POLYNOMIAL REPRESENTATIONS ASSOCIATED WITH SYMMETRIC BOUNDED DOMAINS

Masaru TAKEUCHI

(Received November 1, 1972)

Introduction. In this note we want to construct a complete orthonormal system of the Hilbert space $H^{2}(D)$ of square integrable holomorphic functions on an irreducible symmetric bounded domain D. A symmetric bounded domain D is canonically realizable as a circular starlike bounded domain with the center 0 in a complex cartesian space by means of Harish-Chandra's imbedding (HarishChandra [3]), which is constructed as follows. The largest connected group G of holomorphic automorphisms of D is a connected semi-simple Lie group without center, which is transitive on D. Thus denoting the stablizer in G of a point $o \in D$ by K, D is identified with the quotient space G / K. Let g (resp. ${ }^{\text { }}$) be the Lie algebra of G (resp. K) and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ the Cartan decomposition of \mathfrak{g} with respect to \mathfrak{t}. Then there exists uniquely an element H of the center of \mathfrak{t} such that ad H restricted to \mathfrak{p} coincides with the complex structure tensor on the tangent space $T_{o}(D)$ of D at the origin o, identifying as usual \mathfrak{p} with $T_{o}(D)$. Let g^{c} be the Lie algebra of the complexification G^{c} of G and put $Z=\sqrt{-1} H \in \mathrm{~g}^{c}$. Let $\left(p^{C}\right)^{ \pm}$be the (± 1)-eigenspace in g^{C} of ad Z. Then they are invariant under the adjoint action of K and the complexification \mathfrak{p}^{c} of \mathfrak{p} is the direct sum of $\left(p^{C}\right)^{+}$ and $\left(\mathfrak{p}^{C}\right)^{-}$. Let U^{C} denote the normalizer of.$\left(\mathfrak{p}^{C}\right)^{+}$in G^{C}. Then $D=G / K$ is holomorphically imbedded as an open submanifold into the quotient space G^{c} / U^{C} in the natural way. For any point $z \in D$, there exists uniquely a vector $X \in\left(p^{C}\right)^{-}$ such that

$$
\exp X \bmod U^{c}=z
$$

The map $z \mapsto X$ of D into $\left(p^{c}\right)^{-}$is the desired imbedding. Note that the natural action of K on D can be extended to the adjoint action of K on the ambient space $\left(\mathfrak{p}^{C}\right)^{-}$.

Henceforth we assume that D is a bounded domain in $\left(\mathfrak{p}^{C}\right)^{-}$realized in the above manner. Let (,) denote the Killing form of g^{c} and τ the complex conjugation of g^{c} with respect to the compact real form $\mathfrak{f}+\sqrt{\overline{-1}} \mathfrak{p}$ of \mathfrak{g}^{c}. We define a K-invariant hermitian inner product (, $)_{\tau}$ on g^{c} by

$$
(X, Y)_{\tau}=-(X, \tau Y) \quad \text { for } \quad X, Y \in \mathrm{~g}^{c}
$$

This defines a K-invariant Euclidean measure $d \mu(X)$ on $\left(p^{C}\right)^{-}$. Let $H^{2}(D)$ denote the Hilbert space of holomorphic functions on D, which are square integrable with respect to the measure $d \mu(X)$. The inner product of $H^{2}(D)$ will be denoted by $《\rangle,\rangle . \quad K$ acts on $H^{2}(D)$ as unitary operators by

$$
(k f)(X)=f\left(k^{-1} X\right) \quad \text { for } \quad k \in K, X \in D
$$

Let $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$denote the graded space of polynomial functions on $\left(\mathfrak{p}^{C}\right)^{-}$. It has the natural hermitian inner product (, $)_{\tau}$ induced from the inner product $(,)_{\tau}$ on $\left(\mathfrak{p}^{c}\right)^{-}$. K acts on $S^{*}\left(\left(\mathfrak{p}^{c}\right)^{-}\right)$as unitary operators by

$$
(k f)(X)=f\left(\operatorname{Ad}^{-1} X\right) \quad \text { for } \quad k \in K, X \in\left(\mathfrak{p}^{C}\right)^{-}
$$

Now let S denote the Shilov boundary of D. It is known (Korányi-Wolf [7]) that K acts transitively on S. Thus denoting by L the stabilizer in K of a point $X_{0} \in S, S$ is identified with the quotient space K / L. Let $d x$ denote the $K-$ invariant measure on S induced from the normalized Haar measure of K and $L^{2}(S)$ the Hilbert space of square integrable functions on S with respect to the measure $d x$. The inner product of $L^{2}(S)$ will be denoted by $\langle\rangle .$,$K acts on$ $L^{2}(S)$ as unitary operators by

$$
(k f)(X)=f\left(\operatorname{Ad~}^{-1} X\right) \quad \text { for } \quad k \in K, X \in S
$$

The space $C^{\infty}(S)$ of C-valued C^{∞}-functions on S is a K-submodule of $L^{2}(S)$. The restrictions $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right) \rightarrow H^{2}(D)$ and $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right) \rightarrow L^{2}(S)$ are both K-equivariant monomorphisms. Their images will be denoted by $S^{*}(D)$ and $S^{*}(S)$, respectively. They have natural gradings induced from that of $S^{*}\left(\left(p^{C}\right)^{-}\right)$. Then the "restriction" $S^{*}(D) \rightarrow S^{*}(S)$ is defined in the natural manner and it is a K-equivariant isomorphism. Since D is a circular starlike bounded domain, a theorem of H. Cartan [2] yields that the subspace $S^{*}(D)$ of $H^{2}(D)$ is dense in $H^{2}(D)$ (cf. 1).

We decompose first the K-module $S^{*}(D)$ into irreducible components. We take a maximal abelian subalgebra t of \mathfrak{t} and idenitfy the real part $\sqrt{-1} t$ of the complexification t^{C} of t with its dual space by means of Killing form of \mathfrak{g}^{c}. Let $\sum \subset \sqrt{-1} \mathrm{t}$ denote the set of roots of \mathfrak{g}^{C} with respect to t^{c}. We choose root vectors $X_{\infty} \in \mathrm{g}^{c}$ for $\alpha \in \sum$ such that

$$
\begin{aligned}
{\left[X_{a}, X_{-\infty}\right] } & =-\frac{2}{(\alpha, \alpha)} \alpha \\
\tau X_{\infty} & =X_{-\infty}
\end{aligned}
$$

A root is called compact if it is also a root of the complexification \mathfrak{t}^{C} of \mathfrak{t}, otherwise it is called non-compact. $\quad \sum_{\mathfrak{p}}$ (resp. $\sum_{\mathfrak{p}}$) denotes the set of compact roots (resp. of non-compact roots). We choose and fix once for all a linear order $>$ on $\sqrt{-1} t$ such that $\left(p^{C}\right)^{+}$is spanned by the root spaces for non-compact positive
roots \sum_{p}^{+}. Two roots $\alpha, \beta \in \sum$ are called strongly orthogonal if $\alpha \pm \beta$ is not a root. We define a maximal strongly orthogonal subsystem

$$
\Delta=\left\{\gamma_{1} \cdots, \gamma_{p}\right\}, \quad \gamma_{1}>\gamma_{2}>\cdots>\gamma_{p}>0, \quad p=\operatorname{rank} D
$$

of Σ_{p}^{+}as follows (cf. Harish-Chandra [3]). Let γ_{1} be the highest root of Σ and for each j, γ_{j+1} be the highest positive non-compact root that is strongly orthogonal to $\gamma_{1}, \cdots, \gamma_{j}$. We put

$$
X_{0}=-\sum_{\gamma \in \Delta} X_{-\gamma}
$$

Then it is known (Koranyi-Wolf [7]) that X_{0} is on the Shilov boundary S of D. Henceforth we shall take the above point X_{0} as the origin of S. We put for $\nu \in \boldsymbol{Z}, \nu \geqslant 0$

$$
\mathcal{S}^{\nu}(K, L)=\left\{\sum_{i=1}^{p} n_{i} \gamma_{i} ; n_{i} \in \boldsymbol{Z}, n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{p} \geqslant 0, \sum_{i=1}^{p} n_{i}=\nu\right\},
$$

and

$$
\mathcal{S}^{*}(K, L)=\sum_{v \geqslant 0} \mathcal{S}^{v}(K, L) .
$$

We shall prove the following
Theorem A. Any irreducible K-submodule of $S^{*}(D)$ is contained exactly once in $S^{*}(D)$. The set $\mathcal{S}^{\nu}(D)$ of highest weights (with respect to t^{C}) of irrrducible K-submodules contained in $S^{\nu}(D)$ coincides with $S^{\nu}(K, L)$. Denoting by $S_{\lambda}^{*}(D)$ (resp. $S_{\lambda}^{*}(S)$) the irreducible K-submodule of $S^{*}(D)\left(r e s p\right.$. of $\left.S^{*}(S)\right)$ with the highest weight $\lambda \in \mathcal{S}^{*}(K, L)$,

$$
S^{*}(D)=\sum_{\lambda \in S^{*}(K, L)} \oplus S_{\lambda}^{*}(D)
$$

and

$$
S^{*}(S)=\sum_{\lambda \in S^{*}(K, L)} \oplus S_{\lambda}^{*}(S)
$$

are the orthogonal sum relative to the inner product $《, 》$ and \langle,$\rangle , respectively.$ The restriction $f \mapsto f^{\prime}$ of $S_{\lambda}^{*}(D) \rightarrow S_{\lambda}^{*}(S)$ is a similitude for each $\lambda \in \mathcal{S}^{*}(K, L)$, i.e. there exists a constant $h_{\lambda}>0$ such that

$$
\langle f, g\rangle=h_{\lambda}\left\langle f^{\prime}, g^{\prime}\right\rangle \quad \text { for any } \quad f, g \in S_{\lambda}^{*}(D) .
$$

Thus, if

$$
\left\{f_{\lambda, i}^{\prime} ; 1 \leqslant i \leqslant d_{\lambda}\right\}, \quad \lambda \in \mathcal{S}^{*}(K, L)
$$

is an orthonormal basis of $S_{\lambda}^{*}(S)$, then

$$
\left\{\sqrt{h_{\lambda}-1} f_{\lambda, i} ; \lambda \in \mathcal{S}^{*}(K, L), 1 \leqslant i \leqslant d_{\lambda}\right\}
$$

is a complete orthonormal system of $H^{2}(D)$.

A basis $\left\{f^{\prime}{ }_{\lambda, i} ; 1 \leqslant i \leqslant d_{\lambda}\right\}$ is, for instance, constructed as follows. Take an irreducible K-module (ρ, V) with the highest weight λ, carrying a K-invariant hermitian inner product (,). Choose an orthonormal basis $\left\{u_{i} ; 1 \leqslant i \leqslant d_{\lambda}\right\}$ of V such that the first vector u_{1} is L-invariant. This can be done in view of Frobenius' reciprocity since the K-module V is K-isomorphic with a K submodule of $C^{\infty}(S)$. Then the functions $f_{\lambda, i}^{\prime}\left(1 \leqslant i \leqslant d_{\lambda}\right)$ defined by

$$
f_{\lambda, i}^{\prime}\left(k X_{0}\right)=\sqrt{ } \overline{d_{\lambda}}\left(u_{i}, \rho(k) u_{1}\right) \quad \text { for } \quad k \in K
$$

form an orthonormal basis of $S_{\lambda}^{*}(S)$ (cf. 2).
We compute next the normalizing factor h_{λ}. Let

$$
\mathfrak{a}=\{\sqrt{-1} \Delta\}_{\boldsymbol{R}}
$$

be the R-span of $\sqrt{-1} \Delta$ in t and

$$
\tau: \sqrt{-1} t \rightarrow \sqrt{-1} \mathfrak{a}
$$

denote the orthogonal projection of $\sqrt{-1} t$ onto $\sqrt{-1} \mathfrak{a}$. For $\gamma \in \varpi \Sigma-\{0\}$, the number of roots $\alpha \in \sum$ such that $\varpi \alpha=\gamma$ is called the multplicity of γ. Let r (resp. 2s) be the multiplicity of $\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right)$ (resp. of $\frac{1}{2} \gamma_{1}$). If follows from Theorem A and Frobenius' reciprocity that for each $\lambda \in \mathcal{S}^{*}(K, L)$ there exists uniquely an L-invariant polynomial Ω_{λ} in $S_{\lambda}^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$such that $\Omega_{\lambda}\left(X_{0}\right)=1$, where $S_{\lambda}^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$denotes the irreducible K-submodule of $S^{*}\left(\left(\mathfrak{p}^{\mathrm{C}}\right)^{-}\right)$with the highest weight λ. The polynomial Ω_{λ} is called the zonal spherical polynomial for D belonging to λ. Let

$$
\left(\mathfrak{a}^{-}\right)^{c}=\left\{X_{-\gamma} ; \gamma \in \Delta\right\}_{C}
$$

be the \boldsymbol{C}-span of $\left\{X_{-\gamma} ; \gamma \in \Delta\right\}$ in $\left(\mathfrak{p}^{c}\right)^{-}$. It is identified with the complex cartesian space \boldsymbol{C}^{p} by the map

$$
-\sum_{i=1}^{p} z_{i} X_{-\gamma_{i}} \mapsto\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{p}
\end{array}\right) .
$$

Thus the zonal spherical polynomial Ω_{λ} restricted to $\left(\mathfrak{a}^{-}\right)^{C}$ is a polynomial $\Omega_{\lambda}\left(Y_{1}, \cdots, Y_{p}\right)$ in p-variables. Let $\mu(D)$ denote the volume of D with respect to the measure $d \mu(X)$. We shall prove the following

Theorem B. For $\lambda \in \mathcal{S}^{*}(K, L)$, the normalizing factor h_{λ} is given by

$$
h_{\lambda}=\left.c(D) \int_{0<y_{i}<1(1<i \leqslant p)} \Omega_{\lambda}\left(y_{1}, \cdots, y_{p}\right)\right|_{1 \leqslant i<j \leqslant p}\left(y_{i}-y_{j}\right)^{r} \mid \prod_{i=1}^{p} y_{i}^{s} d y_{1} \cdots d y_{p}
$$

where

$$
c(D)=\mu(D)\left(\int_{0<y_{i}<1(1<i<p)}\left|\prod_{1<i<j<p}\left(y_{i}-y_{j}\right)^{r}\right| \prod_{i=1}^{p} y_{i}^{s} d y_{1} \cdots d y_{p}\right)^{-1} .
$$

Hua [6] proved Theorem A for classical domains by decomposing the character of the K-module $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$into the sum of irreducible characters of K, while Schmid [11] proved it for general domain D. Schmid proved

$$
\begin{equation*}
\mathcal{S}^{\imath}(D) \subset \mathcal{S}^{\imath}(K, L) \tag{a}
\end{equation*}
$$

by seeing the character of the K-module $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$and by making use of E. Cartan's theory on spherical representations of a compact symmetric pair. But his proof of

$$
\begin{equation*}
\mathcal{S}^{\imath}(K, L) \subset \mathcal{S}^{\imath}(D) \tag{b}
\end{equation*}
$$

is complicated and was done after nine successive lemmas. In this note we give another proof of (a) by means of a lemma of Murakami and Cartan's theory, and give a relatively short proof of (b) by means of a theorm of Harish-Chandra on invariant polynomials for a symmetric pair.

Hua [6] computed the factors h_{λ} for certain classical domains by integrating certain polynomials. Our integral formula in Theorem B will clarify the meaning of integrals of Hua.

1. Circular domains

A domain $D \subset C^{n}$ containing the origin 0 is said to be a circular domain with the center 0 if together with any point $z \in D$ the point $e^{\sqrt{-1} \theta} z$ is in D for any real $\theta \in \boldsymbol{R}$. D is said to be a starlike domain with the center 0 if together with any point $z \in D$ the point $r z$ is in D for any real $r \in \boldsymbol{R}$ with $0 \leqslant r<1$.

Theorem 1.1. (H. Cartan [2]) Let $D \subset C^{n}$ be a circular domain with the center 0 . Then any holomorphic function f on D can be developed in the sum of homogeneous polynomials P_{ν} in n-variables with degree $\nu(\nu=0,1,2, \cdots)$:

$$
f(z)=\sum_{\nu=0}^{\infty} P_{\nu}(z) \quad \text { for } \quad z \in D
$$

The sum converges uniformly on any compact subset of D. The humogeneous polynomials P_{ν} are uniquely determined for f.

Let D be a bounded domain in $C^{n}, d \mu(z)$ the Euclidean measure on \boldsymbol{C}^{n}, induced from the standard hermitian inner product of C^{n}. Let $H^{2}(D)$ denote the Hilbert space of holomorphic functions on D, which are square integrable with respect to the measure $d \mu(z)$. The inner product of $H^{2}(D)$ will be denoted by $《, \geqslant\rangle$. Let $S^{*}\left(\boldsymbol{C}^{n}\right)$ be the graded space of polynomials in n-variables and $S^{*}(D)$ the subspace of $H^{2}(D)$ consisting of all functions on D obtained by the restriction of polynomials in $S^{*}\left(C^{n}\right)$. Then Theorem 1.1 yields the following

Corollary. Let $D \subset C^{n}$ be a circular starlike bounded domain with the center 0 . Then the subspace $S^{*}(D)$ of $H^{2}(D)$ is dense in $H^{2}(D)$.

