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Introduction

The original form of the theorem of Riesz-Frostman-Nevanlinna is stated
as follows: let f(z) be regular and bounded in the unit disc. If lim f(re’®) is equal

to zero on a subset of positive measure of |z| =1, then f(z)=0. R. Nevanlinna®
and O. Frostman® extended independently this theorem to the case of meromor-
phic functions of bounded type. However, if we consider arbitrary regular
functions this theorem does not hold in general as the example of Lusin-Priwalow
shows®.

Meanwhile, it has been made known by the recent studies of Constantinescu-
Cornea® that the boundary behavior of analytic maps of Riemann surfaces
depends deeply on the harmonic character of maps. In [7], they developed
this idea to maps of harmonic spaces satisfying the Brelot’s axioms.

In this paper, we shall generalize the theorem of Riesz-Frostman-Nevanlinna
for maps of a Green space into a harmonic space. Generalizations are done in
some points. One of them is the use of cluster sets along Green lines issuing
from a fixed point and of a Green measure instead of radial limits and the
Lebesgue measure, respectively. However, an essential point is the validity of
the theorem for Fatou maps which include all Lindelofian maps® of hyperbolic
Riemann surfaces®.

In §1, we state the theorem and list up all notations which will be used in
the sequel. §2 is devoted to auxiliary lemmas. They are needful to the proof of
the theorem. The proof of the theorem is carried out in §3 divided into three

1) Cf. [13], p. 205.

2) Cf. [8], p. 96.

3) Cf. [11] and [14], p. 222.

4) Cf.[4] and [5].

5) Cf. [9].

6) Cf. [5], p. 113 and [4], p. 72.
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cases. In the last section, as an application, we shall mention a result which is
an improvement of my former one [10].

1. Preliminaries and the theorem

Let Q be a Green space in the sense of Brelot-Choquet”. We consider the
Green lines issuing from a fixed point y,. They are the maximal orthogonal
trajectories of

20 ={yeQ; G,(y) =1},
where G, is a Green function of Q with a pole at y, and 0 <A <G, (y,). We put
D* = {yeQ; G,(y)>r}  for 0<A<G,(y,).

On the set £ of all Green lines, we can define a topology homeomorphic to the
unit sphere and a Radon measure g called the Green measure. A Green line { is
called regular, if inf {G, (y); y={} =0. The set of all regular Green lines will
be denoted by _L".

Let X be a harmonic space in the sense of Brelot®, i.e., X is locally com-
pact, connected and on which it is given a sheaf of continuous functions, called
harmonic functions, satisfying the axioms 1, 2 and 3 in [2]. A Green space is a
harmonic space in an obvious way. We denote by & (resp. 4) the class of
harmonic spaces on which there exists a positive potential (resp. a positive
harmonic function). A continuous map ¢ of a harmonic space X into a second
harmonic space X’ is called a harmonic map, if for any open set U’C X’ and any
harmonic function %’ on U’, #’o¢ is harmonic on @ }(U").

Let U be an open subset of X, U< & and f be a real function defined on U.
We denote by @ the set of hyperharmonic functions s on U such that

a) s possesses a non-positive subharmonic minorant
and
b) s dominates f outside a compact subset of U.

We denote by 2Y=inf {s; scw¥}. Also we define

wf = {—s; sewl,}
and
hf = sup {s; sewl} .

If hY =h¥ and is finite, f is called harmonizable on U. A finite continuous func-
tion f on X is called a Wiener function, if there exists an open set U< % with

7) Cf.[3]. For the following facts we refer to [3].
8) Cf. [2]. In [2], it is assumed that X is not compact. In this paper we do not
require this.
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compact complement such that f is harmonizable on U. A harmonic map ¢ of
X into X’ is called a Fatou map if for any bounded Wiener function f’ on
X', f’op is a Wiener function on X. All harmonic maps into X’ % are Fatou
maps. When Xe P and X' H— P, in order that a harmonic map ¢ of X
into X’ be a Fatou map, it is necessary and sufficient that there exists a closed
non-polar set F'C X’ such that R¢# is a potential®.

