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Introduction

For any ring A, by G(4) we denote the Grothendieck group of left
A-modules which are finitely generated. Let R be the ring of integers of an
algebraic number field K, and let Rz and Kz be the group rings of a finite
group = over R and K, respectively. If © is a maximal R-order in Kz which
contains Rz, then by regarding a module over £ as one over Rz, we get a homo-
morphism

¥: G(©) > G(Rr)

of Grothendieck groups. Swan [4] proved that vr is an epimorphism, and
Heller and Reiner [2] described the structure of ker v by using a map which
depends on an ideal theory of the center of O and the modular representations of
m. 'The following theorem is an immediate consequence from the description.

Theorem 1. Let R; be maximal orders in the center of the simple con-
stituents A; (1=1, -+, s) of Kn. If any prime ideal of R; which divides the order
of m is contained in the ray J(R;) modulo the real archimedian primes ramified in
A;, then r is an isomorphism.

The purpose of this note is to show that under certain assumptions the con-
verse of this theorem is also true.

Theorem 2. Let = be a finite abelian group of order n and K be a cyclotomic
field.  Then r is an isomorphism if and only if any prime ideal in O which divides
n is principal.

In this case J(R;) is the group of all principal ideals of R; and O is the direct
sum of the R;. Hence the if part of this theorem is a special case of Theorem 1.
Our proof of this theorem is based on a method using the conducter from 9O to
Rz, which owes to Swan ([4]).

Throughout this note, modules are assumed to be left modules which are
finitely generated and by K, R and [M] we denote an algebraic number field,
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the ring of integers of K and an element of a Grothendieck group which is repre-
sented by a module M, respectively.

1. Let A be a central simple algebra over K and let O be a maximal R-order
in 4. By I(R) and J(R) we denote the multiplicative group of R-ideals in K
and the subgroup of I(R) consisting of elements xR (x< K), respectively, where
x are positive at each real archimedian prime of K which ramifies in 4.

If S is a simple ©-module, there exists a unique prime ideal p of R such
that pS=0. Hence, when M is a torsion O-module and S, ---, S, are the
O-composition factors of M, we define the reduced order ideal Or(M) of M as
Or(M)=p,---p;, where each p; is a unique prime ideal scuh that p,S;=0.

We note that G(O) is isomorphic to the Grothendieck group of torsion-
free O-modules. Now let L be a torsion-free O-module such that K (XI)2 Lisasimple

A-module and fix it. Let M be a torsion-free O-module. Then KQM is
R
isomorphic to a direct sum (KQL)" of r-copies of K®L and there exists a
R R

submodule N of M such that N=L". Hence [M]=r[L]4+[M|N], and M/N
is torsion. Set a=Or[M|N]. By setting n([M])=(r, a), a map

7. G(O) —~ ZSI(R)/J(R)

is an isomorphism, where a is an element of I(R)/J(R) represented by a and Z
is the ring of rational integers, (see Swan [5] or Heller and Reiner [2]).

For any (non-zero) ideal 2 of O, by D(A) we denote the set of prime ideals
of R which divide Or(O/2). Then by the definition of 7, we have an immediate

consequence.

Lemma 3. Let N be an ideal of O and let M be an O-module which anni-
hilated by .  If any element of D(N) is contained in J(R), then [M]=0 in G(D).

2. Let z be a finite group and let O be a maximal R-order in Kz which con-
tains Rz. Now we consider the epimorphism

¥: G(©) - G(Rx) .

Let Kn=A,B---P A, be the decomposition of Kz into the simple constituents.
We denote by K; the center of 4; and by R; the ring of integers of K;. Since
© is a maximal R-order in Kz, there is a decomposition O=9,P--- PO, of O,
where each O; is a maximal R;-order in 4;. By € we denote the conductor
from © to Rz (the largest ©-ideal contained in Rz), and we write €=€ - B
€,, where each €, is an ideal of O;. It is known that € divides 7 the order of
T.

Proposition 4. Suppose any element of D(C€,) is contained in J(R,) for
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each i. Then the map r: G(O)—G(Rx) is an isomorphism.

