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Let B be an N-dimensional Brownian motion. We treat a stochastic differ-
ential equation based on B,

(1)  dX(s) = a(X(s))dB(s)+v(X(s))ds

where a(x)=(a;;(x)) is an N X N-matrix and vy(x)=(v,(x)) an N-dimensional
vector. In the case where coefficients are bounded and Borel measurable, Krylov
[6] proved the existence of solutions under the condition that « is uniformly
elliptic. But in the stochastic control, we consider a stochastic differential
equation of the following form,

dX(t) = a(B(t), X($)dB(t)+v(X(t))dt
This equation can be regarded as follows,

dX(t) = a(X(2), Y(2))dB(t)+v(X(@))dz

(*) Y(¢) = B()

In this case, the uniform ellipticity of the coefficient of Brownian part is not
valid.

The purpose of this article is to seek some weaker conditions of solvability
which can be applied to (). Our result on the equation (I) is the following.
Let f be a function on RY and K a compact subset of RV, Let us define

Kf(&) and [[| flllp.r.x by
&) =sup If(§ W), EER

and
MM = TEf] | Lper

where T is a Borel subset of R’.

Theorem 1. Suppose that there exist a non-negative integer I, a positive
constant p(>21) and a non-negative bounded Borel function p, such that
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(A1) the submatrix (a),=(ct;;)ij-1s 15 Symmetric and
1]
21 a (%)t >p(x) ||, teR, xeRY,
1j=

(A2) for any compact set K of RN=, %(1/p) belongs to L,** " and
(A3) for any nER™’, a;(+, n) and vv,(+, m) are in L}, where Q>6pl[p—2I
(=69).

Furthermore we assume that, for any compact sets T(CR') and K(CRN-Y),
we can take a continuous increasing function Wy g on [0 o0), so that W(0)=0 and

(A4) lé‘(E, ’71)_{(5’ 7]2)' gWI‘, K(Inl—le)’ Eerl, n, Y)ZEK, where Czaij
and ;.

Then we have a solution X which is starting at xRY and defined up to an ex-
plosion time e(>>0). This means that we have a positive random variable e(0<<e < o)
and two processes X and B, on a probability space (Q, B, P) with an increasing
family of Borel fields F,(C B),such that

(1) B s an F,-Brownian motion starting at 0

(i1) X(#)X(eo(t)? is F,-measurable and continuous in t(<<e) with proba-
bility 1,
(i) X()=x+ S:a(X(s)) dB(s)+ S:fy(X(s))ds, 1<e
and
(iv) @ | X(8)| = 00 for e<<oco, and if a and vy are locally bounded,
then

lim | X(2)| = o0 for e<oo.
the

We shall prove it in §2 and some complementary examples, which have
1-dimensional aspect, will be treated in §3. In §4 we consider the stochastic
differential equation on D={x& RV, x,>0}, with reflecting barrier,

X) = w7 a(X(6)aBO+ | 7.(X(6)ds+9(0)
(I1) ; ;
X,(t) = x,.—l-Soa,-(X(s))dB(s)-l—So'y,-(X(s))ds, i= 2N,

Under analogous conditions as Theorem 1, we can solve (II), namely

1) L% is the set of all functions which are p-th integrable on any compact set.
2) »x 4 18 the indicator of 4.
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Theorem 2. Suppose that a and vy, defined on D, satisfy the conditions
(Al)~(A4)> with I>1. Then we have a solution (X, ¢), defined up to an ex-

plosion time e(>0). Namely we have a positive random variable e(0<<e< o) and
processes X, ¢ and B, on a probability space (Q0, B, P) with an increasing family of
Borel fields F,(C B), such that

(1) B s an F,-Brownian motion starting at 0

(ii)  X(8)Xpoe(t) is F ,-measurable and continuous in t(<e), with probability 1,

(i) X ,(#)>0 and ¢(t) is non-decreasing, continuous up to e, flat off {t<e;
X (t)=0} and $(0)=0

(iv) (X, ¢, B) satisfies (1I) up to e,
and

(v) lim | X(t)| = oo for e<oo, and if a and v are locally bounded, then
tae
lim | X(2)| = o0  for e<oo.
tre
In §5, we shall discuss on a two dimensional stochastic differential equation
with boundary conditions. On a stochastic differential equation of this type,

we can get nice informations in [4], [12], [13] and [14]. Consider a stochastic
differential equation on D= {x& R?, x,>0}
X\(t) = %+ St a,(X(s)) dB(s)+- S' v (X(5)) ds+(2)
(I11) 3 ’
X,(t) = x+ San(X(s)) dB(s)+ Soyz(X(s)) ds+ S:a(Xz(s)) dM(s)

+{ 9.9 (s

Krylov [7] proved the existence of a solution if « is uniformly elliptic and
&=0 (oblique derivatives).

Theorem 3. Let the coefficients be locally bounded. Suppose that
(Al)  « is symmetric and
2
,z=:1 a;(x)t;t; > p(x)|E]*=0

where ~1—€ toee and
)

(A2) & is non-negative and 7‘.{?EL;,"“’(R‘) with p>2.

