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Introduction. In this paper, we shall show that we can characterize the
Fourier-Laplace image of a class of distributions with a certain decreasing
condition at oo by a class of entire functions with a corresponding increasing
condition along the imaginary axis. Many results in this concern have been
obtained. Paley-Wiener [2]-Schwartz [3] shows that the Fourier transform of
a distribution which vanishes identically at oo is equal to a function, which can
be extended to an entire function of exponential type.

More generally, Schwartz [3] shows that the Fourier-Laplace image of a

class of ditributions which decrease exponentially with some exponent is a class
of holomorphic functions which are analytic in a corresponding strip domain
along the real axis. (see Proposition 3.4. in this paper.)
Here, we use the term ‘‘the Fourier-Laplace transform” in the sense of Schwartz.
Precisely, the Fourier-Laplace transform F,(£+17) of a distribution u(x) is
defined by the Fourier transform of ¢"*%(x) when the distribution e”u(x) belongs
to &'

On the other hand, Gel’fand-Shilov [1] shows the following. Let p(x) be
a function with a certain increasing condition, which is similar to that in this
paper. The Fourier image of a class of C~-functions, any element of which
can be estimated by Cexp (—p((1+€)x) together with its derivatives, coin-
cides with the class of entire functions F(£+17), which satisfies the estimate
[(E+im)kF(E+1in)| = Crexp (p*()) for all k, where p*(7) is the dual function of
p(x) in the sense of Young.

In this paper, we treat this problem in (§’-category, and get some results
analogous to those results in [1].

Let p(x) be a certain function with decreasing conditions which will be mentioned
in the next section.

We consider a class S, of distributions, which consists of all distributions of
the type e™*®o, where v is an element of &’.
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Now, our result is, roughly speaking, that the Fourier-Laplace image of S,’
is nearly equal to the class of entire functions F({)=F(& + i) which satisfies the
estimate

| F(E+in)| SC(1+ | E+in| )N ™™
for an integer N (see Theorems in 4.).

In §5 we treat the case of several variables.

And in the last section, some examples of p(x) which satisfies conditions
i)~iv) are considered.

The author wishes to express his gratitude to Professor H. Tanabe for his
continous encouragement and apt advice for the present paper.

2. The function p(x) and the dual function p*(7)

In this paper, we denote by p(x) a function which satisfies the next con-
ditions i)~iv).
i) p(x) is a C~-function on R.
ii) p(x) is strictly concave.
iii) p(x)/|x| goes to oo when |x| tends to oo.
iv) For any integer k=1, there exist some constant C and integer N,
with which we have

[p®(x) ]| S Cp(1+ |x|)Ve for all x,

where p®(x) denotes the k-th derivative of p(x).

The dual function p*(n) of p(x) in the sense of Young is defined by p*(7)=
Max (—p(x)+nx; — oo <x< oo).
From the assumptions and the definition of p*, we have

Lemma 1.1. 1) For any 7u there exists only one x=x(n) which satisfies
p*(m)=— p(x)+7x.
2)  The function x(7) is a continuous and concave function which increases strictly
in 7.

3) We have the dual formula
p(x) = Max (— p*(n) +an; — oo <n<eo)
and for any n there exists only one n=n(x) which satisfies
p(#) = —pH(n)+am.
4)  p*(n)/In| goes to oo as |n| tends to oo.

Proof. 1) Since x(7) is the solution of the equation — p’(x)+7=0, the
conclusions of 1) and 2) are obvious by using ii) and iii). By the definition of
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p*(n), we have p*(n)=—p(x)+7x for any 7 and x. Thus, we have p(x)=
—p*(n)+xm. On the contrary, when we set 7= p’(x), which is the inverse
function of x(%), we have p(x)= — p*(n)+x7. Hence we have 3).

Now, we are going to prove 4).

If we have a constant M and a sequence {7;; j=1, 2, ---} such that 7; goes to
oo as j tends to oo, and p*(7,)/n; <M, then we have, by definition,

—p(x)+xn,; <M for all x and j.

