SPECTRAL AND SCATTERING THEORY FOR SECOND. ORDER DIFFERENTIAL OPERATORS WITH OPERATOR-VALUED COEFFICIENTS

Yoshimi SAITŌ

(Received October 1, 1971)

Introduction

Let us consider a differential operator

$$
\begin{equation*}
L=-\frac{d^{2}}{d r^{2}}+B(r)+C(r), \quad r \in(0, \infty)=I \tag{0.1}
\end{equation*}
$$

where for each $r \in I B(r)$ is a non-negative self-adjoint operator in a Hilbert space X with domain $\mathscr{D}(B(r))=D$ constant in r, and $C(r)$ is a symmetric operator with domain $\mathscr{D}(C(r))=D$ and s- $\lim _{r \rightarrow \infty} C(r) x=0$ for any $x \in D . \quad L$ acts on X-valued functions $f(r)$ on I. By defining the domain of L appropriately L can be regarded as a self-adjoint operator in $L^{2}(I, X, d r)$. In the present paper we shall develop a spectral and scattering theory for the self-adjoint operator L.

Jäger [3] constructs an eigenfunction expansion for L with $C(r) x=0\left(r^{-3 / 2-\varepsilon}\right)$ $(\varepsilon>0)$ for any $x \in D$ as $r \rightarrow \infty$. He shows the existence of the "eigenoperator" $\Gamma(r, k)$ associated with $L . \quad \Gamma(r, k)$ is a bounded, linear operator on X for each pair $(r, k) \in I \times(\boldsymbol{R}-\{0\})$ such that

$$
\begin{equation*}
-\frac{d^{2}}{d r^{2}} \Gamma(r, k) x+\Gamma(r, k)(B(r)+C(r)) x=k^{2} \Gamma(r, k) x \tag{0.2}
\end{equation*}
$$

holds for any $x \in D$. The "generalized Fourier transforms" $\mathscr{F}^{ \pm}$are defined by

$$
\begin{equation*}
\mathscr{F} \pm f(k)=\int_{I} \Gamma^{ \pm}(r, k) f(r) d r, \quad \Gamma^{ \pm}(r, k)= \pm i k \sqrt{\frac{2}{\pi}} \Gamma(r, \pm k) . \tag{0.3}
\end{equation*}
$$

$\mathscr{F}^{ \pm}$transform $L^{2}(I, X, d r)$ into $L^{2}((0, \infty), X, d k)$ and satisfy for any Borel set Δ in I

$$
\begin{equation*}
E(\Delta)=\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\bar{\Delta}}} \mathscr{F}^{ \pm} \tag{0.4}
\end{equation*}
$$

where $E(\lambda)$ is the resolution of the identity associated with $L, \chi_{\sqrt{4}}$ is the characteristic function of $\sqrt{ } \bar{\Delta}=\left\{k>0 / k^{2} \in \Delta\right\}$, and $\left(\mathscr{F}^{ \pm}\right)^{*}$ are the adjoints of $\mathscr{F}^{ \pm}$
in $L^{2}((0, \infty), X, d k)$. These results imply that the spectrum of L is absolutely continuous on $(0, \infty)$. He has also shown that the spectrum of L is discrete on $(-\infty, 0)$. Jager's methods are based on the fact that the principle of limiting absorption holds for the operator L. For the notion of the principle of limiting absorption see, for example, Eidus [2].

We shall treat in this paper the operator L with $C(r) x=0\left(r^{-1-\varepsilon}\right)(\varepsilon>0)$ for any $x \in D$ as $r \rightarrow \infty$. The other conditions imposed on $B(r)$ and $C(r)$ are the same as those in Jäger [3].

In [7] the author has justified the principle of limiting absorption for L with $C(r) x=0\left(r^{-1-\varepsilon}\right)$. The results in [7] will be summarized in §1. These will be used as main tools throughout in this paper. In $\S 2$ and $\S 3$ we shall give a spectral decomposition of L using the generalized Fourier transforms $\mathscr{F}^{ \pm}$. In our case the existence of the eigenoperator is not shown. But with the aid of the results of Jäger [3] we can construct $\mathscr{F}^{ \pm}$such that (0.4) holds good.
$\S 4$ and $\S 5$ are devoted to investigating the properties of L using the techniques of stationary methods in perturbation theory. We shall make use of some results given in Kato and Kuroda [6]. L will be considered to be the perturbed operator of

$$
\begin{equation*}
L_{0}=-\frac{d^{2}}{d r^{2}}+B(r) \tag{0.5}
\end{equation*}
$$

In $\S 4$ we shall define and study two families of operators $\left\{G^{ \pm}(\lambda)\right\}_{\lambda>0}$ and $\left\{H^{ \pm}(\lambda)\right\}_{\lambda>0} . \quad$ Roughly speaking, $G^{ \pm}(\lambda)$ and $H^{ \pm}(\lambda)$ are defined by

$$
\left\{\begin{array}{l}
G^{ \pm}(\lambda)=\lim _{z \rightarrow \pm \pm i 0}(L-z)\left(L_{0}-z\right)^{-1} \tag{0.6}\\
H^{ \pm}(\lambda)=\lim _{z \rightarrow \pm \pm i 0}\left(L_{0}-z\right)(L-z)^{-1} .
\end{array}\right.
$$

The results obtained in $\S 4$ will be used in the following sections. We shall show in $\S 5$ that the generalized Fourier transforms $\mathscr{F}^{ \pm}$corresponding to L are orthogonal, i.e., $\mathscr{F}^{ \pm}$transform $L^{2}(I, X, d r)$ onto $L^{2}((0, \infty), X, d k)$, under the assumption that the generalized Fourier transforms $\mathscr{F}_{0}^{ \pm}$associated with L_{0} are orthogonal. We shall define the wave operators $W^{ \pm}=W^{ \pm}\left(L, L_{0}\right)$ and study their properties in §6. It will be shown that $W^{ \pm}$are complete and that we have

$$
\begin{equation*}
W^{ \pm}=\left(\mathscr{F}^{ \pm}\right)^{*} \mathscr{F}^{ \pm} . \tag{0.7}
\end{equation*}
$$

