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1. Introduction

Let 9={z&C; | 2| <1} be the unit disc in C and B={¢*; —x <t <x} the
boundary of 9. For an integrable function f (In this note a function will always
mean a complex valued function) on B with respect to the normalized measure

;—dt on B, we define the Poisson integral of f by
T

F(z) = 217[ 5: fP(z, eé)dt  for zed

where
1—7r?

1—2r cos (0—t)+7*

P(re', et) = for 0<r<1
and it is called the Poisson kernel of the unit disc 9. F is a C~-function on 9
and it is harmonic on 9), that is AF=0 for the Laplace-Beltrami operator A on
C~-functions on 9 with respect to the Poincaré metric on 9.

Then the classical Fatou’s theorem asserts that for an integrable function

fon B,
lifr?.1 F(re®) = f(e'?)

for almost every point ¢*® of B with respect to the measure l—dG.
T

Now let G be any non-compact connected semi-simple Lie group with finite
center, and let K be a maximal compact subgroup of G. Then the homogeneous
space G/K is a symmetric space of non-compact type. Let g=f-+p be the
Cartan decomposition of the Lie algebra g of G with respect to the Lie algebra
fof K. Let a be a maximal abelian subspace of p. Fix an order on a and let
a* be the positive Weyl chamber of a with respect to this order. Let M be
the centralizer of a in K. Then the homogeneous space K/M is the maximal
boundary of G/K in the sense of Furstenberg [2]. Let p be the normalized
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K-invariant measure on K/M and L?(K/M) denote the L?-space on K/M with
respect to the measure . Let P(gK, kM) be the Poisson kernel on G/K x K/M
geven by Koranyi [11].

Knapp [7] has proved the following Fatou-type theorem which generalizes
the classical Fatou’s theorem: Suppose G/K is a symmetric space of non-
compact type of rank one. Then for X ea* and fe L'(K/M), it holds
lim SK/M S(RM)P(k, exp tX K, kM)du(kM) = f(k,M)

tpoo

for almost every point k,M of K/M with respect to the measure p.

In the case of an arbitrary symmetric space G/K of non-compact type, for
feL”(K/M) and X ea*, Helgason-Koranyi [5] has proved a theorem of the
same type as above on the boundary behavior of the Poisson integral of f.

In the classical Fatou’s theorem, the unit disc 9 is a symmetric bounded
domain of tube type and the boundary 4 is the Bergman—éilov boundary of 9.
The purpose of the present paper is to prove for a symmetric bounded domain
9 of tube type and the Bergman-éilov boundary B of 9), the Poisson integral
of a function f & L(B) converges to f almost everywhere 3.

In general, Kordnyi [11] has defined the notion of the admissibly and
unrestrictedly convergence. Knapp and Williamson [8] showed that the Poisson
integral of a function f in L*(K/M) converges to f admissibly and unrestrictedly
almost everywhere. Moreover, in the case of a Siegel domain in the sense of
Pyatetskii—éapiro [14] which is analytically isomorphic to a symmetric bounded
domain 9), Stein and Weiss [16], [17], [19], have defined the notion of the re-
stricted and admissible convergence. Let B denote the Silov boundary in the
sense of Pyatetskii-éapiro [14] of the Siegel domain. Then they showed that
the Poisson integral of an integrable function f on B converges to f admissibly
and restrictedly almost everywhere on B. The generalized Cayley transform of
Koranyi-Wolf [12] carries the bounded symmetric domain £ onto the Siegel
domain and its inverse image of the Silov boundary B of the Siegel domain is
open and dense in the Bergman-éilov boundary B of the bounded domain.
The inverse Cayley transform carries the L?-space L?(B) of B into the L?-space
L?(3B) on B, but not onto, unless p=oco. Therefore Fatou’s theorem for
symmetric bounded domains and that for Siegel domains are not equivalent.

In §2, for a symmetic bounded domain 9 we define the notion of the radial
convergence of Poisson integrals of functions on the Bergman-éilov boundary of
9 and formulate a Fatou-type theorem. In §3, we give an explicit formula and
an estimate of the Poisson kernel of 9. In §4, for a symmetric bounded domain
of tube type, we define a maximal function and establish an estimate of Poisson
integrals by means of this maximal function. In §5, we prove a covering theorem
of Vitali-type and a maximal theorem of Knapp-type and give the proof of Fatou’s
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theorem for a symmetric domain of tube type. In §6, we prove inequalities of
Hardy-Littlewood, making use of the maximal theorem.