Proof．If suffices to show that if $f \in H^{2}(D)$ with $\left.《 f, S^{*}(D)\right\rangle=\{0\}$ ，then $f=0$ ．Theorem 1.1 implis that f can be developed as

$$
f=\sum_{\nu=0}^{\infty} P_{\nu}, \quad P_{\nu} \in S^{\nu}(D)
$$

uniformly convergent on any compact subset of D ．Choose an orthonormal basis $\left\{P_{\nu, j}\right\}$ of $S^{\nu}(D)$ with respect to $《, 》$ for each ν ．Then we have

$$
\left.《 P_{\nu, j}, P_{\mu, i}\right\rangle=\delta_{\nu \mu} \delta_{j i}
$$

In fact，since $d \mu\left(e^{\sqrt{-1} \theta} z\right)=d \mu(z)$ for any $\theta \in \boldsymbol{R}$ ，we have $\left\langle\dot{P}_{\nu, j} P_{\mu, i}\right\rangle=e^{\sqrt{-1}(\nu-\mu\rangle}$ $\left\langle P_{\nu, j}, P_{\mu, i}\right\rangle$ for any $\theta \in \boldsymbol{R}$ ．Then f can be developed as

$$
f=\sum_{\nu, j} a_{\nu, j} P_{\nu, j} \quad \text { with } \quad a_{\nu, j} \in C
$$

uniformly convergent on any compact subset of D ．Since D is a starlike domain，the closure $\bar{r} \overline{\text { of } r D}$ is a compact subset of D for any $r \in R$ with $0<r<1$ ，so that the above series converges uniformly on $r D$ ．Therefore for any $P_{\mu, i}$ we have

$$
\int_{r D} f(z) \overline{P_{\mu, i}(z)} d \mu(z)=\sum_{\nu, j} a_{\nu, j} \int_{r D} P_{\nu, j}(z) \overline{P_{\mu, i}(z)} d \mu(z)
$$

If we put

$$
z^{\prime}=\frac{1}{r} z \quad \text { for } \quad z \in r D
$$

then $z=r z^{\prime}, d \mu(z)=r^{2 n} d \mu\left(z^{\prime}\right)$ so that

$$
\begin{aligned}
& \int_{r D} P_{\nu, j}(z) \overline{P_{\mu, i}(z)} d \mu(z)=r^{2 n+\nu+\mu} \int_{D} P_{\nu, j}\left(z^{\prime}\right) \overline{P_{\mu, i}\left(z^{\prime}\right)} d \mu\left(z^{\prime}\right) \\
& \quad=r^{2 n+\nu+\mu}\left\langle\left\langle P_{\nu, j}, P_{\mu, i}\right\rangle=r^{2 n+2 \mu} \delta_{\nu \mu} \delta_{j i} .\right.
\end{aligned}
$$

Hence we have

$$
\int_{r D} f(z) \overline{P_{\mu, i}(z)} d \mu(z)=a_{\mu, i} r^{2 n+2 \mu}
$$

and

$$
\begin{aligned}
a_{\mu, i} & =\lim _{r \uparrow 1} a_{\mu, i} r^{2 n+2 \mu}=\lim _{r \uparrow 1} \int_{r D} f(z) \overline{P_{\mu, i}(z)} d \mu(z) \\
& \left.=《 f, P_{\mu, i}\right\rangle=0 \quad \text { (from the assumption) }
\end{aligned}
$$

This implies that $f=0$ ． q．e．d．

2. Spherical representations of a compact symmetric pair

Let K be a compact connected Lie group, L a closed subgroup of K and S be the quotient space K / L. The space of \boldsymbol{C}-valued C^{∞}-functions on S will be denoted by $C^{\infty}(S)$. We shall often identify $C^{\infty}(S)$ with the space of C^{∞}-functions f on K such that

$$
f(k l)=f(k) \quad \text { for any } \quad k \in K, l \in L .
$$

Let $d x$ denote the K-invariant measure on S induced from the normalized Haar measure on K and $L^{2}(S)$ the Hilbert space of sequare integrable functions on S with respect to the measure $d x$. The inner product of $L^{2}(S)$ will be denoted by \langle,$\rangle . K$ acts on $L^{2}(S)$ as unitary operators by

$$
(k f)(x)=f\left(k^{-1} x\right) \quad \text { for } \quad k \in K, x \in S .
$$

Then $C^{\infty}(S)$ is a K-submodule of $L^{2}(S)$. A (continuous finite dimensional complex) representation

$$
\rho: K \rightarrow G L(V)
$$

of K is said to be spherical relative to L if the K-module V is equivalent to a K submodule of $C^{\infty}(S)$, which amounts to the same from Frobenius' reciprocity that the K-module V has a non-zero L-invariant vector. We denote by $\mathscr{D}(K, L)$ the set of equivalence classes of irreducible spherical representations of K relative to L. The totality of $f \in C^{\infty}(S)$ contained in a finite dimensional K-submodule of $C^{\infty}(S)$, which will be denoted by $\mathrm{o}(K, L)$, is a K-submodule of $C^{\infty}(S)$. A function in $\mathfrak{o}(K, L)$ is called a spherical function for the pair (K, L). For $\rho \in$ $\mathscr{D}(K, L)$, the totality of $f \in \mathfrak{v}(K, L)$ that transforms according to ρ, which will be denoted by $\mathfrak{o}_{\rho}(K, L)$, is a finite dimensional K-submodule of $\mathfrak{p}(K, L)$. Then

$$
\mathrm{p}(K, L)=\sum_{\rho \in \mathscr{D}(K, L)} \oplus \mathrm{o}_{\rho}(K, L)
$$

is the orthogonal sum with respect to the inner product \langle,$\rangle . Peter-Weyl$ approximation theorem implies that the subspace $\mathfrak{o}(K, L)$ of $L^{2}(S)$ is dense in $L^{2}(S)$. We assume furthermore that the pair (K, L) satisfies the condition
(*) any $\rho \in \mathscr{D}(K, L)$ is contained exactly once in $\mathfrak{o}(K, L)$,
which is by Frobenius' reciprocity equivalent to that for any spherical representation

$$
\rho: K \rightarrow G L(V)
$$

of K relative to L, an L-invariant vector of V is unique up to scalor multiplication. Then for each $\rho \in \mathscr{D}(K, L)$, there exists uniquely an L-invariant function $\omega_{\rho} \in \mathfrak{o}_{\rho}(K, L)$ such that $\omega_{\rho}(e)=1 . \quad \omega_{\rho}$ is called the zonal spherical function for (K, L) belonging to ρ. Let

$$
\rho: K \rightarrow G L(V)
$$

be a spherical representation of K relative to L. Choose a K-invariant hermitian inner product (,) on V. The equivalence class containing ρ will be denoted by the same letter ρ. Choose an orthonormal basis $\left\{u_{i} ; 1 \leqslant i \leqslant d_{\rho}\right\}$ of V such that u_{1} is L-invariant. Define $\varphi_{i} \in C^{\infty}(S)\left(1 \leqslant i \leqslant d_{\rho}\right)$ by

$$
\varphi_{i}(k)=\left(u_{i}, \rho(k) u_{1}\right) \quad \text { for } \quad k \in K
$$

We know that they are linearly independent, in view of orthogonality relations of matrix elements $\left(u_{i}, \rho(k) u_{j}\right)$. For any $k^{\prime} \in K$ we have

$$
\begin{aligned}
\varphi_{i}\left(k^{\prime-1} k\right) & =\left(u_{i}, \rho\left(k^{\prime-1} k\right) u_{1}\right)=\left(\rho\left(k^{\prime}\right) u_{i}, \rho(k) u_{1}\right) \\
& =\sum_{j}\left(\rho\left(k^{\prime}\right) u_{i}, u_{j}\right)\left(u_{j}, \rho(k) u_{1}\right) \\
& =\sum_{j}\left(\rho\left(k^{\prime}\right) u_{i}, u_{j}\right) \varphi_{i}(k), \\
\text { i.e. } \quad \quad \quad k^{\prime} \varphi_{i} & =\sum_{j}\left(\rho\left(k^{\prime}\right) u_{i}, u_{j}\right) \varphi_{j} \quad\left(1 \leqslant i \leqslant d_{\rho}\right) .
\end{aligned}
$$

In particular

$$
l \varphi_{1}=\varphi_{1} \quad \text { for any } \quad l \in L
$$

and

$$
\varphi_{1}(e)=1
$$

Therefore the system $\left\{\varphi_{i} ; 1 \leqslant i \leqslant d_{\rho}\right\}$ forms a basis of $o_{\rho}(K, L)$ and the zonal spherical function ω_{ρ} is given by

$$
\omega_{\rho}(k)=\left(u_{1}, \rho(k) u_{1}\right) \quad \text { for } \quad k \in K
$$

Furthermore orthogonality relations implies that the system

$$
\left\{\sqrt{d_{\rho}} \varphi_{i} ; 1 \leqslant i \leqslant d_{\rho}\right\}
$$

forms an orthonormal basis of $\mathrm{o}_{\mathrm{\rho}}(K, L)$ and that

$$
\left\langle\omega_{\rho}, \omega_{\rho^{\prime}}\right\rangle=\delta_{\rho \rho^{\prime}} \frac{1}{d_{\rho}}
$$

Henceforth we assume that the pair (K, L) is a symmetric pair, i.e. there exists an involutive automorphism θ of K such that if we put

$$
K_{\theta}=\{k \in K ; \theta(k)=k\}
$$

L lies between K_{θ} and the connected component K_{θ}^{0} of K_{θ}. Then the pair (K, L) satisfies the condition (*) (E. Cartan [1]). For example, a compact connected Lie group S admits a symmetric pair (K, L) such that $S=K / L$. In fact,

$$
\begin{aligned}
K & =S \times S \\
L & =\{(x, x) ; x \in S\}
\end{aligned}
$$

and

$$
\theta:(x, y) \mapsto(y, x) \quad \text { for } \quad x, y \in S
$$

have desired properties.
In the following we summarize some known facts on a symmetric pair (cf. Helgason [4]).

Let \mathfrak{f} (resp. l) be the Lie algebra of K (resp. of L). The involutive automorphism of ${ }^{2}$ obtained by differentiating the automorphism θ of K will be also denoted by the same letter θ.

Choose and fix once for all a \boldsymbol{C}-bilinear symmetric form (,) on the complexification \mathbb{H}^{C} of \mathfrak{t}, which is invariant under both the \boldsymbol{C}-linear extension to \mathfrak{t}^{C} of θ and the adjoint action of \mathfrak{i}^{c} and furthermore is negative definite on $\mathfrak{t} \times \mathbf{t}$. Then S is a Riemannian symmetric space with respect to the K-invariant Riemannian metric on S defined by -(,). We put

$$
\mathfrak{B}=\{X \in \mathfrak{l} ; \theta X=-X\}=\{X \in \mathfrak{t} ;(X, \mathfrak{l})=\{0\}\}
$$

Then we have orthogonal decompositions

$$
\mathfrak{l}=\mathfrak{l}+\mathfrak{Z}=\mathbf{c} \oplus \mathfrak{l}^{\prime},
$$

where \boldsymbol{c} is the center of \mathfrak{t} and \mathfrak{t}^{\prime} is the derived algebra $[\mathfrak{t}, \mathfrak{t}]$ of \mathfrak{t}. We choose a maximal abelian subalgebra \mathfrak{a} in \mathfrak{z}. Such \mathfrak{a} are mutually conjugate under the adjoint action of $L . \quad \operatorname{dim} \mathfrak{a}$ is the rank of the symmetric pair (K, L). Extend a to a maximal abelian subalgebra \mathfrak{t} of \mathfrak{t} containing \mathfrak{a}. Then we have the decomposition

$$
\mathfrak{t}=\mathfrak{b} \oplus \mathfrak{a} \quad \text { where } \quad \mathfrak{b}=\mathbf{t} \cap \mathfrak{l}
$$

Let $\mathfrak{t}^{\prime}=\mathfrak{t} \cap \mathfrak{t}^{\prime}$ and $\mathfrak{a}^{\prime}=\mathfrak{a} \cap \mathfrak{t}^{\prime}$. The real vector space $\sqrt{-1} t$ has the natural inner product (,) induced from the bilinear form (,) on ${ }^{C C}$. We shall identify $\sqrt{-1} t$ with the dual space of $\sqrt{-1} t$ by means of the inner product (,). We have the orthogonal decomposition

$$
\sqrt{-1} t=\sqrt{-1} \mathfrak{b} \oplus \sqrt{-1} \mathfrak{a}
$$

Let σ be the orthogonal transformation on $\sqrt{-1} \mathrm{t}$ defined by

$$
\sigma \mid \sqrt{-1} \mathfrak{b}=-1 \quad \text { and } \quad \sigma \mid \sqrt{-1} \mathfrak{a}=1
$$

and

$$
\varpi=\frac{1}{2}(1+\sigma): \sqrt{-1} t \rightarrow \sqrt{-1} \mathfrak{a}
$$

be the orthogonal projection of $\sqrt{-1} t$ onto $\sqrt{-1} a$. Let \sum_{t} denote the set ot roots of \mathfrak{t}^{c} with repsect to the complexification \mathfrak{t}^{c} of t . Let $W_{\mathrm{t}}=N_{K}(T) / T$ be the Weyl group of \mathfrak{t}, where T is the connected subgroup of K generated by t and $N_{K}(T)$ is the normalizer of T in $K . \quad \Sigma_{\mathrm{t}}$ is a σ-invariant reduced root system in
$\sqrt{-1} t^{\prime}$. As a group of orthogonal transformations of $\sqrt{-1} t, W_{\mathrm{t}}$ is generated by reflections with respect to roots in \sum_{r}. Put

$$
\begin{aligned}
& \Sigma_{\mathrm{t}}^{0}=\sum_{\mathrm{t}} \cap \sqrt{-1} \mathfrak{b}=\left\{\alpha \in \Sigma_{\mathrm{t}} ; \varpi \alpha=0\right\} \\
& \Sigma_{s}=\left\{\varpi \alpha ; \alpha \in \sum_{\mathrm{t}}-\Sigma_{\mathrm{t}}^{0}\right\}=\varpi \Sigma_{\mathrm{t}}-\{0\}, \\
& W_{S}=N_{L}(A) / Z_{L}(A)
\end{aligned}
$$

where A is the connected subgroup of K generated by \mathfrak{a} and $N_{L}(A)\left(\right.$ resp. $\left.Z_{L}(A)\right)$ the normalizer (resp. the centralizer) of A in L. An element of Σ_{s} is a restricted root of the symmetric space S and W_{S} is the Weyl group of $S . \Sigma_{S}$ is a (not necessarily reduced) root system in $\sqrt{-1} \mathfrak{a}^{\prime}$. As a group of orthogonal transformations of $\sqrt{-1} \mathfrak{a}, W_{S}$ is generated by reflections with respect to roots in \sum_{s}. A linear order $>$ on $\sqrt{-1} t$ is said to be compatible for \sum_{t} with respect to σ (or with respect to the orthogonal decomposition $\sqrt{-1} t=\sqrt{-1} \mathfrak{b} \oplus \sqrt{-1} \mathfrak{a}$) if $\alpha \in \sum_{\mathrm{p}}, \alpha>0$ and $\sigma \alpha \neq-\alpha$ imply $\sigma \alpha>0$. Take a compatible order $>$ on $\sqrt{-1} \mathrm{t}$ and fix it once and for all. Let

$$
\Pi_{t}=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}
$$

be the fundamental root system of \sum_{t} with respect to the order $>$ and put

$$
\Pi_{\mathrm{t}}^{0}=\Pi_{\mathrm{f}} \cap \Sigma_{\mathrm{t}}^{0}
$$

W_{t} is also generated by reflections with respect to roots in $\Pi_{\mathbf{r}}$. We have the decomposition

$$
\sigma=s p \quad \text { where } \quad s \in W_{\mathrm{t}}, \quad p \Pi_{\mathrm{t}}=\Pi_{\mathrm{t}}
$$

of σ in such a way that $p^{2}=1, p\left(\Pi_{\mathrm{t}}-\Pi_{\mathrm{t}}^{0}\right)=\Pi_{\mathrm{t}}-\Pi_{\mathrm{t}}^{0}$ and $\sigma \alpha_{i} \equiv p \alpha_{i} \bmod \left\{\Pi_{\mathrm{t}}^{0}\right\}_{Z}$ for any $\alpha_{i} \in \Pi_{t}-\Pi_{t}^{0}$ (Satake [10]). We put

$$
\Pi_{s}=\left\{\varpi \alpha_{i} ; \alpha_{i} \in \Pi_{\mathfrak{t}}-\Pi_{\mathfrak{t}}^{0}\right\}=\varpi \Pi_{\mathfrak{t}}-\{0\} .
$$

We may assume that $\Pi_{s}=\left\{\gamma_{1}, \cdots, \gamma_{p}\right\}$ with $\varpi \alpha_{i}=\gamma_{i}(1 \leqslant i \leqslant p)$, changing indices of the α_{i} 's if necessary. Π_{s} is the fundamental root system of \sum_{s} with respect to the order $>$. We put

$$
\sum_{s}^{*}=\left\{\gamma \in \Sigma_{s} ; 2 \gamma \notin \Sigma_{s}\right\}
$$

Then \sum_{s}^{*} is a reduced root system in $\sqrt{-1} \mathfrak{a}^{\prime}$. The fundamental root system Π_{S}^{*} of \sum_{s}^{*} with respect to the order $>$ is given by
where

$$
\begin{aligned}
\Pi_{s}^{*} & =\left\{\beta_{1}, \cdots, \beta_{p}\right\} \\
\beta_{i} & =\left\{\begin{array}{ccl}
\gamma_{i} & \text { if } & 2 \gamma_{i} \notin \sum_{s} \\
2 \gamma_{i} & \text { if } & 2 \gamma_{i} \in \sum_{s}
\end{array}\right.
\end{aligned}
$$

W_{S} is also generated by reflections with respect to roots of Π_{S} or of Π_{S}^{*}. Let
$\Sigma_{\mathrm{t}}^{+}\left(\right.$resp. $\left.\Sigma_{s}^{+},\left(\sum_{s}^{*}\right)^{+}\right)$denote the set of positive roots in $\Sigma_{\mathrm{t}}\left(\right.$ resp. $\left.\Sigma_{s}, \Sigma_{s}^{*}\right)$. Then

$$
\Sigma_{s}^{+}=\omega\left(\Sigma_{t}^{+}-\Sigma_{t}^{0}\right)=\tau \Sigma_{t}^{+}-\{0\}
$$

For $\lambda \in \sqrt{-1} t, \lambda \neq 0$, we define

$$
\lambda^{*}=\frac{2}{(\lambda, \lambda)} \lambda
$$

Theorem 2.1. (E. Cartan) Assume that K is simply connected. Then

1) K_{θ} is connected.
2) The kernel of $\exp : \mathfrak{a} \rightarrow K$ is the subgroup of \mathfrak{a} generated by $\left\{2 \pi \sqrt{\overline{-1}} \gamma^{*}\right.$; $\left.\gamma \in \Sigma_{s}\right\}$.