A compactification X* of X is a compact space containing X as a dense
open subset. A subset 4 of X* is called polar, if for any domain Ue P of X
there exists a positive superharmonic function s on U such that

lim s(x) = + o0 forany zeANU.

We shall list up the notations which will be used in the sequel.

Q: a Green space.
{Q,}: an exhaustion of Q, i.e., Q, is a relatively compact domain satisfying

0,cQ,,,2and U Q,=Q.
n=1

X: a harmonic space with countable basis, on which there exists a positive
superharmonic function, i.e., X& P U 4.

X*: a compactification of X.

{X.}: an exhaustion of X.

A: aset of regular Green lines.

{\.}: a decreasing sequence of positive numbers tending to zero.

@: a harmonic map of Q into X.

D) = N {@((Am» {)); m>n}, where the closure is taken in the topology of

X*.
A: a polar set in X*.

In this paper, we shall prove the following theorem, which is a generalization
of the theorem of Riesz-Frostman-Nevanlinna.

Theorem. Let X be a harmonic space. We assume the existence of
(*) a countable basis of open sets for X
and
(**)  a superharmonic function with positive infimum on X. If X is com-

pact, we assume further the existence of

(***) a non-polar subset E of X each point of which is polar.

Let @ be a non-constant Fatou map of a Green space S into X and X* be an
arbitrary compactification of X.

9) Cf. [7], p. 52, th. 6.1.
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If there exist a set A of regular Green lines issuing from y,EQ, a decreasing
sequence {\,} of positive numbers tending to zero and a polar set A of X* such that

() = ﬁl {p(Ams £)); m>n}C A forany (€A,

then the outer Green measure of A is zero, i.e., g%(A)=0, where (A, {) denotes the
point of { on which the value of a Green function G, is \,,, and the closure is taken
in X*.

2. Lemmas

2.1. To prove the theorem stated above, we require some lemmas, which
will be given in this section. Throughout this section we shall suppose

g¥(A)>0.
Lemma 1. Assume that X is non-compact and
Pl)cA  forany [leA.

Then, there exists a sequence {D,} of relatively compact domains in X such that

(2.1) g{len; dO)ND, = e}>12g%A) (n=1,2,-+)
and
(2' 2) (QZ’(ﬁn)U:g DkUX”)ﬂD,, =¢ (n =1,2, )

Proof. Suppose defined D,, D,, -+, D,,_,, relatively compact domains and
let (2. 1) and (2. 2) hold for n=1, 2, -+, p—1. Since X is not compact,

— p-1 —
X"(¢(ﬂp) U k=L-J1 D, UXp)
is an open non-empty set, so that it is non-polar. Since AN X is polar, there
exists x such that
ot
(2.3) xeX—@(ﬁﬁ)UkQ DyUX,U4).

From the second axiom of countability for X', we have a sequence {E,} of
relatively compact neighbourhoods of x such that

Em+1CEm (m = 1) 27 "') ’
_ _ oy

(2.4) Elm[?’(‘Q'p)UkL‘J1 DkUXp] =4¢,
N E, = {x}.

m=1

10) It is true that the same conclusion is derived from the first axiom of countability
for X. However, in the harmonic space X the two countability axioms are equivalent. (Cf. [6]).
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Put
L, = {leh; pV)NE, = ¢}
form=1,2,-.-. Itis easy to see
(2.5) LcL,c--
and
(2. 6) UL, =A.

m=1

In fact, if there exists /& A such that /& L, for all m, then

PONEn+d  (m=1,2,).
Since X* is compact this means
PN N Ents,
so that by (2. 4)
xed()c4d,

which contradicts (2. 3).
From (2. 5), (2. 6) and the regularity of the outer Green measure

lim g*(L,) = g*(A) -

Thus, we have an m, such that g*(L,,))>(1/2)g*(A). E,.,= D, is the desired one,
q.e.d..

