ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS

Shintaro NAKAO

(Received December 13, 1971)

Introduction

In this paper, we shall discuss a problem of the pathwise uniqueness for solutions of one-dimensional stochastic differential equations. Let $a(x)$ and $b(x)$ be bounded Borel measurable functions defined on R. We shall consider the following one-dimensional Itô's stochastic differential equation;

$$
\begin{equation*}
d x_{t}=a\left(x_{t}\right) d B_{t}+b\left(x_{t}\right) d t \tag{1}
\end{equation*}
$$

K. Itô [1] proved that, if $a(x)$ and $b(x)$ are Lipschitz continuous, a solution is unique and it can be constructed on a given Brownian motion B_{t}. On the other hand, if $|a(x)|$ is bounded from below by a positive constant (i.e. uniformly positive), then a solution of (1) exists and it is unique in the law sense. This follows easily from a general result of one-dimensional diffusions (cf. [2]). However, though the distribution of $\{x ., B$.$\} is unique, x_{t}$ is not always expressed as a measurable function of x_{0} and $\left\{B_{s}, s \leqq t\right\}$. For example, if $a(x)=\operatorname{sgn} x, a(0)=1$ and $x_{0} \equiv 0$, it is not difficult to see that $\sigma\left\{\left|x_{s}\right| ; s \leqq t\right\}=\sigma\left\{B_{s} ; s \leqq t\right\}$.

Here, we will show that, if $a(x)$ is uniformly positive and of bounded variation on any compact interval, then the pathwise uniqueness holds for (1). This implies, in particular, that x_{t} is expressed as a measurable function of x_{0} and $\left\{B_{s}, s \leqq t\right\}$ (cf. [5]). In this direction, M. Motoo (unpublished) already proved that the pathwise uniqueness holds for (1) if $a(x)$ is uniformly positive and Lipschitz continuous and if $b(x)$ is bounded measurable. Also, T. Yamada and S. Watanabe [5] proved the pathwise uniqueness of (1) if $a(x)$ is Hölder continuous of exponent $\frac{1}{2}$ and $b(x)$ is Lipschitz continuous. Our above mentioned result may be interesting in a point that it applies for many discontinuous $a(x)$. It is still an open question whether only the uniform positivity of $a(x)$ implies the pathwise uniqueness.

Finally the author wishes to express his sincere gratitude to Professor S. Watanabe for his invaluable suggestions.

A precise meaning of the equation (1) is as follows: $\left(\Omega, \mathscr{F}, P ; \mathscr{F}_{t}\right)$ stands for a probability space (Ω, \mathscr{F}, P) with an increasing family $\left\{\mathscr{F}_{t}\right\}_{t \in[0, \infty)}$ of sub-σ-algebras of $\mathscr{\mathscr { F }}$.

Definition 1. By a solution of (1), we mean a quadruplet ($\Omega, \mathscr{F}, P ; \mathscr{F}_{t}$) and a stochastic process $\mathfrak{X}_{t}=\left(x_{t}, B_{t}\right)$ defined on it such that
(i) with probability one, X_{t} is continuous in t and $B_{0}=0$,
(ii) \mathfrak{X}_{t} is an $\left\{\mathscr{F}_{t}\right\}$-adapted process and B_{t} is an $\left\{\mathscr{F}_{t}\right\}$-Brownian motion,
(iii) \mathfrak{X}_{t} satisfies

$$
x_{t}=x_{0}+\int_{0}^{t} a\left(x_{s}\right) d B_{s}+\int_{0}^{t} b\left(x_{s}\right) d s \quad \text { a.s. },
$$

where the integral by $d B_{s}$ is understood in the sense of the stochastic integral of Ito.

Definition 2. We shall say that the pathwise uniqueness holds for (1), for any two solutions $\mathfrak{X}_{t}=\left(x_{t}, B_{t}\right), \mathfrak{Y}_{t}=\left(y_{t}, B_{t}^{\prime}\right)$ defined on a same quadruplet $\left(\Omega, \mathscr{F}, P ; \mathscr{F}_{t}\right), x_{0}=y_{0}$ and $B_{t} \equiv B_{t}^{\prime}$ implies $x_{t}=y_{t}$.