3) We shall understand that I" turns to I'N{x&R/; x,>0}.
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Then we have a solution (X, ¢, M), defined up to an explosion time e. Namely we
have a positive random variable e(0<<e<oo) and processes X, ¢, B and M, on a
probability space (Q, B, P) with an increasing family of Borel fields F,(C B) such

that
(1) (B(2), M(t)) is an F,-martingale starting at 0, such that
<Bi) Bj>=8|jt’ <Bi) M>=0 1:1’ 2’ <M’ M>=¢’(t) ’

where { > is the variation process, [9]

(i1)  X(2)Xpoex(2) 25 F,-measurable and continuous in t(<e), with probability 1,

(i) X,(¢)=>0 and ¢(t) is non-decreasing, continuous up to e, flat off {t<Ce;
X,(t)=0} and $(0)=0

(iv) (X, ¢, B, M) satisfies (III) up to e and

(v) lIm|X(#)] =0  for e<oo.

tre
In order to prove Theorems 1~ 3, we use similar methods as Krylov and our

results may be regarded as complementary to the work of Krylov.

2. Proof of Theorem 1
For simplicity we may assume that the starting point x=0. We shall
apply the following regularization of function f which satisfies (A3) and (A4),

[2]. Let us define w, and wi by

e—tsiZIhZ—lsl“‘/hIS e -t dy  for |E|<h
w,lt(f) = wl<1
0 for [E|=hA

and
e—l"\Z/hZ—mz/hN—IS e P-Pdy for || <h

2 = v 1
wi() 10 h for |n|>h

Put wy(£, 1) = wi() wi(n) and

Fy& ) = S fE—x, n—y)wulx, y)dxdy

1x1<h, 1y|<h
for EeR’, neRY-* and 0<h<1. Then we have
Lemma 1.
(i) F,eC=(RV)
(i1) For any compact sets T(C R’) and K(C RN™),
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Sggg | Fu(E, 771)—Fh(f, )| = chr‘), vao (|1, —1,()
where V(A) means the closed 1—neighbourhood of A, and
(i) A, D—=F(-, Dlllg,r, k=0  as h—0,

where q=_L
p—21.

Proof. Let 7,-::n; be an &-net of K w.r. to Wy vex>. Put gy(€, n)=
f(+, 7)*wa(£). Then

(1) [1gu(ss M) =1+, M) | Lger—0 n€K.
By (A4) we have
(2) SggIP !gh(‘f’ ﬂ)—gh(f, 77,)| —<—WV(I‘),K(|77_77I|)’ 7, 7"EK

Since {n;} is an &-net, by (2),
(3) | gu(E, M) — A&, n)| <26+ 23 1gu(&, m)—f(E, m)l,  EET
Hence, by (1) and (3), we have, for small &,
(4) Nga—flllp, v, x<3€.
On the other hand, by (2),
(5) sup |gu(E, 1) —Fu& 0)| Wy, vao(h),  n€K.
Therefore, by (4) and (5),
WFs—fllle, v, « <WFa—gallla, v, &+ llgs—fllle,r, x>0  as h—0.

Take a following approximate stochastic differential equation; Let T'x(C R’) and
K (CRN-*) be compact subsets such that "S,CT,XK,CSg,, where S,=
{lx|<2*¥}. Using Lemma 1, we can choose a small %, so that

1
(6) ”,f—Fhkl”q,I‘k,Kk<?

where f=a;; and v;. Let a{¥ and v{” be smooth and bounded functions such
that

(7) aly = (ot; j*on)+Crd;; on V(S.)
where C(>0) tends to 0 and

(8) 7" = Ykon,  on V(Skr)
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Then, by (Al).
/
‘72:1“§?(x) tit; > (pro+Ch)lt]? on V(Sk:)-

Putting a®®=a®x'a®*, we see that
!
U=la‘,’§’(x) it > (pron,+Ch) 2] on V(Sgs)-

Hence

det(a®), > (prwpu,+Cr)* .

So, by virtue of the convexity of l, (x>0),
x

1 << 1 )21<(1 >2,<<1)21
ok =) *ay, .
det(@®), o) N ) T\) T

Therefore, we have

(9) , TXK>DTuxK,.

[P <[l
det(a*), p/zI,I',K_HI-" 5V, VK

It is also clear

(10) e lle, v, & <Illvillla, vers, vexss T'XKDOTe XK,

We define J, by
Ae={(4, C); A is an NXN matrix valued smooth and bounded function on
RY such that (4), is symmetric, uniformly elliptic and

a2

— , I’XKCT.xXK,.
det(A), BT
C is an N-vector valued smooth and bounded function on R such that

27
5, V(D V(KX

NCillla, v, x = 1Villla, ver, vero I'XKCT XK.

A stochastic differential equation with coefficient (4, C) (€ A;) has the unique
diffusion solution X whose generator is given by

1 ‘ h 0

Let 7,(x) be the hitting time of X for 8Sp, (p<<k). Now we shall repeat the
following inequality, [1], [6].