' we have

Lemma 2. Suppose that X is non-compact and X & H—P, and ¢ is a
Fatou map of Q into X. Let {D,} be a sequence of relatively compact domains
satisfying (2. 2). Then, there exists a closed subset F of X such that Ry s g
potential, F,=F N D, is non-polar and compact, and

(2.7) ImRF» =0 on Q.

ny

Proof. Let f, be a non-negative continuous function on X whose support
is in D, and whose maximum is 1. Since {D,} are mutually disjoint and do not

cluster at any point of X, f= > [« is a non-negative bounded continuous func-
n=1

tion on X, so that f is a Wiener function on X*. From the definition of a
Fatou map, f=fop is a Wiener function on Q. In virtue of a theorem of
Constantinescu-Cornea' I%f’ « is a potential except for countable values of «

p P ’

11) Cf. [15], p. 51.
12) Cf. [2], p. 80, def. 9.
13) Cf. [7), p. 16.
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where
N, = {yeQ; f(y) = a} .
We may take a so that 0 <a <1 and Rfsisa potential. Let us write
F = {x€X; f(x) = a} .
R is a potential and F,=F N D, is compact and non-polar, since
FND, = {x€X; fux) = a}

and X —(FND,) is not connected.

For any y=Q there exists n, such that yeQ, for any n>n, @ (F,)N
Q,,=¢ implies that I@f"‘(”n) is bounded and harmonic in Q,,.
Hence,

- 2 2,
R? E(y) = Hplo-sr(¥) S Hplo-10x() -
Since R¢™'™ is a potential, the last term tends to zero as n—co, q.e.d..

2.2,

Let us take y,€Q such that ¢(y,)AUF and we shall fix it. This is
possible for @7(X N A) is polar. By the Harnack’s inequality we can find K>1
satisfying

(2.8) K u(yo) 2u(y,) =1/ K u(y.)

for all non-negative harmonic functions % on Q.
Let & be a positive number less than 1/4. By Lemma 2, we have n, such
that

(2.9) Ry, <3/(8K)g*(A) -

Since F,; is non-polar, each component of X —F, €. There exists a posi-
tive superharmonic function v on X —F, such that

| lim v(x) = + oo forany ¥eAN(X—F,),

x5/

| ofp(y)] <1/(4K)g*(A) .

Lemma 3. Let E be a closed subset of Q) such that ﬁf is a potential. Then,
for a fixed y, = Q we have

(2. 10)

(2.11) RE(y,) = inf {R"9(y,); w is an open subset of Q% containing E},
where Q3 is a Wiener compactification'™ of Q and the closure is taken in Q%,.

14) Cf. [7], p. 14, th. 2.6. .
15) Cf. [S], p. 98 and [7], p. 43.
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Proof. Denoting by «, the right-hand side of (2. 11), we have clearly
a, = ‘klE(yl)Sal .

Suppose a,<a,. Inthefirst place, we shall show that there exists an open
subset G, of Q% such that

ENAzYcG,
and
R?I nﬂ(yl) <(0l1 - ao)/4 .

In fact, since R¥ is a potential EN Ay NT ,=¢', we have an open subset G
of O%, such that

EnAypcG and GNT,® =¢.
R?”“ is a potential. Hence we have an Q,, such that
(@ — an)/4>Higrzha(92) = H i aona(9:) = RiEE200(y,).

We have G,=G—Q,.
On the other hand, since Rf(y,) defines a capacity in the sense of Choquet'”,
there exists an open subset w, of Q such that

Ecw, and RY(y)<(a,+a,)/2.
w=w,UG, is open in O%, FC w and

R"9(9,) <R(y,) + REM(y,) < (a0t o,)[2+ (s — o) [4
<C(1 )

which contradicts the definition of ;. Hence a,=«,, q.e.d..

Lemma4. Let E be a closed subset of Q. If RE is a potential and
R E(y,) <, then there exists a closed non-polar subset Q of Q such that E C Q, R?
is a continuous potential and

(2.12) RE(y)<er.

Proof. 'The proof is obvious if E is empty. We assume E is not empty.
By Lemma 3, we have an open subset w of Q%, such that

Ece and R:M(y)<a.

We have also an open subset w, of Q3 such that

16) Cf. [7], p. 45, th. 5.6. .
17) Cf.[2], p. 122. .
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EnApco,, o,Co and s, NTy=¢.