2. Statement of Fatou’s theorem

Let G be a connected semi-simple Lie group with finite center, K a maximal
compact subgroup of G. We assume that the quotient space G/K is an
irreducible hermitian symmetric space. Let gand f be the Lie algebras of G
and K, respectively, and let g=f-+p be the Cartan decomposition of g with
respect to f. Then K has the same rank as G. Let t be a Cartan subalgebra
of £. Then t is also a Cartan subalgebra of g. Let g°, ¢, p¢ and ¢ be the
complexifications of g, §, p and t, respectively. Then the set R of roots of g¢
with respect to t€ can be decomposed into two disjoint sets C={a ER; E,=c}
and P={acR; E,=p}, where {E,} is a set of root vectors. A root of C or P
is called compact or non-compact. Let p* be the subspace of p¢ corresponding
to (4-7)-eigenspace of the complex structure tensor on the tangent space of G/K
at the origin eK. We choose and fix an order &~ on roots in R such that p*, p~
are spanned by the E,’s, E_,’s, respectively, where « runs through positive non-
compact roots. Let A be the maximal set of strongly orthogonal non-compact
positive roots of Harish-Chandra [4]. We choose root vectors {E,} in such a
way that 7E,=—E_, for the conjugation 7 of g¢ with respect to the compact
real from g,=f-+ip of g¢. For acR, let H, be the unique element of 7t
satisfying a(H)=<H,/,H) for all He&t, where {,> denotes the Killing
form of g¢. For acA, we put XJ=E,+E_,, YI=(—i)(E,—E_,) and
e 2

<H),H>
{{H,, X2, Y3}. Strong orthogonality of A implies [g,, gs]={0} for 5. Let
t~ be the subalgebra of t, spanned by {i{H,; a A} and let t* be the orthogonal
complement of t~ in t with respect to the Killing form {,>. The vectors
X?J, as A, span a maximal abelian subalgbra a of p and h=t"+a is a Cartan
subalgebra of g. Let )¢ be the complexification of . A and H~ denote
analytic subgroups of G generated by a and t~, respectively.

Following Moore [13], we consider the Cayley transform ¢ of g¢ defined by

t=Ad (exp(% w%}; (—7) Yg)) Then ¢ transforms

H,. Let g, denote the subalgebra of g spanned by

X~ —H,, H,— X and Y Y (aeA)

and ¢ leaves t* pointwise fixed. Hence ¢ maps 7t~ onto a and t¢ onto §¢, so
that it maps R onto the set 3 of roots of g¢ with repsect to §¢. Let o be the
conjugation of g€ with repsect to g. ¢ permutes roots of = by

o(a)(H) = a(s(H)) for ac3, HEYC.
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We choose a following linear order < on = and fix it once and for all: (i) If
aceZ, a>0 and a does not vanish on a, then o(a)>0. (ii) If yeA, then
C(v)>0. Then I can be decomposed into three disjoint sets; 3" = {ae=;
a>0, o(a)>0}, S =—3"* and S={ac3; az—a(a)},wé CE, and 3 CE,

are both invariant under o, where {£,} is a set of root vectors of g€ with respect
to §¢. We put n= 3} CE,Ngandfi = 3 CE,Ng, which are real forms of
aes @€

Zz CE, and 2,: CE,, respectively. Then n and it are nilpotent subalgebras of
acst ac3s —

g. We obtain the Iwasawa decompositions g=f+a+n and G=KAN, where 4
and N are analytic subgroups of G generated by a, n. So any g&G can
uniquely decomposed as g = k(g) exp H(g)n(g), where k(g)eK, H(g)<a and
n(g)eN.

The restriction to a of a root of 3—3, is called a restricted root and the
order > on %, induces a linear order > on the set of restricted roots. Let F be
the fundamental system of restricted roots with respect to the order >. Let
X°=31X_, and we put E={a=F; a(X°)=0} and a(E)={H €a; a(H)=0 for

acA
all teE}. Then a(E) is spanned by X°, and g is the direct sum of eigen-spaces
for ad X°on g. The sum of the positive (negative) eigen-spaces of g is denoted
by n(E)(1(E)). Let b(E) be the sum of non-negative eigen-spaces, | the cen-
tralizer of X° in ¥, let 2p; be the sum of restriected roots a with a(X°)>0,
with multiplicties counted.

The analytic subgroups of G generated by n(E), n(E) will be denoted
by N(E), N(E). Let L be the centralizer of X° in K and B(E) the normalizer
of n(E)in G. Then, b(E) are Lie algebras of L, B(E) and we have the decom-
positions B(E)=LAN and b(E)=[4a-+n. From the Iwasawa decomposition
G=KAN, K|L is naturally identified with G/B(E) as K-spaces. Let ® be the
holomorphic imbedding of Harish-Chandra [4] of G/K into p~ as a bounded
domain in the complex vector space p~ and let 9= D(G/K). Then the
imbedding ® is equivariant with respect to the natural action of K on G/K and
the adjoint action of K on p~. Let B be the Bergman-éilov boundary of the
bounded domain & in p~. Then it is known (Koranyi-Wolf [12]) that

2 E_,€ B, K acts transitively on B by the adjoint action and L becomes the
acA

isotropy subgroup of K at DYE_,. Thus the Bergman—éilov boundary B is

acA

isomorphic to K/L.

Let p £ be the normalized K-invariant measure on K/L and L?(K/L) denote
the L?-space on K/L with respect to the measure pz. Then the Poisson kernel
on G/K X K/L is defined by

Py(gK, kL) = e~ H&'%)  for geG, keK
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where exp H(g 'k) is the A-component of g'k in the Iwasawa decomposition.
We define the Poisson integral of a function f&LYK/[L) by

S , f(RL)P(gK, kL)dp (kL) for geG.
K/L

The hermitian symmetric space G/K of non-compact type is called of tube
type if (, I) is a symmetric pair, then t~ is a Cartan subalgebra of (f,1) and
eigenvalues of ad(%X(,) are 0, +1 (Koranyi-Wolf [12]).