4) ‘o means the transpose matrix of a.
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Lemma 2. Let f(>0) be smooth. Then

) B[ XMl rx  TXKDS,.

where M,:M,(N, L p,
1

1illle, vy, very )
£, VCTp), V(K p)

62
7 i, O,

9
Ox

Proof.  Put ®,— _;_z(AfAJreI) 13C;

By the method of stochastic differential equation, we can construct a diffusion
Y, with generator @,. On the other hand, we have the smooth function u of
the boundary value problem;

Gu=f on S, u=0 on dS,.
Moreover Aleksandrov’s inequality [1] tells us that
(12) lu(x)| <M,lIfllle,r,x  on S,.

By a formula on stochastic differentials [5], we have

u(Y (tAT,)—u(0) = martingale—I—StA F(Yo(s))ds .
o

where 7, is the hitting time of Y, to 8S,. Appealing to (12), we see that (11)
holds for Y,. Since {Y,, £>0} is totally bounded in Prohorov topology and
S, tends to ®, Y, tends to Y in Prohorov topology, when & tends to 0. Hence,
by Skorohod’s theorem, we have a sequence {Z,} and Z such that Z, (resp. Z)
has the same law as Y, (resp. X) and with probability 1, Z,(¢) tends to Z(?)
uniformly on any bounded set of . Let ¢™ and o be the hitting times of Z,
and Z for 8S,. Then lim 6,>0. Therefore, by the continuity of f, we have
Lemma 2. ’

Some generalization of (11) is obtained by Krylov [8]. From Lemma 2,
we get, by a routine

ES:)XAXRN—I(X(S))dS —0

where A4 is a null set of R, Moreover

Lemma 2'. For a function f( >0) which satisfies (A3) and (A4), we have
13) B[ AXOE<MIflllrx  TXKDS,.

REMARK. * Let Y, be a solution of (4,, C,)e A, If Y, (-A7,(Y,))
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tends to Y, then (13) holds for Y, where 7, should be understood as lim 7,(Y ).

Let X“ be a solution for coefficients ¢ and ™ and 7{™ the hitting time
of X™ for 8S,. Put X{™ =X"(tAr{™).

Proposition 1. {X{™, m=1.2..-} is totally bounded in Prohorov topology.

Proof. We shall drop the suffix p, for simplicity. By a formula on
stochastic differentials

RO)=E| X™(@)—X{™(s)|?

gES T(m,)ag"p(xv”)(u))ﬂ | X () —X ()| |7 (X™(w) | du .

tA
sA7(m
Hence,
tAT (™) t tAr(™)
R(t)g(ES (a57)? du)'| t—sll‘l/s—l—s R(u)du+ (ES (7§™)2) 8t —s |18,
0 s o
Recalling (A3) and Lemma 2, we have
(14) R(t)gStR(u)du+M2|t——sl"”’.

where 8=2g >3 and M, is independent of m. Henceforth M; denotes a con-
q

stant which does not depend on m. From (14), we have
(15) R(t)<M,|t—s|* " et~5 .
By the same method, we obtain
E| X (@)—X(s))°
<ME(" X0~ X0 | g+ | X () — X6 |7 | du
the 1st term

)a%-m)l/& | t—sl 1/2-1/8

t tAT(™
<(B('1 X5 —X{(5) 1 duy (B

and
the 2nd term

AT(m
<2pE(""" | X (0)— X6) | |7 du
SATCm)
tA
0

T(m
<2p(E( | X (@)~ X ) PAE[ T 1 B s v

Hence, we have by (15)
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E|X™E)—X™(s) P <M(T)|t—s |20 for |t—s|<T.
Since %(1——;—)>1, we get Prop. 1.

Because the value of 7{™ is in the compact set [0co], {7{™, m=1, 2.---} is
totally bounded in Prohorov topology. Hence putting X™=((X{™, 7s™, B),
p=1,2.-), we have

Proposition 2. {X™,m=1, 2---} is totally bounded in Prohorov topology®

Therefore we can take a convergent subsequence X7 (for simplicity, we say m
again), and by Skorohod’s theorem, construct 3™=((Z{™, 7™, B™), p=1, 2---)
and 8=((Z,, sy B,), p=1, 2-), on a suitable probability space, so that 3 has
the same law as ™ and B“ tends to 8. So, we have the following con-
sistency,

(i) ZgW(8) = Zgn() t<m™,

(ii) =»g™ is the hitting time of ZJ™ (p'>p) for 05,

(iil) Z&@E+ne™) = Z5 (™), nym>ne™,  and

(iv) B{™ is a Brownian motion and p-independent, (we say B™).
Moreover, with probability 1, Z{™ (resp. B“™) tends to Z, (resp. B) uniformly
on any compact interval and 7™ tends to %,. Therefore Z, is continuous,

Zy(t)y=2Z (1), t<mp, Z,(1,)€0S, and 7,<7%,,,. Let us define F,, e and Z by
F,=VB, (Z,, B), e=lim 7, and Z(t)=Z,(t), t<7,. Then Bis an F,-Brownian
P proo

motion and Z is continuous up to e. Now we shall show that (Z, e) is our
wanted one.

Lemma 3. Let 7, be the hitting time of Z for 0S,. Then e=li:n T
p ]

Proof. Since 7,<7,, it is enough to show 7,<7,,, (6>0). For t<n,, we
have t<<n{™ for large m. Hence Z{™(s)e S, for s<t. So, t<7,,,.