E—w, is compact. Denoting by o, a relatively compact neighbourhood of
E — o, whose closure is contained in » and putting

G = (a)ln Q) Uw,
we have
R$ne< R0 4 42,

Since GN A C(@,NAR)U(@:NAR)=3,NApCAp—Tw, R§Mis a potential
and RE"%(y,) < RI"™(y)<a.

Next, for each point y of ,N E we assign a regular neighbourhood™ of y
contained in GNQ, A finite number of them, say V, (1<i<m,), covers
0,NE. In general, for each point y of (Q,;,—Q,_;)NE we assign a regular
neighbourhood of y contained in GN (Qy,,—Ox-,) and cover (Q,,—Q,_ )NE

by a finite number of them, say V,(m,_,+1<i<m,). Put Q= U Vi Qis
i=1

closed since {V;} is locally finite. It is clear ECQCG, therefore R?is a
potential and ﬁ?(y,)<a. Since Q is not thin at every boundary point y of
Q—0, y is regular for Q—Q with respect to the Dirichlet problem. Thus R?
is continuous, q.e.d..

2.3.

By Lemma 4 we may construct a continuous potential p= RQ for E= @ (Fap)
and a=38/(8K)g*(A) (see (2.9)). Put

V,={yeQ; p(y)>1-38},
V, = {yeQ; p(y)>1-28}
and
p, = min (vog, 1) (see (2. 10))

0V,={xcQ; p(y)=1—28} and each point of 3V, is regular for Q— V, with
respect to the Dirichlet problem. p, is superharmonic on each component of
Q—¢™(F,)and 0<p,<1.

Lemma 5.
(1-29)/8 on V,
_ { ~ i
(1—-8)/8-RYo+(RET1)g 5> on Q—V,

18) We use this terminology in the following sense: a neighbourhood V is regular if
it is compact and its local image is a sphere. If I/is regular, then both ¥ and £ —V are not
thin at each point of V.

19) Cf. [2], p. 82, def. 10.
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is a superharmonic function on Q. Especially, on Q— V, we have
s> min (vog, 1).
Proof. (1—8)/8—p/8 is a positive superharmonic function on Q— V, and
>1on Q—V,. Therefore we have
N\ _
(1-8)/6—p/8=(Ry a7, on Q—=V,.
On Q—V,, we have further
N
(1—8)/5—(1—8)/8- Rr— (RS a7,
>(1-8)/8—(1—8)/8- RV~ [(1-8)/6—p/8]
=(1-98)/6—(1—9)/8- p/(1—8)—[(1-8)/6—p/3] = 0,
since p>1—38 on V,. This means
(2.13) (1—8)/6>(1—38)/s 1%Vo+(R°—" Vow, on Q—V,.
From the regularity of each point yeaV for O— V, we have
lim [(1-3)/3 RIE)+ R ar(@)] = (1-3)13,

so that s is continuouson 9V,. Combining this with (2. 13), s is superharmonic.
On Q—V,, we have

O\
s>(R3™")g_p,= p, = min (vee, 1), q.e.d..

2.4.
We shall put
A, ={eL;( ., Hea-V}
and

= {(Am 9); l€4,} .

A, is the set of points on which a Green line of A4, intersects S¥». Correspon-
dingly, we put

B, = {{eL’; (A, HEV}
and

B, = {(x 4); l€B,} .

It is known that A4,, (resp. B,) differs from an analytic set only in a set of dg-
measure zero. They are dg-measurable. The difference between B, and
V,N 3™ is within a set of d w)?-measure®” zero.

20) m_’}g denotes a harmonic measure on 3™# with respect to D*» and y,.
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Lemma 6.
limg(B,) = 0.
— —_ Y — Asn
Proof. 8B = |, de - Sgndw,,o $2Mm_’ldw%

< [ o, Pl—=28)dai;
< .pla-28do;
< 1/(1-28) HEM(3)

Since p is a potential, we have lug HPM(y,)=0, q.e.d..
Put §
U= {xeX—F,;vx)>1}
and
N = {er; MO A-Dy},

where D, is the domain defined in Lemma 1. 4 —D,, is a polar subset of X*
and by Lemma 1 we have

(2.14) 25N> 1/2g%(A) .
Lemma 7. If we put
Cn = {ZEA,; ¢((>"m) [))E U for any mzn} ,

then we have

(2. 15) C,cC,c and UC,=AN
and
(2. 16) lim g%(4,N C,) = gH(\') .