As an application we shall consider the Schrödinger operator $-\Delta+q(x)$ in the whole $\boldsymbol{R}^{n}(n \geq 3)$ in §7. In this case we have

$$
\left\{\begin{array}{l}
X=L^{2}\left(S^{n-1}\right) \tag{0.8}\\
B(r)=\frac{1}{r^{2}}\left\{-\Delta_{n}+\frac{(n-1)(n-3)}{4}\right\}, \\
C(r)=q(r \omega), \quad\left(\omega \in S^{n-1}\right),
\end{array}\right.
$$

where S^{n-1} is the $(n-1)$-sphere and Λ_{n} is the Laplace-Beltrami operator on S^{n-1}. $q(x)$ is assumed to behave like $0\left(|x|^{-1-\varepsilon}\right)(\varepsilon>0)$. All the results obtained in the preceding sections are valid for the Schrödinger operator $-\Delta+q(x)$. In particular the spectrum of $-\Delta+q(x)$ on $(0, \infty)$ is absolutely continuous.

Throughout in this paper we shall follow Saito [7] as to the notations. Here we recall some of them.
X - a Hilbert space with the norm | | and inner product (,).
$H^{\beta}(J, X)$ - the Hilbert space $L^{2}\left(J, X,(1+|r|)^{\beta} d r\right)$ with the inner product

$$
\begin{equation*}
((f, g))_{\beta, J}=\int_{J}(f(r), g(r))(1+|r|)^{\beta} d r \tag{0.9}
\end{equation*}
$$

and norm

$$
\begin{equation*}
\|f\|_{\beta}=\left[((f, f))_{\beta}\right]^{1 / 2} \tag{0.10}
\end{equation*}
$$

Here β is a real number and J is an open interval.
$C^{m}(J, Y)$-the set of all Y-valued functions on J having m strong continuous derivatives. Here m is a non-negative integer, J is as above, and Y is a subset of a topological vector space. In particular we set $C^{m}(J, \boldsymbol{C})=C^{m}(J)$.
$C_{0}^{m}(J, Y)$-the set of all $f(r) \in C^{m}(J, Y)$ with a compact carrier in J.
$C^{2, \beta}(J, X)\left(C_{0}^{2, \beta}(J, X)\right)$-the linear space spanned by the set of all $\varphi \in C^{2}$ (J, X) having the form $\varphi(r)=\psi(r) x$, where $x \in D, \psi \in C^{2}(J)\left(\psi \in C_{o}^{2}(J)\right)$, and

$$
\begin{equation*}
\int_{J}\left\{\left|\psi^{\prime}(r)\right|^{2}+|\psi(r)|^{2}\left(1+|B(r) x|^{2}\right)\right\} d r<\infty . \tag{0.11}
\end{equation*}
$$

Here for each $r \in J B(r)$ is a non-negative operator in X with domain $\mathscr{D}(B(r))$ $=D$ constant in r.
$H^{1, B}(J, X)\left(H_{0}^{1, B}(J, X)\right)$-the Hilbert space obtained by the completion of $C^{2, B}(J, X)\left(C_{0}^{2, B}(J, X)\right)$ using the norm

$$
\begin{equation*}
\|\varphi\|_{B, J}=\left[\int_{J}\left\{\left|\varphi^{\prime}(r)\right|^{2}+\left|B^{1 / 2}(r) \varphi(r)\right|^{2}+|\varphi(r)|^{2}\right\} d r\right]^{1 / 2} \tag{0.12}
\end{equation*}
$$

The inner product is given by

$$
\begin{array}{r}
((f, g))_{B, J}=\int_{J}\left\{\left(f^{\prime}(r), g^{\prime}(r)\right)+\left(B^{1 / 2}(r) f(r), B^{1 / 2}(r) g(r)\right)\right. \tag{0.13}\\
+(f(r), g(r))\} d r
\end{array}
$$

$Q(J)$-the set of all linear, continuous functionals ℓ on $H_{0}^{1, B}(J, X) . \quad \mathcal{U}(J)$ is a Banach space with the norm

$$
\begin{equation*}
\|\ell \mid\|_{J}=\sup \left\{|<\ell, \varphi>| ; \varphi \in C_{0}^{2, B}(J, X),\|\varphi\|_{B, J}=1\right\} . \tag{0.14}
\end{equation*}
$$

$Q_{a}(J)$-the subspace of $Q(J)$ satisfying

$$
\begin{equation*}
\|\mid l\|_{a, J}=\sup \left\{\left|<\ell,(1+|r|)^{\alpha / 2} \varphi>\right| ; \varphi \in C_{0}^{2, B}(J, X),\|\varphi\|_{B, J}\right. \tag{0.15}
\end{equation*}
$$

$$
=1\}<\infty .
$$

$U_{a}(J)$ is a Banach space with the norm $\left|\left|\mid \|_{a, J}\right.\right.$. Here α is a positive number.
loc $H^{\beta}(\bar{I}, X)$-the set of all X-valued functions $f(r)$ on $I=(0, \infty)$ such that $f \in H^{\beta}((0, n), X)$ for every $n=1,2, \cdots$. Here \bar{I} means the closure of I, i.e., $\bar{I}=$ $[0, \infty)$.
loc $H^{1, B}(\bar{I}, X)\left(\operatorname{loc} H_{0}^{1, B}(\bar{I}, X)\right)$-the set of all X-valued function f on I such that $\psi_{n} f \in H^{1}{ }^{B}(I, X)\left(\psi_{n} f \in H_{0}^{1, B}(I, X)\right)$ for every $n=1,2, \cdots$, where $\psi_{n} \in C^{1}(I)$ satisfying $0 \leqq n \leqq 1$ and

$$
\psi_{n}(r)= \begin{cases}1 & \text { for } 0<r \leqq n \tag{0.16}\\ 0 & \text { for } r \geqq n+1\end{cases}
$$

