
Ikegami, T.
Osaka J. Math.
9 (1972), 519-533

ON A GENERALIZATION OF THE THEOREM
OF RIESZ-FROSTMAN-NEVANLINNA

To Professor Yukinari Tόki on the occasion of his 60th birthday

TERUO IKEGAMI

(Received December 17, 1971)

Introduction

The original form of the theorem of Riesz-Frostman-Nevanlinna is stated
as follows: let f(z) be regular and bounded in the unit disc. If )ίmf(reiθ) is equal

r-yl

to zero on a subset of positive measure of \z\ = 1, then f(z) = 0. R. N e v a n l i n n a υ

and O. Frostman2) extended independently this theorem to the case of meromor-
phic functions of bounded type. However, if we consider arbitrary regular
functions this theorem does not hold in general as the example of Lusin-Priwalow
shows3).

Meanwhile, it has been made known by the recent studies of Constantinescu-
Cornea4) that the boundary behavior of analytic maps of Riemann surfaces
depends deeply on the harmonic character of maps. In [7], they developed
this idea to maps of harmonic spaces satisfying the Brelot's axioms.

In this paper, we shall generalize the theorem of Riesz-Frostman-Nevanlinna
for maps of a Green space into a harmonic space. Generalizations are done in
some points. One of them is the use of cluster sets along Green lines issuing
from a fixed point and of a Green measure instead of radial limits and the
Lebesgue measure, respectively. However, an essential point is the validity of
the theorem for Fatou maps which include all Lindelϋfian maps5) of hyperbolic
Riemann surfaces*0.

In §1, we state the theorem and list up all notations which will be used in
the sequel. § 2 is devoted to auxiliary lemmas. They are needful to the proof of
the theorem. The proof of the theorem is carried out in § 3 divided into three

1)
2)

3)
4)

5)
6)

Cf.

Cf.

Cf.
Cf.
Cf.

Cf.

[13], p. 205.
[8], p. 96.
[11] and [14], p. 222.
[4] and [5].
[9].
[5], p. 113 and [4], p. 72.
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cases. In the last section, as an application, we shall mention a result which is
an improvement of my former one [10].

1. Preliminaries and the theorem

Let Ω be a Green space in the sense of Brelot-Choquet7). We consider the
Green lines issuing from a fixed point y0. They are the maximal orthogonal
trajectories of

; Gyo(y) = λ} ,

where Gyo is a Green function of Ω with a pole at yQ and 0 < λ < Gyo(yQ). We put

£>λ = { J G Ω ; G,0(;y)>λ} for O<X<Gyo(yo).

On the set X of all Green lines, we can define a topology homeomorphic to the
unit sphere and a Radon measure g called the Green measure. A Green line / is
called regular, if inf {Gyo(y)\ ye/} =0. The set of all regular Green lines will
be denoted by X'.

Let X be a harmonic space in the sense of Brelot83, i.e., X is locally com-
pact, connected and on which it is given a sheaf of continuous functions, called
harmonic functions, satisfying the axioms 1, 2 and 3 in [2], A Green space is a
harmonic space in an obvious way. We denote by £P (resp. M) the class of
harmonic spaces on which there exists a positive potential (resp. a positive
harmonic function), A continuous map φ of a harmonic space X into a second
harmonic space X' is called a harmonic map, if for any open set U'aX' and any
harmonic function uf on U', u'°φ is harmonic on φΓλ{lJf).

Let U be an open subset of X, £/ e ίP and / be a real function defined on U.
We denote by ffi¥ the set of hyperharmonic functions s on U such that

a) s possesses a non-positive subharmonic minorant
and

b) s dominates / outside a compact subset of U.

We denote by h¥='mϊ {s; ίGίϋf}. Also we define

wy = {-s;s<=wlίf,}
and

hy = sup {s; s^wY) .