Proof. First, we shall prove (2.15). The first part is obvious from the
definition of C,. Suppose we have /= A’ such that /& C, for any n. Then,
there should exist numbers {v,} satisfying v,>n and @((1,,, {))éEU. From

lim o(x) = + o0 for any ¥’eP(/)

we have an open neighbourhood W of ¢({) in X* such that
v>2 on WNX.

Then, we have an n such that W D {@((\,, {)); m>n}, so that
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[@( A £))]=2  forany m>n.

On the other hand, v[@((\,,, £))]<1 for infinitely many m, which leads to a con-
tradiction.
To prove (2. 16) we shall remark

(2.17) lim g%(C,) = g*(A) .
This is an immediate consequence of (2. 15) and the regularity of g*. Since 4,,
is dg-measurable we have
g¥(Cy) = 8X(C.N4,)+g*(Ca—4,) .
L—A, and B, differ in a set of dg-measure zero each other, so that we have
(2.18) g*(C,) = g*(C.N 4,)+g*(C.N B,)
< g4(CaN A,)+g*(By)
Letting n—oo in (2. 18) and in view of Lemma 6 and (2. 17) we have
gHA)< lim g¥(C, N 4,) < Tim £%(CAN 4.)
< £112 g¥(C,) = g*(N), q.e.d..

3. The proof of the theorem

3.1. In this section, we shall give the proof of the theorem stated in § 1.
We consider three cases: (1) X& H— P and non-compact, (2) X& H—%P and
compact, and (3) X 2.

The proof of the case (1). Suppose, on the contrary, g*(A)>0. Denoting
by s the function defined in Lemma 5,
s(y)=HP\(y) forall n.
Therefore
$(9)= lim HY(y) = w(y),
where u(y) is the best harmonic minorant® of s in Q. It is clear that « is non-

negative. We assert « is positive and #(y,) > g*(A’) (for the definition of A’, see
2.4,82). Infact,

u(ye) = lim HZ(y) = lim | | sday;

> lim S
n>e JEMna -7

min (vop, 1)d )" (by Lemma 5)

21) Cf. [1], p. 434.
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= lim $~ min (vop, 1) d )
B> JA,

> lims _ min (vop, 1)da:,

n>% Ja,nc,

o~ o ——
where A4,NC, = {(As {);€4,0C,}. Since (A,, )€4,NC, implies
@((Mn, £))E U, so that v[@((\,, £))]>1, the last term is equal to

Asn
S ~ doy
ny JALUC,

_ limS dg = lim g*(4,N C,) = g*(A’)  (by Lemma 7).
A,NC, ny

nyo

Thus, we have u(y,)>g*(A’).
From (2. 8) and (2. 14)

(3. 1) s(y)=u(y,) =1/K u(y,)
>1/K g¥(N')=1/(2K)g*(A) -

On the other hand, in virtue of (2. 12)

p(y) = RE(3,) <8/(8K)g*(n)
<3/(8K)<1-25,
which means y,eQ— V,. Therefore
_ PN

s(92) = (1=8)/8- RYo(3,)+ (RE " )a_w(2:)
< (1-9)/8- p(y,)/(1—8)+py(y1)
= 1/8 p(y,) +min (v[@(y,)], 1)
< 1/8-8/(8K)g*(A)+1/(4K)g*(A)  (by (2.10))
< 3/(8K)g*(A) -

This contradicts (3. 1). Hence we conclude g*(A)=0.

3.2. The proof of the case (2)

Next, we proceed to the case (2). From our assumption (***), we have a
non-polar set E each point of which is polar.