Now we can state our main theorem:

Theorem 1. Let G/K be an irreducible hermitian symmetric space of tube
type. Let a,=exp tX° for a real number t. If feL'(K|L), then

lim Sm F(RL)P p(koa,K, KL)dp (kL) = f(k,L)

tyo0
Jor almost every point kL of K|L with respect to .

We assumed the irreducibility of G/K for the simplicity, but the gener-
alization of Theorem 1 of general spaces of tube type is immediate.

3. Estimate of Poisson kernel

In this section we assume G/K is an irreducible hermitian symmetric space,
not necessarily of tube type.

Proposition 1. Let a=exp > t,X€ A4, h=exp ) 0,,@’ €H-. Then
we have e des 2

Pp(aK, hL) = TI P(tanh t,, ¢i%)*nc¥a®
aEA

where P(t, u) is a function on the product of the open interval (—1, 1) and the circle
B=1{ucC; |u|=1} defined by P(r,u)=(1—r*)|1—rz|~%. (We note that P(r, u)
coincides on (—1, 1) with the Poisson kernel of the unit disc in C.)

Proof. To calculate e~*sH@ " we consider the Iwasawa decomposition
of the element a4 of G. We have Y +iH,=n for a €A because we have

YOA iH =8V —iX ) ={(—i)(Ea—E-y)— i(Est E-o)} = &(—2iE,)=CE;, and
from the condition (ii) of the ordering > on =, we obtain Y2+iH,=egN > CE,
acz?t

=n. Since [g,, gs]=10} for a=+B, a, BEA, it follows that
a-'h = TI exp(—t X.) exp(ea@> :
P=ry 2

If we have the Iwasawa decompostion
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exp (—t, X7) exp <0¢ %‘) = exp a,,i%‘ exp b, XJ exp (co(Y3-+iH,))
of each factor, we have
a'h = exp (Ea,i%’) exp (ﬁgbﬁX 9 exp (EAC,,( Y3+iH,))

and thus H(a7'h)=>"b,X). Now let
aEA

SU(@1, 1) = {xeMz(C); ‘f((l, _(1))’”= ((1) _(1))}

SR )
10 0 —1 : 0
Then the Lie algebra 8ii(1, 1) of SU(1, 1) is spanned by X°, ¢H and Y°+:H
and the homomorphism ¢,: 81(1, 1) — g, defined by

XX}, iH—iH), Y°4iHw— YJ+iH,
can be extended to the homomorphism ¢,: SU(1, 1)—->G. In SU(1, 1) we
have the decomposition

exp (—tX°) exp (0’?) = exp (aig) exp bX exp c(Y°+iH)

with & =% log (ch’ — 2cht sh cos §--sh?t)— —% log P(tanh , ¢). Applying the

homorphism ¢, on the both sides, we have

b, = ——;— log P(tanh ¢, €®=).

This implies the Proposition. Q.E.D.
Now we define for 0<p<1,
tH -
9. = {exp( 3N 0¢—22>EH ; 16,] <mp, for any aEA} ,
aEA
B, = {IhLeK|L; L, heD,},
and for p>1,
B, = {{hLeK|L;leL, heH"}.

In §4, we shall calculate the measure of B, with respect to uy for a space
of tube type. We give an estimate of Poisson kernel on B, in the following.

Proposition 2. Let a=exp > \t,X3=A. Then we obtain an estimate of
aEA

Poisson kernel as follows:
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(i) If0<p<l and %<tanh t,<l for any a €A, then

— Xa®)
sup Pg(akK, hL)<C, II (%-)m
hEH -6[) acA P

B P(aK. hLV< C H< 1 )p,,cx¢o>
(i1 hi-l:zp- =(aK, hL) < *s€a\ 1—tanh ¢,

where C,, C, are constants independent on a and p.
In particular, if a,—exp tX°, then

(i) If 0<p<1 and %<tanh t<1, then

e\ K — X0

sup I ( N, kL)g('] (lm+m>0uc b) ( 1 )
kLEP,~B,

i 1 PE(AO)

(i1 SG%F Pg(a,K, kL)<(‘3<___) o)

e 1—tanh ¢ 2

(We note that B, is equal to K/L if G/K is of tube type).

Proof. We have (Koranyi [10]) an estimate of the Poisson kernel for the
unit disc in C as follows:

(i) sup (1—r)[1—reo|*<Ci=7  if Lpet,
P I<T 2
.. . 1 .
1—r%)|1—re~| -2 < C} £ 0<r<l.
(i)  sup (1—r)[1—re®|*<Ci—  if 0<r<

where C{, Cj, are constants. This together with Proposition 1 implies the
first statement. If a,—=exp X", then we have Pg(a,K, lhL)=Pg(a,K, hL) for
heH- and /L since L centralizes X° in K. This together with the first
statement implies the second statement. Q.E.D.

