mapsto \overline{X}$ of $\mathfrak{p}_{-1}^{\mathcal{C}}$ defined in 3, we define $\Phi_{\lambda} \in S^*(\mathfrak{p}_{-1}^{\mathcal{C}})$ by

$$\tilde{\Phi}_{\lambda}(X) = \frac{1}{d_{\lambda}} \sum_{\alpha=1}^{d_{\lambda,0}} f_{\alpha}(X) \overline{f_{\alpha}(\overline{X})} \quad \text{for} \quad X \in \mathfrak{P}_{-1}^{C}.$$

Then $\Phi_{\lambda} = \Phi_{\lambda}$ on \mathfrak{p}_{-1} and we have for any $k \in K_0$

q.e.d.

$$\begin{split} \tilde{\Phi}_{\lambda}(\operatorname{Ad} kX_{0}) &= \frac{1}{d_{\lambda}} \sum_{\sigma} f_{\sigma}(\operatorname{Ad} kX_{0}) \overline{f_{\sigma}(\operatorname{Ad} kX_{0})} \\ &= \frac{1}{d_{\lambda}} \sum_{\sigma} f_{\sigma}(\operatorname{Ad} kX_{0}) \overline{f_{\sigma}(\operatorname{Ad} \theta(k)X_{0})} \\ &= \frac{1}{d_{\lambda}} \sum_{\sigma} f_{\sigma}'(k) \overline{f_{\sigma}'(\theta(k))} = \sum_{\sigma} \varphi_{\sigma}'(k) \overline{\varphi_{\sigma}'(\theta(k))} \\ &= \sum_{\sigma} \overline{\rho_{1}^{\sigma}(k)} \rho_{1}^{\sigma}(\theta(k)) = \sum_{\sigma} \overline{\rho_{1}^{\sigma}(k)} \rho_{\sigma}^{1}(\theta(k)^{-1}) \\ &= \overline{\rho_{1}^{1}(\theta(k)^{-1}k)} = \omega_{\lambda}(\theta(k)^{-1}k) \; . \end{split}$$

In particular for any $a \in A$

$$\tilde{\Phi}_{\lambda}(\operatorname{Ad} aX_{0})=\omega_{\lambda}(a^{2}),$$

i.e. for any $\hat{a} \in \hat{A}$

$$\tilde{\Phi}_{\lambda}(\hat{a}) = \omega_{\lambda}(\hat{a}^2) = \Omega_{\lambda}(\hat{a}^2)$$
.

Since $\hat{A} = T^p$ is a compact real form of C^{*p} and C^{*p} is open in $C^p = (\mathfrak{a}^-)^c$, we have

$$\tilde{\Phi}_{\lambda}(z_1,\,\cdots,\,z_p)=\Omega_{\lambda}(z_1^2,\,\cdots,\,z_p^2)\qquad\text{ for any }z\!\in\!\pmb{C}^{\,p}=(\mathfrak{a}^{\scriptscriptstyle{-}})^{\scriptscriptstyle{C}}\,.$$

By Lemma 2 we have

$$\begin{split} h_{\lambda} &= c' \int_{D \cap \alpha^{-}} \tilde{\Phi}_{\lambda}(H) |D(H)| \, dH \\ &= c' \int_{|x_{i}| < 1(1 \le i \le p)} \Omega_{\lambda}(x_{1}^{2}, \, \cdots, \, x_{p}^{2}) | \prod_{i=1}^{p} (2x_{i}) x_{i}^{2s} \prod_{1 \le i < j \le p} ((x_{i} + x_{j})(x_{i} - x_{j}))^{r} | \, dx_{1} \cdots \, dx_{p} \\ &= c(D) \int_{0 \le r_{i} < 1(1 \le i \le p)} \Omega_{\lambda}(y_{1}, \, \cdots, \, y_{p}) | \prod_{1 \le i \le j \le p} (y_{i} - y_{j})^{r} | \prod_{i=1}^{p} y_{i}^{s} \, dy_{1} \cdots \, dy_{p} \end{split}$$

for some constant c(D) > 0, which does not depend on λ . In particular, for $\lambda = 0$

$$\mu(D) = h_0 = c(D) \int_{0 \le y_i < 1 (1 \le i \le p)} |\prod_{1 \le i < j \le p} (y_i - y_j)^r |\prod_{i=1}^p y_i^s dy_1 \cdots dy_p,$$

since $\Omega_0 \equiv 1$. This completes the proof of Theorem B.

REMARK. It can be proved that $\tilde{\Phi}_{\lambda}$ is an L_0 -invariant polymomial on \mathfrak{p}_{-1}^{C} . The multiplicities r, s are given as follows.

D	${\sf rank} {m D}$	r	s
$(\mathrm{I})_{p,q}(p\!\leqslant\!q)$	Þ	2	q-p
$(II)_n$	[n/2]	4	$\begin{cases} 2 & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$
$(III)_n$	\boldsymbol{n}	1	0
$(IV)_n (n \geqslant 3)$	2	n-2	0
(EIII)	2	6	4
(EVII)	3	8	0

The zonal spherical polynomial Ω_{λ} is given as follows.