But when we set x=x,>M+1, we have the estimate M»;> (M + 1)n;— p(x,),
which contradicts the fact that n; goes to co.

3. Spaces Sy, Sy Siryand S,

We denote by S (or &) the space of rapidly decreasing C=-functions (or
tempered distributions resp.) in the sense of Schwartz.

DEerFINITION 3.1. Let I" be an open interval in R and p(x) be a function as
in §2. We define spaces S,, ¢/, S,/ and S} - as follows:

Sp = {u(x)e C(R); & u(x)= S}
Sy = {u(x)e D'(R); Mu(x)e S’ for all A in T'}
Sy = {u(x)e D'(R); e®u(x)e S}

b= {U(x)ED(R); & @u(x)e S for all neT}

DEerFINITION 3.2. (Schwartz [3]) Let u(x) be in S/, then we can define
the Fourier transform U,(£) of e”u(x) for all 7 in T'. We shall call U,(£) the
Fourier-Laplace transform of u.

Proposition 3.3. (Schwartz [3]) 4 distribution u(x)€ 9'(R) is in S’ if and
only if it is a derivative of a continuous function which increases in at most algebraic
order, that is, we can find a bounded continuous function f(x) and integers p, k, with
which we have u(x)=D2((1+ x°)* f(x)).

Proposition 3.4. (Schwartz [3]) If u(x) is in Sy, the Fourier-Laplace
transform of u is a holomorphic function F,(E+1n) in the tubular domain B+ iI'=
{& +in: neT} which satisfies;

3,1) |F(E+in)| SCy(1+ |E+in|)¥n  for any nin T.

In (3,1), C, is a constant and N, is an n integer depending only on which can
be taken uniformly on any compact subset of T'. Conversely, if a holomorphic
function F(E-+in) in E+iT satisfies the estimate (3,1), we can find a distribution
u(x) in Sy’, whose Fourier-Laplace transform coincides with F(& +i7).
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4. Main results

By the definition, the C~—function ¢"*~** is in S, hence we have S,/ Sg'.
And we can consider the Fourier-Laplace transform for an element of S,.
Moreover, we have the following theorems.

Theorem 4.1. If u is in S,, the Fourier-Laplace transform of u is an
entire function F (£ +17) which satisfies the following condition T-1).

T-1) There exists an integer N, and for any positive real &, there exists a
constant C,, such that we have the following estimate (4,1) with these N and C.,.

1) | F(E+1in)| SC,(1+ | E+1in| )N e ®
where we take +& (or —€&) if n>>0 (or <0 resp.).

Theorem 4.2. Let F(§)=F(E+1in) be an entire function which satisfies the
following condition T-2).

T-2) There exist an integer N and a constant C with which we have
4,2) [FE)ISC(A+|E])N e ™.,
Then, we can find a distribution u(x) in S,” uniquely, so that the Fourier-Laplace

transform of u is equal to F(L).

In general, we cannot take £&=0 in T-1), (see a counter example in the last
section), however we have

Theorem 4.3. If p(x) satisfies the following condition v) in addition to
i)~iv):

v) p(x)/|x|? goes to oo as |x| tends to oo for some p>1,
then we can take €=0 in T-1).

Combining the consequences of Theorem 4.1. and 4.2, we have

Theorem 4.4. If u is in S} v, then the Fourier-Laplace transform of u is
an entire function F (£ +in) which satisfies the following condition 'T-3).

T-3) There exists an integer N, for any \ in T', and there exists a constant
C,, such that, with these N, and C,, we have

4, 3) |F(E-+in)| SC\(1+ | E+in|)Nael >,

Conversely, if an entire function F({) satisfies the above condition T-3), we can find
a distribution u in S}  whose Fourier-Laplace transform coincides with F(L).