4. Maximal function

Henceforth we shall assume that G/K is an irreducible hermitian symme-
tric space of tube type. We consider the Poisson integral

[, FHLIPs(@K, RL)dps(AL) (3)

for a,=exp tX° and an integrable function f on K/L with respect to pg.
Since K/L is a symmetric space, we may use the following integral formula
for K/L (Harish-Chandra [4]): For each continuous function f on K/L, we

have
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Sm f(kL)dpg(kL) = ¢ SH_ ( SW - f(RL)dT)| D(k)|dh

L

where ¢ is a constant independent on f, Z,(t7) is the centralizer of t~ in L, dh is

a Haar measure on H- and dl is a quotient measure on L/Z(t") induced from
the normalized Haar measure d/ on L. Moreover

D(h)=ﬂ]_1 sin B(¢H) for h=-exp H,Het"
ery

where Pi={a=C; positive and « |t-=0}.
Making use of this integral formula, we have the measure ||B,|| of B, with
respect to pp as follows:

1801 = § xmkLydshl) = ¢ (|

— CLBP \D(k) | dh

Xs,(IhL)dl)| D(k)| dh
L/Z ;47>

where Xs, is the characteristic function of B,. The density D(k) of the integral
is given as follows: Let A={v,,***, Ym}> Y13 72-3**—3 V.m» Where m=rank of
G/K. For aER, let z(a) be the restriction of « to the complexification (7)€
of 1=, but 7(7;) will be denoted by v, for the brevity, since any root 31, does
not coincide with z(v,) on (t7)¢. Since G/K is of tube type, we have (Harish-
Chandra [4], Koranyi-Wolf [12]) for a positive compact root 3,

0 or

"O= Lom <

and for a positive non-compact root 3,

Vi or

O Lo 6=

Moreover the number 7;; (i<j) of elements of {BE Pl =(B) :%(fyj—fyi)} is

the same as the number of positive non-compact roots B such that

() :%(y,.w,.). It follows that

D(exp >0, %) . {sin %(9,.—9,)}"".

i<i<igm
Now we obtain the following

Lemma 1. For 0<p<1, we have an estimate of the measure of B,:
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[1%B]| <CpPae® (4)

where C is a constant independent on p. For p>1, we have ||B,||=1 (from the
definition of B,).

Proof. From the above argument,
L4

o (e 1 »
1B, ]| = cg% |D(h)|dh=cg ,p"'S I |sin - (6,—0,)|"d0, - d6,n
()

-np i<j

i (" i + 3¢ + 3 iinm
<c(,,p)%'fg_ip---s_ipdal---da,,,gcp"‘ ZC=en" T F om)

because |[sin %(e,.—o,.n <%|0,.—0,.| <p.

On the other hand, X°=3" X, and
k=1

-1 .1 1/& T
pe(X5) = (€ pa)e X%) = L (St T L 1,47 )
= 14> Tik -
i<k
Hence pg(X°)=m-+ >} r;;, then the result follows. Q.E.D.
1i<j<”

DerFiniTION.  For an integrable function f on K/L, we define a maximal
function f* on K/L by

f*(k,L) = sup 1 S | f(R,RL)|dpg(RL) for k,LeK|L.
ek [B,]] %,
The function f* on K/L is measurable because the supremum over rational
p (0<p<1) gives the same answer.
Proposition 3. For an integrable function f on K|L, we have an estimate

of Poisson integral by means of the above maximal function :

sup SK_/L | f(RL)| Pg(k,a, K, RLYdug(RL)<C'f*(k,L)

#<tanh <1

for all k,e K, where a,—exp tX° and C' is a constant not depending on f and k, L.

Proof. We fix first an arbitrary constant o>0 put §=(1—tanh t)a for

%<tanh t<1l. We may suppose k,=e in view of the K-invariance of the

measure ug, replacing f by the function f*o defined by f*o(kL)=f(kkL). Then
for —;—<tanh t<1, we have
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Sm | f(EL)| Px(a, K, kL)dp5(KL) = S%I | A(RL)| Px(a, K, kL)dps(kL)

<{ g, VRLIPo(a K, RLus (kL)1 | 1f(RL)Ps(a K, RL)u (kL)
(5)

27 1570278
Here we note that the summation of the second term in (5) is in fact finite sum
because B,;;=K/L for 2/§=1.
The right hand side of (5) can be estimated as follows:

1

the first term << Cz{—
1—tanh ¢

}W O)S s, | fRL) | drs(KL) (by (2))

1 ‘X0 .
<C, {—} [|Bs]] f*(eL) (by the definition of f*)
1—tanh ¢

1 PRCX0) o X0
<CCf AT a0 L) by (4)
= C,C afs="f*L). (6)
- X0
the second term< Z C,{l—ft—?r%l—t}pu( )s | f(RL)|dpg(RL) (by (1))
j=0 (2’3) Byi +15~ Bl

—tanht} EO0B | £ I (by the definition of
<a i) Imalreer) P

ji=0

<O (Lt @ asan ety @y (4)

—cC (%)p”u‘ o’( >3 { St 0)} ) f*(eL) (7)

j=o
1

1—(1/2)P8¢ "
Hence putting together (6) and (7) into (5), we obtain the inequality:

where the sum >} {m converges to

i=o

sup § | f(kL)| Px(a,K, kL)dpg(kL)

1/2<tanht<1 J K/L

5. Covering theorem and proof of Fatou’s theorem

In this section we shall prove a covering theorem of Vitali type with respect
to the family of sets of the form &B,, 0<p<1, kK and prove a maximal
theorem related to the maximal function f* on K/L.