1. Preliminaries

Let $I=(0, \infty)$. For each $r \in I B(r)$ and $C(r)$ are operators in a Hilbert space X with its norm | | and inner product (,). The following conditions are imposed on $B(r)$ and $C(r)$:

Assumption 1.1. ${ }^{1)} \quad(\mathrm{B}-1)$ For each $r \in I B(r)$ is a non-negative, self-adjoint operator in X whose domain $\mathscr{D}(B(r))=D$ does not depend on r. We have $B(r) x \in C^{0}(I, X)$ for any $x \in D$.
(B-2) Let $x, y \in D$. Then $(B(r) x, y) \in C^{2}(I)$. For any compact interval $I_{\text {n }}$ in I there is a constant $c_{1}\left(I_{0}\right)$ such that

$$
\begin{equation*}
\left|\frac{d^{j}}{d r^{j}}(B(s) x, y)\right| \leqq c_{1}\left(I_{0}\right)\left(|x|+\left|B^{1 / 2}(r) x\right|\right)\left(|y|+\left|B^{1 / 2}(r) y\right|\right) \tag{1.1}
\end{equation*}
$$

for any $r, s \in I_{0}$ and $j=1,2$.
(B-3) There exist constants $\rho>0$ and $\beta>1$ such that

$$
\begin{equation*}
-\frac{d}{d r}(B(r) x, x) \geqslant \frac{\beta}{r}(B(r) x, x) \tag{1.2}
\end{equation*}
$$

holds for any $x \in D$ and any $r \geqslant \rho$.
(B-4) The natural imbedding

$$
\begin{equation*}
H_{0}^{1, B}((0, b), X) \rightarrow H^{0}((0, b), X) \tag{1.3}
\end{equation*}
$$

is compact for each $b \in I$.

[^0](C-1) For each $r \in I C(r)$ is a symmetric operator with $\mathscr{D}(C(r))=D$. We have $C(r) x \in C^{1}(I, X)$ for any $x \in D$.
(C-2). For any compact interval I_{0} in I there exists a constant $c_{2}\left(I_{0}\right)>0$ such that
\[

$$
\begin{equation*}
\left|\frac{d}{d r} C(r) x\right| \leqq c_{2}\left(I_{0}\right)\left(|x|+\left|B^{1 / 2}(r) x\right|\right) \tag{1.4}
\end{equation*}
$$

\]

for any $x \in D$.
(C-3) There exist constants $c_{0}>0$ and $0<\varepsilon<1$ such that

$$
\begin{equation*}
|C(r) x| \leqq c_{0}(1+r)^{-1-8}\left(|x|+\left|B^{1 / 2}(r) x\right|\right) \tag{1.5}
\end{equation*}
$$

holds for any $x \in D$ and any $r \in I$.
Denote by \mathfrak{A}_{0} the set of all X-valued functions $\varphi(r)$ on \bar{I} satisfying the following (i)~(iii):

$$
\begin{cases}\text { (i) } & \varphi(r) \in D \quad(r \in I) . \\ \text { (ii) } & \varphi \in C^{2}(I, X) \cap C^{1}(\bar{I}, X) \text { and the carrier of } \varphi \text { is compact in } \bar{I} . \tag{1.6}\\ \text { (iii) } & \varphi \in H_{0}^{1, B}(I, X) \text { and } L_{0} \varphi \in H^{0}(I, X) .\end{cases}
$$

It is easy to see that we have

$$
\begin{equation*}
C_{0}^{2, B}(I, X) \subset \mathfrak{A}_{0} \subset H_{0}^{1, B}(I, X) . \tag{1.7}
\end{equation*}
$$

We define differential operators M and M_{0} in $H^{\circ}(I, X)$ by

$$
\left\{\begin{array}{l}
\mathscr{D}\left(M_{0}\right)=\mathfrak{A}_{0} \tag{1.8}\\
M_{0} \varphi=L_{0} \varphi=-\frac{d^{2}}{d r^{2}} \varphi+B(r) \varphi
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathscr{D}(M)=\mathscr{A}_{0} \tag{1.9}\\
M \varphi=L \varphi=L_{0} \varphi+C(r) \varphi=-\frac{d^{2}}{d r^{2}} \varphi+B(r) \varphi+C(r) \varphi .
\end{array}\right.
$$

obviously M_{0} is symmetric and non-negative definite. It follows from (1.5) that

$$
\begin{align*}
\|C(\cdot) \varphi\|_{0}^{2} & =\int_{I}|C(r) \varphi(r)|^{2} d r \leqq \int_{I} c_{0}^{2}\left(|\varphi(r)|+\left|B^{1 / 2}(r) \varphi(r)\right|\right)^{2} d r \tag{1.10}\\
& \leqq 2 c_{0}^{2} \int_{I}\left(|\varphi(r)|^{2}+\left|B^{1 / 2}(r) \varphi(r)\right|^{2}\right) d r \\
& \leqq 2 c_{0}^{2}\|\varphi\|_{B}^{2}=2 c_{0}^{2}\left(\left(M_{0} \varphi, \varphi\right)\right)_{0}+2 c_{0}^{2}\|\varphi\|_{0}^{2} \\
& \leqq c_{0}^{2}\left(\alpha\left\|M_{0} \varphi\right\|_{0}^{2}+\frac{1}{\alpha}\|\varphi\|_{0}^{2}\right)+2 c_{0}^{2}\|\varphi\|_{0}^{22)} \quad\left(\varphi \in \mathcal{A}_{0}\right)
\end{align*}
$$

[^1]where $\alpha>0$ is arbitrary and we have used integration by parts. Hence M is symmetric and bounded below. We denote by A_{0} and A the Friedrichs extensions of M_{0} and M, respectively. Then we have
\[

\left\{$$
\begin{array}{l}
C_{0}^{2, B}(I, X) \subset \mathscr{D}\left(A_{0}\right)=H_{0}^{1, B}(I, X) \cap \mathscr{D}\left(M_{0}^{*}\right) \subset H_{0}^{1, B}(I, X) \tag{1.11}\\
C_{0}^{2, B}(I, X) \subset \mathscr{D}(A)=H_{0}^{1, B}(I, X) \cap \mathscr{D}\left(M^{*}\right) \subset H_{0}^{1, B}(I, X) .
\end{array}
$$\right.
\]

where M_{0}^{*} and M^{*} are the adjoints of M_{0} and M in $H^{0}(I, X)$, respectively.
In the remainder of this section we state some results on the differential equation $\left(L-k^{2}\right) v=f$ with a sort of radiation condition. These are proved in [7] and will be used in the following sections. First we give the next