Theorem 2.2. (Harish-Chandra) Let $S_{L}^{*}(\mathfrak{B})\left(\right.$ resp. $\left.S_{W S}^{*}(\mathfrak{a})\right)$ be the space of polynomial functions on \mathfrak{B} (resp.on \mathfrak{a}), which are invariant under the adjoint actions of L (resp. of W_{S}). Then the restriction map

$$
S_{L}^{*}(\mathfrak{p}) \rightarrow S_{W S}^{*}(\mathfrak{a})
$$

is an isomorphism.
Now we shall consider W_{S}-invariant characters of a maximal torus of S. Put

$$
\Gamma=\Gamma(K, L)=\{H \in \mathfrak{a} ; \exp H \in L\}
$$

and

$$
\Gamma_{\mathfrak{c}}=\Gamma \cap \mathfrak{c}_{\mathfrak{a}} \quad \text { where } \quad \mathfrak{c}_{\mathfrak{a}}=\mathfrak{c} \cap \mathfrak{a}
$$

Then Γ is a W_{s}-invariant lattice in \mathfrak{a} and $\Gamma_{\mathfrak{c}}$ is a lattice in \mathfrak{c}_{a}. Let $C_{\mathfrak{a}}$ be the connected subgroup of K generated by c_{a}. Then the A-orbit \hat{A} in S through the origin x_{0} of S and the $C_{\mathfrak{a}}$-orbit $\hat{C}_{\mathfrak{a}}$ in S through the origin have identifications

$$
\hat{A}=\mathfrak{a} / \Gamma
$$

and

$$
\hat{C}_{\mathfrak{a}}=\mathfrak{c}_{a} / \Gamma_{\mathfrak{c}}
$$

Hence both \hat{A} and $\hat{C}_{\mathfrak{a}}$ have structures of toral groups. The toral group \hat{A} is said to be a maximal torus of the symmetric space S. The adjoint action of W_{S} on A induces the action of W_{S} on A. This action is compatible with the natural action of W_{S} on \mathfrak{a} / Γ relative to the identification: $\hat{A}=\mathfrak{a} / \Gamma$. Put

$$
Z=Z(K, L)=\{\lambda \in \sqrt{-1} a ;(\lambda, H) \in 2 \pi \sqrt{-1} Z \text { for any } H \in \Gamma\}
$$

Z is isomorphic with the group $\mathscr{D}(\hat{A})$ of characters of \hat{A} by the correspondence $\lambda \mapsto e^{\lambda}$, where $e^{\lambda} \in \mathscr{D}(\hat{A})$ is defined by $e^{\lambda}\left((\exp H) x_{0}\right)=\exp (\lambda, H)$ for $H \in \mathfrak{a}$. Put

$$
\begin{aligned}
D=D(K, L) & =\left\{\lambda \in Z ;\left(\lambda, \gamma_{i}\right) \geqslant 0 \text { for any } \gamma_{i} \in \Pi_{s}\right\} \\
& =\left\{\lambda \in Z ;(\lambda, \gamma) \geqslant 0 \text { for any } \gamma \in \sum_{s}^{+}\right\} .
\end{aligned}
$$

Then we have

$$
D=\left\{\lambda \in Z ; s \lambda \leqslant \lambda \text { for any } s \in W_{s}\right\}
$$

An element of D is called a dominant integral form on \mathfrak{a}. We define a lattice $\Gamma_{0}{ }^{\prime}$ in \mathfrak{a}^{\prime} to be the subgroup of \mathfrak{a}^{\prime} generated by $\left\{2 \pi \sqrt{-1}\left(\frac{1}{2} \gamma^{*}\right) ; \gamma \in \sum_{s}\right\}$. We define a lattice Γ_{0} in \mathfrak{a} and a toral group \hat{A}_{0} by

$$
\Gamma_{0}=\Gamma_{\mathrm{c}} \oplus \Gamma_{0}^{\prime}
$$

and

$$
\hat{A}_{0}=\mathfrak{a} / \Gamma_{0}
$$

Put

$$
Z_{0}=\left\{\lambda \in \sqrt{-1} \mathfrak{a} ;(\lambda, H) \in 2 \pi \sqrt{-1} Z \text { for any } H \in \Gamma_{0}\right\}
$$

and

$$
D_{0}=D \cap Z_{0}
$$

Z_{0} is isomorphic with the group $\mathscr{D}\left(\hat{A}_{0}\right)$ of characters of \hat{A}_{0}. Put furthermore

$$
Z_{0}^{\prime}=Z_{0} \cap \sqrt{-1} \mathfrak{a}^{\prime}=\left\{\lambda \in \sqrt{-1} \mathfrak{a}^{\prime} ; \frac{2(\lambda, \gamma)}{(\gamma, \gamma)} \in 2 Z \text { for any } \gamma \in \Sigma_{s}\right\}
$$

and

$$
D_{0}^{\prime}=D_{0} \cap \sqrt{-1} \mathfrak{a}^{\prime}=D \cap Z_{0}^{\prime}
$$

Lemma 1. If $L=K_{\theta}$, then

$$
\Gamma=\left\{\frac{1}{2} H ; H \in \mathfrak{a}, \exp H=e\right\}
$$

Proof. For $H \in \mathfrak{a}, \exp H=e \Leftrightarrow \exp \frac{H}{2} \exp \frac{H}{2}=e \Leftrightarrow \exp \frac{H}{2}=\left(\exp \frac{H}{2}\right)^{-1} \Leftrightarrow$ $\exp \frac{H}{2}=\theta\left(\exp \frac{H}{2}\right) \Leftrightarrow \exp \frac{H}{2} \in K_{\theta}$, which yields Lemma 1. q.e.d.

Lemma 2. 1) $\Gamma_{0}^{\prime}=2 \pi \sqrt{-1} \sum_{i=1}^{p} \boldsymbol{Z}\left(\frac{1}{2} \beta_{i}^{*}\right)$
and it is W_{s}-invariant. Therefore Γ_{0} is W_{s}-invariant.
2) $\Gamma_{0} \subset \Gamma$. Therefore $Z_{0} \supset Z$ and $D_{0} \supset D$.
3) If S is simply connected, then $\Gamma=\Gamma_{0}=\Gamma_{0}{ }^{\prime}\left(\right.$ thus $\left.Z=Z_{0}=Z_{0}^{\prime}, D=D_{0}=D_{0}{ }^{\prime}\right)$ and \hat{A}_{0} can be identified with \hat{A}.

Proof. 1) Denoting the reflection of $\sqrt{-1} \mathfrak{a}$ with respect to $\beta_{i} \in \Pi_{s}^{*}$ by $s_{i} \in W_{S}$, we have

$$
s_{i} \gamma^{*}=\left(s_{i} \gamma\right)^{*}=\gamma^{*}-\frac{2\left(\beta_{i}, \gamma\right)}{(\gamma, \gamma)} \beta_{i}^{*} \quad \text { for } \quad \gamma \in \Sigma_{s}
$$

It follows that $\Gamma_{0}{ }^{\prime}$ is W_{s}-invariant. Since we have

$$
(2 \lambda)^{*}=\frac{2 \cdot 2 \lambda}{4(\lambda, \lambda)}=\frac{\lambda}{(\lambda, \lambda)}=\frac{1}{2} \lambda^{*} \quad \text { for } \quad \lambda \in \sqrt{-1} \mathfrak{a}, \lambda \neq 0,
$$

Γ_{0}^{\prime} is the subgroup of \mathfrak{a}^{\prime} generated by $2 \pi \sqrt{ } \overline{-1}\left(\frac{1}{2} \gamma^{*}\right)$ for $\gamma \in \sum_{s}^{*}$. Thus it suffices to show that

$$
\gamma^{*} \in \sum_{i=1}^{\phi} Z \beta_{i}^{*} \quad \text { for any } \quad \gamma \in \sum_{s}^{*}
$$

But this follows from the first equality since there exist $\beta_{\boldsymbol{i}_{1}}, \cdots, \beta_{\boldsymbol{i}_{r}} \in \Pi_{s}^{*}$ such that $s_{i_{1}} \cdots s_{i_{r}} \gamma \in \Pi_{S}^{*}$.
2) Since $\Gamma_{c} \subset \Gamma$, it suffices to show that $\Gamma_{0}^{\prime} \subset \Gamma^{\prime}$ for $\Gamma^{\prime}=\Gamma \cap \mathfrak{a}^{\prime}$. Let K^{\prime} be the connected subgroup of K generated by t^{\prime} and $L^{\prime}=K^{\prime} \cap L$. Then (K^{\prime}, L^{\prime}) is also a symmetric pair with respect to θ and $S^{\prime}=K^{\prime}!L^{\prime}$ can be identified with the K^{\prime}-orbit in S through the origin x_{0} of S. Let

$$
\pi^{\prime}: K_{0}^{\prime} \rightarrow K^{\prime}
$$

be the covering homomorphism of the universal covering group $K_{0}{ }^{\prime}$ of K^{\prime} and put

$$
L_{0}^{\prime}=\left\{k \in K_{0}^{\prime} ; \theta_{0}(k)=k\right\},
$$

where θ_{0} is the involutive automorphism of $K_{0}{ }^{\prime}$ covering the involutive automorphism θ of $K^{\prime} . \quad K_{0}{ }^{\prime}$ is compact since K^{\prime} is semi-simple. S^{\prime} can be identified with $K_{0}{ }^{\prime} / \pi^{\prime-1}\left(L^{\prime}\right)$. It follows from Theorem 2.1 and Lemma 1 that $L_{0}{ }^{\prime}$ is connected and

$$
\Gamma_{0}^{\prime}=\left\{H \in \mathfrak{a}^{\prime} ; \exp _{\kappa_{0^{\prime}}} H \in L_{0}\right\}
$$

Let A^{\prime} (resp. $A_{0}{ }^{\prime}$) be the connected subgroup of K^{\prime} (resp. of $K_{0}{ }^{\prime}$) generated by \mathfrak{a}^{\prime} and \hat{A}^{\prime} (resp. $\hat{A}_{0}{ }^{\prime}$) be the A^{\prime}-orbit in S^{\prime} (resp. the $A_{0}{ }^{\prime}$-orbit in $S_{0}{ }^{\prime}=K_{0}{ }^{\prime} \mid L_{0}{ }^{\prime}$) through the origin. Then we have identifictions

$$
\hat{A}^{\prime}=\mathfrak{a}^{\prime} / \Gamma^{\prime}
$$

and

$$
\hat{A}_{0}^{\prime}=\mathfrak{a}^{\prime} / \Gamma_{0}^{\prime}
$$

On the other hand, since $\pi^{\prime-1}\left(L^{\prime}\right) \supset L_{0}^{\prime}$, the covering homomorphism π^{\prime} induces the commutative diagram

$$
\begin{aligned}
& S_{\mathrm{o}^{\prime}}^{\pi^{\prime}} S^{\prime} \\
& \cup{ }^{\prime} \\
& \hat{A}_{0}^{\prime} \xrightarrow[\pi^{\prime}]{ } \hat{A}^{\prime}
\end{aligned}
$$

It follows that

$$
\Gamma_{0}^{\prime} \subset \Gamma^{\prime}
$$

3) Under the notation in 2), we have a covering map

$$
\mathcal{C}_{a} \times S^{\prime} \rightarrow S .
$$

It follows from the assumption that $\hat{C}_{\mathfrak{a}}=\{e\}$ and S^{\prime} is simply connected. Thus the covering map π^{\prime} is trivial and $\Gamma^{\prime}=\Gamma_{0}{ }^{\prime}$. Moreover $\mathcal{c}_{a}=\{0\}$ implies that $\Gamma=\Gamma^{\prime}$ and $\Gamma_{0}=\Gamma_{0}^{\prime}$.
q.e.d.

Remark. Define $\Lambda_{i} \in \sqrt{-1} \mathrm{t}^{\prime}(1 \leqslant i \leqslant l)$ by

$$
\left(\Lambda_{i}, \alpha_{j}^{*}\right)=\delta_{i j} \quad(1 \leqslant i, j \leqslant l) .
$$

Then define $M_{i}(1 \leqslant i \leqslant p)$ by

$$
M_{i}= \begin{cases}2 \Lambda_{i} & \text { if } p \alpha_{i}=\alpha_{i} \text { and } \quad\left(\alpha_{i}, \Pi_{\mathfrak{q}}^{0}\right)=\{0\} \\ \Lambda_{i} & \text { if } p \alpha_{i}=\alpha_{i} \text { and } \quad\left(\alpha_{i}, \Pi_{\mathfrak{q}}^{0}\right) \neq\{0\} \\ \Lambda_{i}+\Lambda_{i^{\prime}}, & \text { if } p \alpha_{i}=\alpha_{i^{\prime}} \neq \alpha_{i} .\end{cases}
$$

Then it can be verified (cf. Sugiura [12]) that $M_{i} \in \sqrt{-1} \mathfrak{a}^{\prime}(1 \leqslant i \leqslant p)$ and

$$
\left(M_{i, \frac{1}{2}} \beta_{j}^{*}\right)=\delta_{i j} \quad(1 \leqslant i, j \leqslant p)
$$

It follows that

$$
Z_{0}^{\prime}=\sum_{i=1}^{p} Z M_{i}
$$

and

$$
D_{0}^{\prime}=\left\{\sum_{i=1}^{p} m_{i} M_{i} ; m_{i} \in Z, m_{i} \geqslant 0(1 \leqslant i \leqslant p)\right\}
$$

It follows from Lemma 2,1) that W_{S} acts on $\hat{A}_{0}=\mathfrak{a} / \Gamma_{0}$ and from Lemma 2,2) that we have a W_{s}-equivariant homomorphism

$$
\pi_{0}: \hat{A}_{0} \rightarrow \hat{A}
$$

Let $\mathcal{R}(\hat{A})$ denote the character ring of \hat{A}. Then W_{S} acts on $\mathcal{R}(\hat{A})$ (or more generally on the space $C^{\infty}(\hat{A})$ of C-valued C^{∞}-functions on $\left.\hat{A}\right)$ by

$$
(s \chi)(\hat{a})=\chi\left(s^{-1} \hat{a}\right) \quad \text { for } \quad s \in W_{s}, \hat{a} \in \hat{A}
$$

This action coincides on $Z=\mathscr{D}(\hat{A}) \subset \mathcal{R}(\hat{A})$ with the adjoint action of W_{S} on Z. Let $\mathscr{R}_{W_{S}}(\hat{A})$ be the subring of W_{s}-invariant characters of \hat{A} and $\mathcal{R}_{W_{S}}(\hat{A})^{C}$ the \boldsymbol{C}-span of $\mathcal{R}_{W_{S}}(\hat{A})$ in $C^{\infty}(\hat{A})$. Let $\mathcal{R}\left(\hat{A}_{0}\right), \mathcal{R}_{W_{S}}\left(\hat{A}_{0}\right)$ and $\mathcal{R}_{W_{S}}\left(\hat{A}_{0}\right)^{C}$ denote the same objects for \hat{A}_{0}. Then π_{0} induces a W_{s}-equivariant monomorphism

$$
\pi_{0}^{*}: \mathcal{R}(\hat{A}) \rightarrow \mathcal{R}\left(\hat{A}_{0}\right)
$$

and monomorphisms

$$
\begin{aligned}
& \pi_{0}^{*}: \mathcal{R}_{W_{S}}(\hat{A}) \rightarrow \mathcal{R}_{W_{S}}\left(\hat{A}_{0}\right) \\
& \pi_{0}^{*}: \mathcal{R}_{W_{S}}(\hat{A})^{c} \rightarrow \mathcal{R}_{W_{S}}\left(\hat{A}_{0}\right)^{c}
\end{aligned}
$$

Henceforth we shall identify $\mathcal{R}_{W_{S}}(\hat{A})$ with a subring of $\mathcal{R}_{W_{s}}\left(\hat{A}_{0}\right)$ and $\mathcal{R}_{W_{s}}(\hat{A})^{c}$ with a subalgebra of $\mathcal{R}_{W_{S}}\left(\hat{A}_{0}\right)^{c}$ by means of these monomorphisms π_{0}^{*}.

For $\lambda \in \sqrt{-1} \mathfrak{a}$, we shall denote by λ_{c} the $\sqrt{-1} \mathfrak{c}_{a}$-component of λ with respect to the orthogonal decomposition

$$
\sqrt{-1} \mathfrak{a}=\sqrt{-1} \mathfrak{c}_{a} \oplus \sqrt{-1} \mathfrak{a}^{\prime}
$$

The following facts can be proved in the same way as the classical results for a compact connected Lie group S, so the proofs are omitted.