Proof. We shall give a left inverse map ¢ of Y. At first, we define a homo-
morphism

¢:: G(Rr) = G(D)).

Any element of G(Rr) is represented by [M]—[N], where M and N are
torsion-free Rz-modules. It therefore suflices to consider torsion-free Rz-
modules. Now let M be a torsion-free Rz-module. Since €, is contained in Rz,
we can consider an Rz-module €;M. We define an operation of O, for €, M as
(2 cm,) =3 (xc,)ym, (x€D;, Tem,e€;M). To see that this is well defined, let
S,em,=0. Since nx is contained in €, n3,(xc,)m,=(nx)=,c,m,=0. However
3 (xc,)m,e M, and M is torsion-free, so we have Z,(xc,)m,=0. Hence we can
regard €, M as an ©O;-module.

We now define a homomorphism

¢i: G(Rn) > G(D,),
by ¢([M])=[€,M]. Itis well defined as follows. Let
0O-M->M—->M"—-0

be an exact sequence of torsion-free Rz-modules. Then it induces a sequence

o 2emBem —o

of O,-modules, which is exact up to middle. We easily see that kerB/ima is
annihilated by €;, but by the assumption, any element of D(€,) is contained in
J(R;). So by Lemma 3, [ker@/ima] is zero in G(O;). This implies that [€,M]
=[€;M']+[€;M'’], which showes that ¢, is well defined.

Since G(O)=Z=PG(D;), we define a homomorphism ¢ with all ¢;,

¢=3¢;: G(Rr) — G(D).

Any ©O;-module M is regarded as an O-module by setting O;M=0 for j=+i.
Then ¢ ([M])=[€;M] and ¢ ([M])=[€;M]=0. However [M]=[€;M] in
G(9,) by Lemma 3. Therefore ¢r=1, and we complete the proof.

3. Hereafter let = be abelian. Then for each 7, 4; and O, coincide with
K; and R;, respectively. Moreover J(9;) is the group of principal ideals of ©,,
and D(€,) is the set of prime ideals of ©; dividing €,.

Now we assume that K is a cyclotomic field or any prime rational integer
dividing # the order of = is unramified in R. Let p, is a map Rz—9, induced
by the projection from K= onto each constituent 4;. Then p; is an epimorphism
(see Swan [5]). Set N,=Kerp;. Since p; is an epimorphism, p,(N;) is an
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ideal of O, for each 7 and j. Any O;-module M is regarded as an O-module by
setting 0,;M=0 for j=1, and moreover this is also regarded as an Rz-module by
restriction of the operation. But such an operation of Rz for M coincides with
one induced by p;.

Theorem 2'. Let = be an abelian group of order n. Assume that either K
is a cyclotomic field or R has a property that any prime rational integer dividing n
is unramified in R. Then the map \r is an isomorphism if and only if any prime
ideal dividing & is principal in O.

Proof. Assume that any prime ideal dividing € is principal in ©O which
is equivalent to saying that for each ¢ any prime ideal dividing €, is principal
in O;, i.e. D(€,)C I(X;). Then Y is an isomorphism by Proposition 4.

Conversely, let y» be an isomorphism. Suppose that there exists a non-prin-
cipal prime ideal B of ©; dividing €; for some 7. Set M=D,;/P. Since P
is a non-principal prime ideal, [M] is not zero in G(;).

On the other hand 1;[9& iC QEER 7=C,; (see Bass [1]). Hence, for some j=+i,

piAM;) is contained in P. If the O,-module M is regarded as an Rz-module (by
the way mentioned above), T ;M=p (N, )M c PM=0. Consequently, M is an-
nihilated by R, so that from the isomorphism Rz/ ;=0 ;, M is also regarded
as an O ;-module. Then the new Rz-module M obtained above coincides with
the given O;-module. It implies that in G(Rx), [M] is contained in the image
of G(D,) as well as of G(9;), which contradicts injectivity of y». This proves
Theorem 2’.

Now, in particular let K be an arbitrary cyclotomic field. Then a prime
ideal P of O; divides €,; if and only if B divides n (see Bass[1]). Thus Theorem
2 is an immediate consequence of Theorem 2'.
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