Remark 1. In Definition 2, it is sufficient to assume that $x_{0}=y_{0}=x$ for some constant $x \in R$.

Remark 2. A definition of the pathwise uniqueness may be defined in a stronger way as follows; the pathwise uniqueness holds if $\mathfrak{X}_{t}=\left(x_{t}, B_{t}\right)$ is a solution on $\left(\Omega, \mathscr{F}, P ; \mathscr{F}_{t}^{1}\right)$ and $\mathfrak{Y}_{t}=\left(y_{t}, B_{t}^{\prime}\right)$ is a solution on $\left(\Omega, \mathscr{F}, P ; \mathscr{F}_{t}^{2}\right)\left(\mathscr{F}_{t}^{1}\right.$ and \mathscr{F}_{t}^{2} may be different) such that $x_{0}=y_{0}$ and $B_{t} \equiv B_{t}^{\prime}$, then $x_{t}=y_{t}$. It is not difficult to show, using a result in [5], that this definition of the pathwise uniqueness is equivalent to Definition 2.

Lemma. Let $\left(M_{t}, V_{t}\right)_{t \in[0, T]}$ be a pair of continuous real process defined on a probability space (Ω, \mathcal{F}, P). Suppose that the total variation $\|\|(\omega)\|\|_{T}$ of $V_{t}(\omega)$ on $[0, T]$ has a finite expectation. Further, suppose M_{t} is a martingale satisfying the following conditions;

$$
\begin{equation*}
M_{0}=0 \quad \text { a.s. }, \tag{i}
\end{equation*}
$$

(ii) there exist positive constants m_{1} and m_{2} such that

$$
\left.\begin{array}{c}
m_{1} M_{t}(\omega) \leqq V_{t}(\omega) \leqq m_{2} M_{t}(\omega) \tag{2}\\
\text { for } \quad \text { a.s. }, \\
(t, \omega) \in\{(t, \omega) ; t \in[0, T] \quad \text { and }
\end{array} M_{t}(\omega) \geqq 0\right\} .
$$

Then, $M_{t}=0$ a.s. for $0 \leqq t \leqq T$.
Proof. For $y \in R$, let $N_{1}(y, \omega)$ be the number of $t \in[0, T]$ such that $V_{t}(\omega)=y . \quad$ By a theorem of Banach (cf. [4] pp. 280), we have

$$
\|V(\omega)\|_{T}=\int_{-\infty}^{\infty} N_{1}(y, \omega) d y .
$$

Obviously we may assume that $m_{1}<m_{2}$. For $y>0$, let $N_{2}(y, \omega)$ be the number of $\left[\frac{1}{m_{2}} y, \frac{1}{m_{1}} y\right]$-downcrossings of $M_{t}(\omega)$ on $[0, T]$. The condition (2) implies that

$$
\begin{equation*}
N_{1}(y, \omega) \geqq N_{2}(y, \omega) \quad \text { for } \quad y>0 \tag{4}
\end{equation*}
$$

For $y>0$, we define a sequence of stopping times $\left\{T_{k}\right\}$ in the following way;

$$
\begin{aligned}
& T_{0}=0 \\
& T_{2 n+1}=\inf \left\{t \geqq T_{2 n} ; M_{t}>\frac{1}{m_{1}} y\right\} \wedge{ }^{1} T \quad n=0,1,2, \cdots \\
& T_{2 n+2}=\inf \left\{t \geqq T_{2 n+1} ; M_{t}<\frac{1}{m_{2}} y\right\} \wedge T \quad n=0,1,2, \cdots
\end{aligned}
$$

Then, for $n=1,2, \cdots$, we can obtain the following inequality;

$$
\begin{aligned}
& \left(\frac{1}{m_{1}} y-\frac{1}{m_{2}} y\right)\left(N_{2}(y, \omega) \wedge n+1\right) \\
& \quad \geqq \sum_{k=1}^{n}\left\{M_{T_{2 k-1}}(\omega)-M_{T_{2 k}}(\omega)\right\}+\left\{\left(M_{T}(\omega)-\frac{1}{m_{1}} y\right) \vee^{2)} 0\right\} \chi^{3)}\left(N_{2}(y, \omega)<n\right\}
\end{aligned}
$$