From Lemma 3, e is an F,-stopping time since 7, is so. Hence Z(¢)X,,(?) is
F,-measurable.

Proposition 3. Z(t) — Sta(Z(s))dB(s)+stfy(Z(s))ds, t<e

5) %™ is a (C¥[0)X[0r]X CF[0cs)¥o-valued random variable with distance D;

_ ’ , / _ & ,17 d(fe, Xp, gp), (fo’, Xp’, 20"))
D((fp, xp, go) p=1,2-2), (fp’, xp", 80") p---1. 2+ )-—El 2°1+d(fo, %0, 80), (o> %p, &) where

o 1 S [ f@)—f((1t+1g(t)—g'(t)]
a(f, x, g)(f’, ', g’)='§17 1 ;‘i_f—gp‘l"f(t‘):-p("t—)lq_?m +ig 1 x—x|
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Proof. Using Lemma 2, we shall show the convergence of each term of
the following equation,

zem(e) = | am(zm)dBm o)+ | vz me)ds.

tAﬂp("') - tA"Ip
Ru=EI| " @@= v ds
tA"lp(”') & m tA"lp 5
<EI[ T (o=@ HEI |, )2 ds
tA"lp("‘) tl\"lp
+EI| " gz @)= vz as)
<M — 7Pl M7=l v, 38 term

Since {® is continuous, the 3rd term tends to 0. Hence R”—( as m—oo.
In the same way, we can show that

tA"lp("') tA'ﬂp
B[ am@me)aBre | a2 dBe) 0.
0 o
Therefore we have Prop. 3.

Proposition 4. If a and vy are locally bounded, then

l}:n |Z(t)| = oo for e<oo.

Proof. We shall apply a similar method as [11]. Suppose
(16) P(A4)>0
where A={1‘_i:171 | Z(t)| <oo, e<o}. Since 1“@ | Z(t)| = o0
by Lemma 3, we have two large constants M >m such that
(17) P(|Z(t)| >M, | Z(s)| <m for infinitely often #, s up to e, e<o0)>0.

Difine ¢; and ¢/ by
t, = inf {t; | Z(¢)| = m}
t) = inf {t>1,; | Z(t)| = M}
t,=inf {t>t/; | Z(t)| = m}, etc.

Since #, is an F,-stopping time, B(---#;)—B(t) is a Brownian motion and
t t
(18) Z(t+ty) = Z(t,,)—l—s a(Z(s—i—t,,))dB(t—}—t,,)—}—So'y(Z(s—}—t,,)) ds, t<e—t.

Appealing to “E| gtmrt")f(Z(n—}—t,,))dBj(u—I—t,,) |*<const. £ for a locally bounded
0

function f*’ we have
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/_
A2, 22

(19)  P(max | S ’A(Z(u+t)dB,(u-+1;)| >C)<const. £

If t4.,—t,<d, then <dmax | Z(s+t,)—Z(tg)| =M —m. Hence, by (18) and
S<AACt —tp)
(19),

Pty —tp<<d[t,<<oo)
<P( max | Z(s+te)—2Z(ty)| =M—mfty<<oo)

SSANCG - 1)

<31 P(_max |Zis =2 >M /t,,<oo)
=1\ Acy -t
N
SEIP(ISJ%?_” S (Zut 1)) dB (ut )| =M e < oo )
+ ﬁp( max | v (@t ds) = M Tty o)
i=1 ssaAct,,’—l) 0

<const. d®

Therefore, we have

EP(tk+1‘"tk<71e‘) e< °°) < 2P<(tla+1_tla<%y tk<°°)

Pt ,—te<<l[k, t,<<oo)
< z: +1 < oo
P(tk<c>o)

Namely, if e< oo, then #,,,—#,> —k— for large k.
This contradicts with (17).

3. Examples
1. dX(t)=a(X(t))dB(t), N=1.
If « isa positive and bounded function and L is not square integrable near
a

0, i.e. —I—EELz( —¢&, €) for any €>0, then there is no solution starting at 0.
a

Proof. Let X be a solution. Let us define #(¢) by gtaz(X(s)) ds. 'Then #(t)
is strictly increasing and B(¢)=X(¢7'(#)) is a Brownian motion up to #(c0) (>0).

Let f(t, x) be a Brownian local time, i.e.

S X(x-e x+e)(ﬁ(s)) ds
2¢e

fit, x) = 11m
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Then f is continuous in (¢, x) and f(z, 0)>0 for any t>0. For ¢<#(0), we have
—1y 1 £
) = Soa’(X(t“(u))du Soaz(,e(u))d“
S S %) g > inffG, x)$ 1

d
= a¥(x) I#1<e o)

Since we have a small €>0 such that inf f{(z, x)>0, ”LEELZ(—G, €)” means
ERT a

“t7(t)=rco” namely, “t(t)=0, for £>0". This implies “a(X(s))=0". But this
contradicts with the positivity of «.

2. (e=0).
X,(t) = By(t)
X,() = B+ | (X)) ds

If v, is non-negative and not integrable near 0, then an explosion occurs imme-
diately.