If h¥=h¥ and is finite, / is called harmonίzable on U. A finite continuous func-
tion / on X is called a Wiener function, if there exists an open set £/e£P with

7) Cf. [3]. For the following facts we refer to [3].
8) Cf. [2]. In [2], it is assumed that X is not compact. In this paper we do not

require this.
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compact complement such that / is harmonizable on U. A harmonic map φ of
X into X' is called a Fatou map if for any bounded Wiener function / ' on
Xf,f oφ is a Wiener function on X. All harmonic maps into X'^9? are Fatou
maps. When J e f f and X'^Jl — 2*, in order that a harmonic map ψ of X
into Jf' be a Fatou map, it is necessary and sufficient that there exists a closed
non-polar set F'tzX' such that R\~^F^ is a potential*0.

A compactification X* of X is a compact space containing X as a dense
open subset. A subset A of X* is called ^o/flr, if for any domain ί/eff of X
there exists a positive superharmonic function s on U such that

= + o o for any

We shall list up the notations which will be used in the sequel.

Ω: a Green space.
{Ωn}: an exhaustion of Ω, i.e., Ωw is a relatively compact domain satisfying

ΩMCΩM+1 and U Ωrt = Ω.

X: a harmonic space with countable basis, on which there exists a positive
superharmonic function, i.e., i G f f U Λ .

X*: a compactification of X.
{Xn}: an exhaustion of X.
Λ: a set of regular Green lines.
{λn} : a decreasing sequence of positive numbers tending to zero.
φ: a harmonic map of Ω into X.

Φ(f) = ή {<£>((λw, ί))\ m>n}y where the closure is taken in the topology of

A: a polar set in X*.

In this paper, we shall prove the following theorem, which is a generalization
of the theorem of Riesz-Frostman-Nevanlinna.

Theorem. Let X be a harmonic space. We assume the existence of
(*) a countable basis of open sets for X

and
(**) a superharmonic function with positive infimum on X. If X is com-

pact, we assume further the existence of
(***) a non-polar subset E of X each point of which is polar.
Let φ be a non-constant Fatou map of a Green space Ω into X and X* be an

arbitrary compactification of X.

9) Cf. [7], p. 52, th. 6.1.
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If there exist a set Λ of regular Green lines issuing from yo^Ωy a decreasing

sequence {λw} of positive numbers tending to zero and a polar set A of X* such that

φ{l) = Π M(λ w , /)); m>n} cA for any teΛ ,

then the outer Green measure of Λ is zero, i.e., g*(A)=O, where (Xm, I) denotes the

point of I on which the value of a Green function Gyo is \my and the closure is taken

in X*.

2. Lemmas

2.1. To prove the theorem stated above, we require some lemmas, which
will be given in this section. Throughout this section we shall suppose

Lemma 1. Assume that X is non-compact and

φ{l)dA for any feΛ.

Then, there exists a sequence {Dn} of relatively compact domains in X such that

(2. 1) £*({/eΛ; φ(/)ΠDn = φ})>l/2£*(Λ) (« = 1,2, •••)

and

(2.2) ( # « ) u " u DkVXn)f)Dn = φ (n = 1 , 2 , - ) .

Proof. Suppose defined D19 D2, •••, Dp_λ, relatively compact domains and
let (2. 1) and (2. 2) hold for n= 1, 2, --,ρ— 1. Since X is not compact,

is an open non-empty set, so that it is non-polar. Since A Π X is polar, there
exists x such that

(2.3) X G I - ( ^ ( Ω . ) U \J DkUXtUA).

From the second axiom of countability for X10), we have a sequence {En} of
relatively compact neighbourhoods of x such that

Em+Λ<zEu

(2.4) E, Π IXΩ^) U LJ1 Dk \JXP] = Φ y

n Em = w .
»l=sl

10) It is true that the same conclusion is derived from the first axiom of countability
for X. However, in the harmonic space X the two countability axioms are equivalent. (Cf. [6]).
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Put

for m= 1, 2, ••• . It is easy to see

(2.5)

and

(2.6) ΐ)Lm = A.

In fact, if there exists /eΛ such that l^Lm for all m, then

ΦV)ΠEmΦφ (tn = 1,2,-).