Above theorems are all concerned with the §’-category, on the other hand
for the space S,, we have the following

Theorem 4.5. If uisin S,, the Fourier-Laplace transform of u is an entire
function F (& 1) having the following property T-4).
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T-4) For any integers N and m, we can take a constant Cy ,,, with which
we have

4, 4) |0pF (E+in)| SCn (14 |E+in|) N ™.

Conversely, if F(§) is entire and satisfies 'T—4), we can find a function u in S,
whose Fourier-Laplace transform equals F.

Proof of Theorem 4.1. From Proposition 3.4, F,(£) is an entire function.
So, we prove the estimate for F,. Since ¢’*7** is an element of & for any 7,
we have

(4.5) F(E+in) = g{e"®u(x), e PmitHimey

By the definition, e”®u(x) is in &', hence we have e*®u=D%((1+ x*)*f(x)) where
fis a bounded continuous function. Thus we have

(+.6) F(+in) = g<(1+a)f(x), (—Da)Pe ™74
— [ A+ @) —Dyreroitmay.

Using the Leibniz formula

(#.7) (=D e ®es = S1p, (ff, e, pO)5P €T

where P, ; (r,, -+, 7,) is a polynomial in r=(r,, ---, 7).
Now we substitute this into (4,6) and we have for n>1

(4‘. 8) lFu(E+lﬂ)l <S‘jw g Cp,l(l +x2)lzsup If(x)l IC[,(I +x2)""’e“’<">+"’dx
<31, [T+ sup | flw) | E| e dxe 0
+23C, S (14" sup | fix) | 1E]7 e dx

=3LICy e
SC,(1+[C])Perrate,
Similarly we have for < —1
|FE+in)| SC,(1+ |E])Pe ™™™
Before going to the proof of Theorem 4.2 we prepare the following lemma.

Lemma 4.6. Let F() be an entire function. For any integer v we can find

v
a function Fy(§)=2" a,e'®¢ so that it satisfies
k=0
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F(0) = Fy(0), 9:F(0) = 0:F(£), -+, 0¢F(0) = 9zF(0)
where ay’s are real numbers and ay’s are complex constants.

Proof. We take real numbers a so that we have a ;& for jk. Then
we can find a, (k=1, 2, .-+, v) which satisfies

1, 1,1 \/a F(0)\
0y, 10y, e, i ) ql)z 3:;1?(0))
G, (o), -, (i) \a,/)  \OUF(0)
since the above matrix is nonsingular. With these « and a, we have

LF(0) = 23 Gaw)'an = OFF(0).

Proof of Theorem 4.2.

For the entire function F({) we take F({) as in Lemma 4.5 where we
set v=N+1. We write the function F({) as the sum of two functions F,(£)
and F,(§)=F(@)—F,(t). Fy¢) is the Fourier-Laplace transform of u,(x)=

N+
El a,8(x— atg), where §(x) is the Dirac distribution.
k=0

Since u,(x) has a compact support, it belongs to S,’. So, for the proof
of this theorem, it is enough to show that F,({) is the Fourier-Laplace
transform of an element of S,’. From the form of F({) we have |F({)|=
C exp Max|a,| |7| for some constant C, so the function F,()= F({)—F (%)
satisfies the same estimate as (4,2)

4.9) |F(E+in) | S C(1+ [E])N e

for some constant C, and the same integer N.
And from the definition we have 9;F,(0)=0 for /=0, 1, 2, ---, N +1. Hence if
we set G(8)=F,(§)/tN** G(£) is an entire function having the following estimate

(4. 10) |G(E+in)| SCy(1+|E]) 2™

Now by Proposition 3.4 we can find a distribution #,(x) in Sz’ whose Fourier-
Laplace transform is equal to F,({). We must show that this distribution u,
belongs to &,. To prove this we have only to show that the distribution e**
u,(x) can be extended continuously and linearly on S.

Let @(x) be an arbitrary test function in 9(R).