Definition 1.2. Let $l \in \mathcal{G}(I), u \in H^{1, B}(I, X)^{3)}$ and $k \in \boldsymbol{C}^{+}=\{k / k \in \boldsymbol{C}$, Im $k \geqslant 0, \operatorname{Re} k \neq 0\}$ be given. Then $v \in \operatorname{loc} H^{1, B}(\bar{I}, X)$ is called the radiative function for $\{L, k, \ell, u\}$, if the following three conditions hold:
(a) $v-u \in \operatorname{loc} H_{0}^{1, B}(\bar{I}, X)$.
(b) $v^{\prime}-i k v \in H^{-1+\varepsilon}(I, X) \quad$ (the "radiation condition").
(c) For all $\varphi \in C_{0}^{2, B}(I, X)$, we have

$$
\begin{equation*}
\left(\left(v,\left(L-\bar{k}^{2}\right) \varphi\right)\right)_{0}=\langle l, \varphi\rangle . \tag{1.12}
\end{equation*}
$$

We can prove under the assumptions (B-1)~(B-3) and (C-1)~(C-3) that the radiative function for given $\{k, \ell, u\} \in \boldsymbol{C}^{+} \times \mathcal{G}(I) \times H^{1, B}(I, X)$ is unique ([7], Therem 2.2). We can also prove under Assumption 1.1 that for given $\{k, \ell, u\} \in$ $\boldsymbol{C}^{+} \times \mathcal{V}_{1+\varepsilon}(I) \times H^{1, B}(I, X)$ there exists a unique radiative function $v=v(\cdot, k, \ell, u)$ for $\{L, k, \ell, u\}$ which belongs to $H^{-1-\varepsilon}(I, X) \cap \operatorname{loc} H^{1, B}(\bar{I}, X)$, and that the mapping

$$
\begin{align*}
\Sigma: & C^{+} \times \mathcal{U}_{1+\varepsilon}(I) \times H^{1, B}(I, X) \ni\{k, l, u\} \tag{1.13}\\
& \rightarrow v(\cdot, k, l, u) \in H^{-1-\varepsilon}(I, X) \cap \operatorname{loc} H^{1, B}(\bar{I}, X)
\end{align*}
$$

is continuous as a mapping from $C^{+} \times \mathcal{Q}_{1+\varepsilon}(I) \times H^{1, B}(I, X)$ into $H^{-1-\varepsilon}(I, X)$ and is also continuous as a mapping from $C^{+} \times \mathcal{U}_{1+8}(I) \times H^{1, B}(I, X)$ into loc $H^{1, B}$ (\bar{I}, X) ([7], Theorems 3.7 and 3.8). Under Assumption 1.1 an a priori estimate for radiative functions is obtained as follows ([7], Lemma 3.4): Let $v=v(\cdot, k, t)$ be the radiative function for $\{L, k, \ell, 0\}$, where k belongs to a compact set K in \boldsymbol{C}^{+}and $\ell \in \mathcal{U}_{1+\varepsilon}(I)$. Then there exists a constant δ_{0}, depending only on K and L, such that

$$
\begin{equation*}
\|v\|_{-1-\varepsilon}+\left\|v^{\prime}-i k v\right\|_{-1+\varepsilon}+\left\|B^{1 / 2} v\right\|_{-1+\varepsilon} \leqq \delta_{0}\|/ f \mid\|_{1+\varepsilon} . \tag{1.14}
\end{equation*}
$$

[^2]
2. The resolvent kernel $G(r, s, k)$ for A

We are ready to define the resolvent kernel $G(r, s, k)$ for A, which satisfies

$$
\begin{equation*}
\left(L-k^{2}\right) G(r, s, k)=\delta(r-s) \tag{2.1}
\end{equation*}
$$

where $\delta(r)$ is Dirac's distribution. To this end for $s \in \bar{I}$ and $x \in X$ we shall introduce a linear functional $\ell[s, x]$ on $H_{0}^{1, B}(I, X)$ by

$$
\begin{equation*}
\left\langle\langle[s, x], u\rangle=(x, u(s)) \quad\left(u \in H_{0}^{1, B}(I, X)\right) .\right. \tag{2.2}
\end{equation*}
$$

We can show that the inequalities

$$
\left\{\begin{array}{l}
|\varphi(s)-\varphi(t)|^{2} \leqq|s-t|^{\prime}\|\varphi\|_{B}^{2} \tag{2.3}\\
|\varphi(s)|^{2} \leqq 2\|\varphi\|_{B}^{2}
\end{array}\right.
$$

hold for any $\varphi \in C_{0}^{2, B}(I, X)$ and any $s, t \in \bar{I} .^{4)} \quad$ In fact we have

$$
\begin{align*}
|\varphi(s)-\varphi(t)|^{2}=\left|\int_{s}^{t} \varphi(r) d r\right|^{2} & \leqq\left.|s-t|\left|\int_{s}^{t}\right| \varphi^{\prime}(r)\right|^{2} d r \mid \tag{2.4}\\
& \leqq\left.|s-t||\varphi|\right|_{B} ^{2}
\end{align*}
$$

Next, putting $|\varphi(t)|=\min _{s \leqq r \leq s+1}|\varphi(r)|$, we have

$$
\begin{align*}
|\varphi(s)|^{2} & \leqq 2\left\{|\varphi(s)-\varphi(t)|^{2}+|\varphi(t)|^{2}\right\} \tag{2.5}\\
& \leqq 2\left\{|s-t| \int_{s}^{t}\left|\varphi^{\prime}(r)\right|^{2} d r+\int_{s}^{s+1}|\varphi(t)|^{2} d r\right\} \\
& \leqq 2 \int_{s+1}^{s+1}\left\{\left|\varphi^{\prime}(r)\right|^{2}+|\varphi(r)|^{2}\right\} d r \\
& \leqq 2\|\varphi\|_{B}^{2}
\end{align*}
$$