Proof. Let f(¢, x) be the local time of B,.
Then

(@ onas= " vese vz intfe, 9| n@adx.
Therefore X,(£)=oc for £>0.

3. random acceleration [3].
X, = st | (X, aB)

X () = xz+j':X1(s) ds

This motion means that adB is a random acceleration whose coefficient o
depends only on the position X,. Assume that C,<a <C, with positive con-
stants C,and C,. Then we can obtain a solution by the method of time substitu-
tion, without continuity of @. Moreover the law of solution is unique.

Put A(x)=$xa2(xz—|—y)dy, (for x<0, sz_so)’ and E(s)=a(x,+A47!
(S'x,-}—,é?(u)du)) where B is an F,-Brownian motion. Let us define #(¢) by

S:'gzt—s)ds‘ Then P(Vt, #(f)<oo)—1. Hence B(t)zso—l af()dﬁ(s) is an

F,;-1,,-Brownian motion, B(t~*(t)) is F,-1,-measurable and
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(1) sa®) = [ e 6)aBe, 1

We shall calculate the right side of (1).

=1

20 = |t Bwdn = | (B @) EC @) do
= [ @t BE @) @+ 472 (@))do

Hence Z is absolutely continuous and
(2)  Z'() = (e B ) (%A 7Y(ZL(s))) -
Therefore, recalling the definition of 4, we have

(3) s:xl—l-,@(t“(s)) ds = S' Z'(s)

ot A2~ AT

Appealing to (1) and (3),

X (t) = 2,4+ BE() = x1+S:a(xz+A“(Z(s))) dB(s)

— s' a(x;{—Sle(u) du)dB(s)
Hence we have a solution, putting Xz(t)zxz-l—StX (8)ds.
Let (X,, X,) be a solution. Put X—X, and t(t):Staz(xz—}—SsX(u)du) ds.

Then

X(t) = xl+S'a(x2+SsX(u) du)dB(s)
and

X(t) = x,+B(¢(2))

where B is a Brownian motion. Since

) = (@)Y = !

—1cs

a.a.t,

(- So ’ X (u) di)

we have
-1

[ x@du = |t B du =  (x-BoDee)do

Therefore the following equality holds

&) = 1 aat,

(it | (5+A(©)g(0)dv)
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Setting F(f) = S'(x,+ B8(v))g(v)do, we have
F'(t) a*(x,+F(t)) = x,+B6(¢) a.a.t,

Hence, with the same A(x),
aFe) = | w+B0)ds.

Since A is strictly increasing, F(#) is determined uniquely. Therefore g is so,
for a.a.t. This implies that #(¢) is determined uniquely.
Hence the law of X(z) (=x+B(¢(¢))) is unique.

4. (pathwise unique)
dx(t) = g} a(X(t), B(t))dB,(t)+v(X(t))dt .

Suppose that «; and v are bounded and «,(-)>C>0. If ayx, &, ---Ex) is
smooth, then the solution is pathwise unique.

In order to prove, we shall extend a formula on stochastic differentials,
in our convenient form [6].

Proposition. Let e and h be bounded and non-anticipative. Put X(t)=x-+
Sfe(s)dB—|—Sth(s) ds. Suppose that, for any smooth function f on RV,
0 0

(4) ES:"”f(X(s))dng(p, T fllle, v, &-

where T, is the hitting time of X to 8S, and T XK DS,, (TCR’ and KC RN').
Then for any continuous ¢ whose generalized derivatives ¢; and ¢,; satisfy (A3) and
(A4), we have

(5)  SXO)—(x) =3 | sX(6)es0)dB, ()

t
+ S AXN O+ 39X e i) ds.
Proof. Put ¢=¢*w,. Then ¢, ;=¢*w, and ¢, ;;=¢, %0, Therefore
¢n, i(resp. ¢y ;;) tends to ¢, (resp. ¢;;) in ||| [[lg, v, x by Lemma 1 in §1. More-

over, we can easily see that ¢,(&, 7) tends to ¢(£, 1) uniformly on any compact
set of (£, 7). Since 7, tends to oo, as p—co, we have, for any ¢,

(6)  e(X(®))—>d(X(®) as k0.
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(1) i XO)—u() = 3 [ 40, (XD e (5)dB,(9)

+ . S KOO+ 3 3 /X eals)esa)ds

By the same method as in §2, we see that the right side of (7) tends to the right
side of (5). Recalling (6), we have (5).

We shall show the uniqueness of Example 4. We apply a routine of the
transformation of drift. Let us define A(x, £) and ¢(x, &) by

I gy (@ =3ad),

a0 =7, 0

and
#ls, &) = [[err0ay.