Since X* is compact this means

#/) n E

so that by (2. 4)

ι w = » l

which contradicts (2. 3).
From (2. 5), (2. 6) and the regularity of the outer Green measuren) we have

limg*(Lm)=g*(A).

Thus, we have an m0 such that £*(LWo)>(l/2)£*(Λ). EmQ = Dp is the desired one,
q.e.d..

Lemma 2. Suppose that X is non-compact and X^LM — 9?, and φ is a
Fatou map of Ω into X. Let {Dn} be a sequence of relatively compact domains
satisfying (2. 2). Then, there exists a closed subset F of X such that Rl'1^^ is a
potential, Fn=FΓ\Dn is non-polar and compact, and

(2.7) limjfcΓ1CΛ> = 0 on Ω.

Proof. Let/M be a non-negative continuous function on X whose support
is in Dn and whose maximum is 1. Since {Dn} are mutually disjoint and do not

CO

cluster at any point of X, f = Σ / n i s a non-negative bounded continuous func-

tion on X, so that / is a Wiener function on X13). From the definition of a
Fatou map, f=f°φ is a Wiener function on Ω. In virtue of a theorem of
Constantinescu-Cornea14) Icf <* is a potential except for countable values of a,

11) Cf. [15], p. 51.
12) Cf. [2], p. 80, def. 9.
13) Cf. [7], p. 16.
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where

We may take a so that 0 < α < l and Rf<* is a potential. Let us write

F= {x<=X;f(x) = a}.

ftψ-KF ) j s a potential and Fn = F Π Dn is compact and non-polar, since

and X—{F Π ΰ w ) is not connected.

For any y^Ω there exists τz0 such that J / G Ω Λ for any n>n0. φ~~\FH)Γ[

Ωn = φ implies that J?Ϊ"1CF») is bounded and harmonic in ΩM.

Hence,

Since Rl~lcF:> is a potential, the last term tends to zero as n^oof q.e.d..

2.2.
Let us take y^Ω such that <p(y1)&A\jF and we shall fix it. This is

possible for φ~x(X Π A) is polar. By the Harnack's inequality we can find K> 1

satisfying

(2.8) Ku(yo)>u(yi)>llKu(yo)

for all non-negative harmonic functions u on Ω.

Let δ be a positive number less than 1/4. By Lemma 2, we have n0 such

that

(2.9) ^r icM^)<S/(8^k*(A).

Since FnQ is non-polar, each component of X — FnQ^£P. There exists a posi-

tive superharmonic function v on X — Fno such that

I lim v(x) = + oo for any
(2. 10) '+"

L e m m a 3. Let Ebe a closed subset of Ω such that iΦf is a potential. Then,

for a fixed y^Ωwe have

(2. 11) fc?(yύ = inf {^a{yx)\ ω is an open subset of Ω% containing E},

where Ω% is a Wiener compactification1^ of Ω and the closure is taken in Ω%.

14) Cf. [7], p. 14, th. 2.6. .
15) Cf. [5], p. 98 and [7], p. 43.
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Proof. Denoting by a1 the right-hand side of (2. 11), we have clearly

ao = ίϊf(y1)<a1.

Suppose ao<a1. In the first place, we shall show that there exists an open
subset Gx of Cί%r such that

and

In fact, since ήf is a potential Ef] ΔWΓ\ Tw=φ16:>y we have an open subset G
of Ω%r such that

EΠAwclG and G Π Γ ^ 1 5 ) = = φ .

is a potential. Hence we have an ΩM such that

We have G^G-Π*.
On the other hand, since Rfiy^ defines a capacity in the sense of Choquet175,

there exists an open subset ω0 of Ω such that

0 and

= ω()UG1 is open in Ωf̂ , iΓcω and

which contradicts the definition of aλ. Hence aQ = au q.e.d..

Lemma 4. Let E be a closed subset of Ω. If Rf is a potential and
Rξ(y^)<a> then there exists a closed non-polar subset Q of Ω such that EdQ, R?
is a continuous potential and

(2.12) myrXcc.