Let q be the orthogonal complement of I in ¥ with respect to <, >. Then
q=Ad(L)t™ since K/L is a symmetric space. We define a map y: q—p by
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¥(X) =%[X°, X] for X&q and putting p*=1(q), define a map j: p*—-n(E) by

jX)=X —%[X °, X] for Xep*. Then both Y and j are L-equivariant iso-

morphisms (Takeuchi [18]). We have Y/(tH,)=Y? and j(Y3)=Y}—iH, for
any a €A so that jyr(t") is the subspace of n(E) spanned by {Y)—iH,; a=A}.
Thus we have the following

Lemma 2. Ad(L){Y—iH,: acA}p=n(E)
where {Y —iH,: a € A} is the subspace of W(E) spanned by {Y ) —iH,: a € A}.

Now we define an L-invariant norm || || on #i(E) as follows. We define
a K-invariant inner product on g by

(X, V)= <X, 1Y) for X, Yeg.
For Zen(E), let | Z| denote the operator norm of ad(j —'Z) with respect of (,)
and let ||Z ||=—;~|Z |. Then (Takeuchi[18]) || || is a L-invariant norm on n(E)
satisfying
12| = max|a,|  for Z = au(Ye—iHL).
For each >0, let

By = {ZEn(E); ||12]]<8}
B; = {k(n)LEK|L; n = exp Z, ZE By}

where k(7) is the K-component of # in the Iwasawa decomposition.
Lemma 3. For 0<p<1, we have
B,— {k(ﬁ)LeK/L; fi—exp Ad()(S ay(Y0—iH,)), I L, max |, | <%tan((7z/2)p}
acA acA

and therefore

SBp = Bl/ztan (C=/2)p) *

Proof. Recall the definition of B, for 0<p<1:
iH,
B, — {theK/L; leL h— exp(E}AH,,T), 16, <7rp} :

As in the proof of Proposition 1, we have

exp(EAea—;—H,>=k(exp(—%ﬂtan (%Ga)(Y:—z’Ha))) for |0, <.

aEA
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Since Inl-'B(E)=Ik(n)B(E) for leL, neN(E) and G/B(E)>gB(E)—k(g)L
€K|L is a bijection, we have k(lnl-*)L=Ik(n)L. Then the statement follows.
Q.E.D.

The purpose of this section is to prove the following covering theorem;

Theorem 2. There is some constant C'">0 with the following property.
If U is any Borel set in K|L, and if to each point kKL in U there is associated a set
kB, (with 0< p<1 depending on ke K), then there is a countable disjoint subfamily
of {¥B,}, say k;B,, such that

C" 53 ualk;B,) > ua(U)

In view of Lemma 3, we may prove the following theorem in place of Theorem 2.

Theorem 2'. There is some constant C'' >0 with the following property.
If U is any Borel set in K|L, and if to each point kL in U there is associated a set
kB; (with §>0 depending on ke K), then there is a countable disjoint subfamily of
{kBs}, say k; B, such that

C" 3 wn(k; B))> (V).

The proof will proceed in the same way as Knapp’s proof [7] of the covering
theorem on Furstenberg’s boundary K/M of a symmetric space of rank one.

Any 7€ N(E) can be written uniquely in the form n—=exp Z, Z€(E).
We write as Z=log #i. Then we define

|n|=|[log | .

0 0
We have |ﬁexp X2 | ze—t..golﬁl for ne*P 8HX02)__ (exp tXT)ﬁ CXp(—t )2{ ) since

fi(E) is (—1)-eigenspace of ad %X ‘.

Lemma 4. There exists a constant C, such that
|nn'| <Cy|n|+|7'])
for all n, w” € N(E).

Proof. The proof is quite same as that of Lemma 2.3 in Koranyi [11].
Let V,={neN(E); |n|<e'} for tcR. The sets V, are compact and con-
verge to N(E) as t—>oo. Then there exists >0 such that V,-V,cV,. We
put C;=¢". By the above remark V,=Vg*(=*<*)  For n,”€N(E) we
write |7|=¢é’, |7’|=e", and let 7=Max {t,#'}. Thenznw' eV, VycVV=
(Vo Vo) »cV,,, and so |n#'| <e™” <e'(|n|+|7'|). Q.E.D.
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Lemma 5. By N(E)-hull of exp (B;), we mean the union of all N(E)-
translates of exp (B;) which have non-empty intersection with exp (B;). Then
there is a constant C, such that for each §>0,

N(E)-hull of exp (Bs)Cexp (Bc DE

Proof. Let 7 exp (Bs)N exp (Bs)= ¢ for n€ N (E) and 7 n,=, for #,, ,&
exp (Bs). Then |n|=|n,nr"|<Cy|n,|+ |7n,])<2C,8 by Lemma 4. Hence
for each n,sexp (B;), we have

|7 72| SCo( 17|+ |7i5] ) < CH2C,5+-8) = (2C3+Cy)s .
Therefore C,=2C%4-C, is a desired constant. Q.E.D.