We define an element δ in Z_{0} by

$$
\delta=\sum_{\gamma \in\left(\overline{\delta_{s}^{*}}\right)^{+}} \gamma
$$

For $\lambda \in Z_{0}$, we define $\xi_{\lambda} \in \mathcal{R}\left(\hat{A}_{0}\right)$ by

$$
\xi_{\lambda}=\sum_{s \in W_{S}}(\operatorname{det} s) e^{s \lambda}
$$

For $\lambda \in Z, \xi_{\lambda}$ is divisible by ξ_{δ} in the ring $\mathcal{R}\left(\hat{A}_{0}\right)$ and

$$
\chi_{\lambda}=\frac{\xi_{\lambda+\delta}}{\xi_{\delta}}
$$

is in $\mathcal{R}_{W_{S}}(\hat{A})$. If χ_{λ} has the expression

$$
\chi_{\lambda}=\sum m_{\mu} e^{\mu} \quad \text { with } \quad \mu \in Z, m_{\mu} \in Z, m_{\mu} \neq 0
$$

then μ_{c} are the same for any μ. In particular, if $\lambda \in D$, then the highest component in the above expression of χ_{λ} is e^{λ} with $m_{\lambda}=1$. Any W_{s}-invariant character $\chi \in \mathcal{R}_{W_{S}}(\hat{A})$ of \hat{A} has an expression

$$
\chi=\sum m_{\lambda} \chi_{\lambda} \quad \text { with } \quad \lambda \in D, m_{\lambda} \in Z
$$

The expression is unique for χ. In particular, the system $\left\{\chi_{\lambda} ; \lambda \in D\right\}$ forms a basis of the space $\mathcal{R}_{W_{S}}(\hat{A})^{c}$.

Now we come back to spherical representations of a symmetric pair (K, L).
Theorem 2.3. (E. Cartan [1]) Let $\rho \in \mathscr{D}(K, L)$ have the highest weight $\lambda \in \sqrt{-1} \mathrm{t}$ and ω_{λ} be the zonal spherical function for (K, L) belonging to ρ. Then

1) $\lambda \in D$,
2) ω_{λ} restricted to \hat{A} is in $\mathcal{R}_{W_{S}}(\hat{A})^{c}$ and has an expression

$$
\omega_{\lambda}=\sum a_{\mu} e^{-\mu} \quad \text { with } \quad \mu \in Z, a_{\mu} \in \boldsymbol{R}, a_{\mu}>0, \sum a_{\mu}=1
$$

with the lowst component $a_{\lambda} e^{-\lambda}$.
Proof. Proof of E. Cartan [1] was done in the case where K is semi-simple and $L=K_{\theta}$. His proof can be applied for our case without difficulties. But his proof of $\lambda \in \sqrt{-1} \mathfrak{a}$ is not complete. A correct proof is seen, for example, in Schmid [11].
q.e.d.

Lemma 3. For any $\lambda \in D$, there exists an irreducible representation ρ of K such that the highest weight of ρ on \mathfrak{t}^{c} is λ.

Proof. Let $H \in \mathrm{t}$ with $\exp H=e$. Decompose H as

$$
H=H^{\prime}+H^{\prime \prime} \quad \text { with } \quad H^{\prime} \in \mathfrak{b}, H^{\prime \prime} \in \mathfrak{a}
$$

Then $\exp H^{\prime \prime}=\left(\exp H^{\prime}\right)^{-1} \in L$, i.e. $H^{\prime \prime} \in \Gamma$. It follows from $\lambda \in Z \subset \sqrt{-1} \mathfrak{a}$ that $\quad(\lambda, H)=\left(\lambda, H^{\prime}\right)+\left(\lambda, H^{\prime \prime}\right)=\left(\lambda, H^{\prime \prime}\right) \in 2 \pi \sqrt{-1} Z . \quad$ Moreover $\quad\left(\lambda, \alpha_{i}\right)=$ $\left(\lambda, \tau \alpha_{i}\right) \geqslant 0$ for any $\alpha_{i} \in \Pi_{\mathfrak{t}}$ since $\lambda \in D$. Thus e^{λ} is a dominant character of the maximal torus T of K. Then the classical representation theory of compact connected Lie groups assures the existence of ρ.
q.e.d.

Lemma 4. Let $Z_{L}(A)$ be the centralizer in L of A and $Z_{L}(A)^{0}$ the connected component of $Z_{L}(A)$. Then

$$
Z_{L}(A)=Z_{L}(A)^{0} \exp \Gamma
$$

Proof. The centralizer $\mathfrak{f}_{\mathfrak{f}}(\mathfrak{a})$ in \mathfrak{t} of \mathfrak{a} has the decomposition

$$
z_{\mathfrak{t}}(\mathfrak{a})=z_{\mathfrak{l}}(\mathfrak{a}) \oplus \mathfrak{a}
$$

where $z_{\mathfrak{l}}(\mathfrak{a})$ is the centralizer in \mathfrak{l} of \mathfrak{a}. Since the centralizer $Z_{K}(A)$ in the compact connected Lie group K of the torus A is connected, we have the decomposition

$$
Z_{K}(A)=Z_{L}(A)^{\circ} A
$$

It follows that any element $m \in Z_{L}(A)$ can be written as

$$
m=m^{\prime} a \quad \text { with } \quad m^{\prime} \in Z_{L}(A)^{0}, a \in A
$$

Then $a=m^{\prime-1} m \in L$ so that $a \in \exp \Gamma$. Thus $m \in Z_{L}(A)^{0} \exp \Gamma$, which proves Lemma 4.
q.e.d.

Lemma 5. Let K^{c} denote the Chevalley complexification of K. Put

$$
K^{*}=L \exp \sqrt{-1} \mathfrak{B}
$$

and

$$
\left(K^{*}\right)^{0}=L^{0} \exp \sqrt{-1} \mathfrak{B}
$$

where L^{0} denotes the connected component of L. Then $\left(K^{*}\right)^{0}$ is a closed subgroup of
K^{c} normalized by K^{*} and

$$
K^{*}=\left(K^{*}\right)^{0} \exp \Gamma
$$

Therefore K^{*} is a closed subgroup of K^{c} with the connected compoenet $\left(K^{*}\right)^{0}$.
Proof. The first statement is clear. Take any element $l \in L$. From the conjugteness of maximal abelian subalgebras in \mathfrak{z} under the adjoint action of L^{0}, there exists $l_{1} \in L^{0}$ such that $l_{1} l \in N_{L}(A)$. Since

$$
N_{L}(A) / Z_{L}(A)=N_{L^{0}}(A) / Z_{L^{0}}(A)=W_{S},
$$

we can choose $l_{2} \in L^{0}$ such that $l_{2} l_{1} l \in Z_{L}(A)$. It follows from Lemma 4 that there exist $l_{3} \in Z_{L}(A)^{0}$ and $a \in \exp \Gamma$ such that $l_{2} l_{1} l=l_{3} a$. Therefore $l=l_{1}^{-1} l_{2}^{-1} l_{3} a$ with $l_{1}^{-1} l_{2}^{-1} l_{3} \in L^{0} \subset\left(K^{*}\right)^{0}$, i.e. $l \in\left(K^{*}\right)^{0} \exp \Gamma$. This completes the proof of Lemma 5.
q.e.d.

Now we can prove the following
Theorem 2.4. (E. Cortan [1], Sugiura [12], Helgason [5]) For any $\lambda \in D$, there exists an irreducible spherical representation ρ of K relative to L such that the highest weight of ρ on t^{c} is λ.

Together with Theorem 2.3 we have the following
Corollary. For $\rho \in \mathscr{D}(K, L)$, let $\lambda(\rho)$ denote the highest weight of ρ on \mathfrak{t}^{c}. Then the correspondence $\rho \mapsto \lambda(\rho)$ gives a bijection:

$$
\mathscr{D}(K, L) \rightarrow D(K, L) .
$$

Proof of Theorem 2.4. This theorem for the case where K is semi-simple and $L=K_{\theta}$ was stated in E. Cartan [1] but its proof is not complete. It was stated for simply connected K without proof in Sugiura [12]. It was proved in Helgason [5] for the case where K is semi-simple and L is connected. Helgason's proof can be applied for our case without difficulties, so we shall confine ourselves to point out necessary modifications.

Let

$$
\rho: K \rightarrow G L(V)
$$

be the irreducible representation of K with the highest weight λ (Lemma 3). By extending ρ to the Chevalley complexification K^{c} of K and restricting it to the closed subgroup K^{*} of K^{c} (Lemma 5), we have an irreducible representation of K^{*}, which will be denoted by the same letter ρ. It suffices to show that ρ has a non-zero L-invariant. Let N be the connected subgroup of K^{*} generated by the subalgebra

$$
\mathfrak{n}=\mathfrak{f}^{*} \cap \sum_{\alpha \in \Sigma_{\mathfrak{l}}^{+}-\Sigma_{\mathfrak{l}}^{0}} \mathfrak{t}_{\alpha}^{C},
$$

where \mathfrak{Z}^{*} is the Lie algebra of K^{*} and $\mathfrak{F}_{\alpha}^{C}$ is the root space of \mathfrak{f}^{c} for α. We shall first prove that the representation ρ of K^{*} is a conical representation of K^{*} in the sense of Helgason [5], i.e. if $v_{\lambda} \in V, v_{\lambda} \neq 0$, is a highest weight vector for ρ with repsect to t^{c}, we have

$$
\rho(m n) v_{\lambda}=v_{\lambda} \quad \text { for any } \quad m \in Z_{L}(A), n \in N .
$$

Denoting the infinitesimal action of \mathfrak{t}^{C} on V by the same letter ρ, we have

$$
\rho(\mathfrak{n}) v_{\lambda}=\rho\left(z_{\mathfrak{l}}(\mathfrak{a})\right) v_{\lambda}=\{0\} .
$$

In fact, $\rho(\mathfrak{n}) v_{\lambda}=\{0\}$ since $\mathfrak{n} \subset \sum_{a \in \Sigma_{\mathfrak{t}}^{+}} \mathfrak{f}_{\alpha}^{C}$. $\quad \rho\left(\mathfrak{b}^{C}\right) v_{\lambda}=\{0\}$ for the complexification \mathfrak{b}^{C} of \mathfrak{b} since $(\sqrt{-1} \mathfrak{b}, \lambda)=\{0\} . \quad \rho\left(\mathfrak{f}_{\alpha}^{C}\right) v_{\lambda}=\{0\}$ for $\alpha \in \sum_{\mathfrak{p}}^{0}, \alpha>0$. It follows from $(\alpha, \lambda) \in(\sqrt{-1} \mathfrak{b}, \lambda)=\{0\}$ for $\alpha \in \sum_{\mathfrak{t}}^{0}$ that $\lambda-\alpha$ is not a weight of ρ for $\alpha \in \sum_{\mathfrak{l}}^{0}, \alpha>0$. Since the complexification of $\mathfrak{z}_{\mathrm{r}}(\mathfrak{a})$ is spanned by \mathfrak{b}^{c} and the $\mathfrak{f}_{\alpha}^{c}$, s for $\alpha \in \sum_{t}^{0}$, we have $\rho\left(z_{\mathfrak{l}}(\mathfrak{a})\right) v_{\lambda}=\{0\}$. Therefore it suffices from Lemma 4 to show that

$$
\rho(\exp H) v_{\lambda}=v_{\lambda} \quad \text { for any } \quad H \in \Gamma .
$$

But it is clear since $\lambda \in Z$, i.e. $(\lambda, H) \in 2 \pi \sqrt{-1} \boldsymbol{Z}$ for any $H \in \Gamma$.
Thus we can prove in the same way as Helgason [5] that V has a non-zero L-invariant vector, by constructing a K^{*}-submodule V^{\prime} of the K^{*}-module $C^{\infty}\left(K^{*}\right)$ of C^{∞}-functions on K^{*}, having a non-zero L-invariant, and by constructing a K^{*}-equivariant isomorphism of V onto V^{\prime}.
q.e.d.

Next we shall describe zonal spherical functions in terms of the basis $\left\{\chi_{\lambda} ; \lambda \in D\right\}$ of $\mathcal{R}_{W_{S}}(\hat{A})^{c}$.

For $\hat{a}=(\exp H) x_{0} \in \hat{A}, H \in \mathfrak{a}$, we put

$$
D(\hat{a})=\left|\prod_{\alpha \in \Sigma_{\mathfrak{l}}^{+}-\Sigma_{\mathrm{f}}^{0}} 2 \sin (\alpha, \sqrt{-1} H)\right|
$$

Let dâ denote the normalized Haar measure of \hat{A} and $\left|W_{S}\right|$ the order of the Weyl group W_{S}. For $W_{S^{\prime}}$-invariant functions χ, χ^{\prime} on \hat{A}, we define

$$
\left\langle\chi, \chi^{\prime}\right\rangle=\frac{c}{\left|W_{S}\right|} \int_{\hat{A}} \chi(\hat{a}) \overline{\chi^{\prime}(\hat{a})} D(\hat{a}) d \hat{a},
$$

where

$$
c=\left(\frac{1}{\left|W_{S}\right|} \int_{\hat{A}} D(\hat{a}) d \hat{a}\right)^{-1} .
$$

$c=1$ in the case where S is a compact connected Lie group. In particular, if χ and χ^{\prime} can be extended to L-invariant functions f and f^{\prime} on S, then $\left\langle\chi, \chi^{\prime}\right\rangle$ coincides with the inner product $\left\langle f, f^{\prime}\right\rangle$ in $L^{2}(S)$ (cf. Helgason [4]).

Fix a dominant integral form $\lambda \in D$. We define a finite subset D_{λ} of D by

$$
D_{\lambda}=\left\{\mu \in D ; \mu_{\mathrm{c}}=\lambda_{\mathrm{c}}, \mu \leqslant \lambda\right\}
$$

Since the system $\left\{\chi_{\mu} ; \mu \in D\right\}$ forms a basis of $\mathcal{R}_{W_{S}}(\hat{A})^{c}$, the matrix

$$
\left(\left\langle\chi_{\mu}, \chi_{\nu}\right\rangle\right)_{\mu, \nu \in D_{\lambda}}
$$

is a positive definite hermitian matrix. Let

$$
\left(b^{\mu \nu}\right)_{\mu, \nu \in D_{\lambda}}
$$

be the inverse matrix of the above matrix. In particular $b^{\lambda \lambda}>0$. For any $\mu \in D_{\lambda}$, we put

$$
c_{\lambda}^{\mu}=\frac{b^{\lambda \mu}}{\sqrt{\overline{d_{\lambda} b^{\lambda \lambda}}}}
$$

where d_{λ} is the degree of an irrducible representation of K with the highest weight λ. Then we have

Theorem 2.5. Let $\lambda \in D$ and ω_{λ} be the zonal spherical function belonging to the class of an irreducible representation of K with the highest weight λ. Then ω_{λ} restricted to \hat{A} is given by

$$
\omega_{\lambda}=\sum_{\mu \in D_{\lambda}} c_{\lambda}^{\mu} \bar{\chi}_{\mu}
$$

Proof. The idea of the following proof owes to Hua [6]. Let $\mu \in D_{\lambda}$. Then ω_{μ} restricted to \hat{A} is in $\mathcal{R}_{W_{S}}(\hat{A})^{c}$ by Theorem 2.3. It follows by Theorem 2.3 and Corollary of Theorem 2.4 that ω_{μ} has an expression

$$
\omega_{\mu}=\sum_{\nu \in D_{\lambda}}{c^{\prime}{ }_{\mu} \bar{\chi}_{\nu} \quad \text { with } c_{\mu}^{\prime \prime} \in \boldsymbol{R},{c^{\prime} \mu}_{\mu}^{\mu}>0, c_{\mu}^{\prime \nu}=0 \text { if } \nu>\mu . ~ . ~}_{\text {. }}
$$

We define an upper triangular matrix C^{\prime} by

$$
C^{\prime}=\left(c_{\mu}^{\prime \prime}\right)_{\nu, \mu_{\in} \in D_{\lambda}}
$$

Then we have

$$
\left(\left\langle\omega_{\mu}, \omega_{\nu}\right\rangle\right)_{\mu, \nu \in D_{\lambda}}={ }^{t} C^{\prime}\left(\left\langle\chi_{\mu}, \chi_{\nu}\right\rangle\right)_{\mu, \nu \in D_{\lambda}} C^{\prime}
$$

Since $\left\langle\omega_{\mu}, \omega_{\nu}\right\rangle=d_{\mu}^{-1} \delta_{\mu \nu}$, we have

$$
\left(d_{\mu} \delta_{\mu_{\nu}}\right)_{\mu, \nu \in D_{\lambda}}=C^{\prime-1} B^{\prime t} C^{\prime-1}
$$

where

$$
B^{\prime}=\left(b^{\prime \mu \nu}\right)_{\mu, \nu \in D_{\lambda}}=\left(\left\langle\bar{\chi}_{\mu}, \bar{X}_{\nu}\right\rangle\right)_{\mu, \nu \in D_{\lambda}}^{1} .
$$

It follows that

$$
C^{\prime}\left(d_{\mu} \delta_{\mu_{\nu}}\right)_{\mu, \nu \in D_{\lambda}}{ }^{t} C^{\prime}=B^{\prime}
$$

Comparing (μ, λ)-components of both sides, we have

$$
c_{\lambda}^{\prime \mu} d_{\lambda} c_{\lambda}^{\prime \lambda}=b^{\prime \mu \lambda}
$$

In particular

$$
\left(c_{\lambda}^{\prime \lambda}\right)^{2} d_{\lambda}=b^{\prime \lambda \lambda}, \quad \text { i.e. } \quad c_{\lambda}^{\lambda}=\sqrt{\frac{b^{\prime \lambda \lambda}}{d_{\lambda}}}
$$

hence

$$
c_{\lambda}^{\prime \mu}=\frac{b^{\prime \mu \lambda}}{d_{\lambda} c_{\lambda}^{\prime \lambda}}=\frac{b^{\prime \mu \lambda}}{\sqrt{d_{\lambda} b^{\prime \lambda \lambda}}}
$$

Since $b^{\prime \mu \nu}=b^{\nu \mu}$, we have

$$
c_{\lambda}^{\prime \mu}=\frac{b^{\lambda \mu}}{\sqrt{d_{\lambda} b^{\lambda \lambda}}}=c_{\lambda}^{\mu}
$$

Example. If S is a compact connected Lie group and (K, L) the symmetric pair with $K / L=S$ as mentioned before, then the set $\mathscr{D}(S)$ of equivalence classes of irreducible representations of S is in the bijective correspondence with $\mathscr{D}(K, L)$ by the assignment $\rho \mapsto \rho \boxtimes \rho^{*}$, wh ρ re ρ^{*} denotes the contragredient representation of $\rho . \quad \hat{A}$ is a maximal torus of the compact Lie group S. Let χ_{ρ} be the invariant character of \hat{A} for the dominant integral form in $D(K, L)$ corresponding to $\rho \boxtimes \rho^{*}$ by the bijection in Cororally of Theorem 2.4. Then it is nothing but the character of ρ. It follows from orthogonality relations of irreducible characters that the matrix $\left(b^{\lambda \mu}\right)$ is the identity matrix. Thus the zonal spherical function $\omega_{\rho \boxtimes \rho^{*}}$ belonging to $\rho \boxtimes \rho^{*}$ is given by

$$
\omega_{\rho \boxtimes \rho^{*}}=\frac{1}{d_{\rho}} \bar{\chi}_{\rho},
$$

where d_{ρ} is the degree of ρ.