Proof. The proof is obvious if E is empty. We assume E is not empty.
By Lemma 3, we have an open subset ω of Ω5^ such that

Eczω and RιnQ(y1)

We have also an open subset ωx of Ω% such that

16) Cf. [7], p. 45, th. 5.6. .
17) Cf. [2], p. 122. .
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Ef]Awciωli ωjCω and ω 1 ΠΓ W r=φ.

E — ω1 is compact. Denoting by ω2 a relatively compact neighbourhood of
E — ωt whose closure is contained in ω and putting

G = ( ω i ΠΩ)Uω 2

we have

Since Gn Δ ^ c f o ί Ί Δ w ) U(ω2Π Δ v r) = ω1 Π Δ ^ c Δ ^ - I V , $ ? n Q is a potential

Next, for each point y of Ω2Π 2? we assign a regular neighbourhood185 of y
contained in GΠΩ 3 . A finite number of them, say V{ (\<i<m^)y covers
n 2 n i ? . In general, for each point y of (ΠM+1 — Ωn_^)Γ\E we assign a regular
neighbourhood of y contained in Gf] (ΩM+2—ΩM_2) and cover (ΩM+1 —Ω Λ _ 1 )Π£

CO

by a finite number of them, say ^ ( I H ^ + I <i<mn). Put Q= U I f̂ . β is

closed since {F,-} is locally finite. It is clear EaQaG, therefore R? is a
potential and K^y^Ka. Since £) is not thin at every boundary point y of
Ω—Q, y is regular for Ω — Q with respect to the Dirichlet problem. Thus R?
is continuous, q.e.d..

2.3.

By Lemma 4 we may construct a continuous potential/) = JR? for E = φ"\Fn^
and α = 8/(8K)g*(A) (see (2. 9)). Put

Vo=

and

px = m i n ^ o ^ , 1) (see (2. 10))

9 F o = {x e Ω />(jy) = 1 — δ} and each point of 3 Vo is regular for Ω — Vo with
respect to the Dirichlet problem. p1 is superharmonic on each component of
a-φ-\FnQ) and

Lemma 5.

(1 —δ)/δ on Vo

s-t .... ... ,_. ... ... m a _ γ
0

18) We use this terminology in the following sense: a neighbourhood V is regular if

it is compact and its local image is a sphere. If V is regular, then both V and Ω — V are not

thin at each point of d V.

19) Cf. [2], p. 82, def. 10.
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is a superharmonίc function on Ω. Especially, on Ω—Vλ we have

s> min^o^ 1).

Proof. (1 — δ)/δ— p/S is a positive superharmonic function on Ω — Vo and
> 1 o n Ω - F i Therefore we have

( l-δ)/δ- ί/δ£(Λ°-\_? β on ίl-V0.

On Ω — Vo, we have further

(i - δ)/δ-(i -8)is ήfr- (&\-vo

>(i-δ)/δ-(i-δ)!δ.pi(i-δ)-[(i-δ)iδ-piδ] = o,

since p > 1 — δ on Fo. This means

(2.13) ( l - δ ) / δ > ( l - δ ) / δ ^ ° + «-F l)Ω-κ0 on n-V0.

From the regularity of each point y^ dV0 for Ω— Vo we have

lim [(1 - S)/δ &H) (R%r

so that s is continuous on dV0. Combining this with (2. 13), s is superharmonic.
On Ω— Vly we have

I ) Ω - F O = PI = m i n

2.4.

We shall put

and

i4Λ is the set of points on which a Green line of An intersects ^ λ > > Correspon-
dingly, we put

and

It is known that An (resp. Bn) differs from an analytic set only in a set of dg-
measure zero. They are ̂ -measurable. The difference between Bn and

is within a set of d ω^-measure20:> zero.

20) ω$» denotes a harmonic measure on Σ λ n with respect to Dλ» and y o
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Lemma 6.

Kmg(BH) = 0 .

Proof. g(Bn) =

Since p is a potential, we have lim H%λn(y0) = 0, q.e.d..