<" Puy(x), p(x)> g)
= gluy(x), € p(x)> g

N zl,, f Fy(£)d $ e™8 " p( — x)dx
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— %[ S EN+2 G(E)df S e—igxep(—x)<p(__x)dx
N+2
since we have EN*?e T =(—D,)N"e i and DY'e" Pp(—x)=2Pniss
k=0

(p'y +++y pNT®)e " Dip(—x) the above equation is equal to
1 N+2 ipx x
2_ﬂ_SG(g)ng 3T P raue ¥ @Dl — 2)d

where Py, £(7), ***, n4,) are polynomials of (r,, --+,7y,,). The functions
Py 21" Dip(—x) are C~-functions with compact support, and for G(£) we
have the estimate (4,10). Hence, the integrand in the previous integral by
dx dE is absolutely summable and we can exchange the order of integral. Then
the above integral equals

N+2 . .
217; S k;o Py so 4 Dap(—x)dx SG(E)e‘sEJch dE .

Now the function G({) is entire and satisfies the estimate (4,10), we can change
the path of integral in d& from the real line to an arbitrary line, parallel to the
real axis. So, we take the path on the line {£+in(—x); — oo <E< oo}, where
7(x) is the function in Lemma 1.1. Then the previous integral coincides with
the next integral

237 PunaDip(—) |7 GE+in(—apemor g da.

Tk —0o —c0

By the definition of »(—x), we have xn(—x)+ p(—x)= — p*(n(—x)). So, using
the estimate (4,10), we have

| G(E +in(— ) et
= |G(E+ip(—x))e™ ™| < C(1+ | E])72.

Therefore, we have
| gLe"Puy(x), p(x)> g |

<37 1Pysels -, 6 DIy dx |7 c+ 18 1)

Since Py,  is the polynomial and p”(x) is estimated by a polynomial, we have
an integer IV, and a constant C, such that

[ Prris, e’y o0y PN S Co(144%)No for all k.

Finally we have
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| 9 Pm(x), p(x)) 9| =C _sup [(1+x)"o™ Digp(x) |

0SkSN+2

where C is a constant independent of @. So, e"®u,(x) belongs to &', i.e. u, is
in S/. As we have proved before that u, belongs to S/, u(x)= u,(x)+u,(x)
belongs also to &,’. And the Fourier-Laplace transform of u(x) is equal to
Fy&)+ F(H)=F(5).

This proves Theorem 4.2.

Proof of Theorem 4.3. To prove this theorem, it is enough to show that
sup {(1+&%)fe P& _ 0o <x < oo} can be estimated by a polynomial in 7.
First we shall prove this for >0.
We denote by gx(x, 7) the function (14 &%)k e=Pe+7#-P*0,
When x<0, we have 0<gu(x, 7) <(1+x*)* e <M for some constant M.
And when 0=<x=1, we have 0<gu(x, 7)<(1+x**=<2*% Therefore, we must
prove the estimate only when x> 1.
By iii) we have a constant ¢, satisfying that p(x)>cx? for all x>1. From this,
we have

—p(x)+nx—p*(p) < —x if x=((n+1)/c))*™ P = L,.
Thus,
sup g(x, 7)
ESS1
=Max { sup gu(x, 7), sup gu(x, 7)}
1<3< 1y Insx
<Max { sup (1+°)*, sup (1+ux)*e™*}
1<*<Ly Ins*
S Cy(1+n)kie=n
So, we have a constant C;, by which

sup | gu(x, 7)| S Cp(1+7)*/*">  when »>0.