3. Polynomial representations associated with symmetric bounded domains

Let D be an irreducible symmetric bounded domain with rank p realized in $\left(p^{c}\right)^{-}$as in Introduction. We shall use the same notation as in Introduction.

Let

$$
\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}
$$

be the fundamental root system of Σ with respect to the order $>$ and let $\Pi_{\mathrm{q}}=\Pi \cap \sum_{\mathrm{r}} . \quad$ It is known that Π_{f} is the fundamental root system of $\sum_{\mathrm{i}}, \Pi-\Pi_{\mathrm{r}}$ consists of one element, say α_{1}, which is the lowest root in \sum_{p}^{+}, and for any $\alpha=\sum_{i=1}^{i} m_{i} \alpha_{i} \in \sum_{p}^{+}, m_{1}=1$. Let \sum_{t}^{+}denote the set of positive compact roots. Put

$$
\mathfrak{b}=\{H \in \mathfrak{a} ;(\sqrt{-1} H, \Delta)=\{0\}\}
$$

Then we have the orthogonal decomposition

$$
\sqrt{-1} \mathfrak{t}=\sqrt{-1} \mathfrak{b} \oplus \sqrt{-1} \mathfrak{a}
$$

with respect to (,). We define an orthogonal transformation σ on $\sqrt{-1} \mathrm{t}$ by $\sigma \mid \mathfrak{b}=-1$ and $\sigma \mid \sqrt{-1} \mathfrak{a}=1$. Let

$$
\varpi=\frac{1}{2}(1+\sigma): \sqrt{-1} t \rightarrow \sqrt{-1} \mathfrak{a}
$$

be the orthogonal projection of $\sqrt{-1}$ t onto $\sqrt{-1} a$. Let κ be the unique involutive element of the Weyl group W_{t} of K such that $\kappa \Pi_{\mathrm{t}}=-\Pi_{\mathrm{r}}$. Since Σ_{p}^{+}is the set of weights on t^{C} of the irreducible K-module $\left(p^{C}\right)^{+}$, we have $\kappa \sum_{p}^{+}=\sum_{p}^{+}$and $\kappa \gamma_{1}=\alpha_{1}$. Put

$$
\Delta^{\prime}=\kappa \Delta=\left\{\gamma_{1}^{\prime}, \cdots, \gamma_{p}^{\prime}\right\}, \quad \gamma_{i}^{\prime}=\kappa \gamma_{i}(1 \leqslant i \leqslant p), \gamma_{1}^{\prime}=\alpha_{1} .
$$

It is the original maxiaml strongly orthogonal subsystem of Σ_{p}^{+}of HarishChandra [3]. For the system Δ^{\prime}, the orthogonal projection

$$
\varpi^{\prime}: \sqrt{-1} t \rightarrow \sqrt{-1} \mathfrak{a}^{\prime}
$$

onto the \boldsymbol{R}-span $\sqrt{-1} \mathfrak{a}^{\prime}$ of Δ^{\prime} is defined in the same way as for Δ. Put

$$
\begin{aligned}
& \boldsymbol{P}_{1}^{\prime}=\left\{\alpha \in \sum_{p}^{+} ; \boldsymbol{\sigma}^{\prime}(\alpha)=\frac{1}{2}\left(\gamma_{i}{ }^{\prime}+\gamma_{j}{ }^{\prime}\right) \text { for some } 1 \leqslant i \leqslant j \leqslant p\right\}, \\
& \boldsymbol{P}_{\mathbf{i}}^{\prime}=\left\{\alpha \in \sum_{p}^{+} ; \boldsymbol{\sigma}^{\prime}(\alpha)=\frac{1}{2} \gamma_{i}^{\prime} \text { for some } 1 \leqslant i \leqslant p\right\} \text {, } \\
& \boldsymbol{K}_{0}{ }^{\prime}=\left\{\alpha \in \sum_{\mathrm{i}} ; \varpi^{\prime}(\alpha)=\frac{1}{2}\left(\gamma_{i}{ }^{\prime}-\gamma_{j}{ }^{\prime}\right) \text { for some } 1 \leqslant i, j \leqslant p\right\} \text {, } \\
& \boldsymbol{K}_{\mathbf{i}}^{\prime}=\left\{\alpha \in \sum_{\mathrm{i}} ; \boldsymbol{\varpi}^{\prime}(\alpha)=\frac{1}{2} \gamma_{i}^{\prime} \text { for some } 1 \leqslant i \leqslant p\right\} .
\end{aligned}
$$

Then (Harish-Chandra [3]) Σ is the disjoint union of $\boldsymbol{P}_{1}^{\prime},-\boldsymbol{P}_{1}^{\prime}, \boldsymbol{P}_{\mathbf{1}}{ }^{\prime},-\boldsymbol{P}_{\mathbf{z}}{ }^{\prime}, \boldsymbol{K}_{0}{ }^{\prime}$, $\boldsymbol{K}_{\mathbf{i}}{ }^{\prime},-\boldsymbol{K}_{\mathbf{i}}{ }^{\prime}$ and we have

$$
\begin{aligned}
& \boldsymbol{\sigma}^{\prime} \boldsymbol{P}_{1}^{\prime}=\left\{\frac{1}{2}\left(\gamma_{i}^{\prime}+\gamma_{j}^{\prime}\right) ; 1 \leqslant i \leqslant i \leqslant p\right\}, \\
& \boldsymbol{\sigma}^{\prime} \boldsymbol{P}_{i}^{\prime}=\left\{\frac{1}{2} \gamma_{i}^{\prime} ; 1 \leqslant i \leqslant p\right\} \quad \text { if } \quad \boldsymbol{P}_{i}^{\prime} \neq \phi, \\
& \boldsymbol{\sigma}^{\prime} \boldsymbol{K}_{0}^{\prime}-\{0\}=\left\{ \pm \frac{1}{2}\left(\gamma_{i}^{\prime}-\gamma_{j}^{\prime}\right) ; 1 \leqslant i<j \leqslant p\right\}, \\
& \boldsymbol{\sigma}^{\prime} \boldsymbol{K}_{i}^{\prime}=\left\{\frac{1}{2} \gamma_{i}^{\prime} ; 1 \leqslant i \leqslant p\right\} \quad \text { if } \quad \boldsymbol{P}_{\frac{1}{2}}^{\prime} \neq \phi .
\end{aligned}
$$

Furthermore the multiplicity (with respect to ϖ^{\prime}) of any γ_{i}^{\prime} is 1 and that of any $\frac{1}{2} \gamma_{i}^{\prime}$ is even. It follows that
$\sigma^{\prime} \sum-\{0\}=\left\{\begin{array}{l}\left\{ \pm \frac{1}{2}\left(\gamma_{i}^{\prime} \pm \gamma_{j}^{\prime}\right) ; 1 \leqslant i<i \leqslant p, \pm \gamma_{i} ; 1 \leqslant i \leqslant p\right\} \text { if } \boldsymbol{P}_{\dot{z}}^{\prime}=\phi \\ \left\{ \pm \frac{1}{2}\left(\gamma_{i}^{\prime} \pm \gamma_{j}^{\prime}\right) ; 1 \leqslant i<i \leqslant p, \pm \gamma_{i}^{\prime}, \pm \frac{1}{2} \gamma_{i}^{\prime} ; 1 \leqslant i \leqslant p\right\} \text { if } \boldsymbol{P}_{\boldsymbol{z}}{ }^{\prime} \neq \phi .\end{array}\right.$ Moreover we have (Moore [8])
$\varpi^{\prime} \Pi-\{0\}=\left\{\begin{array}{l}\left\{\gamma_{1}^{\prime}, \frac{1}{2}\left(\gamma_{2}^{\prime}-\gamma_{1}^{\prime}\right), \cdots, \frac{1}{2}\left(\gamma_{p}{ }^{\prime}-\gamma_{p-1}^{\prime}\right)\right\} \quad \text { if } \quad \boldsymbol{P}_{\mathbf{i}}^{\prime}=\phi \\ \left\{\gamma_{1}^{\prime}, \frac{1}{2}\left(\gamma_{2}^{\prime}-\gamma_{1}{ }^{\prime}\right), \cdots, \frac{1}{2}\left(\gamma_{p}{ }^{\prime}-\gamma_{p-1}^{\prime}\right),-\frac{1}{2} \gamma_{p}{ }^{\prime}\right\} \quad \text { if } \quad \boldsymbol{P}_{\mathbf{i}}{ }^{\prime} \neq \phi,\end{array}\right.$
and
$\varpi^{\prime} \Pi_{\mathrm{t}}-\{0\}=\left\{\begin{array}{l}\left\{\frac{1}{2}\left(\gamma_{2}^{\prime}-\gamma_{1}{ }^{\prime}\right), \cdots, \frac{1}{2}\left(\gamma_{p}^{\prime}-\gamma_{p-1}^{\prime}\right)\right\} \quad \text { if } \quad \boldsymbol{P}_{\frac{1}{2}}^{\prime}=\phi \\ \left\{\frac{1}{2}\left(\gamma_{2}^{\prime}-\gamma_{1}^{\prime}\right), \cdots, \frac{1}{2}\left(\gamma_{p}^{\prime}-\gamma_{p-1}^{\prime}\right),-\frac{1}{2} \gamma_{p}^{\prime}\right\} \quad \text { if } \quad \boldsymbol{P}_{\frac{1}{2}} \neq \phi .\end{array}\right.$
Lemma 1. 1)

$$
\varpi \alpha_{1}=\left\{\begin{array}{lll}
\gamma_{p} & \text { if } & \boldsymbol{P}_{\frac{1}{2}}^{\prime}=\phi \\
\frac{1}{2} \gamma_{p} & \text { if } & \boldsymbol{P}_{\frac{1}{2}}^{\prime} \neq \phi
\end{array}\right.
$$

2) (Schmid [11]) If $\boldsymbol{P}_{\mathbf{i}}^{\prime} \neq \phi$ and

$$
\sum_{\beta \in P_{\frac{1}{\prime}}^{\prime}} m_{\beta} \beta \quad \text { with } \quad m_{\beta} \geqslant 0
$$

is in the \boldsymbol{R}-span $\left\{\boldsymbol{P}_{1}^{\prime}\right\}_{\boldsymbol{R}}$ of $\boldsymbol{P}_{1}^{\prime}$, then $m_{\beta}=0$ for any β.
Proof. For any $\alpha \in \sum_{p}{ }^{+}=\boldsymbol{P}_{1}^{\prime} \cup \boldsymbol{P}^{\prime}{ }^{\prime}, \boldsymbol{\sigma}^{\prime} \alpha$ can be writen as

$$
\begin{aligned}
\varpi^{\prime} \alpha= & \frac{1}{2} m_{1}\left(\gamma_{2}^{\prime}-\gamma_{1}^{\prime}\right)+\frac{1}{2} m_{2}\left(\gamma_{3}^{\prime}-\gamma_{2}^{\prime}\right)+\cdots+\frac{1}{2} m_{p-1}\left(\gamma_{p}^{\prime}-\gamma_{p-1}^{\prime}\right) \\
& -\frac{1}{2} m_{p} \gamma_{p}^{\prime}+m_{p+1} \gamma_{1}^{\prime} \\
= & \frac{1}{2}\left(2 m_{p^{+1}}-m_{1}\right) \gamma_{1}^{\prime}+\frac{1}{2}\left(m_{1}-m_{2}\right) \gamma_{2}^{\prime}+\cdots+\frac{1}{2}\left(m_{p-2}-m_{p-1}\right) \gamma_{p-1}^{\prime} \\
& +\frac{1}{2}\left(m_{p-1}-m_{p}\right) \gamma_{p}^{\prime}
\end{aligned}
$$

where $m_{i} \in \boldsymbol{Z}, m_{i} \geqslant 0, m_{p+1}=1$. Since $\varpi^{\prime} \alpha=\frac{1}{2}\left(\gamma_{i}{ }^{\prime}+\gamma_{j}{ }^{\prime}\right)$ or $\frac{1}{2} \gamma_{i}{ }^{\prime}$ for some i, j, we have

$$
2 \geqslant m_{1} \geqslant m_{2} \geqslant \cdots \geqslant m_{p-1} \geqslant m_{p} \geqslant 0 .
$$

Furthermore $\alpha \in \boldsymbol{P}_{1}^{\prime}$ (resp. $\alpha \in \boldsymbol{P}_{\frac{1}{2}}$) if and only if $m_{p}=0$ (resp. $m_{p}=1$).

1) If $\boldsymbol{P}_{\frac{1}{2}}{ }^{\prime}=\phi$, then $\gamma_{1} \in \boldsymbol{P}_{1}^{\prime}$. For $\alpha=\gamma_{1}$, the coefficients in the above expression are $m_{1}=\cdots=m_{p-1}=2, m_{p}=0$ and $\varpi^{\prime} \gamma_{1}=\gamma_{p}{ }^{\prime}$. If $\boldsymbol{P}_{\frac{1}{2}}{ }^{\prime} \neq \phi$, then for $\alpha=\gamma_{1}$, the coefficients are $m_{1}=\cdots=m_{p-1}=2, m_{p}=1$ and $\sigma^{\prime} \gamma_{1}=\frac{1}{2} \gamma_{p}^{\prime}$. Now the assertion 1) follows from $\varpi \alpha_{1}=\kappa^{-1} \varpi^{\prime} \kappa \alpha_{1}=\kappa^{-1} \varpi^{\prime} \gamma_{1}$.
2) Let

$$
\alpha=\sum_{i=1}^{l} n_{i} \alpha_{i} \quad \text { with } \quad n_{i} \in Z, n_{i} \geqslant 0
$$

be in $\Sigma_{\mathfrak{p}}{ }^{+}$. It follows from the first argument that
(a) if $\alpha \in \boldsymbol{P}_{1}^{\prime}, \sigma^{\prime} \alpha_{i}=-\frac{1}{2} \gamma_{p}^{\prime}$, then $n_{i}=0$,
(b) if $\alpha \in \boldsymbol{P}_{\frac{1}{2}}{ }^{\prime}$, then there exists $\alpha_{i} \in \Pi_{\mathfrak{q}}$ such that $n_{i}>0$ and $\tau^{\prime} \alpha_{i}=-\frac{1}{2} \gamma_{p}{ }^{\prime}$. This implies the assertion 2).