Since $C_{0}^{2, B}(I, X)$ is dense in $H_{0}^{1, B}(I, X)$, it follows from (2.3) that $H_{0}^{1, B}(I, X)$ is continuously imbedded in $C^{0}(\bar{I}, X)$. Hence $\ell[s, x]$ can be regarded as a linear functional on $H_{0}^{1, B}(I, X)$. Further, we can see from (2.3) that

$$
\left\{\begin{array}{l}
\|\ell[s, x]\| \|=\sup _{\|\varphi\|_{B}=1} \mid\left(x, \varphi(s)\left|\leqq|x| \cdot \sup _{\|\varphi\|_{B}=1}\right| \varphi(s)|\leqq \sqrt{2}| x \mid,\right. \tag{2.6}\\
\|\|\ell[s, x]\|\|_{1+\varepsilon} \leqq \sqrt{2}(1+s)^{(1+\varepsilon) / 2}|x|,
\end{array}\right.
$$

which implies that $l[s, x] \in \mathcal{Q}_{1+\varepsilon}(I)$.
Lemma 2.1. Let us assume Assumption 1.1. Let $v=v(\cdot, s, k, x)$ be the radiative function for $\{L, k, \ell[s, x], 0\}$, where $k \in \boldsymbol{C}^{+}, s \in \bar{I}$ and $x \in X$. Then for any $R>0$ there exists a constant $\delta_{2}=\delta_{2}(R, k)>0$ such that we have

$$
\begin{equation*}
\|v\|_{B,(0, R)} \leqq \delta_{2}(1+s)^{(1+\varepsilon) / 2}|x| \tag{2.7}
\end{equation*}
$$

4) See Jäger [3], p. 69.
and

$$
\begin{equation*}
\max _{0 \leqq \leqq \leq R}|v(r)| \leqq \sqrt{2} \delta_{2}(1+s)^{(1+\varepsilon) / 2}|x| \tag{2.8}
\end{equation*}
$$

$\delta_{2}(R, k)$ is bounded when R moves in a bounded set in I and k moves in a compact set in \boldsymbol{C}^{+}.

Proof. Put $I_{1}=(0, R)$ and $I_{2}=(0, R+1)$. It follows from Lemma 1.5 in [7] that we have

$$
\begin{equation*}
\|v\|_{B, I_{1}} \leqq c\left\{\|v\|_{0, I_{2}}+\mid\|\ell[s, x]\| \|\right\} \tag{2.9}
\end{equation*}
$$

with a constant $c=c(R, k)>0$ which is bounded when the pair (R, k) moves in a bounded set in $I \times C$. Using (1.14) we have

$$
\begin{equation*}
\|v\|_{0, I_{2}} \leqq(1+R)^{(1+\varepsilon) / 2}\|v\|_{-1-\varepsilon} \leqq \delta_{0}(1+R)^{(1+\varepsilon) / 2} \mid \|\langle[s, x]|\| \|_{1+\varepsilon} \tag{2.10}
\end{equation*}
$$

with a constant $\delta_{0}=\delta_{0}(k)$ which is bounded when k moves in a compact set in \boldsymbol{C}^{+}. Hence we obtain from (2.9), (2.10) and (2.6)

$$
\begin{align*}
\|v\|_{B, I} & \leqq c\left\{\delta _ { 0 } (1 + R) ^ { (1 + \varepsilon) / 2 } \left|\left\|\ell [s , x] \left|\left\|_{1+\varepsilon}+|\|\ell[s, x] \mid\|\}\right.\right.\right.\right.\right. \tag{2.11}\\
& \leqq c\left\{\delta_{0}(1+R)^{(1+\varepsilon) / 2} \sqrt{2}(1+s)^{(1+\varepsilon) / 2}|x|+\sqrt{2}|x|\right\} \\
& =\sqrt{2} c\left\{\delta_{0}(1+R)^{(1+\varepsilon) / 2}+(1+s)^{(-1-\varepsilon) / 2}\right\}(1+s)^{(1+\varepsilon) / 2}|x| \\
& \leqq \sqrt{2} c\left\{\delta_{0}(1+R)^{(1+\varepsilon) / 2}+1\right\}(1+s)^{(1+\varepsilon) / 2}|x|,
\end{align*}
$$

which means (2.7) with $\delta_{2}=\sqrt{2} c\left\{\delta_{0}(1+R)^{(1+\varepsilon) / 2}+1\right\}$. (2.8) follows from (2.7) and (2.3).
Q. E. D.

In view of the above lemma we can give the following definition.
Definition 2.2. For each triple $(r, s, k) \in \bar{I} \times \bar{I} \times \boldsymbol{C}^{+}$we define a bounded linear operator $G(r, s, k)$ on X by $G(r, s, k) x=v(r, s, k, x)$, where $v(r, s, k, x)$ is the radiative function for $\{L, k, \ell[s, x], 0\} . \quad G(r, s, k)$ is said to be the resolvent kernel for A.

For the properties of the resolvent kernel $G(r, s, k)$ we can show almost the same results as given in §6 of Jager [3].