For <0, it goes very similarly to the case »>0. Putting this into (4,8), we
have

‘Fu(£+ ”])I é; S (1 +x2)k+”p,1 sup If(x), ,é‘!le—P(anxcldx

32 61 5B 171161 Guumy pn(, m)(1+ 7)1 P
)4
>

IA

(] Ck+np,,+, sup |f|(1 + lc|2)k/(p—1)ep*(n)'

-

=

Proof of Theorem 4.5 is very simple. For, if u(x) is in S,, we have

Fi(g-+in) = | e u(@pesomicermagy,
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Thus, we have, for any nonnegative integers N and m
(E+im)VOTF (E+1im) = S DY (e u(x)e™ ) —ix)™ e 4T dy
Using the Leibniz formula, we have
(@ u(x)) ") = 33 Py DY u(x))e ™,

where Py, is a polynomial of (p’(x), -, p™>(x)). By iii), Py, ,(x) can be esti-
mated by a polynomial of x. Hence, from the fact that (14 x°)*D%(e”®u(x)) is
absolutely summable for any % and /, and the fact that — p(x)+7x =< p*(%), we
get the estimate (4,4). Conversely if F(£-+37%)is an entire function satisfying
the estimate (4,4), we can define a function u(x) by

u(x) — S e‘(5+"””F(§+ia7)d§

where we can take real » arbitrarily.
Now, we must show that this function u belongs to S,. But this is true,
because we have

(1 -I-xz)kDf,Y(eP(ﬂu(x)) = (1 _|_x2)k$ DN {eit1% P} F(E + in)dE
= (1 + xz)’“s 2 PN,I EN-I e;‘gx-—nx+p(x)F(E+in)d£

where Py, is a polynomial of (p, -++, p¥°) that appeared in (4,7). By the as-
sumption iii), we can take an integer NV, and a constant M, with which we have

[Py (x)| =M, (1+x*)N: for all x and /=1, 2, .-+, N,

Further, using the fact that (1+°)e"¢” = (1—08})e’¢”, and integrating by parts,
we get that the previous integral equals

Py.(®) (
S (L | 1= G IR

Py, e .
_2 2 a +x§)'x2r S es(£+m)x+p(x)Pm(§)(ar§nF)(§_|_ in)dE.

After putting n==(x), which is the function defined in Lemma 1.1, we use the
estimate (4,3). Because of the fact that p(x)+ p*(n(x))+ n(x)x=0, we have, for
any integers k and N,

| Py, s(%) |

|1+ PP () | S 33 gy | Covvam(1+ 1€ dE.

This shows that #(x) belongs to S,.
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5. The case of several variables

In the above sections, we restrected our consideration to the case of one
variable. In this section, we treat the several variable case.

Generic points in the Euclidean space R” and in the complex dual space
E*+1i5" will be denoted by x=(x,, x,, --*, x,,) and {=(&,, &,, -++, §,) respectively.
And the form of duality x,&,+---+x,¢, will be denoted by x¢. If p,(x,), -+,
pa(%,) are functions satisfying i)~iv) in §2, we denote by p(x) the function
py(%)+ -+ +pu(x,). And we also denote by p*(») the function p¥(n,)+ -+
+p¥(n,). By T we denote an open convex set in R".

Under these notations, results in the n-variable case are all the same as in
the one variable case. Proofs of Theorem 4.1, 4.3, 4.4 and 4.5 hold without any
alteration in the n-variable case. But, as to Theorem 4.2, we must prepare a
few lemmas related to the technique which was used in the proof of 1-variable
case. We shall prove in the case of n=2.

Lemma 5.1. If F(¢,, &,) is an entire function of 2 variables which has the
next estimate

(5, 1) (g, £ SCA+ 16,1V + £, Ve,
then, for non-negative integer m, we have
(5, 2) I 3"4‘1F(O, E) ZC (14 |E,|)V2ef 2

Lemma 5.2. If an entire function G(§,, §,) of 2 wvariables satisfies the
Jfollowing estimate

(5,3) 1EYG(E, E) I SCA+ G DN (14 &, )N2eP .
then we have
(5,4) |G(Ey &) =CA+ LNV + |8, YNz

By using these lemmas, we can prove Theorem 4.2 in the case of 2 variables.
Let F(&)=F(&,+in,, E,+1in,) be an entire function of 2 variables (¢, §,), and
satisfy the next estimate.

5,5) [F(&y £ =CA+ 151DV (1+ L] )N2eP ™.