The mapping v of G onto K/L which sends g into k(g)L is an injective
real analytic mapping of N(E) onto a dense open subset of K/L. By the conti-
nuity of the action of K on K/L there exist open subsets Uc K, Vc K/L with
ecU, eLeV such that UVcy(N(E))cK/L. We put V= "(V)CN(E)
The function y~* is defined at each point of V since V=eVcy(N(E)). For
g€G and ne N(E), we put

gn=9"(gv(n)
if the right hand side is defined. If k€U and €V, then k-y(n)c UV and

ken=v"'(k-y(n)) is defined. We put n(k)=v"*(kRL) for ke U. We consider
the mapping UX V — N(E) defined by

(k, ) > (k)" (k-7)  for keU,neV. 11)

Then we obtain the following Lemma, which, together with Lemma 5, is
essential for proof of the covering theorem.

Lemma 6. There exist a neighborhood W, of e in N(E), a neighborhood
W, of e in K and a constant C;>0 such that if ke W, and exp (Bs)C W,, then
n(k)~*(k-exp (Bj)) C Beg.

Proof. Let v be the dimension of K and d the dimension of N(E). We
fix any basis {X;} of fi(E) and define coordinates of N(E) by

d
exp (330.X) = (5 -+ %2).

Restrict the coordinates to the open set V' cN(E) and choose an open
coordinate neighborhood U,c U of e in K with local coordinates (%, -+, k,),
(ky(€), -+, ky(e))=(0, +--,0). We will describe the mapping (11) by these coordi-
nates x;, k] We choose neighborhoods W,, W, such that W,cV N exp (B,),
W,c U,, W, has compact closure and these power series of coordinates of



106 H. Urakawa

n(k)~*(k-n) converge in an open neighborhood of the closure of W,x W,. We
can rearrange the terms of these power series to write the /-th coordinate of
n(k)'(k-n) as

d d
al(k)-{_; ali(k)xi"l"z a;(m, k)xixj ’ I=1,--,d

where a,(k), a,;(k) and a,,;(n, k) are real analytic functions of n& W, and ke W,
The terms a,(k) vanish on W,CK since 7n(k)'(e-k)=e. There exist
C,, C,>0 such that for each [, 4, j, |(a;;,(n, k)| <C, on the compact closure of

W, x W, and max |x;| <C,||X]| for X=i x; X;E0(E). Then|Xa,;#n, k)x:x;|
1<i<d i=1 iJ

<C,C3||log ]| on the closure of W, X W,. Hence we obtain
n(k)~'(k+n) = exp (X a,/(k)x,+Z)

where ||Z||<C,C%||log n||* for nte W, and kEW,.
For fixed ke W,, the matrix (a,,(k)) is the Jacobian matrix of the trans-
formation

i (k) \(k-n) for nsN(E). (12)

Since ke W,c U,c U and (U)(eL)cy(N(E)), we can write #(k)=v"*(kL)=kb
by uniquely determined & B(E) because the restriction of v to N(E) is an
injection.

Then the mapping (12) is the same as the mapping

Abtn  for neN(E) (13)

In fact, ¥~ is defined on knB(E) for ke W, and s W, and we have b~'nB(E)
=b'k 'y ' (knB(E))B(E)=n(k) v ' (knB(E))B(E) =y (n(k)*v ' (knB(E))) =
v(n(k) v~ (k- v (n)))=" (n(k)) (k- n)). B

The differential of the mapping (13) at e N(E) is given by

X > Py ddp )X for xcii(E)

where Py, is the projection of g onto 1(E) along the decomposition
g=n(E)+b(E), since the mapping (13) is the composite of the conjugation of
b1, the quotient map G — G/B(E) and the map v~

Now we consider the operator Py z,Ad(b~*). The restriction of Prcz,Ad(b™")
to n(E) is a bounded operator on #(E) with respect to the norm || ||. Let
[|Pace>Ad(d™") |5cr>l| be the operator norm of Ppg,Ad(b™') on T(E). Then

since the closure W, of W, is compact, C,= sup ||PrcgyAd(b7") 5wl is finite

ke W2
a(k)=kb

and we have ||Pyz, 4d(b~)X|| <Cy||X]|| for all XEn(E) and ke W,
Consequently we have for ze W, and ke W,,
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[llog (n(k)}(k-n))|| = |la,;(k)x;+Z||<(C,C7+Cy)l|log 7| .
Therefore we conclude
n(k)"'(k-exp (Bs))CBcs, C;= C,Ci+C,

for exp (B;)C W, and ke W, _ Q.E.D.
By K-hull of B;, we mean the union of all K-translates of B; which have
non-empty intersection with Bj.