Theorem 2.3. Let us assume Assumption 1.1. Let $G(r, s, k)$ be the resolvent kernel for A. Then we have the following (i)~(v):
(i) $G(\cdot, s, k) x \in \operatorname{loc} H_{0}^{1, B}(\bar{I}, X) \cap H^{-1-\varepsilon}(I, X)$ for $s \in \bar{I}$ and $x \in X . \quad G(\cdot, s$, $k) x$ is continuous on $\bar{I} \times C^{+} \times X$ both in loc $H_{0}^{1, B}(\bar{I}, X)$ and in $H^{-1-\varepsilon}(I, X) . \quad G(r$, $s, k) x$ is a continuous X-valued function on $\bar{I} \times \bar{I} \times C^{+} \times X$, too.
(ii) $G(0, r, k)=G(r, 0, k)=0 \quad$ for any $r \in \bar{I}$.
(iii) For any $(s, k, x) \in \bar{I} \times \boldsymbol{C} \times X G(\cdot, s, k) x \in C^{2}(I-\{s\}, D)$ and $G(\cdot, s, k) x$ satisfies the equation

$$
\begin{equation*}
\left(L-k^{2}\right) G(\cdot, s, k) x=0 \quad \text { in } I-\{s\} . \tag{2.12}
\end{equation*}
$$

(iv) Denote by $R(z)=(A-z)^{-1}$ the resolvent of A. Then we have

$$
\begin{equation*}
R\left(k^{2}\right) f(r)=\int_{I} G(r, s, k) f(s) d s, \tag{2.13}
\end{equation*}
$$

where $k \in C^{+}, \operatorname{Im} k>0$ and $f \in H^{0}(I, X)$ with a compact carrier in \bar{I}.
(v) We have

$$
\begin{equation*}
G(r, s, k)^{*}=G(s, r,-\bar{k}) \tag{2.14}
\end{equation*}
$$

for any triple $(r, s, k) \in \bar{I} \times \bar{I} \times C^{+}$, where $G(r, s, k)^{*}$ is the adjoint of $G(r, s, k)$ in X.
Proof. Since we have from (2.2) and (2.3)

$$
\begin{align*}
& \mid\left\langle\left\langle[s, x],(1+r)^{(1+\varepsilon) / 2} \varphi\right\rangle-\left\langle\left\langle[t, x],(1+r)^{(1+\varepsilon) / 2} \varphi\right\rangle\right|\right. \tag{2.15}\\
= & \left|(1+s)^{(1+\varepsilon) / 2}(x, \varphi(s))-(1+t)^{(1+\varepsilon) / 2}(y, \varphi(t))\right| \\
\leqq & \sqrt{2}\left|(1+s)^{(1+\varepsilon) / 2}-(1+t)^{(1+\varepsilon) / 2}\right||x|\|\varphi\|_{B}+\sqrt{2}(1+t)^{(1+\varepsilon) / 2}|x-y|\|\varphi\|_{B} \\
& +(1+t)^{(1+\varepsilon) / 2}|s-t||y|\|\varphi\|_{B} \quad\left(\varphi \in C \left(\left(_{0}^{2, B}(I, X)\right),\right.\right.
\end{align*}
$$

we see that $\ell[s, x]$ is a $\mathcal{Q}_{1+\varepsilon}(I)$-valued continuous function on $\bar{I} \times X$. Hence (i) follows from Theorem 3.7 in [7]. We obtain $G(0, r, k)=0$ from the fact that $G(\cdot, r, k) x \in \operatorname{loc} H_{0}^{1, B}(\bar{I}, X)$ for any $x \in X$. It follows from the uniqueness of the radiative solution that $G(r, 0, k)=0$. (iii) follows from the regularity theorem in Jagger [3] (Satz 3.1).

Next let us show (iv). It follows from (1.11) that we have

$$
\left\{\begin{array}{l}
R\left(k^{2}\right) f \in H_{0}^{1, B}(I, X) \tag{2.16}\\
\left(\left(R\left(k^{2}\right) f,\left(L-\bar{k}^{2}\right) \varphi\right)\right)_{0}=((f, \varphi))_{0} \quad\left(\varphi \in C_{0}^{2, B}(I, X)\right),
\end{array}\right.
$$

where $k \in \boldsymbol{C}^{+}, \operatorname{Im} k>0$ and $f \in H^{0}(I, X)$. Hence $R\left(k^{2}\right) f$ is the radiative function for $\{L, k, \ell[f], 0\}$. Further, assume that the carrier of f is compact in \bar{I} and is contained in $[0, R]$. Then we shall show that

$$
\begin{equation*}
V(r)=\int_{0}^{R} G(r, s, k) f(s) d s \tag{2.17}
\end{equation*}
$$

is the radiative function for $\{L, k, \ell[f], \theta\}$, too. In fact we can easily see for any $\varphi \in C_{0}^{2, B}(I, X)$

$$
\begin{align*}
\left(\left(V,\left(L-\bar{k}^{2}\right) \varphi\right)\right)_{0} & =\int_{I} d r\left(\int_{0}^{R} G(r, s, k) f(s) d s,\left(L-\bar{k}^{2}\right) \varphi(r)\right) \tag{2.18}\\
& =\int_{0}^{R} d s\left(\left(G(\cdot, s, k) f(s),\left(L-\bar{k}^{2}\right) \varphi(\cdot)\right)\right)_{0} \\
& =\int_{0}^{R}(f(s), \varphi(s)) d s
\end{align*}
$$

$$
=((f, \varphi))_{0}
$$

The following estimate is sufficient to see that $V \in H^{-1-\varepsilon}(I, X)$:

$$
\begin{align*}
& \int_{I}(1+r)^{-1-\varepsilon}|V(r)|^{2} d r \tag{2.19}\\
& \quad=\int_{I}(1+r)^{-1-\varepsilon} d r \int_{0}^{R} d s \int_{0}^{R} d t(G(r, s, k) f(s), G(r, t, k) f(t)) \\
& \leqq 2 \int_{0}^{R} d s \int_{0}^{R} d t \int_{I}(1+r)^{-1-\varepsilon}\left\{|G(r, s, k) f(s)|^{2}\right. \\
& \left.\quad+|G(r, t, k) f(t)|^{2}\right\} d r \\
& =4 R \int_{0}^{R}\|G(\cdot, s, k) f(s)\|_{-1-\varepsilon}^{2} d s \\
& \leqq 4 R \delta_{0}^{2} \int_{0}^{R}| | \mid L[s, f(s)]\| \|_{1+\varepsilon}^{2} d s \\
& \leqq 4 R \delta_{0}^{2} \int_{0}^{R} 2(1+s)^{1+\varepsilon}|f(s)|^{2} d s<\infty
\end{align*}
$$

where we have made use of (1.14) and (2.6). Similarly we can show that $V^{\prime}-$ $i k V \in H^{-1+\varepsilon}(I, X)$. Therefore we have $V(r)=R\left(k^{2}\right) f(r)$ by the uniqueness theorem of the radiative function (Theorem 2.2 in [7]), which completes the proof of (iv).