Put

U= {x(ΞX-Fno;υ(x)>l}

and

where DMQ is the domain defined in Lemma 1. A — Dno is a polar subset of
and by Lemma 1 we have

(2.14)

Lemma 7. If we put

Cn = {/εΛ'; φ((Xm, 0 ) e U for any m>n) ,

then we have

(2.15) CX(ZC2CL- and U C , = Λ'

and

(2.16)

Proof. First, we shall prove (2. 15). The first part is obvious from the
definition of Cn. Suppose we have feΛ' such that l^Cn for any n. Then,
there should exist numbers {vn} satisfying vn>n and <p((XVft, l))^U. From

Yvmv(x) = +00 for any x'

we have an open neighbourhood W of φ(l) in X* such that

v>2 on WΓiX.

Then, we have an n such that WlD {φ((Xm> l))\ m>n}, so that
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49>((λw,0)]>2 for any m>n .

On the other hand, v[φ((Xmy /))] < 1 for infinitely many ra, which leads to a con-
tradiction.

To prove (2. 16) we shall remark

(2.17) Hm£*(CJ=£*(Λ') .

This is an immediate consequence of (2. 15) and the regularity of £*. Since An

is ^-measurable we have

g*(C.) = g*(CΛΓ)An)+g*(Cn-AH).

X—An and Bn differ in a set of ύ^-measure zero each other, so that we have

(2. 18) g*{Cn) = g*(CnnAH)+g*(Cnf)Bn)

<g*(Cn[)An)+g*(Bn).

Letting n->oo in (2. 18) and in view of Lemma 6 and (2. 17) we have

g*(A')< lim

3. The proof of the theorem

3.1. In this section, we shall give the proof of the theorem stated in § 1.
We consider three cases: (1) Z G Λ - 5 5 and non-compact, ( 2 ) I G Λ - 5 ) and
compact, and (3) X^S*.

The proof of the case (1). Suppose, on the contrary, £*(Λ)>0. Denoting
by s the function defined in Lemma 5,

s{y)>H?\y) for all λ.

Therefore

where u(y) is the best harmonic minorant2υ of s in Ω. It is clear that u is non-
negative. We assert u is positive and w(%)><§

f*(Λ/) (for the definition of Λ', see
2. 4, § 2). In fact,

u(y0) = lim H?λ»(y0) = lim

> lim \ min (voφy \)dω\" (by Lemma 5)
»->» JΣλnncQ-Fi)

21) Cf. [1], p. 434.
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= lim I miτι(voφ9 \)dω\n

0
n->°° JAH

> lim I ̂ _ min (v°ω, l)dωy",

where Λ ί Ί C M = {(λrt, /); / G ^ Π C J . Since (λn, l)t=Anr\Cn implies

<0)^ f̂> so that ^[^>((λM, 0)]>l> ^ e last term is equal to

lim I .—. dω\n

Q

= lim I dg = limg*(^4nΠ Cn) = g*(Λf) (by Lemma 7 ) .

Thus, we have u(yo)>g*(A').
From (2. 8) and (2. 14)

(3.1) s(yi)>u(yi)>llKu(y0)

>llKg*(A')>ll(2K)g*(A).

On the other hand, in virtue of (2. 12)

<δl(8K)<l-2S,

which meansy1GΩ,— Ϋ1. Therefore

1/δ δ/(8ίC)^(Λ) + l/(4iQ£*(Λ) (by (2. 10))

This contradicts (3. 1). Hence we conclude £*(Λ) = 0.

3. 2. The proof of the case (2)

Next, we proceed to the case (2). From our assumption (***), we have a
non-polar set E each point of which is polar.