Proposition 4. sup £ e(K-hull of B,)

= o0
0<8<= we(Bs) <

Proof. Let W, and W, be neighborhoods as in Lemma 6. Let k€W,
k-exp (Bs) N exp (Bs)+¢ and exp (Bs)C W,. Then n(k) exp (Bc,s) N exp (Bc,s)C
n(k)[n(k)~'(k-exp (Bs))] N exp (Bs)=k-exp (Bs)Nexp (Bs)+¢. Lemma 5 shows
that k-exp (B;)=n(k) [1n(k)"'(k-exp (B;s))] Cn(k) exp (Bc,s)Cexp (Bc,cs)- Hence
we have kB;C ECQS with C,=C,C;.

There exists a number §,>0 such that exp(B;) is included in W, for any
8<8,, We may prove that

sup #e(K-hull of By)
<8, re(Bs)

< (14)

since pg(K/L)=1.

Now we assume that (14) is false. Then there exist a sequence 0<§,<3,
and k,= K such that %k, Es,, N Es,,=t=¢ and k,,Ea”d:ECQS“ since there exists a con-
/LE(B_Cg)
1 e(Bs)
3,—0 as n—co since uz(K/L)=1. Let o be the quotient mapping of K onto
K/L. Since EB;=FIB; for IeL and kK, it follows from the first argument
that if k€ o~(a(W,)), §<§, and kB;N By=+ ¢, then kByC Bcs.  Therefore o(k,)
is not in the neighborhood o(W,) of eL. We may suppose &, converges to some
point k,€K with o(k,)==eL since K is compact. If p,Ek,B;,N B,,, p, con-
verges to eL since Es,, shrinks to eL as n—oo. But p,=k,q, with ¢,EB;,
g»—>eL as n— co. Therefore we obtain eL=~FkeL or o(k,)=eL, a contradiction.

Q.E.D.

stant C; such that <C,, for each §<3§,, Moreover we may assume

Proof of Theorem 2. We put

O — sup ka(K-hull of B.)
BRSNS A N /.bE(Bgt-l)

Then Proposition 4 implies that 1<<C”'<<co. Let T,=sup {t,; kB, is associated
to kLeU}. If T,=-+ oo, then we can find a set k- B, with measure as close to
1 as we like, and the conclusion of the theorem follows since 1<<C”"<<co. We
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assume from now on that T,<oo. We construct R,, T, and k,B» in the
following process: Let R, be the family {kB,} of all associated sets. Taking
a set kB 1ER, with T,—1<t,<T,, we put R,= {kB,+&R,; kB /N k, B 1,=0¢}.
If R,=¢, then our process is over. If R,=+¢, then we put T,=sup {#; kB €
R;}}. Taking a set k,B.,.eR, with T,—1<t,<T,, we put R,= {kBs©ER,;
kBN k,B,,=¢} and our process is continued inductively.

If V, is the union of the members of R,—R,,, and V is the union of the

members of R,, then V = U V.. Since UcCV,, we obtain pg( U)<i} we(Vy).

n=1
The proof will be complete if we show that ug(V,)<C”ug(k,B.»). Let
kBs#ER,—~R,,,. Then T,>t, and kBN k,B,m+¢. Thus kB,rsNk,Brs
+¢, ki'kBr N\ B¢, kikBrac K-hull of B, and kBwCk, (K-hull of
B,s). Hence V,Ck, (K-hull of B,r:). From the definition of C”/ and the
inequality T',—1<{,, we obtain pg(V,)<ur(k(K-hull of B,r))<C"n £(Bgrs-1)
<C"ug(B»)=C" ugp(kyB ). Q.E.D.

REMARK. From the definition of the maximal function f* for an integrable
function f on K/L and Lemma 3, we have

fH(k,L) = sup —1 S | f(kkL)|dus(kL)  for kLeK/L.
0<8< 00 ME(Bs) Bs

Theorem 3. (Maximal theorem)
For an integrable function f on K|L and any real number £>0, we obtain
the following inequalities :

(i) metkLEK|L; f*(kL)>E} <%§m | A(RL) |y s(kL) (15)

(i) wetkLEK/L; fHkL)>E} <3§§ | fkL)|dus(kL)  (16)

1F DI >hE
where C'' is the same constant as in Theorem 2’.

Proof. Let U= {kLeK|L; f*(kL)>&}. From the above Remark, for
each k, L= U there exists Eso such that

[, o |FRL) dus(kL)> Enn(Br) = EnlbaBay)

Theorem 2/ says that there exists a disjoint subfamily {kjésj} of {kogso;
k,Le U} such that C”" 3 pg(k,;Bs;)> pe(U). Therefore
ji=1

[, D) s D)= 3, 1 fRL) ds(hL)> £ 3 sy B> 5 s(U)
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and the inequality (i) follows. For the proof of (ii), we define an integrable
function 4 on K/L by

FRL) i |fRL)|> L&
h(RL) = 2

0 otherwise.
Then h*(kL)—|—é—§> F*(KL). Hence by (i)

s U)<#E{kL; h*(kL)>%§} <%” L/L |\ h(kL)| dp (kL)

_ 2(; " gmmmg | ARL) | dps(kL) . Q.E.D.