Finally we shall prove (v). If $k \in C^{+}$and $\operatorname{Im} k>0$, then (2.14) follows from (2.13) and the fact that $R\left(k^{2}\right)^{*}=R\left(\bar{k}^{2}\right)$. Since $G(r, s, k) x$ is continuous on $\boldsymbol{C}^{+},(2.14)$ is also true for $k \in \boldsymbol{C}^{+}, \operatorname{Im} k=0$.
Q.E.D.

Let $C_{j}(r), j=1,2$, be operator-valued functions on I satisfying $(\mathrm{C}-1) \sim$ (C-3) in Assumption 1.1. We set

$$
\left\{\begin{array}{l}
M_{j}=-\frac{d^{2}}{d r^{2}}+B(r)+C_{j}(r) \tag{2.20}\\
\mathscr{D}\left(M_{j}\right)=\mathfrak{A}_{0}
\end{array}\right.
$$

and we denote by A_{j} the Friedrichs extensions of $M_{j}, j=1,2 . \quad G_{j}(r, s, k), j=$ 1,2 , are the resolvent kernels for A_{j}. We shall show a formula involving $G_{1}(r$, $s, k)$ and $G_{2}(r, s, k)$ which will be used in $\S 3$.

Lemma 2.45. Let $C_{1}(r)$ and $C_{2}(r)$ be as above. Let $B(r)$ satisfy $(\mathrm{B}-1)-$ (B-4) in Assumption 1.1. Let $k \in \boldsymbol{R}-\{0\}$. Then we have

$$
\begin{align*}
& \left(\left\{G_{1}(r, s, k)-G_{2}(r, s,-k)\right\} x, y\right) \tag{2.21}\\
& =\left(\frac{d}{d t} G_{1}(t, s, k) x, G_{2}(t, r, k) y\right)-\left(G_{1}(t, s, k) x, \frac{d}{d t} G_{2}(t, r, k) y\right) \\
& \quad+\int_{0}^{t}\left(\left\{C_{2}(\tau)-C_{1}(\tau)\right\} G_{1}(\tau, s, k) x, G_{2}(\tau, r, k) y\right) d \tau,
\end{align*}
$$

5) Cf. Lemma 6.1 in Jäger [3].
where $x, y \in X, r, s \in I$, and $t>\max (r, s)$.
Proof. Let $\psi \in C^{1}(\boldsymbol{R})$ satisfying $0 \leqq \psi \leqq 1$ and

$$
\psi(r)= \begin{cases}1 & (r \leqq 0) \tag{2.22}\\ 0 & (r \geqq 1)\end{cases}
$$

Set $\psi_{n}(\tau)=\psi_{n, t}(\tau)=\psi(n(\tau-t))$ and $I_{0}=(0, t+1)$. Then we can see that

$$
\begin{equation*}
\psi_{n}(\cdot) G_{j}(\cdot, s, k,) x \in H_{0}^{1, B}\left(I_{0}, X\right) \tag{2.23}
\end{equation*}
$$

where $j=1,2, s \in I, k \in C^{+}$and $x \in X$. Using integration by parts we rewrite the relation

$$
\begin{equation*}
\left(\left(G_{1}(\cdot, s, k) x,\left(L_{1}-\bar{k}^{2}\right) \varphi\right)\right)_{0}=(x, \varphi(s)) \tag{2.24}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\left(\left(G_{1}(\cdot, s, k) x, \varphi(\cdot)\right)\right)_{B, I_{0}}+\left(\left(\left(C_{1}(\cdot)-1\right) G_{1}(\cdot, s, k) x, \varphi(\cdot)\right)\right)_{0, I_{0}}=(x, \varphi(s)) \tag{2.25}
\end{equation*}
$$

for any $\varphi \in C_{0}^{2, B}\left(I_{0}, X\right)$. Since both sides of (2.25) can be extended to bounded, anti-linear functionals on $H_{0}^{1, B}\left(I_{0}, X\right)$ for fixed $s \in I, k \in C^{+}, x \in X$, (2.25) holds good for any $\varphi \in H_{0}^{1, B}\left(I_{0}, X\right)$. Hence we can put $\varphi=\psi_{n} G_{2}(\cdot, r, k) y$ in (2.25) to see

$$
\begin{align*}
& \left(\left(G_{1}(\cdot, s, k) x, \psi_{n}(\cdot) G_{2}(\cdot, r, k) y\right)\right)_{B, I_{0}} \tag{2.26}\\
& \quad+\left(\left(\left(C_{1}(\cdot)-1\right) G_{1}(\cdot, s, k) x, \psi_{n}(\cdot) G_{2}(\cdot, r, k) y\right)\right)_{0, I_{0}} \\
& \quad=\left(x, \psi_{n}(s) G_{2}(s, r, k) y\right) \\
& \quad=\left(G_{2}(r, s,-k) x, y\right)
\end{align*}
$$

for $r, s \in(0, t), x, y \in X$ and $k \in \boldsymbol{R}-\{0\}$, where we used Therem 2.3, (v). Similarly we obtain

$$
\begin{align*}
& \left(\left(\psi_{n}(\cdot) G_{1}(\cdot, s, k) x, G_{2}(\cdot, r, k) y\right)\right)_{B, I_{0}} \tag{2.27}\\
& \quad+\left(\left(\psi_{n} G_{1}(\cdot, s, k) x,\left(C_{2}(\cdot)-1\right) G_{2}(\cdot, r, k) y\right)\right)_{0, I_{0}} \\
& \quad=\left(G_{1}(r, s, k) x, y\right)
\end{align*}
$$