Now $\boldsymbol{P}_{1}, \boldsymbol{P}_{\frac{1}{2}}, \boldsymbol{K}_{0}$ and $\boldsymbol{K}_{\frac{1}{2}}$ are defined for Δ in the same way as for Δ^{\prime}. Then $\boldsymbol{\kappa}$ transforms \boldsymbol{P}_{1} (resp. $\boldsymbol{P}_{\frac{1}{2}}, \boldsymbol{K}_{0}, \boldsymbol{K}_{\frac{1}{2}}$) onto $\boldsymbol{P}_{1}{ }^{\prime}$ (resp. $\left.\boldsymbol{P}_{\frac{1}{2}}{ }^{\prime}, \boldsymbol{K}_{0}{ }^{\prime}, \boldsymbol{K}_{\frac{1}{2}}{ }^{\prime}\right)$. It follows that the above mentioned properties due to Harish-Chandra are also satisfied by our objects for Δ. But Moore's results should be modified as follows.

$$
\begin{aligned}
& \varpi \Pi-\{0\}=\left\{\begin{array}{lll}
\left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \cdots, \frac{1}{2}\left(\gamma_{p-1}-\gamma_{p}\right), \gamma_{p}\right\} & \text { if } & \boldsymbol{P}_{\frac{1}{2}}=\phi \\
\left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \cdots, \frac{1}{2}\left(\gamma_{p-1}-\gamma_{p}\right), \frac{1}{2} \gamma_{p}\right\} & \text { if } & \boldsymbol{P}_{\frac{1}{2}} \neq \phi .
\end{array}\right. \\
& \varpi \Pi_{\mathfrak{p}}-\{0\}=\left\{\begin{array}{lll}
\left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \cdots, \frac{1}{2}\left(\gamma_{p-1}-\gamma_{p}\right)\right\} & \text { if } & \boldsymbol{P}_{\frac{1}{2}}=\phi \\
\left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \cdots, \frac{1}{2}\left(\gamma_{p-1}-\gamma_{p}\right), \frac{1}{2} \gamma_{p}\right\} & \text { if } & \boldsymbol{P}_{\frac{1}{2}} \neq \phi .
\end{array}\right.
\end{aligned}
$$

They follows from Lemma 1, 1) and

$$
\varpi \Pi_{\mathrm{t}}=\kappa^{-1} \varpi^{\prime} \kappa \Pi_{\mathrm{t}}=-\kappa^{-1} \varpi^{\prime} \Pi_{\mathrm{t}} .
$$

Note that $\boldsymbol{K}_{\frac{1}{2}} \subset \Sigma_{\mathrm{t}}^{+}$while $\boldsymbol{K}_{\frac{1}{2}}{ }^{\prime} \subset-\Sigma_{\mathrm{t}}^{+}$.
Lemma 2. 1) The order $>$ is a compatible order for \sum with respect to σ in the sense of 2.
2) $\varpi K_{0}-\{0\}$ is a root system with the fundamental root system

$$
\left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \cdots, \frac{1}{2}\left(\gamma_{p-1}-\gamma_{p}\right)\right\}
$$

with respect to the order $>$.
3) If $\boldsymbol{P}_{\frac{1}{2}} \neq \phi$ and

$$
\sum_{\beta \in P_{\frac{1}{2}}} m_{\beta} \beta \quad \text { with } \quad m_{\beta} \geqslant 0
$$

is in the \boldsymbol{R}-span $\left\{\boldsymbol{P}_{1}\right\}_{\boldsymbol{R}}$ of \boldsymbol{P}_{1}, then $m_{\beta}=0$ for any β.
Proof. 1) is clear from the form of $\varpi \Pi-\{0\}$ above.
2) is clear since

$$
\varpi \boldsymbol{K}_{0}-\{0\}=\left\{ \pm \frac{1}{2}\left(\gamma_{i}-\gamma_{j}\right) ; 1 \leqslant i<j \leqslant p\right\} .
$$

3) follows from Lemma 1, 2) and $\kappa \boldsymbol{P}_{\frac{1}{2}}=\boldsymbol{P}_{\frac{1}{2}}{ }^{\prime}, \kappa \boldsymbol{P}_{1}=\boldsymbol{P}_{1}^{\prime}$. q.e.d.

For $\lambda \in \sqrt{-1} t, \lambda \neq 0$, we define as in 2

$$
\lambda^{*}=\frac{2}{(\lambda, \lambda)} \lambda
$$

and put

$$
Z_{0}=\frac{1}{2} \sum_{\beta \in \Delta} \gamma^{*}
$$

Since $\left(\frac{1}{2} \gamma_{i}, \gamma_{j}{ }^{*}\right)=\delta_{i j}$ for $1 \leqslant i, j \leqslant p$, we have

$$
\begin{aligned}
& \boldsymbol{P}_{1}=\left\{\alpha \in \Sigma_{p} ;\left(\alpha, Z_{0}\right)=1\right\}, \\
& \boldsymbol{P}_{\frac{1}{2}}=\left\{\alpha \in \Sigma_{p} ;\left(\alpha, Z_{0}\right)=\frac{1}{2}\right\}, \\
& \boldsymbol{K}_{0}=\left\{\alpha \in \Sigma_{t} ;\left(\alpha, Z_{0}\right)=0\right\}, \\
& \boldsymbol{K}_{\frac{1}{2}}=\left\{\alpha \in \Sigma_{\mathfrak{t}} ;\left(\alpha, Z_{0}\right)=\frac{1}{2}\right\} .
\end{aligned}
$$

Hence eigenvalues of ad Z_{0} are $\pm 1 ; \pm \frac{1}{2}$ on $\mathfrak{p}^{C}, 0, \pm \frac{1}{2}$ on \mathfrak{l}^{C}. Let $\mathfrak{p}_{ \pm 1}^{C}, \mathfrak{p}_{ \pm \frac{1}{c}}^{C}, \mathfrak{t}_{0}^{C}$, $\mathfrak{f}_{ \pm \frac{1}{c}}^{C}$ denote the corresponding eigenspaces. Note that the origin X_{0} of the Shilov boundary S is in \mathfrak{p}_{-1}^{C}.

The following results are due to Korányi-Wolf [7]. We define an element c of G^{c}, which is called Cayley transform, by

$$
c=\exp \left(-\frac{\pi}{4} \sum_{\gamma \in \Delta}\left(X_{\gamma}+X_{-\gamma}\right)\right)
$$

and define an automorphism of G^{c} by

$$
\theta(x)=c^{2} x c^{-2} \quad \text { for } \quad x \in G^{c}
$$

The automorphism $\operatorname{Ad} c^{2}$ of g^{c} obtained by differentiating θ will be also denoted by the same letter θ. Then $\theta^{4}=1$ and on $\sqrt{-1} t$ it coincides with $-\sigma$. Put

$$
\begin{aligned}
& \mathrm{g}_{0}=\left\{X \in \mathrm{~g} ; \theta^{2} X=X\right\}, \\
& \mathfrak{t}_{0}=\mathrm{g}_{0} \cap \mathfrak{Z},
\end{aligned}
$$

and

$$
\mathfrak{p}_{0}=\mathfrak{g}_{0} \cap \mathfrak{p}
$$

Then X_{0} is θ-invariant and

$$
\mathfrak{t}_{0}=\left\{X \in \mathfrak{f} ;\left[Z_{0}, X\right]=0\right\} .
$$

Hence \mathfrak{f}_{0} is a real form of \mathfrak{f}_{0}^{C} containing \mathfrak{t} as a maximal abelian subalgebra. \boldsymbol{K}_{0} is nothing but the set of roots of \mathfrak{q}_{0}^{C} with respect to t^{C}. The complexification \mathfrak{p}_{0}^{C} of \mathfrak{p}_{0} is the direct sum of \mathfrak{p}_{+1}^{c} and $\mathfrak{p}_{-1}^{c} . \quad \mathfrak{g}_{0}$ is a reductive subalgebra of \mathfrak{g} with a Cartan decomposition

$$
\mathfrak{g}_{0}=\mathfrak{f}_{0}+\mathfrak{p}_{0}
$$

Let G_{0} (resp. K_{0}) be the connected subgroup of G generated by g_{0} (resp. by \boldsymbol{f}_{0}) and let

$$
L_{0}=\left\{k \in K_{0} ; \operatorname{Ad} k X_{0}=X_{0}\right\}=K_{0} \cap L
$$

Put

$$
D_{0}=D \cap \mathfrak{p}_{-1}^{c}
$$

and

$$
S_{0}=S \cap p_{-1}^{c} .
$$

Then G_{0} acts on D_{0} transitively and $K \cap G_{0}$ coincides with K_{0}, so that D_{0} is identified with the quotient space G_{0} / K_{0}. Furthermore K_{0} acts on S_{0} transitively so that S_{0} is identified with $K_{0} / L_{0} . \quad D_{0}$ is totally geodesic in D with respect to Bergmann metric of D and it is also an irreducible symmeric bounded domain with the same rank as $D . S_{0}$ is the Shilov boundary of D_{0}. The complex structure of D_{0} is given at the origin by ad H_{0} with $\sqrt{\overline{-1}} H_{0}=Z_{0}$. We have

$$
\tau Z=Z_{0} .
$$

The inclusion $D_{0} \subset \mathfrak{p}_{-1}^{c}$ is nothing but the Harish-Chandra's imbedding of $D_{0}=G_{0} / K_{0} . \quad\left(K_{0}, L_{0}\right)$ is a symmetric pair with respect to θ, having the same rank as D. Hence

$$
\mathfrak{I}_{0}=\left\{X \in \mathfrak{t}_{0} ; \theta X=X\right\}
$$

is the Lie algebra of L_{0} and \mathfrak{a} is a maximal abelian subalgebra of

$$
\mathfrak{s}_{0}=\left\{X \in \mathfrak{f}_{0} ; \theta X=-X\right\} .
$$

We can define a semi-linear transformation $X \mapsto \bar{X}$ of p_{-1}^{c} by

$$
\bar{X}=\tau \theta X=\theta \tau X \quad \text { for } \quad X \in \mathfrak{p}_{-1}^{c} .
$$

Put

$$
\mathfrak{p}_{-1}=\left\{X \in \mathfrak{p}_{-1}^{c} ; \bar{X}=X\right\}
$$

It is a real form of \mathfrak{p}_{-1}^{c} and is invariant under the adjoint action of L_{0} on \mathfrak{p}_{-1}^{c}. The correspondence $X \mapsto\left[X, X_{0}\right]$ gives an isomorphism

$$
\psi: \sqrt{-1} \tilde{B}_{0} \rightarrow \mathfrak{p}_{-1}
$$

which is equivariant with respect to the adjoint actions of L_{0}.
Now we shall consider the polynomial representation $S^{*}\left(\left(p^{c}\right)^{-}\right)$of K. Let $S_{*}\left(\left(\mathfrak{p}^{c}\right)^{+}\right)$be the symmetric algebra over $\left(\mathfrak{p}^{c}\right)^{+} . K$ acts on $S_{*}\left(\left(p^{c}\right)^{+}\right)$by the natural extension Ad of the adjoint action of K on $\left(p^{C}\right)^{+}$. On the other hand, the non-degenerate pairing

$$
\left(\mathfrak{p}^{c}\right)^{+} \times\left(\mathfrak{p}^{C}\right)^{-} \rightarrow \boldsymbol{C}
$$

by means of the Killing form (,) induces the identification

$$
S_{*}\left(\left(p^{c}\right)^{+}\right)=S^{*}\left(\left(p^{c}\right)^{-}\right)
$$

This identification is compatible with the actions of K, since the Killing form is invariant under the adjoint action of K. In the same way we have a K_{0}-equivariant identification

$$
S_{*}\left(\mathfrak{p}_{+1}^{c}\right)=S^{*}\left(\mathfrak{p}_{-1}^{c}\right)
$$

$S_{*}\left(\mathfrak{p}_{+1}^{c}\right)$ can be considered as a K_{0}-submodule of $S_{*}\left(\left(\mathfrak{p}^{c}\right)^{+}\right)$by means of the natural monomorphism $S_{*}\left(\mathfrak{p}_{+1}^{C}\right) \rightarrow S_{*}\left(\left(\mathfrak{p}^{C}\right)^{+}\right)$induced from the inclusion $\mathfrak{p}_{+1}^{C} \subset\left(\mathfrak{p}^{C}\right)^{+}$.

Theorem 3.1. (i) Any irreducible K-submodule of $S_{*}\left(\left(\mathfrak{p}^{c}\right)^{+}\right)$(resp. K_{0}-submodule of $\left.S_{*}\left(\mathfrak{p}_{+1}^{C}\right)\right)$ is contained exactly once in $\left.S_{*}\left(\mathfrak{p}^{C}\right)^{+}\right)\left(\right.$resp. in $\left.S_{*}\left(\mathfrak{p}_{+1}^{C}\right)\right)$.
(ii) For an irreducible K-submodule V of $S_{*}\left(\left(p^{C}\right)^{+}\right)$, we put

$$
V_{0}=V \cap S_{*}\left(\mathfrak{p}_{+1}^{c}\right)
$$

Then $V \mapsto V_{0}$ is the one to one correspondence between the set of irreducible K-submodules of $S_{*}\left(\left(\mathfrak{p}^{c}\right)^{+}\right)$and the set of irreducible K_{0}-submodules of $S_{*}\left(\mathfrak{p}_{+1}^{c}\right)$ in such a way that

1) The highest weights on \mathfrak{t}^{c} of V and V_{0} are the same.
2) The subspace of L-invariants in V is 1-dimensional and contained in V_{0}.
(iii) The highest weight $\lambda \in \sqrt{-1} \mathrm{t}$ of an irreducible K-submodule V of $S_{*}\left(\left(\mathfrak{p}^{c}\right)^{+}\right)$is of the form

$$
\lambda=\sum_{i=1}^{p} n_{i} \gamma_{i}, \quad n_{i} \in Z, n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{p} \geqslant 0 .
$$

If $\sum_{i} n_{i}=\nu$, then V is contained in $S_{\nu}\left(\left(p^{c}\right)^{+}\right)$. i.e. $\mathcal{S}^{\nu}(D) \subset \mathcal{S}^{\nu}(K, L)$ under the notation in Introduction.

For the proof of the theorem, we need the following
Lemma 3. (Murakami [9]) Let be a Lie algebra over \boldsymbol{R} and ${ }^{\circ}$ the complexification of \mathfrak{f}. Assume that there exists $Y \in \sqrt{-1} \subset \mathfrak{L}^{C}$ such that \mathfrak{f}^{C} is the direct sum of 0 -eigenspace $\mathfrak{t}_{0}^{C},(+1)$-eigenspace \mathfrak{f}_{+}^{C} and (-1)-eigenspace $\mathscr{f}^{C}-$ of ad Y, respectively. Let (ρ, V) be a complex irreducible \mathfrak{f}-module with \mathfrak{f}-invariant hermitian inner product. Denoting the extension to \mathbb{Z}^{c} of ρ by the same letter ρ, let $a_{1}>a_{2}>\cdots>a_{m}\left(a_{i} \in \boldsymbol{R}\right)$ be eigenvalues of $\rho(Y)$, and S_{t} be a_{t}-eigenspace of $\rho(Y)$ $(1 \leqslant t \leqslant m)$. Put $\mathfrak{f}_{0}=\mathfrak{t}_{0}^{C} \cap \mathfrak{t}\left(\right.$, which is a real form of $\left.\mathfrak{E}_{0}^{C}\right)$. Then

1) $a_{t}=a_{1}-t+1(1 \leqslant t \leqslant m)$.
2) Each S_{t} is a \mathfrak{f}_{0}-submodule of V and

$$
V=S_{1}+\cdots+S_{m}
$$

is the orthogonal direct sum.
3) S_{1} and S_{m} are irreducible \mathfrak{f}_{0}-submodules of V and characterized by

$$
\begin{array}{ll}
S_{1}=\{v \in V ; \rho(X) v=0 & \text { for any } \left.X \in \mathscr{f}_{+C}^{C}\right\}, \\
S_{m}=\{v \in V ; \rho(X) v=0 & \text { for any } \left.X \in \mathfrak{t}_{-1}^{C}\right\} .
\end{array}
$$

Proof of Theorem 3.1. The infinitesimal action of \mathfrak{f}^{c} on $S_{*}\left(\left(p^{c}\right)^{+}\right)$induced from the adjoint action Ad of K will be denoted by ad.

Let V be an irreducible K-submodule of $S_{*}\left(\left(\mathfrak{p}^{C}\right)^{+}\right)$. Since Z is in the center of \mathfrak{Z}^{c}, it follows from Schur's lemma that V is contained in an eigenspace of $\operatorname{ad} Z$ in $S_{*}\left(\left(p^{C}\right)^{+}\right)$. But since ad Z is the scalor operator ν on $S_{\nu}\left(\left(p^{C}\right)^{+}\right), V$ is contained in $S_{\nu}\left(\left(p^{C}\right)^{+}\right)$for some ν. Let $\lambda \in \sqrt{-1} t$ be the highest weight of V. Put $Y=2 Z_{0} \in \sqrt{-1} \subset{ }^{\circ}$. Then the decomposition

$$
\mathfrak{t}^{C}=\mathfrak{t}_{0}^{C}+\mathfrak{t}_{\frac{1}{2}}^{C}+\mathfrak{t}_{-\frac{1}{2}}^{C}
$$

satisfies the assumption in Lemma 3. So we have a decomposition

$$
V=S_{1}+\cdots+S_{m}
$$

into K_{0}-submodules, where S_{1} is an irrducible K_{0}-submodule and is the eigenspace for the maximum eigenvalue of ad Y in V. It is characterized by

$$
S_{1}=\left\{v \in V ; \operatorname{ad}(X) v=0 \quad \text { for any } X \in \mathbb{t}_{\frac{1}{c}}^{C}\right\} .
$$

Thus a highest weight vector v_{λ} of the K-module V is contained in S_{1} because of $K_{\frac{1}{2}} \subset \sum_{\mathrm{t}}{ }^{+}$. It follows that putting $V_{0}=S_{1}, V_{0}$ is an irreducible K_{0}-submodule of $S_{\nu}\left(\left(p^{C}\right)^{+}\right)$with the highest weight λ.