Then ¢(x, &) is strictly increasing in x and (%, £) =¢~*(x, £) (inverse w.r. to x)
satisfies the following Lipschitz condition

(8) | y(x, £)—V(y, E)| =C(T)|x—y|, E€RY, %, ye[—T, T]

By virtue of positivity of «,, we can show that any solution (X, ) satisfies the
inequality (4). We have

t t
X(0) = | a@)db@+ 1 XOds,  (al)=(Eai(XE), BE")
with some Brownian motion 8. Let g(=0) be somoth function on R' and u

the solution of boundary value problem; u”(x)=g(x), |x| <p, u(— p)=u(p)=0.
Then |u,(#)| and |u(x)| arc less than M(p)| | f1 | zxc-s, o

w(X(t A7) —u(x) = martingaleﬂ:“" %g(X(s) () -/ (X(5)) Y(X(s)) ds
where 7, is the hitting time to {—p, p}. Hence
E["" (X)) ds<M(p, C, 1) lgllzsnmrr  (ST)
Therefore, for any bounded Borel function g,

tAT
B[ g(X@) ds<M(p, C, Dllgllzscor.

Let f(>0) be a smooth function on R¥*'. Put S={xeR"; |x|<p}
and g(x)=sup f(x, £).
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Then l|gHL,<-p,p)=Hlfllll,c—p,p),s and
tA
0

E$:Mpf(X(s), B(S))ds<Es vag(X(s))ds<M(P,,C, T)llgllLyc-p, 00 -

Therefore we have (4). Moreover
(9) Y@, O+ s, Ddus =0 aax
Therefore Y(t)=¢(X(t), B(t)) has the following stochastic differential
10)  dY(t) = i} F(X(t), B(2))dB,(t)+G(X(t), B(z))dt .
where Fy(x, £)=.(¥, E)a(x, £)+du(w, £) and
G(s, £) = - 2 b D+ an(n Dl ).

Put F(y, E)=F,(W(y, £), £) and G(y, =G (3, £), £). Then, by virtue of
(8), F and G are Lipschitz in y, and the stochastic differential (10) turns out

(1) d¥() = S F(V(), BE)BAC(Y(H), B
Since (11) has the unique solution, X(#)=¢(Y(¢), B(t)) is unique.

4. Proof of Theorem 2

In order to prove Theorem 2, we extend « and v as follows

(1) a (X)) = —ayx) j=2,-,N
ajy(®) = —anx) j=2,-,N
a; (%) = a; (%) other (7, 7)
(%) = —7®), 7% =rx), =2, N
where X=(—ux,, x,---xy) for x=(x,, x,---xy). Then it is clear that & and ¥ on
RN satisfy the conditions (A1)~(A4) of Theorsm 1 with u(%)=u(x).
We shall take an approximate sequence a® and ¥ as like in'§ 2. Then

these coefficients satisfy (1) on .S, so we may modify them, so that (1) holds on
RY. Let Y® be the unique solution of (2)

(2) Y®@ )= x—{—S:a("’( Y®(s))dB(s)+ S:'y""( Y0 s))ds .

Lemma 1. Y®(., %) has the same law as Y®(-, x)=(—Y{P(-, x),
Y‘z")(.’ x)...Y-‘Z;)(.’ x))
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Proof. For simplicity we shall drop the suffix .. Since coefficients o and
v are smooth, Y(-, x) is measurable w.r. to B and x. Using (1), we have

t
0

—Y(t, %) = =t | —au(Po B+ [ @ (T, )48,
(3) - +{ (T, s

Vit 2) = i+ || = au(Pls, 9B +3 | s (s, 9)dB(0)
+{ (P, s

Putting B,(f)=—B,(t) and B,(t)=B(t), we can see that B is a Brownian motion
and

(4) Pt %)= J?—i—S:a(Y(s, %))dB (s)+ S:'y( Vs, #))ds .

Since a solution of (4) is unique, ¥{-, x) has the same law as Y(-, ).
We denote, by P, the probability law of Y (-, x) on the path space
CN[0 o).

Lemma 2. Y ¥, x) = (| YP@, x)|, Y@, x), - Y, %))

is a reflecting deffusion on D and its generator &, is given by
82
Ox,;0x;

(5)  Gu= 2B 5 AT -
Proof. Let B, be the Borel field on CV[0 o) generated by the coordinate

up to s, {y(7), 7<s}. Put y.()=(|3:(5)], y(s), *- yn($)). For E C D= {x,>0}
we have, by Lemma 1,

(6)  P¥(y.()eE[B,) = P{"(y(t)€E|B,)+P(y(t)=E|B,)
=P (y(t—)EE)+Pitn(y(t—s)€E)
=P (y(t—s)EE)+ P (y(t—5)DE)

v

Since B, contains the Borel field generated by {y.(7), 7<s} (6) means
{PP(¥()EE)+PL(y(t)EE), xED} is the system of transition probability
Y, by virtue of

PP(y;»n)=0=1 Vit>0
Therefore we have Lemma 2.

On the other hand, the following stochastic differential equation (7) deter-
mines a reflecting deiffusion Z on D with generator (5).
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Z(t, %) = 2+ | at(Z®)aB )+ S’ VO (Z(s))ds+ P (2)
(7) . .
ZP(t x) = x4 | aP@ZPOBE)+( vPZP)ds, =2, N.

Hence Z® has the same law as Y,

Lemma 3. Let f be a non-negative smooth function such that f(X)=f(x), and
T the hitting time of Z®(t, x) to 3S,. Then, for T X K D.S,, we have

(8)  E[ fz* 9at<Mifllorx  *€S,0D,

where M, is the same as it in Lemma 2 of §2.