Taking the expectation, we have

$$
E\left[N_{2}(y) \wedge n\right] \geqq \frac{E\left[\left\{\left(M_{T}-\frac{1}{m_{1}} y\right) \vee 0\right\} \chi_{\left(N_{2}(y)<n\right)}\right]}{\left(\frac{1}{m_{1}}-\frac{1}{m_{2}}\right) y}-1
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{equation*}
E\left[N_{2}(y)\right] \geqq \frac{E\left[\left(M_{T}-\frac{1}{m_{1}} y\right) \vee 0\right]}{\left(\frac{1}{m_{1}}-\frac{1}{m_{2}}\right) y}-1 \tag{5}
\end{equation*}
$$

Now, we assume that $P\left(M_{T} \neq 0\right)>0$. Then, there exist positive constants ε and δ such that

$$
\begin{equation*}
E\left[\left(M_{T}-\frac{1}{m_{1}} y\right) \vee 0\right]>\varepsilon \quad \text { for } 0<y<\delta \tag{6}
\end{equation*}
$$

The inequalities (5) and (6) provide us with the equality

1) Let x and y be real numbers. $x \wedge y$ means $\min (x, y)$.
2) $x \vee y$ means $\max (x, y)$.
3) χ_{Δ} denotes the indicator function of a set A.

$$
\int_{0}^{\delta} E\left[N_{2}(y)\right] d y=\infty
$$

But this is a contradiction since, by (3) and (4),

$$
\int_{0}^{\delta} E\left[N_{2}(y)\right] d y \leqq \int_{-\infty}^{\infty} E\left[N_{1}(y)\right] d y<\infty .
$$

Therefore we have

$$
P\left(M_{t}=0\right)=1 \quad \text { for } \quad 0 \leqq t \leqq T .
$$

This completes the proof.
Remark 3. In the above lemma, we may suppose the following condition instead of (2); there exist positive constants m_{1} and m_{2} such that

$$
\begin{equation*}
m_{1}\left|M_{t}\right| \leqq\left|V_{t}\right| \leqq m_{2}\left|M_{t}\right| \quad \text { a.s. for } \quad 0 \leqq t \leqq T \tag{7}
\end{equation*}
$$

Now we will state our main result.
Theorem. Let $a(x)$ and $b(x)$ be bounded Borel measurable. Suppose $a(x)$ is of bounded variation on any compact interval. Further, suppose there exists a constant $c>0$ such that

$$
\begin{equation*}
a(x) \geqq c \quad \text { for } \quad x \in R . \tag{8}
\end{equation*}
$$

Then, the pathwise uniqueness holds for (1).
Proof. We assume that $|a(x)| \leqq M$ and $|b(x)| \leqq M$ for $x \in R$. Let $\mathfrak{X}_{t}=\left(x_{t}, B_{t}\right)$ and $\mathfrak{Y}_{t}=\left(y_{t}, B_{t}\right)$ be solutions of (1) such that $x_{0}=y_{0}$ is a constant. For $N>\left|x_{0}\right|$, we define that

$$
\begin{aligned}
& \tau_{N}= \begin{cases}\inf \left\{t \geqq 0 ;\left|x_{t}\right|=N\right\} \\
\infty & \text { if }\{ \}=\phi\end{cases} \\
& \eta_{N}= \begin{cases}\inf \left\{t \geqq 0 ;\left|y_{t}\right|=N\right\} \\
\infty & \text { if }\{ \}=\phi\end{cases} \\
& \gamma_{N}=\tau_{N} \wedge \eta_{N}
\end{aligned}
$$

Let, for $x \in R$,

$$
f(x)=-2 \int_{0}^{x} \frac{b(y)}{a^{2}(y)} d y, \quad \varphi(x)=\int_{0}^{x} \exp [f(y)] d y
$$