E-(A\j{φ(yo)})±φ9

for if EaA\j{φ(y0)}, then A\j{φ(y0)} is non-polar. Since A is polar, this
implies <p(yo)^E, so that EczA, which is absurd. Let us take xo^E — (A\J
{φ(y0)}). φ'1^^}) ι s a polar subset of Ω. Let us write
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and let <p0 denote the restriction of φ on Ωo. <p0 is a Fatou map of Ωo into Xo.
In fact, since φ is a Fatou map, we have a closed non-polar subset F of X such
that i ^ " 1 ^ is a potential. FQ = Ff)X0 is closed and non-polar in Xo. Our
assertion is derived at once from the facts j^~lcFo> i s a potential and X^Jί—^P.
The Green function of Ωo is the restriction on Ωo of the Green function of Ω.
Denoting by Λo the set of Green lines issuing from y0 and passing no points of
9?-1({Λ:0}), the condition φ{l)cA is reduced to

for any / G Λ 0 Thus, we can reduce the case (2) to the previous one, since a
set of Green lines passing the points of φ~\{x0)) is of rf^-measure zero.

3. 3. The proof of the case (3).

It remains to be proved the case (3), i.e., X^S*. In this case, the situation
is rather simple and we can prove without resorting many lemmas.

There exists a positive superharmonic function v defined on the whole X
such that

lim v(x) = + oo for any

= v°φ defines a positive superharmonic function on Ω and as before

u = ?

is non-negative and harmonic on Ω.
Assuming, as in 3. 1, £*(Λ)>0, let us take M > 0 such that

(3.2) MI2g*(A)>u(y0).

We define

U = {X<ΞX; V(X)>M)

and

CH = {/εΛ; <K(λW) i))^U for m>n) («=1, 2,

Quite in the same way, we can prove

u(y0) = lim H?\y0) = lim ^sdω^

> lim [ sdωx

y

n

Q> lim f Mrfω^ ,

since φ((Xm ^))^ t^, so that s — voφ^>M on Cn. The last term is equal to
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Urn [ Mdg = Mljmg*(Cn) = Mg*(A).
n->°° JcH

 Λ->°°

Combining this with (3. 2)

M/2g*(A)>u(yo)>Mg*(A),

which is a contradiction. Thus, the proof is completed.

4. Consequences

In this section, we shall consider the case where Ω is a hyperbolic Riemann
surface and φ is an analytic map of Ω into a Riemann surface X. A Fatou map
in our definition is the same as in [5]22). We have then

Corollary 1. Let R be a hyperbolic Riemann surface and φ be a Fatou map

of R into a Riemann surface R'. If

Π {φ((\my/)); m^

is polar in i?'* for every / G Λ , where JR'* is an arbitrary compactification of

R\ {λ w} ™ a decreasing sequence of positive numbers tending to zero and the outer

Green measure of A is posive, then φ is a constant map.

Since an AD function on R (a holomorphic function with finite Dirichlet
integral) is a Dirichlet map of R into a Riemann sphere23) and a Dirichlet map is
a Fatou map, this is an extension of a result of M. Nakai24).

A meromorphic function defined on | z | < 1 is a Lindelϋfian map of
R= {\z\ < ! } i n t o a Riemann sphere if and only if it is of bounded type. The
theorem of Riesz-Frostman-Nevanlinna for these functions is classical. Our
theorem is a generalization even in the classical case, since we have known an
example of a Fatou map which is not a Lindelϋfian map253.

In [10], we have investigated the boundary behavior of harmonic functions
on a Green space along Green lines. As an application, we have given there a
theorem of Riesz type for holomorphic functions / in the Smirnov class (i.e.,
l°g+ I /1 n a s a quasi-bounded harmonic majorant) on a hyperbolic Riemann sur-
face. For functions in the class AL (i.e., log + | / | has a harmonic majorant, or
equivalently, / is lindelϋfian) we have proved under some assumption. Now, we
can remove the restriction:

Corollary 2. Let Ω be a hyperbolic Riemann surface. Letf^AL(Ω), that

22) Cf. [5], p. 110 and [7], p. 52.
23) Cf. [5], p. 115, Folgesatz 10.3.
24) Cf. [12], p. 19 and [16], p. 206.
25) Cf. [4], p. 72.
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is, f is holomorphic on Ω and log+1 /1 has a harmonic majorant. If there exists a

sequence {λn} of positive numbers tending to zero such that

lim/((λΛ, /)) = 0 for all

where a is a set of Green lines of positive outer Green measure, then

f=o.
OSAKA CITY UNIVERSITY
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