N,+1

As in Lemma 4.6, we can find a function Fy(¢,, gz)zlz 1 fi(£,), so that it
satisfies the following; =0

Fo(O’ §2) = F(O’ gz)’ Tty 61{\21+1F0(0) é‘z) = az1+1F(0’ Cz) .

By Lemma 5.1, 621F(0, &.) satisfies (5,2) for all »=0, ---, N,+1. Since fi(&,) is
a linear combination of F(0, ¢,), -+, ag "1 F(0, §,), it also satisfies (5,2). And,
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from the consequences for 1 variable case, fi(¢,) is the Fourier-Laplace transform
+1
of a distribution u(x,) in S;,. Thus, if we set u,(x,, x2)=l:121 S(x;— ar)un(x.,),
we have that u,(x,, x,) is in &§,’ and its Fourier-Laplace transform coincides
with F(¢,, &,). We shall treat Fy(&,, £,)=F(,, &) —F,(¢., ¢,). Now, we have
0;,F(0,¢&)=0, for v=0, 1, .-, N,;+1, hence we conclude that G(¢,, {;)=
F(t, &)/c** is entire. From the form of F,({), we have |F,({)|=
C(1+ |&,])N2€e%1611 €22, So, the function satisfies the estimate (5,5), where C
might be changed, but N is not. By using Lemma 5.2, we have |G(&,, §,)| <
C'(1+ & 1)°(1+4 | &, )N2€".  Again, we shall carry out the same consideration
about F,({) as we have done about F(£), and we decompose the function F(&,, &,)

into Fo((v Cz) + §11V1+2 Go(tn gz) + K{Vﬁz glzvf—z Gl(§1: Cz)

Ni+1

Here, Gy(&,, £,) has the form 37 eeé2g,(8,), and G (§,, §,) is an entire func-
tion which satisfies e

| G1(§1) Cz)l éD(l + |§1 | )_2(1 +1&,] )-Ze—pl*(nl)e Py

Using integration by parts in the same way as in the proof for 1 variable case,

we can prove that {2882 G,(§,, §,) is the Fourier-Laplace transform of a

distribution u,(x,, x,) in S,’. On the other hand, the second term {¥i1**G (&, &,)
No+1

is the Fourier-Laplace transform of a distribution u,(x,, x,)= ,Z_:,’ S(x,— Br)ve(x,),

where vi(x,) is in ;. This proves that F({) is the Fourier-Laplace transform
of a distribution u(x)=u,(x)+u,(x)+u,(x), which is in S,’.

Proof of Lemma 5,1. From Cauchy’s integral formula, 87 F(0,¢,) is

represented by the following form

™ ! F(£, &)
o™ F(0, ¢,) = ™ w5 ge
$1 ( g ) 277:1- S|§1|=1 CT+1 C
Thus, (5,1) leads (5,2).
Proof of Lemma 5.2. When || =1, (5,4) is an obvious consequence of
(5,3). Else, if |,| <1, we have

_ 1 2G(3, &)
G(gn CZ) - 271 Slzﬂ=2 (21—§1)21 dzl .

From this we have
[G(8y ) SC(1+ |8, [)N2e"" 72 for |£,] <1.
Therefore, we have (5,4).
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6. Examples and a counter example

In this paragraph, we give some examples of p(x) satisfying the conditions
i)~iv) and the counter example announced in §4.

ExampLE 1. p(x)=i|x|" for x>1 where p>1. We can extend this

function suitably on the whole line R so that it satisfies the conditions i)~iv).
In this case p(x) also satisfies the condition v) in Theorem 4.3. The dual

. .1 1,1
function p*(7) is — |7|?* for |7|>1, where — +—=1.
p* p* b

ExamMPLE 2. p(x)=|x|log|x| for |x|>e. Extended suitably on R, this
function satisfies i)~iv), and the dual function is '™ for |7|>2.