By the time substitution and Cameron-Martin's formula (cf. [3]), there exists a constant $K_{1}>0$ depending only on c, M, N and t such that

$$
\begin{equation*}
E\left[\int_{0}^{t \wedge \gamma_{N}} g\left(x_{s}\right) d s\right] \leqq K_{1}\|g\|_{L^{1}([-N, N])} \quad \text { for } \quad g \in L^{1}([-N, N]) \tag{9}
\end{equation*}
$$

Since $\varphi^{\prime}(x)$ is absolutely continuous and $\varphi^{\prime \prime}(x)$ is locally integrable, the inequality (9) assures us that Itô's formula applies to φ and we have

$$
\varphi\left(x_{t \wedge \gamma_{N}}\right)=\varphi\left(x_{0}\right)+\int_{0}^{t \wedge \gamma_{N}} \varphi^{\prime} a\left(x_{s}\right) d B_{s} \quad \text { a.s. }
$$

Since φ is a homeomorphism R onto $I=(\varphi(-\infty), \varphi(\infty))$, we can define that

$$
\sigma(x)=\varphi^{\prime} a \circ \varphi^{-1}(x), \quad h(x)=\int_{0}^{x} \frac{1}{\sigma(y)} d y \quad \text { for } \quad x \in I
$$

Obviously σ is of bounded variation on any compact interval of I. Let $\||\sigma|\|_{N}$ be the total variation of σ on [$\varphi(-N), \varphi(N)]$.

We can take an approximate sequence $\left\{\sigma_{n}(x)\right\}_{n=1,2 . .}$ such that
(i) $\quad \sigma_{n}(x) \in C^{1}(R) \quad$ and $\quad c \exp \left[-\frac{2 M N}{c^{2}}\right] \leqq \sigma_{n}(x) \leqq M \exp \left[\frac{2 M N}{c^{2}}\right]$

$$
\text { for } x \in R \text {, }
$$

(ii) $\left\|\sigma-\sigma_{n}\right\|_{L^{1}([\varphi(-N), \varphi(N)])} \leqq \frac{1}{n!} \quad$ and $\quad\left\|\sigma_{n}^{\prime}\right\|_{L^{1}([\varphi(-N), \varphi(N)])} \leqq\|\sigma\| \|_{N}$.

Let

$$
h_{n}(x)=\int_{0}^{x} \frac{1}{\sigma_{n}(y)} d y \quad \text { for } \quad x \in I
$$

Since $h_{n}(x) \in C^{2}(R)$, we can apply Itô's formula to h_{n} and have

$$
\begin{aligned}
h_{n}\left(\varphi\left(x_{t \wedge \gamma_{N}}\right)\right)= & h_{n}\left(\varphi\left(x_{0}\right)\right)+\int_{0}^{t \wedge \gamma_{N}} \frac{\sigma\left(\varphi\left(x_{s}\right)\right)}{\sigma_{n}\left(\varphi\left(x_{s}\right)\right)} d B_{s} \\
& -\frac{1}{2} \int_{0}^{t \wedge \gamma_{N}} \frac{\sigma_{n}^{\prime}\left(\varphi\left(x_{s}\right)\right) \sigma^{2}\left(\varphi\left(x_{s}\right)\right)}{\sigma_{n}^{2}\left(\varphi\left(x_{s}\right)\right)} d s . \\
& =h_{n}\left(\varphi\left(x_{0}\right)\right)+L_{t}^{n}+W_{t}^{n} .
\end{aligned}
$$

It follows from (ii) that there exists a constant $K_{2}>0$ depending only on c, M and N such that

$$
\left|h(x)-h_{n}(x)\right| \leqq K_{2} \frac{1}{n!} \quad \text { for } \quad x \in[\varphi(-N), \varphi(N)]
$$

From this, we see that $h_{n}\left(\varphi\left(x_{t \wedge \gamma_{N}}\right)\right)$ converges almost surely to $h\left(\varphi\left(x_{t \wedge \gamma_{N}}\right)\right)$. There exists a constant $K_{3}>0$ depending only on c, M, N, and t such that

$$
E\left[\left(L_{t}^{n}-B_{t \wedge \gamma_{N}}\right)^{2}\right] \leqq K_{3} \frac{1}{n!} .
$$