For integers n_1, \dots, n_p we define the Schur function $\{n_1, \dots, n_p\}$ on the p-dimensional torus T^p by

$$\{n_1, \dots, n_p\}(t) = \frac{\det(t_i^{n_j+p-j})_{1 \leq i, j \leq p}}{\det(t_i^{p-j})_{1 \leq i, j \leq p}} \quad \text{for} \quad t = \begin{bmatrix} t_1 \\ \vdots \\ t_p \end{bmatrix} \in T^p \subset C^p.$$

 $\{n_1, \dots, n_p\}$ is symmetric in variables t_1, \dots, t_p and it is a polynomial in t_1, \dots, t_p if and only if $n_i \geqslant 0$ $(1 \leqslant i \leqslant p)$. For an element $\lambda = \sum_{i=1}^p n_i \gamma_i \in \sum_{i=1}^p \mathbf{Z} \gamma_i = \mathbf{Z}(K_0, L_0)$, the *i*-th coefficient n_i will be denoted by $n_i(\lambda)$. Then we have

Theorem 4.1. The zonal spherical polynomial Ω_{λ} for D belonging to $\lambda \in S^*(K, L)$ is determined on $(\alpha^-)^c$ by the relation

$$\Omega_{\lambda}(t) = \sum_{\mu \in \mathcal{D}_{\lambda}} c_{\lambda}^{\mu} \{n_{1}(\mu), \cdots, n_{p}(\mu)\}(t)$$
 for any $t \in T^{p} = \hat{A} \subset (\mathfrak{a}^{-})^{C}$,

where the c_{λ}^{μ} 's are coefficients in Theorem 2.5 for the symmetric pair (K_0, L_0) .

Proof. As we have seen in the proof of Theorem B, Ω_{λ} is determined on $(\mathfrak{a}^{-})^{c}$ by

$$\Omega_{\lambda}(t) = \omega_{\lambda}(t)$$
 for any $t \in T^{p} = \hat{A}$.

By Theorem 2.5, ω_{λ} has an expression

$$\omega_{\lambda}(t) = \sum_{\mu \in D_{\lambda}} c_{\lambda}^{\mu} \, \overline{\chi_{\mu}(t)} \qquad \text{for} \quad t \in T^{p} = \hat{A} \; .$$

Since the Weyl group W_{S_0} acts on $Z(K_0, L_0)$ by the group of permutations of $\gamma_1, \dots, \gamma_p$, W_{S_0} -invariant characters \mathcal{X}_{λ} of \hat{A} are nothing but Schur functions. As we have seen in the proof of Theorem 3.1, (iii), the *i*-th component of $\operatorname{Ad}(\exp H)X_0 \in T^p = \hat{A}$ is $\exp(-(\gamma_i, H))$ for any $H \in \mathfrak{a}$. It follows that

$$\chi_{\mu}(t) = \{n_1(\mu), \dots, n_p(\mu)\}(\overline{t}) \quad \text{for } t \in T^p = \hat{A}.$$

Hence we have

$$egin{aligned} \Omega_{\lambda}(t) &= \sum_{\mu \in \mathcal{D}_{\lambda}} c_{\lambda}^{\mu} \, \overline{\{n_{1}(\mu), \, \cdots, \, n_{p}(\mu)\} \, (\overline{t})} \ &= \sum_{\mu \in \mathcal{D}_{\lambda}} c_{\lambda}^{\mu} \, \{n_{1}(\mu), \, \cdots, \, n_{p}(\mu)\} \, (t) \qquad ext{for} \quad t \in T^{p} = \hat{A} \; . \end{aligned} \quad \text{q.e.d.}$$

In the case of the domain D of type $(I)_{p,q}$ $(p \le q)$, S_0 is the unitary group U(p) of degree p. We have in view of Example in 2 that

$$\Omega_{\lambda}(t) = \frac{1}{d_{\lambda}} \{n_{i}(\lambda), \, \cdots, \, n_{p}(\lambda)\}(t) \quad \text{for} \quad t \in T^{p} = \hat{A},$$

where d_{λ} is the degree of the irreducible representation of U(p) with the signature $(n_1(\lambda), \dots, n_p(\lambda))$. In the case of the domain D of type $(IV)_n$, S_0 is the Lie sphere and Ω_{λ} can be described in terms of Gegenbauer polynomials, which are zonal spherical functions for the sphere. So our integral formula in Theorem B clarifies the meaning of integrals of Hua [6].

OSAKA UNIVERSITY

References

- [1] E. Cartan: Sur la détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929), 217-252.
- [2] H. Cartan: Les foncitons de deux variables complexes et le problème de la représentation analytique, J. Math. Pures Appl. (9) 10 (1931), 1-114.
- [3] Harish-Chandra: Representations of semi-simple Lie groups VI, Amer. J. Math. 78 (1956), 564-628.
- [4] S. Helgason: Differential Geometry and Symmetric Spaces, Academic Press, Inc., New York, 1962.
- [5] ——: A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154.
- [6] L.K. Hua: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Math. Monographs, Vol. 6, Amer. Math. Soc., 1963.
- [7] A. Korányi and J.A. Wolf: Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
- [8] C.C. Moore: Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201–218, 358–378.
- [9] S. Murakami: Cohomology Groups of Vector-valued Forms on Symmetric Spaces, Lecture Note, Univ. of Chicago, 1966.
- [10] I. Satake: On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. 71 (1960), 77-110.
- [11] W. Schmid: Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61-80.
- [12] M. Sugiura: Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38 (1962), 111-113.