Proof. Let o be the hitting time of Y ®(¢, x) to 3S,. Then o is the
hitting time of Y {*(¢, x) to 3S,. By the symmetry of f, we have
ES F(Z®(, x)dt = E S AYP(t, x))dt = E S Y@, x))dt.
0 0 0
Hence Lemma 2 in §2 tells us (8).

For the construction of solution, we can apply a similar method as in §2
by Lemma 3. Hereafter we fix a starting point x and drop it for simplicity.
Let Y be the stopped process of Y at 9S,. Then {Y{®, k=1, 2--:} is
totally bounded in Prohorov topology. Hence {Z{”,k=1,2---} is also.
Therefore, putting

tATsR N

P =Z ;f{(t)—x1~5 g a?(Z “”(s))dB—g f v$P(Z ®(s))ds ,
0 0
and Z®={(Z?, ¥, 7P, B), p=1, 2---}, we Lave

Proposition 1. {Z%®, k=1, 2...} is totally bounded in Prohorov topology.

Hence we can choose a convergent subsequence Z*7 (for simplicity we
assume k;=k) in Prohorov topology and construct a system E®=((X ", y(¥,
a®, B{®), p=1, 2:--) which has the same law as Z% and converges to
X=((X,, Yoy 0p, B,) p=1, 2:--) with probability 1. For the consistency in p,

we can define the limit process (X(2), ¢(s), B()) up to e=lim o, by X(2)=X,(¢),
ppoe
&(t)=1ro(t) and B(£)=B,(t) for t<o, Putting F,= VB (X,, B,) we have a
P

solution of (II). Condition (iii) will be show in the following Prop. 2, and the
rest is same as Theorem 1.

Proposition 2. ¢ is continuous, increasing and flat off {t; X,(2)=0}.

Proof. Since V¥ converges to v, uniformly on any bounded set, ¢ is
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continuous and increasing. Assume that X,(z,)>0. Because of the continuity
of path, there exists a positive § such that inf Xl(t)>0 Hence, for large

1t-tgl>

k, inf X{*(#)>0. Therefore dy*®(t)=0on |t—1t,| <3. Hence d¢(t)=0 on

|t-tgl>8

[t—2,] <8.

5. Proof of Theorem 3

We shall recall an estimate of a derivative of solution of partial differential
equation in two dimension, in our convenient form.

Lemma 1. Let u be a solution of the boundary value problem;
2
(1) ij2=-1 a;(X)u(x)=f on G=8,ND
u=20 on 0G,
where a and f are smooth on G, and a is symmetric and uniformly elliptic. If
2
v(x)|t]°< D3 a;;(x)t,t, <0 ]|*
ij=1
with a constant 6 and a non-negative function v such that ieLa((—},), then
v
(2)  suplue)| <MISIEE, i I1fllsq,<1
P
and

(3)  sup |[u(@)| <M||fllsc,

where || ||, a=|l |lLya> and a constant M depends only on 0, p and | —
v

8,Gp
For the proof of (2), we apply the same argument as [10] with detail calcul-
ations and (3) is obtained by [1] like as (12) in §2.
Suppose that |a;;], |7;], |&| and || are less than R, on G, and let us
define A by
A={4, C, A, €); (i) A is a 2X 2 matrix valued bounded and smooth function

on D, (ii) A(x) is symmetric and uniform elliptic, (iii) é/1~(x)t-t->p(x)1tl2

(iv) C is a two dimensional vector valued bounded and smooth function on D,
(v) A and C are bounded and smooth functions on R', (vi) (1 [A)e Ly, (vii)
IA I: |C|) 'Al) 'C[<Rp+1 OIl (O<p<(>0)}
Con31der a stochastic differential equatxon (ITI) with coefficient (4, C, A, é) in
A. Then we have a law unique solution X, [14],

Lemma 2. Let 7 be the hitting time of X to 0S,. Then, for any smooth
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function f(>0) on D we have

() B[ AXOSMIAE o<t

I

and T.

8,Gp

where M depends on p, R,

Proof. Let u be a solution of the boundary value problem (1), where

a(x) :;— A¥x). Then u is smooth. Hence, by a formula on stochastic differen-

tials, [9], and %(0, -)=0, we have
W(X(E)—u(x) = | 3 a0,0,(X ()32 v X(s))ds

4 S:ul((), X,(5)))d(s)-- martingale.
Taking the expectation
Eu(X(tA7))—u(x) = ES:Mf(X(s))—}—Z 1, (X($))ds+E S:ATul(O, X())de(s) .

Recalling Lemma 1, we have
(5) B[ AXEM<MIfIE e+ Egean).

We shall evaluate E¢(tA7)).
xiean) = at+2 [ au(XE)+nXOxs)ds
42 s:mXI(S)dcﬁ(S)‘I'martingale.
Since X,(s)d(s)=0, we have

EX3(tA7) =3+ 2E S'Mau(X(s))Jr 7 (X(5) X (5)ds
Using |x| < 1+T|x|2,
E3(tAT)<M,| x| eM .