Therefore L_{t}^{n} converges almost surely to $B_{t \wedge \gamma_{N}}$. Let

$$
W_{t}=h\left(\varphi\left(x_{t \wedge \gamma_{N}}\right)\right)-h\left(\varphi\left(x_{0}\right)\right)-B_{t \wedge \gamma_{N}} .
$$

From the above results, W_{t}^{n} converges almost surely to W_{t}.

It is easy to see that there exists a constant $K_{4}>0$ depending only on c, M, and N such that

$$
E\left[\left|\left|\left|W^{n}\right| \|_{t}\right] \leqq K_{4} E\left[\int_{0}^{t \wedge \gamma_{N}}\left|\sigma_{n}^{\prime}\left(\varphi\left(x_{s}\right)\right)\right| d s\right]\right.\right.
$$

where $\mid\left\|W^{n}\right\| \|_{t}$ is the total variation of W_{s}^{n} on $[0, t]$. Using the time substitution, we easily see that there exists a constant $K_{5}>0$ depending only on c, M, N, and t such that

$$
\begin{aligned}
E\left[\int_{0}^{t \wedge \gamma_{N}}\left|\sigma_{n}^{\prime}\left(\varphi\left(x_{s}\right)\right)\right| d s\right] & \leqq K_{5}\left\|\sigma_{n}^{\prime}\right\|_{L^{1}([\varphi(-N), \varphi(N)])} \\
& \leqq K_{5}\||\sigma|\|_{N} .
\end{aligned}
$$

Hence it holds that

$$
E\left[\left||W| \|_{t}\right] \leqq K_{4} K_{5} \mid\|\sigma\| \|_{N},\right.
$$

where $\left||W| \|_{t}\right.$ is the total variation of W_{s} on $[0, t]$.
From the definition of $h(x)$, there exists positive constants m_{1} and m_{2} such that

$$
m_{1}(x-y) \leqq h(x)-h(y) \leqq m_{2}(x-y) \quad \text { for } y \leqq x \text { and } x, y \in[\varphi(-N), \varphi(N)]
$$

Let

$$
\begin{aligned}
M_{t} & =\int_{0}^{t \wedge \gamma_{N N}}\left(\sigma\left(\varphi\left(x_{s}\right)\right)-\sigma\left(\varphi\left(y_{s}\right)\right)\right) d B_{s}, \\
V_{t} & =h\left(\varphi\left(x_{t \wedge \gamma_{N}}\right)\right)-h\left(\varphi\left(y_{t \wedge \gamma_{N}}\right)\right) .
\end{aligned}
$$

We can apply Lemma to $\left(M_{t}, V_{t}\right)$ and it follows that

$$
P\left(\varphi\left(x_{t \wedge \gamma_{N}}\right)=\varphi\left(y_{t \wedge \gamma_{N}}\right)\right)=1 .
$$

Therefore we have

$$
P\left(x_{t \wedge \gamma_{N}}=y_{t \wedge \gamma_{N}}\right)=1 .
$$

Since $\lim _{N \rightarrow \infty} \gamma_{N}=\infty$ a.s., we obtain that $P\left(x_{t}=y_{t}\right)=1$ and the proof is complete.
Remark 4. In Theorem, if $a(x)$ is continuous, we may assume that $a(x)$ is positive instead of (8).

Osaka University

References

[1] K. Itô: On a stochastic integral equation, Proc. Japan Acad. 22 (1946), 32-35.
[2] K. Itô and H.P. McKean, Jr.: Diffusion Processes and Their Sample Paths, Springer-verlag, 1965.
[3] H.P. McKean, Jr.: Stochastic Integrals, Acadmic Press, 1969.
[4] S. Saks: Theory of the Integral (Monografje matematyczne, vol. 7), Warsaw, 1937.
[5] T. Yamada and S. Watanabe: On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ. 11 (1971), 155-167.