Proof of Theorem 1. For any &>0, we can write as f=f,+f, where f,
is continuous and f,eLY(K|/L) with L*-norm || f,||,<<&. Let h,, h, and h be the
Poisson integrals of f,, f, and f, respectively. Since f, is continuous, we can
choose (Koranyi-Helgason [5]) 7>0 large enough such that £>T implies

|hy(ka,K)—f(kL)| <&  forall keK

where a,=exptX°. If U={kLeK/L; |f(kL)—f(kL)| >&}={kL €K|L;
| fARL)| >¢€}, then pg(U,)<€ since Eug(U))<||fll;<<&. Therefore except in
the set U, of measure <&,

\hy(ka,K)—f(kL)| <26 for t>T.
Let U2={kLeK/L; f;k(kL)>g,} where C’ is a constant in Proposition 3.
Then we have by Theorem 3 (i)

pe(U) <EE ) L) 1 duser) <C 6 = O
& K/L &

Hence we have by Proposition 3

|hy(ka,K)| <& for all t>tanh“‘<%>

except in the set U, of measure <C’C”¢&. Therefore, except in the set U,U U,
of measure (C'C""41)¢,

|h(ka,K)—fRL) <36 for t>max(T, tanh"(%)).

Replacing & by 27"¢ and taking U{” and U$" in place of U, and U,, let U be
the union of all U YU, n=1,2, ---. Then we have
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ltl:B h(ka,K) = f(kL)
except in the set U of measure <2(C’C”41)E. Since € is arbitrary,
}iril h(ka,K) = f(kL)
almost everywhere on K/L with respect to ug. Q.E.D.

6. Inequalities of Hardy-Littlewood

In this section, we shall prove inequlities of Hardy-Littlewood in the same
way as Rauch’s proof [15] of the inequalities for hermitian hyperbolic spaces.
We assume again that G/K is an irreducible hermitian symmetric space of tube
type. For a function f on K/L, we define a real valued non-negative function

log*| f| on K/L by

log| flkL)|  if | f(RL)| >1

0 otherwise.

(og? | F1) (L) = {
For a measurable function @ on K/L, we define a decreasing function p, on
R*=]0, ) by
noll) = nsthLEKIL; |@(RL)|>E}  for ESR™.

Then for any non-negative increasing function s on R* we obtain

[ UL DdisekL)= = s(€)duol®) (17)
where the right hand side means the Lebesgue-Stieltjes integral with respect to
M-

Proposition 5. There exist positive constants C,, o and (3 such that

(1) if p>1, Sm | f*(RL)|?dpe(RL)SCull fll; for all fELX(K]L) (i) if p=1,

SmIf*(kL)lduE(kLKaSK/L | f(RL)|log*(| (kL) |dpp+R for all functions f
such that f log* fe L\(K/L).
Proof. Since we have from Theorem 3 (ii) and (17)

l‘f*(g)g—z”c—

2Cll oo
d, RL)y= — = _
£ S(f(KL)|>}§I ”El( ) S

, xd p (x) for £>0,
£

we have

[Tur@pae<—2cr | erag | sap 0) = —207 | wdu ) | erae.
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Let p>1. Then
[, wr@grrar = 220 [ wtdn )
2, , y
= P_1<zc )|, | AL *dus(RL) <co .
Hence we obtain

(o )
lim Ss p (@)t d = 0.,

Since u .~ is a decreasing function on R*, we have

MZ&)&PZ—T—I-— p @) |, wrtdn < (et

Therefore lim p +(28)£?=0, and making use of integration by parts of Lebesgue-
£

Stieltjes integral, we obtain
[ S Ly dus(kl) = —{ w2 d o) = [ plpw =
<P _20-12¢7) Sm | fRL) | *dps(kL) .

p—1
If p=1, then we have

[ o)< =207 {yau ()" 2 = —2" "y 1og (29)dis 49)
<2¢7{ 1 f(kL)\log"(| f(kL) | )dps(hL)
+20"10g2 | fL)|dus(AL)
Since | f| <1+ f|log*| f|, we have

[ .| L) | disskL) <pu(RIL)+ 1 ARL) log? (1 ARL) s (kL)

and
(L1 @dr<us(KIL)
Since
Sm | f*(kL)|dps(RL) = —S:xdp p(x) = S"“ o {0}

= S:,;,f*(x)dx+ S:o p(x)dx,
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the second inequality follows. Q.E.D.

DrrFINITION.  For an integrable function f on K/L, we define a function f
on K/L by

fetkL) = sup SM| f(kL)|Pg(k,a,K, kL)dug(kL)  for k,LeK/L

#<tanhit<1

where a,—exp tX°. Since L centralizes X°, f4 is a well defined function on
K/L. Since the supremum over rational ¢ gives the same answer, fx is a
measurable function on K/L.

Theorem 4. (Inequalities of Hardy-Littlewood) There exist constants
C.s o and B such that

() i p>1, [ | fuhL) |2 dus kL)< Cll 11 for all f LK)
(i) itp=1, | |fuCkL) dushl) <o’ | 1 RL) log* (1 F(RL) pslkLY+A"

for all f such that f log* | f| € L(K|L).

Proof. These are immediate consequences of Propositions 3 and 5.

Q.E.D.
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