E—(AU{p(y D)+,

for if EC AU {®(y,)}, then AU {®(y,)} is non-polar. Since A4 is polar, this
implies @(y,)E, so that EC 4, which is absurd. Let us take x,c E—(4 U
{#(y)}). @7'({x,}) is a polar subset of Q. Let us write

Q, = Q_‘p—l({xo})’ Xy = X—{x}

/
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and let @, denote the restriction of @ on Q,. @, is a Fatou map of Q, into X,.
In fact, since @ is a Fatou map, we have a closed non-polar subset F of X such
that R?7'® is a potential. F=FN X, is closed and non-polar in X,. Our
assertion is derived at once from the facts R¢ ™0 is a potential and X,& J— P.
The Green function of Q, is the restriction on , of the Green function of Q.
Denoting by A, the set of Green lines issuing from y, and passing no points of
@ *({*,}), the condition P(/)C 4 is reduced to

#(l) = N ol ) mzn} 4

for any /A, Thus, we can reduce the case (2) to the previous one, since a
set of Green lines passing the points of @~*({x,}) is of dg-measure zero.

3. 3. The proof of the case (3).

It remains to be proved the case (3), i.e., X& . In this case, the situation
is rather simple and we can prove without resorting many lemmas.

There exists a positive superharmonic function v defined on the whole X
such that

lim v(x) = + oo forany ¥'e4.

2/
s=vop defines a positive superharmonic function on Q and as before

. x
u = lim HP"»

Bpoo

is non-negative and harmonic on Q.
Assuming, as in 3. 1, g*(A)>0, let us take M >0 such that

(.2) M2 g*(A)>u(y,) -
We define
U = {xeX; v(x)>M}
and
C, = {eh; o(Am )€U  for m=n} (n=1,2,-).

Quite in the same way, we can prove

lim g*(C.) = g*(A) .

() = lim HP(3) = lim | __sdo};

2lim | sdotzzlim [, Mausz,
since @((A4, {))E U, so that s=vop>M on C,. The last term is equal to
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lim Sc Mdg = Mlim g*(C,) = Mg*(A).

nyo

Combining this with (3. 2)
M2 g5(A)zu(y.) =Mg*(A) ,

which is a contradiction. Thus, the proof is completed.

4. Consequences

In this section, we shall consider the case where Q is a hyperbolic Riemann
surface and ¢ is an analytic map of Q into a Riemann surface X. A Fatou map
in our definition is the same as in [5]*”. We have then

Corollary 1. Let R be a hyperbolic Riemann surface and @ be a Fatou map
of R into a Riemann surface R'. If

N 1, D)5 m=n)

is polar in R'* for every l€ A, where R'* is an arbitrary compactification of
R, {\,} is a decreasing sequence of positive numbers tending to zero and the outer
Green measure of A is posive, then @ is a constant map.

Since an AD function on R (a holomorphic function with finite Dirichlet
integral) is a Dirichlet map of R into a Riemann sphere* and a Dirichlet map is
a Fatou map, this is an extension of a result of M. Nakai®®.

A meromorphic function defined on |z|<1 is a Lindelofian map of
R={|z| <1} into a Riemann sphere if and only if it is of bounded type. The
theorem of Riesz-Frostman-Nevanlinna for these functions is classical. Our
theorem is a generalization even in the classical case, since we have known an
example of a Fatou map which is not a Lindelofian map®.

In [10], we have investigated the boundary behavior of harmonic functions
on a Green space along Green lines. As an application, we have given there a
theorem of Riesz type for holomorphic functions f in the Smirnov class (i.e.,
log* | f| has a quasi-bounded harmonic majorant) on a hyperbolic Riemann sur-
face. For functions in the class AL (i.e., log*| f| has a harmonic majorant, or
equivalently, f is lindelofian) we have proved under some assumption. Now, we
can remove the restriction:

Corollary 2. Let Q be a hyperbolic Riemann surface. Let f= AL(Q), that

22) Cf. [5], p. 110 and [7], p. 52.
23) Cf. [5], p. 115, Folgesatz 10.3.
24) Cf. [121, p. 19 and [16], p. 206.
25) Cf. [4], p. 72.
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is, f is holomorphic on Q and log*| f| has a harmonic majorant. If there exists a
sequence {\,} of positive numbers tending to zero such that

imf(A, 2)) =0 forall lea,

where a is a set of Green lines of positive outer Green measure, then

(11

(2]
(3]

(4]

(51
(61
[71
(8]

(91
[10]

(113
[12]
(13]
[14]

[15]
[16]

f=0.
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