Now, we give another example of p(x). This will be available in considering
a convolution equation

S_M;Q%TQ(#)dﬂ =W¥(»)
which concerns the Bose-Einstein equation in statistical mechanics
= 1
SO PO = () >0,

ExampLE 3. We cet

m(x) = Sl ee,,e: 7 edn for x<0.

Then we have

Lemma 6.1. 1) When x>0, m(x) is a strictly positive C-function.
2) m(x)[T'(x+1) goes to 1 as x tends to oo, where T'(x) is the gamma function.
3) for any integer k=1, m“®(x)/T'(x + 2) remains bounded when x tends to oo.

From this lemma p(x)=1log m(x) satisfies the conditions i)~iv) for x> 1.

Lemma 6.2. 1) p(x) is a C~-function on x>1.
2)  p(x) s strictly concave on x> 1.
3) p(x)/x goes to co when x tends to .
4) for any integer k, p“*(x) is estimated by a polynomial of x when x> 1.

Proof of Lemma 6.1. 1) is ovbious.

2) m(sx) = S” ey

—eef” —1
0 vl
= S_Meef_le”dn + S

= Il+Iz

o0
Y
0 _

"
é lexﬂd.,?
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The first term I, is bounded for x>1. On the other hand, as to the second
term [,, we have

e"
Iz(x)zg o1 dn

o e
=  e*d
So e —1 e K

=3
]

(= e . ° e, - e .
- S_Nej "dﬂ_s_w?’e ”d’?"‘ —"e "

1
06 —1¢€ dn

= 21+Izz+Izs .

Here, I,,=TY(x+1), I,, is bounded and I,,/I,, goes to 0 when x tends to oo.
Thus, we have 2).
3) For any integer k, we have

o0 k& om
m®(x) = S Tl _e™dy

_eoee.'l——l
w ko 0 L km
N € xy n°e xy

- d +S e dn .

So e —1 K s | 7
As to the first term, we have
o kM oo n
o<(’ 7 emdn<C, (" Zemrimay.

And the second term is a bounded function of x. This proves 3).

Proof of Lemma 6.2. 1) is obvious.
2) For any a; 0<a<1, and any x,, x,>1, the Holder’s inequality shows

o _ e'y
S PRl PLER ) . d’7
e e —1

RN P,
TUe "1 —o e —1 .

Hence, we have m((1—a)x,+ ax,) <m(x,)'"“m(x,)*, where the equality is realized
only when x,=x,. This shows 2).

3) Since the support of the integrand in the definition of m(x) is not bounded
above, m(x) cannot be estimated by a exponential function eM*, however large
M may be. This shows that the function p(x)/x is not bounded above. From
2) of this Lemma, this function p(x)/x increases monotonically for sufficiently
large x. Thus, p(x)/x goes to oo as x tends to oo.

4) By the successive calculation we have
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Py(m, m/, ---, m™®)
(m(x))*
where P(m, ---, m®) is a polynomial of (m, ---, m®) of degree k. So, by using

the facts 2) and 3) of the previous lemma, we get 4).
Now, we give the counter example announced in §4.

pF(x) =

CouNTER-EXAMPLE. Take p(x)=x log x for x>e, and extended it to x=<e
suitably, so that it satisfies the condition i)~iv). Then we have p*(n)=¢"™!
for n>>2. Now, the function u(x)=e¢""* is in §,/, and

Fy(in)= |~ eoas.

Since the integrand is positive, we have
Fu(iﬂ)>g eFlog HnE gy |
e
Changing the variable from x to ¢'™y, we have

o0

—_en-1 - - n-1
e ¢ P logy-y+1) g ldyee .

” e~ Flog T tn Ju
. ER

By the fact that y logy— y+1<(y—1)? for 1/2< y<3/2 we have

32
. -1 1 l(y-1)2 7—1

Fu(m)>gllze" le=€¢" (T gy e

—_—j. e~ dz eV gt |
|z1<C1/2)e? 172

So, it is impossible to get an estimate of the following type:
|F(in)| < C(1+ || )N ™™ for n>3.
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