Hence, appealing to “¢(¢A7)=X,(tA7)—x,— S’AT a,dB— S - v,ds” we have
0

0
(6) E¢(tAT)<M(T), t<T.
Therefore (4) is derived from (5) and (6).
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Lemma 3. Let g(>0) be a continuous function on R'.

() B o) <MD laerr (ST,

where a constant M, depends on p, R, and 2

A

Allp,c-p,0 P g
Proof. Put

(p=2)y+p)2p 22y

K= | (—INetA2e 2

and
p A
() = —2{_ K(3, 2)g@) A=z
Then v satisfies the following conditions.

(8) (9 =28»A%y») on (—p p)
o(—p) = v(p) =0

(9) o) <MPIA om0 llglac-p
and
(10) 1) <MP) A pc-p.00 118 lac0.00

Define u by u(x,, x,)=v(x,) on G,. Then
(1) w@®) =0,  yx) = 2g(x)A"(x,)
(12)  (u@)| <M(P) A, 00 llglla 0,0

and
(13)  Juy(x)| <M(P) A 50 llglla,cp, 0 -

Therefore we have

w(X(tAT))—u(x) = martingale—}—s " a(X(5) g(X () A X(s))

tA
0

FX X s+ | D10, XNEEENH)

t
0

Since azzg/i""zO, '

tA
0

E S :Avg(Xz(S))dd)(S) < Eu(X(tAT))—u(x)—E S T Vo X(8))u(X(s))ds

— B 00, XNOXLNAHO) -

and—+i=1.

205
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Hence, appeallng to (6) (12) and (13), we have (7).
Therefore E S XN (X(5))dp(s)=0 for a null set N (—p, p), by a routine, and

we get

Lemma 4.

4 B[ AXOM<MIFIE,

Jfor any bounded Borel function f on G, with ||f Ils,6,<1

(15) ] X)) <Myllgll -

for any bounded Borel function g on [—p, p].

We shall remark that if X, is the solution with coefficients of 2 and, with
probability 1, 7(X,) tends to n(< o) and X,(¢A7(X,)) tends to X(¢) uniformly
on any bounded time interval, then (14) holds for X with same M;, where 7
means 7. Moreover, if with probability 1, ¢,(¢) tends to ¢(¢) at each ¢ and ¢
has continuous paths, then (15) holds for X with same M,.

We construct an approximate stochastic differential equation as like in §2,
i.e. we extend «;; and v; to R* as like in §4 and apply regularization, so that
the coefficient is in . Now we have an approximate coefficient (a®, y**, @*®,
9% in %, such that a®® tends to a(x) almost all x& D and y**, &* and 9
are similar. Let (X%, ¢, B®, M%) be a solution and 7(* the hitting time
for 05, Put EP={(XS, 7%, B®, B®, ¢P), p—1,2--} where BH(¢H(1))
=M®(t), XP(1)=X P(tATP) and p§P(8)=¢p®(tA7SP). Then {X¥¥, k=1, 2..-}
is totally bounded in Prohorov topology by the same evaluation as [12]. 'There-
fore we have a convergent subsequence, X (for simplicity, we say m again)
and, by Skorohod’s theorem, can construct 8% = {(Z{®, (¥, B, B®, 1),
p=1, 2--:} and 8={(Z,, 7,, By, B,, V), p=1, 2---}, so that 8% has the same
law as X% and 8% tends to 8. Moreover, the consistency holds, i.e., Bs¥ and
B¢® are independent of p and Z(t)=2Z (£), v<P(£)=(2) up to 7®, (p'>p).
Therefore we can define Z(¢) and () up to e= 10112 7, by

Z(t) = Z)(t), A(t)= V1), t<7,.

Since B, and B, are independent of p, denoting by B and B, we can see that
(Z, e, B, B, V) is our wanted solution. In order to prove Theorem 3 we show
only the convergence of boundary process (Lemma 5), because other parts of
Theorem 3 will be proved in the same way as §2.
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Lemma 5.
£angh tA
ae) [ ez av =) - |9z
in probability.
@ [ awEeEaseeen) - [ azoabme),
in probability.
Proof. By virtue of Lemma 4 and its remark,

e

t
E[ ™ 19— (Z8 PP <Ml ® =4 ac-r.

£AngP
I A (O O ATAS T

Ang®

Since 9 is smooth, S'M" 9™(Z P(5))dw(s) tends tos * 9 (Z, () (5),

]

0
with probability 1, Therefore, we have (16).
Again by Lemma 4 and its remark,

k)

E( S:A'ﬂp (@ —a™)( Z(zk)(s))dB(k)(,\}r(k)(s)))z

£AnS 1)
= B[ (@ —amP(Z PR S M, (@ — 8N o cop
0
" AntR

E([™ (@™ —a)Z)B s <My (@™ — &Yl

Since B®(4»*)(s)) tends to B(yr(s)) uniformly on any bounded time interval,
€]

StMp a™™(Z$9(s)) dB®(*(s)) tends to StMPc‘t(’"’(Zz(s))dB(xlr(s)) by the conti-

nuity of &, Therefore we have (17).
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