We shall show that $V_{0}=V \cap S_{*}\left(\mathfrak{p}_{+1}^{c}\right)$. We have the decomposition

$$
S_{\nu}\left(\left(\mathfrak{p}^{C}\right)^{+}\right)=\sum_{r+s=v} S_{r}\left(\mathfrak{p}_{1}^{C}\right) \otimes S_{s}\left(\mathfrak{p}_{\frac{1}{2}}^{C}\right)
$$

as K_{0}-modules. ad Z_{0} is the scalor operator $r+\frac{1}{2} s=\frac{1}{2}(r+\nu)$ on $S_{r}\left(p_{1}^{C}\right) \otimes S_{s}\left(p_{\frac{1}{2}}^{C}\right)$. In the same way as the first argument, we can get the decompsotion

$$
V=V_{1}+\cdots+V_{k}
$$

into irreducible K_{0}-submodules such that any V_{i} is contained in $S_{r}\left(\mathfrak{p}_{1}^{C}\right) \otimes S_{s}\left(\mathfrak{p}_{\frac{1}{2}}^{C}\right)$ for some (r, s). Since $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$is K-isomorphic with $S^{*}(S) \subset C^{\infty}(S), V$ has an L-invariant $w \neq 0$. Decompose w as

$$
w=w_{1}+\cdots+w_{k}, \quad w_{i} \in V_{i}(1 \leqslant i \leqslant k) .
$$

At least one of the w_{i} 's, say w_{1}, is not zero. Let $\lambda_{1} \in \sqrt{-1} t$ be the highest weight of the irreducible K_{0}-module V_{1}. Since w_{1} is a non-zero L_{0}-invariant of V_{1}, V_{1} is a spherical K_{0}-module relative to $L_{0} . \quad\left(K_{0}, L_{0}\right)$ is a symmetric pair, \mathfrak{a} is a maximal abelian subalgebra of \mathfrak{z}_{0} and the order $>$ on $\sqrt{-1} \mathrm{t}$ is a compatible order for \boldsymbol{K}_{0} with respect to σ by Lemma 1,1), so we shall use the notations
$\Gamma\left(K_{0}, L_{0}\right), Z\left(K_{0}, L_{0}\right), D\left(K_{0}, L_{0}\right)$ in 2. Then it follows from Theorem 2.3 that $\lambda_{1} \in D\left(K_{0}, L_{0}\right)$. On the other hand, if $V_{1} \subset S_{r}\left(p_{1}^{C}\right) \otimes S_{s}\left(\mathfrak{p}_{\frac{1}{2}}^{C}\right), \lambda_{1}$ is of the form

$$
\lambda_{1}=\sum_{\alpha \in P_{1}} m_{a} \alpha+\sum_{\beta \in P_{\frac{1}{2}}} m_{\beta} \beta, \quad m_{\alpha}, m_{\beta} \in Z, m_{\infty} \geqslant 0, m_{\beta} \geqslant 0
$$

with $\sum m_{a}=r, \sum m_{\beta}=s$. Since $D\left(K_{0}, L_{0}\right) \subset \sqrt{-1} \mathfrak{a}=\{\Delta\}_{R} \subset\left\{\boldsymbol{P}_{1}\right\}_{R}$, we have

$$
\sum_{\beta \in \boldsymbol{P}_{\frac{1}{z}}} m_{\beta} \beta \in\left\{\boldsymbol{P}_{1}\right\}_{\boldsymbol{R}}
$$

It follows from Lemma 2,3) that $r=\nu, s=0$, i.e. $V_{1} \subset V \cap S_{\nu}\left(\mathfrak{p}_{1}^{C}\right)$. On the other hand, $V \cap S_{\nu}\left(p_{1}^{C}\right) \subset V_{0}$ since the possible maximum eigenvalue of ad Y on V is 2ν. Thus we have that $V_{0}=V_{1}=V \cap S_{\nu}\left(p^{C}\right)$.

The above argument shows also that any L-invariant in V is contained in V_{0}. It is unique up to scalor since (K_{0}, L_{0}) is a symmetric pair.

Conversely, let V_{0} be an irreducible K_{0}-submodule of $S_{*}\left(\mathfrak{p}_{+1}^{c}\right)$ with the highest weight $\lambda \in \sqrt{-1}$. In the same way as the first argument, we know that V_{0} is contained in $S_{\nu}\left(p_{+1}^{c}\right)$ for some ν. Let $v_{\lambda} \in V_{0}$ be a highest weight vector. Then ad $\mathfrak{f}_{\frac{1}{2} v_{\lambda}}^{C}=\{0\}$ because of $\left[\mathfrak{t}_{\frac{1}{2}}^{C}, \mathfrak{p}_{+1}^{C}\right]=\{0\}$. Hence ad $X_{w} v_{\lambda}=0$ for any $\alpha \in \Sigma_{t}^{+}$. We define V to be the \boldsymbol{C}-span of $\left\{\operatorname{Ad} k v_{\lambda} ; k \in K\right\}$ in $S_{\nu}\left(\left(\mathfrak{p}^{C}\right)^{+}\right)$. Then V is an irreducible K-submodule of $S_{*}\left(\left(\mathfrak{p}^{C}\right)^{+}\right)$with the highest weight $\lambda \in \sqrt{-1} \mathrm{t}$.

It is easy to see that each of the above correspondences $V \mapsto V_{0}$ and $V_{0} \mapsto V$ is the inverse of the other. This proves assertions (i) and (ii).
(iii) We have $\left[\frac{1}{2} \gamma_{i}^{*}, X_{-\gamma_{j}}\right]=-\delta_{i j} X_{-\gamma_{j}}(1 \leqslant i, j \leqslant p)$ because of $\left(\frac{1}{2} \gamma_{j}^{*}, \gamma_{i}\right)$ $=\delta_{i j}(1 \leqslant i, j \leqslant p)$. It follows that for $H=2 \pi \sqrt{-1} \sum_{i=1}^{p} x_{i}\left(\frac{1}{2} \gamma_{i}^{*}\right) \in \mathfrak{a}$ we have

$$
\operatorname{Ad}(\exp H) X_{0}=-\sum_{i=1}^{p} \exp \left(-2 \pi \sqrt{-1} x_{i}\right) X_{-\gamma_{i}}
$$

Thus we have

$$
\Gamma\left(K_{0}, L_{0}\right)=2 \pi \sqrt{-1} \sum_{i=1}^{p} \boldsymbol{Z}\left(\frac{1}{2} \gamma_{i}^{*}\right)
$$

and

$$
Z\left(K_{0}, L_{0}\right)=\sum_{i=1}^{p} Z \gamma_{i}
$$

It follows from Lemma 2,2) that

$$
D\left(K_{0}, L_{0}\right)=\left\{\sum_{i=1}^{p} n_{i} \gamma_{i} ; n_{i} \in Z, n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{p}\right\}
$$

Therefore λ is of the form

$$
\lambda=\sum_{i=1}^{p} n_{i} \gamma_{i} \quad \text { with } \quad n_{i} \in Z, n_{1} \geqslant \cdots \geqslant n_{p}
$$

On the other hand, λ is of the form

$$
\lambda=\sum_{\alpha \in P_{1}} m_{a} \alpha \quad \text { with } \quad m_{a} \in Z, m_{a} \geqslant 0
$$

which implies that $n_{1} \geqslant \cdots \geqslant n_{p} \geqslant 0$. If $V \subset S_{\nu}\left(\left(\mathfrak{p}^{C}\right)^{+}\right)$, then $V_{0} \subset S_{\nu}\left(\mathfrak{p}_{+1}^{C}\right)$ and ad Z_{0} is the scalor operator ν on V_{0}, which equals $\left(\lambda, Z_{0}\right)=\sum_{i=1}^{p} n_{i}$. q.e.d.

Remark. In terms of polynomial functions $S^{*}\left(\left(p^{C}\right)^{-}\right)$, for an irreducible K submodule V of $S^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right), V_{0}$ is obtained by restriction to \mathfrak{p}_{-1}^{C} of functions in V.

Proof of Theorem A. Orthogonality relations for the $S_{\lambda}^{*}(D)$'s (resp. for the $S_{\lambda}^{*}(S)$'s) and the assertion that the restriction $S_{\lambda}^{*}(D) \rightarrow S_{\lambda}^{*}(S)$ is a similitude follow from Schur's lemma. So it suffices to show that the cardinalities of $\mathcal{S}^{\nu}(D)$ and $\mathcal{S}^{\nu}(K, L)$ are the same.

From the first argument in the proof of Theorem 3.1 (iii), we see that $\psi\left(\frac{1}{2} \gamma^{*}\right)=X_{-\gamma}(\gamma \in \Delta)$ for the L_{0}-equivariant isomorphism $\psi: \sqrt{ } \overline{-1} \mathfrak{B}_{0} \rightarrow \mathfrak{p}_{-1}$. We put

$$
\mathfrak{a}^{-}=\psi(\sqrt{-1} \mathfrak{a})=\left\{X_{-\gamma} ; \gamma \in \Delta\right\}_{R} \subset \mathfrak{p}_{-1}
$$

Since the Weyl group $W_{S_{0}}$ of S_{0} is isomorphic with the group of permutations of Δ by Lemma 2,2), the "Weyl group" $W_{S_{0}}^{-}=N_{L_{0}}\left(\mathfrak{a}^{-}\right) / Z_{L_{0}}\left(\mathfrak{a}^{-}\right)$, where $N_{L_{0}}\left(\mathfrak{a}^{-}\right)$ (resp. $Z_{L_{0}}\left(\mathfrak{a}^{-}\right)$) is the normalizer (resp. centralizer) of \mathfrak{a}^{-}in L_{0}, is isomorphic with the group of permutations of $\left\{X_{-\gamma} ; \gamma \in \Delta\right\}$. On the other hand, since $S_{L_{0}}^{*}\left(\mathfrak{Z}_{0}\right)$ is isomorphic with $S_{W_{S_{0}}}^{*}(\mathfrak{a})$ by Theorem $2.2, S_{L_{0}}^{*}\left(\mathfrak{p}_{-1}\right)$ is isomorphic with $S_{W_{S_{0}}}^{*}\left(\mathfrak{a}^{-}\right)$. Hence $S_{\Sigma_{0}}^{*}\left(\mathfrak{p}_{1}^{c}\right)$ is isomorphic with $\left.S_{W_{S_{0}}^{-}}^{*}\left(\mathfrak{a}^{-}\right)^{C}\right)$. It follows from Theorem 3.1, (ii), 2) that the cardinality of $\mathcal{S}^{\nu}(D)$ is equal to $\operatorname{dim} S_{L_{0}}^{\nu}\left(\mathfrak{p}_{-1}^{C}\right)$ $=\operatorname{dim} S_{W_{S_{0}}}^{\nu}\left(\left(\mathfrak{a}^{-}\right)^{c}\right)=$ the number of linearly independent symmetric polynomials in p-variables with degree ν, which is known to be the cardianlity of $\mathcal{S}^{\nu}(K, L)$.

> q.e.d.

4. Normalizing factor $\boldsymbol{h}_{\boldsymbol{\lambda}}$

Let $\hat{A}=\operatorname{Ad} A\left(X_{0}\right)$, denoting by A the connected subgroup of K_{0} generated by \mathfrak{a}. \hat{A} has a natural group structure induced from that of \mathfrak{a}. Let

$$
T=\left\{t \in C^{*} ;|t|=1\right\}
$$

be the 1-dimensional torus. Under the identification in Introduction of $\left(\mathfrak{a}^{-}\right)^{C}$ with $\boldsymbol{C}^{p}, \mathfrak{a}^{-}$is identified with \boldsymbol{R}^{p} and \hat{A} with T^{p}. We see that the latter identification is compatible with group structures and complex conjugations, in view of the expression of $\operatorname{Ad}(\exp H) X_{0}$ in the proof of Theorem 3.1, (iii). Moreover, under the same identification we have (Moore [8])

$$
D \cap \mathfrak{a}^{-}=\left\{x \in \boldsymbol{R}^{p} ;\left|x_{i}\right|<1(1 \leqslant i \leqslant p)\right\},
$$

denoting by $z_{i}(1 \leqslant i \leqslant p)$ the i-th component of $z \in \boldsymbol{C}^{p}$. By means of this
identification we define a measure on \mathfrak{a}^{-}by

$$
d H=d x_{1} \cdots d x_{p}
$$

and a function $D(H)$ on \mathfrak{a}^{-}by

$$
D(H)=\prod_{i=1}^{p}\left(2 x_{i}\right) x_{i}^{2 s} \prod_{1 \leqslant i<j \leqslant p}\left(\left(x_{i}+x_{j}\right)\left(x_{i}-x_{j}\right)\right)^{r} \quad \text { for } \quad H \in \mathfrak{a}^{-},
$$

where $r, 2 s$ are multiplicities defined in Introduction. Then we have the following

Lemma 1. There exists a constant $c^{\prime}>0$ such that

$$
\int_{D} f(X) d \mu(X)=c^{\prime} \int_{D \cap a^{-}} f(H)|D(H)| d H
$$

for any integrable K-invariant function f on D.
Proof. It is easy to see that $\operatorname{Ad} c H=H$ for any $H \in \mathfrak{b}$ and $\operatorname{Ad} c \gamma^{*}=$ $X_{\gamma}-X_{-\gamma} \in \mathfrak{p}$ for any $\gamma \in \Delta$. Put

$$
\begin{aligned}
& \mathfrak{a}^{0}=\operatorname{Ad} c(\sqrt{-1} \mathfrak{a})=\left\{X_{\gamma}-X_{-\gamma} ; \gamma \in \Delta\right\}_{R}, \\
& \mathfrak{h}=\operatorname{Ad} c(\mathfrak{b} \oplus \sqrt{-1} \mathfrak{a})=\mathfrak{b} \oplus \mathfrak{a}^{0}
\end{aligned}
$$

and

$$
\mathfrak{G}_{R}=\sqrt{-1} \mathfrak{b} \oplus \mathfrak{a}^{0} .
$$

Then \mathfrak{a}^{0} is a maximal abelian subalgebra of $\mathfrak{p}, \mathfrak{h}$ is a Cartan subalgebra of \mathfrak{g} containing \mathfrak{a}^{0} and $\mathfrak{h}_{\boldsymbol{R}}$ is the real part of the complexification \mathfrak{h}^{c} of \mathfrak{h}. We define lienear forms $h_{i}(1 \leqslant i \leqslant p)$ on \mathfrak{a}^{0} by

$$
h_{i}\left(X_{\gamma_{j}}-X_{-\gamma_{j}}\right)=\delta_{i j} \quad(1 \leqslant i, j \leqslant p)
$$

If h_{i} is identified with an eltment of \mathfrak{a}^{0} by means of the Killing form, we have $\operatorname{Ad} c\left(\frac{1}{2} \gamma_{i}\right)=h_{i}(1 \leqslant i \leqslant p)$. The linear order on \mathfrak{G}_{R} induced by $\operatorname{Ad} c$ from the order $>$ on $\sqrt{-1} \mathrm{t}$ is a compatible order for $\operatorname{Ad} c \sum$ with respect to the decomposition $\mathfrak{G}_{\boldsymbol{R}}=\sqrt{-1} \mathfrak{b} \oplus \mathfrak{a}^{0}$. This follows from 3, Lemma 2,1). Thus positive restricted roots on \mathfrak{a}^{0} of the symmetric space $D=G / K$ are

$$
\begin{array}{lll}
\left\{h_{i} \pm h_{j} ; 1 \leqslant i<j \leqslant p, 2 h_{i} ; 1 \leqslant i \leqslant p\right\} & \text { if } & \boldsymbol{P}_{\frac{1}{2}}=\phi, \\
\left\{h_{i} \pm h_{j} ; 1 \leqslant i<j \leqslant p, 2 h_{i}, h_{i} ; 1 \leqslant i \leqslant p\right\} & \text { if } & \boldsymbol{P}_{\frac{1}{2}} \neq \phi .
\end{array}
$$

The multiplicity of $h_{i} \pm h_{j}(1 \leqslant i<j \leqslant p)$, i.e. the number of roots in $\operatorname{Ad} c \sum$ projecting to $h_{i} \pm h_{j}$, is the same as that of $\frac{1}{2}\left(\gamma_{i} \pm \gamma_{j}\right)$. Since the Weyl group W_{D} on \mathfrak{a}^{0} of $D=G / K$ is generated by reflections with respect to $h_{1}-h_{2}, \cdots$, $h_{p-1}-h_{p}, h_{p}$, hence transitive on the set $\left\{ \pm h_{i} \pm h_{j} ; 1 \leqslant i<j \leqslant p\right\}$, it follows that
multiplicities of these roots are the same r. By the same reason, multiplicities of $h_{i}(1 \leqslant i \leqslant p)$ are the same $2 s$, which is even from the results of HarishChandra mentioned in 3. In the same way we know that multiplicities of $2 h_{i}(1 \leqslant i \leqslant p)$ are 1 . Thus the product D^{0} of positive restricted roots (multiplicity counted) is given by
$D^{0}\left(H^{0}\right)=\prod_{i=1}^{p} 2 h_{i}\left(H^{0}\right) h_{i}\left(H^{0}\right)^{2 s} \prod_{1 \leqslant i<j \leqslant p}\left(\left(h_{i}+h_{j}\right)\left(H^{0}\right)\left(h_{i}-h_{j}\right)\left(H^{0}\right)\right)^{r} \quad$ for $\quad H^{0} \in \mathfrak{a}^{0}$.
Let $d X$ (resp. $d H^{0}$) denote the Euclidean measure of \mathfrak{p} (resp. of \mathfrak{a}^{0}) induced from the Killing form (,), and $d k$ the normalied Haar measure of K. Then (cf. Helgason [4]) under the surjective map $K \times \mathfrak{a}^{0} \rightarrow \mathfrak{p}$ defined by (k, H^{0}) \mapsto Ad $k H^{0}$, these measures are related as follows:

$$
d X=c^{\prime \prime}\left|D^{0}\left(H^{0}\right)\right| d k d H^{0} \quad \text { with some constant } \quad c^{\prime \prime}>0
$$

Now we define a K-equivariant \boldsymbol{R}-isomorphism $j: \mathfrak{p} \rightarrow\left(\mathfrak{p}^{C}\right)^{-}$by

$$
j(X)=\frac{1}{2}(X-[Z, X]) \quad \text { for } \quad X \in \mathfrak{p} .
$$

It is easy to see that $j\left(X_{\gamma}-X_{-\gamma}\right)=-X_{-\gamma}$ for any. $\gamma \in \Delta$, hence $j \mathfrak{a}^{0}=\mathfrak{a}^{-}$. Since K acts irreducibly on \mathfrak{p}, the map j is a similitude with respect to inner products $($,$) and the real part of (,)_{\tau}$. Therefore under the surjective map $K \times \mathfrak{a}^{-} \rightarrow\left(\mathfrak{p}^{C}\right)^{-}$ defined by $(k, H) \mapsto \operatorname{Ad} k H$, we have

$$
d \mu(X)=c^{\prime}|D(H)| d k d H \quad \text { with some constant } \quad c^{\prime}>0 .
$$

Seeing $\operatorname{Ad} K\left(D \cap \mathfrak{a}^{-}\right)=D$, we get the proof of Lemma 1 . q.e.d.

Take a form $\lambda \in \mathcal{S}^{*}(K, L)$. Choose an orthonormal basis $\left\{u_{i} ; 1 \leqslant i \leqslant d_{\lambda}\right\}$ of $S_{\lambda}^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right)$with respect to $(,)_{\tau}$ such that $\left\{u_{i} ; 1 \leqslant i \leqslant d_{\lambda, 0}\right\}$ spans $S_{\lambda}^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right) \cap$ $S^{*}\left(p_{-1}^{c}\right)$ and u_{1} is L-invariant. Put

$$
\begin{aligned}
\rho_{j}^{i}(k) & =\left(\operatorname{Ad} k u_{j}, u_{i}\right)_{\tau} & & \text { for } k \in K \quad\left(1 \leqslant i, j \leqslant d_{\lambda}\right), \\
\varphi_{i}^{\prime}(k) & =\overline{\rho_{1}^{i}(k)} & & \text { for } k \in K \quad\left(1 \leqslant i \leqslant d_{\lambda}\right), \\
f_{i}^{\prime} & =\sqrt{d_{\lambda}} \varphi_{i}^{\prime} & & \left(1 \leqslant i \leqslant d_{\lambda}\right) .
\end{aligned}
$$

The arguments in 2 show that $\left\{f_{i}^{\prime} ; 1 \leqslant i \leqslant d_{\lambda}\right\}$ form an orthonormal basis of $S_{\lambda}^{*}(S)$ with respect to \langle,$\rangle and \varphi_{1}{ }^{\prime}$ is the zonal spherical function ω_{λ} for (K, L) belonging to λ, identifying $C^{\infty}(S)$ with the space of right L-invariant C^{∞}-functions on K. The zonal spherical polynomial Ω_{λ} for D belonging to λ defined in Introduction is characterized by that its restriction to S coincides with ω_{λ}. Ω_{λ} restricted to \mathfrak{p}_{-1}^{C} is the zonal spherical polynomial for D_{0} belonging to λ and ω_{λ} restricted to S_{0} is the zonal spherical function for $\left(K_{0}, L_{0}\right)$ belonging to λ. Ω_{λ}
restricted to $\left(\mathfrak{a}^{-}\right)^{C}$ is a symmetric polynomial since it is $W_{\bar{S}_{0}}^{-}$-invariant. Let $f_{i} \in S_{\lambda}^{*}\left(\left(\mathfrak{p}^{c}\right)^{-}\right)\left(1 \leqslant i \leqslant d_{\lambda}\right)$ be the unique polynomial such that its restriction to S is f_{i}^{\prime}. Then $\left\{f_{i} ; 1 \leqslant i \leqslant d_{\lambda}\right\}$ form an orthogonal basis of $S_{\lambda}^{*}\left(\left(p^{C}\right)^{-}\right)$with respect to $(,)_{\tau}$ such that $\left\{f_{i} ; 1 \leqslant i \leqslant d_{\lambda, 0}\right\}$ form an orthogonal basis of $S_{\lambda}^{*}\left(\left(\mathfrak{p}^{C}\right)^{-}\right) \cap$ $S^{*}\left(p_{-1}^{C}\right)$. They satisfy relations

$$
f_{i}\left(\operatorname{Ad} k^{-1} X\right)=\sum_{j=1}^{d_{\lambda}} \rho_{i}^{s}(k) f_{j}(X) \quad \text { for } \quad k \in K, X \in\left(\mathfrak{p}^{C}\right)^{-}\left(1 \leqslant i \leqslant d_{\lambda}\right)
$$

We put

$$
\Phi_{\lambda}(X)=\frac{1}{d_{\lambda}} \sum_{i=1}^{d_{\lambda}}\left|f_{i}(X)\right|^{2} \quad \text { for } \quad X \in\left(\mathfrak{p}^{c}\right)^{-}
$$

Then for any $k \in K$ we have

$$
\begin{aligned}
\Phi_{\lambda}\left(\operatorname{Ad} k^{-1} X\right) & =\frac{1}{d_{\lambda}} \sum_{i}\left(\sum_{j} \rho_{i}^{j}(k) f_{j}(X)\right)\left(\sum_{k} \overline{\rho_{i}^{k}(k)} \overline{f_{k}(X)}\right) \\
& \left.=\frac{1}{d_{\lambda}} \sum_{j, k}\left(\sum_{i} \rho_{i}^{j}(k) \overline{\rho_{i}^{k}(k)}\right)\right) f_{j}(X) \overline{f_{k}(X)} \\
& =\frac{1}{d_{\lambda}} \sum_{j, k} \delta_{j k} f_{j}(X) \overline{f_{k}(X)}=\Phi_{\lambda}(X) \quad \text { for } \quad X \in\left(p^{C}\right)^{-},
\end{aligned}
$$

i.e. Φ_{λ} is a K-invariant C^{∞}-function on $\left(\mathfrak{p}^{C}\right)^{-}$. Note that

$$
\Phi_{\lambda}(X)=\frac{1}{d_{\lambda}} \sum_{\omega=1}^{d_{\lambda, 0}}\left|f_{\omega}(X)\right|^{2} \quad \text { for } \quad X \in \mathfrak{p}_{-1}^{C}
$$

Lemma 2.

$$
h_{\lambda}=c^{\prime} \int_{D \cap \mathfrak{a}^{-}} \Phi_{\lambda}(H)|D(H)| d H
$$

Proof.

$$
\int_{D} \Phi_{\lambda}(X) d \mu(X)=\frac{1}{d_{\lambda}} \sum_{i=1}^{d_{\lambda}}\left\langle\left\langle f_{i}, f_{i}\right\rangle\right\rangle=\frac{1}{d_{\lambda}} \sum_{i=1}^{d_{\lambda}} h_{\lambda}\left\langle f_{i}^{\prime}, f_{i}^{\prime}\right\rangle=h_{\lambda} .
$$

On the other hand, by Lemma 1 we have

$$
\int_{D} \Phi_{\lambda}(X) d \mu(X)=c^{\prime} \int_{D \cap \mathfrak{a}^{-}} \Phi_{\lambda}(H)|D(H)| d H
$$

Proof of Theorem B. Making use of the complex conjugation $X \mapsto \bar{X}$ of \mathfrak{p}_{-1}^{C} defined in 3, we define $\tilde{\Phi}_{\lambda} \in S^{*}\left(p_{-1}^{C}\right)$ by

$$
\tilde{\Phi}_{\lambda}(X)=\frac{1}{d_{\lambda}} \sum_{\alpha=1}^{d_{\lambda}, 0} f_{\alpha}(X) \overline{f_{\alpha}(\bar{X})} \quad \text { for } \quad X \in \mathfrak{p}_{-1}^{c} .
$$

Then $\widetilde{\Phi}_{\lambda}=\Phi_{\lambda}$ on \mathfrak{p}_{-1} and we have for any $k \in K_{0}$

$$
\begin{aligned}
\tilde{\Phi}_{\lambda}\left(\operatorname{Ad} k X_{0}\right) & =\frac{1}{d_{\lambda}} \sum_{\omega} f_{\omega}\left(\operatorname{Ad} k X_{0}\right) \overline{\left.f_{a} \overline{\left(\operatorname{Ad} k X_{0}\right.}\right)} \\
& \left.=\frac{1}{d_{\lambda}} \sum_{\omega} f_{\omega}\left(\operatorname{Ad} k X_{0}\right) \overline{f_{\omega}\left(\operatorname{Ad} \theta(k) X_{0}\right.}\right) \\
& \left.=\frac{1}{d_{\lambda}} \sum_{\omega} f_{a}^{\prime}(k) \overline{f_{a}^{\prime}(\theta(k))}=\sum_{\omega} \varphi_{a}^{\prime}(k) \overline{\varphi_{a}{ }^{\prime}(\theta(k)}\right) \\
& =\sum_{\alpha} \overline{\rho_{1}^{\alpha}(k)} \rho_{1}^{\alpha}(\theta(k))=\sum_{\alpha} \overline{\rho_{1}^{\alpha}(k) \rho_{\alpha}^{1}\left(\theta(k)^{-1}\right)} \\
& =\frac{\rho_{1}^{1}\left(\theta(k)^{-1} k\right)}{}=\omega_{\lambda}\left(\theta(k)^{-1} k\right) .
\end{aligned}
$$

In particular for any $a \in A$
i.e. for any $\hat{a} \in \hat{A}$

$$
\tilde{\Phi}_{\lambda}\left(\operatorname{Ad} a X_{0}\right)=\omega_{\lambda}\left(a^{2}\right),
$$

$$
\tilde{\Phi}_{\lambda}(\hat{a})=\omega_{\lambda}\left(\hat{a}^{2}\right)=\Omega_{\lambda}\left(\hat{a}^{2}\right) .
$$

Since $\hat{A}=T^{p}$ is a compact real form of $\boldsymbol{C}^{* p}$ and $\boldsymbol{C}^{* p}$ is open in $\boldsymbol{C}^{p}=\left(\mathfrak{a}^{-}\right)^{\boldsymbol{C}}$, we have

$$
\tilde{\Phi}_{\lambda}\left(z_{1}, \cdots, z_{p}\right)=\Omega_{\lambda}\left(z_{1}^{2}, \cdots, z_{p}^{2}\right) \quad \text { for any } z \in \boldsymbol{C}^{p}=\left(\mathfrak{a}^{-}\right)^{C} .
$$

By Lemma 2 we have

$$
\begin{aligned}
h_{\lambda} & =c^{\prime} \int_{D \cap \mathfrak{a}^{-}} \tilde{\Phi}_{\lambda}(H)|D(H)| d H \\
& =c^{\prime} \int_{\left.\mid x_{i}<1<1<i<i<p\right)} \Omega_{\lambda}\left(x_{1}^{2}, \cdots, x_{p}^{2}\right)\left|\prod_{i=1}^{p}\left(2 x_{i}\right) x_{i}^{2 s} \prod_{1<i<j<p}\left(\left(x_{i}+x_{j}\right)\left(x_{i}-x_{j}\right)\right)^{r}\right| d x_{1} \cdots d x_{p} \\
& =\left.c(D) \int_{0<y_{i}<1(1<i \leqslant p)} \Omega_{\lambda}\left(y_{1}, \cdots, y_{p}\right)\right|_{1 \leqslant i<j \leqslant p}\left(y_{i}-y_{j}\right)^{r} \mid \prod_{i=1}^{p} y_{i}^{s} d y_{1} \cdots d y_{p}
\end{aligned}
$$

for some constant $c(D)>0$, which does not depend on λ. Inparticular, for $\lambda=0$

$$
\mu(D)=h_{0}=c(D) \int_{0 \leqslant y_{i}<1(1 \leqslant i \leqslant p)}\left|\prod_{1<i<j \leqslant p}\left(y_{i}-y_{j}\right)^{r}\right| \prod_{i=1}^{p} y_{i}^{s} d y_{1} \cdots d y_{p}
$$

since $\Omega_{0} \equiv 1$. This completes the proof of Theorem B.
q.e.d.

Remark. It can be proved that $\widetilde{\Phi}_{\lambda}$ is an L_{0}-invariant polymomial on \mathfrak{p}_{-1}^{C}. The multiplicities r, s are given as follows.

D	rank D	r	s
$(\mathrm{I})_{p, q}(p \leqslant q)$	p	2	$q-p$
(II) $)_{n}$	$[n / 2]$	4	$\begin{cases}2 & n \\ 0 & \text { odd } \\ 0 & n \\ \text { even }\end{cases}$
$(\mathrm{III})_{n}$	n	1	0
(IV) $(n \geqslant 3)$	2	$n-2$	0
(EIII)	2	6	4
(EVII)	3	8	0

The zonal spherical polynomial Ω_{λ} is given as follows.
For integers n_{1}, \cdots, n_{p} we define the Schur function $\left\{n_{1}, \cdots, n_{p}\right\}$ on the p-dimensional torus T^{p} by

$$
\left\{n_{1}, \cdots, n_{p}\right\}(t)=\frac{\operatorname{det}\left(t_{i}^{n_{j}+p-j}\right)_{1 \leqslant i, j \leqslant p}}{\operatorname{det}\left(t_{i}^{p-j}\right)_{1<i, j \leqslant p}} \quad \text { for } \quad t=\left[\begin{array}{c}
t_{1} \\
\vdots \\
t_{p}
\end{array}\right] \in T^{p} \subset \boldsymbol{C}^{p} .
$$

$\left\{n_{1}, \cdots, n_{p}\right\}$ is symmetric in variables t_{1}, \cdots, t_{p} and it is a polynomial in t_{1}, \cdots, t_{p} if and only if $n_{i} \geqslant 0(1 \leqslant i \leqslant p)$. For an element $\lambda=\sum_{i=1}^{p} n_{i} \gamma_{i} \in \sum_{i=1}^{p} Z \gamma_{i}=Z\left(K_{0}, L_{0}\right)$, the i-th coefficient n_{i} will be denoted by $n_{i}(\lambda)$.
Then we have
Theorem 4.1. The zonal spherical polynomial Ω_{λ} for D belonging to $\lambda \in \mathcal{S}^{*}(K, L)$ is determined on $\left(\mathfrak{a}^{-}\right)^{c}$ by the relation

$$
\Omega_{\lambda}(t)=\sum_{\mu \in D_{\lambda}} c_{\lambda}^{\mu}\left\{n_{1}(\mu), \cdots, n_{p}(\mu)\right\}(t) \quad \text { for any } t \in T^{p}=\hat{A} \subset\left(\mathfrak{a}^{-}\right)^{c}
$$

where the c_{λ}^{μ} 's are coefficients in Theorem 2.5 for the symmetric pair $\left(K_{0}, L_{0}\right)$.
Proof. As we have seen in the proof of Theorem $\mathrm{B}, \Omega_{\lambda}$ is determined on $\left(a^{-}\right)^{c}$ by

$$
\Omega_{\lambda}(t)=\omega_{\lambda}(t) \quad \text { for any } \quad t \in T^{p}=\hat{A}
$$

By Theorem 2.5, ω_{λ} has an expression

$$
\omega_{\lambda}(t)=\sum_{\mu \in D_{\lambda}} c_{\lambda}^{\mu} \overline{\chi_{\mu}(t)} \quad \text { for } \quad t \in T^{p}=\hat{A}
$$

Since the Weyl group $W_{S_{0}}$ acts on $Z\left(K_{0}, L_{0}\right)$ by the group of permutations of $\gamma_{1}, \cdots, \gamma_{p}, W_{S_{0}}$-invariant characters χ_{λ} of \hat{A} are nothing but Schur functions. As we have seen in the proof of Theorem 3.1, (iii), the i-th component of $\operatorname{Ad}(\exp H) X_{0} \in T^{p}=\hat{A}$ is $\exp \left(-\left(\gamma_{i}, H\right)\right)$ for any $H \in \mathfrak{a}$. It follows that

$$
\chi_{\mu}(t)=\left\{n_{1}(\mu), \cdots, n_{p}(\mu)\right\}(\bar{t}) \quad \text { for } \quad t \in T^{p}=\hat{A}
$$

Hence we have

$$
\begin{aligned}
\Omega_{\lambda}(t) & =\sum_{\mu \in D_{\lambda}} c_{\lambda}^{\mu}\left\{n_{1}(\mu), \cdots, n_{p}(\mu)\right\}(\bar{t}) \\
& =\sum_{\mu \in D_{\lambda}} c_{\lambda}^{\mu}\left\{n_{1}(\mu), \cdots, n_{p}(\mu)\right\}(t) \quad \text { for } \quad t \in T^{p}=\hat{A} . \quad \text { q.e.d. }
\end{aligned}
$$

In the case of the domain D of type $(\mathrm{I})_{p, q}(p \leqslant q), S_{0}$ is the unitary group $U(p)$ of degree p. We have in view of Example in 2 that

$$
\Omega_{\lambda}(t)=\frac{1}{d_{\lambda}}\left\{n_{1}(\lambda), \cdots, n_{p}(\lambda)\right\}(t) \quad \text { for } \quad t \in T^{p}=\hat{A}
$$

where d_{λ} is the degree of the irreducible representation of $U(p)$ with the signature $\left(n_{1}(\lambda), \cdots, n_{p}(\lambda)\right)$. In the case of the domain D of type (IV) $)_{n}, S_{0}$ is the Lie sphere and Ω_{λ} can be described in terms of Gegenbauer polynomials, which are zonal spherical functions for the sphere. So our integral formula in Theorem B clarifies the meaning of integrals of Hua [6].

Osaka University

References

[1] E. Cartan: Sur la détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929), 217-252.
[2] H. Cartan: Les foncitons de deux variables complexes et le problème de la représentation analytique, J. Math. Pures Appl. (9) 10 (1931), 1-114.
[3] Harish-Chandra: Representations of semi-simple Lie groups VI, Amer. J. Math. 78 (1956), 564-628.
[4] S. Helgason: Differential Geometry and Symmetric Spaces, Academic Press, Inc., New York, 1962.
[5] -: A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154.
[6] L.K. Hua: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Math. Monographs, Vol. 6, Amer. Math. Soc., 1963.
[7] A. Korányi and J.A. Wolf: Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
[8] C.C. Moore: Compactifications of symmetric spaces, Amer. J. Math. 86 (1964), 201218, 358-378.
[9] S. Murakami: Cohomology Groups of Vector-valued Forms on Symmetric Spaces, Lecture Note, Univ. of Chicago, 1966.
[10] I. Satake: On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. 71 (1960), 77-110.
[11] W. Schmid: Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969), 61-80.
[12] M. Sugiura: Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38 (1962), 111-113.