Combining (2.26) and (2.27), we have

$$
\begin{align*}
& \left(\left\{G_{1}(r, s, k)-G_{2}(r, s,-k)\right\} x, y\right) \tag{2.28}\\
& \quad=\int_{0}^{\infty} \psi_{n}(\tau)\left(\left\{C_{2}(\tau)-C_{1}(\tau)\right\} G_{1}(\tau, s, k) x, G_{2}(\tau, r, k) y\right) d \tau \\
& \quad+\int_{0}^{\infty} \psi_{n}^{\prime}(\tau)\left\{\left(G_{1}(\tau, s, k) x, \frac{d}{d \tau} G_{2}(\tau, r, k) y\right)\right. \\
& \left.\quad-\left(\frac{d}{d \tau} G_{1}(\tau, s, k) x, G_{2}(\tau, r, k) y\right)\right\} d \tau .
\end{align*}
$$

Noting that

$$
\left\{\begin{array}{l}
\psi_{n}(\tau) \rightarrow \begin{cases}1 & \text { for } \tau \leqq t \\
0 & \text { for } \tau>t\end{cases} \tag{2.29}\\
\psi_{n}^{\prime}(\tau) \rightarrow-\delta(\tau-t)
\end{array}\right.
$$

as $n \rightarrow \infty$, we obtain (2.21) from (2.28).
Q.E.D.

3. The spectral representation for A

This section is devoted to constructing a spectral decomposition for A by means of a "generalized Fourier transform". We start with the results of Jager [3]. The following theorem on the spectrum of A has been proved in Jager [3], §4.

Theorem 3.1. Let us assume Assumption 1.1. (i) Then A is bounded below with the lower bound $\kappa_{0} \leqq 0$. (ii) $O n\left(\kappa_{0}, 0\right)$ the continuous spectrum of A is absent. The negative eigenvalues, if they exist, are of finite multiplicity and are discrete in the sense that they form an isolated set having no limit point other than the origin 0 . (iii) We have $\sigma_{e}(A) \subset(0, \infty)$, where $\sigma_{e}(A)$ means the essential spectrum of A. There exists no positive eigenvalue of A. If in addition there exists $x_{0} \in D$ which satisfies

$$
\left\{\begin{array}{l}
\left|x_{0}\right|=1 \tag{3.1}\\
s-\lim _{r \rightarrow \infty} B(r) x_{0}=0
\end{array}\right.
$$

then we have $\sigma_{e}(A)=[0, \infty)$.
If we assume instead of (1.5) that we have for any $x \in D$ and any $r \in I$

$$
\begin{equation*}
|c(r) x| \leqq \widetilde{c}_{0}(1+|r|)^{-3 / 2-\varepsilon_{0}}\left(|x|+\left|B^{1 / 2}(r) x\right|\right) \tag{3.2}
\end{equation*}
$$

with constants $\tilde{c}_{0}>0, \varepsilon_{0}>0$, then an eigenfunction expansion for A has been obtained by Jäger [3], §6. Jäger's results are summarized as follows:

Theorem 3.2. Let us assume (B-1) (B-4) and (C-1), (C-2) in Assumption 1.1 and (3.2). Then for $k \in \boldsymbol{R}-\{0\}, r \in \bar{I}$ and $x \in X$ the strong limit

$$
\begin{equation*}
\Gamma(r, k) x=s-\lim _{t \rightarrow \infty} e^{-i t k} G(t, r, k) x \tag{3.3}
\end{equation*}
$$

exists. $\quad \Gamma(r, k)$ is a bounded linear operator on X for each $r \in \bar{I}$ and $k \in \boldsymbol{R}-\{0\}$. The adjoint $\Gamma^{*}(r, k)$ of $\Gamma(r, k)$ satisfies

$$
\left\{\begin{array}{l}
\Gamma^{*}(., k) x \in C^{0}(\bar{I}, X) \cap \operatorname{loc} H_{0}^{1, B}(\bar{I}, X), \tag{3.4}\\
\Gamma^{*}(., k) x \in C^{2}(I, D), \\
\left(L-k^{2}\right) \Gamma^{*}(r, k) x=0 \quad(r \in I), \\
\Gamma^{*}(0, k) x=0
\end{array}\right.
$$

for $x \in X$ and $k \in \boldsymbol{R}-\{0\}$. Set

$$
\left\{\begin{array}{l}
\Gamma^{ \pm}(r, k)= \pm \sqrt{\frac{2}{\pi}} i k \Gamma(r, \pm k) \tag{3.5}\\
\mathcal{G}^{ \pm} f(k)=\int_{I} \Gamma^{ \pm}(r, k) f(r) d r
\end{array}\right.
$$

where $f \in C_{0}^{0}(\bar{I}, X) .{ }^{6)} \quad$ Then $\mathcal{G}^{ \pm} f \in L_{2}((0, \infty), X, d k)$ and $\mathcal{G}^{ \pm}$have unique extentions $\mathscr{F}^{ \pm}$to $H^{0}(I, X)$ which are bounded linear operators on $H^{0}(I, X)$ into $L_{2}((0, \infty), X$, $d k)$. Denote the resolution of the identity for A by $E(\lambda)$. We have for $0<\lambda_{1}<$ $\lambda_{2} \leqq \infty$ and $f, g \in H^{0}(I, X)$

$$
\begin{equation*}
\left(\left(E\left(\left(\lambda_{1}, \lambda_{2}\right)\right) f, g\right)\right)_{0}=\int_{\lambda_{1}<k^{<}<\lambda_{2}}\left(\left(\mathscr{F}^{ \pm} f\right)(k),\left(\mathscr{F}^{ \pm} g\right)(k)\right) d k \tag{3.6}
\end{equation*}
$$

Hence the spectrum of A is absolutely continuous on $(0, \infty)$.
Let us assume (C-3) in place of (3.2) again. For each $n=1,2, \cdots$ we take $\psi_{n} \in C^{1}(I)$ satisfying $0 \leqq \psi_{n} \leqq 1$ and

$$
\psi_{n}(r)= \begin{cases}1 & \text { for } 0<r \leqq n \tag{3.7}\\ 0 & \text { for } r \geqq n+1\end{cases}
$$

$A_{n}, n=1,2, \cdots$, denote the Friedrichs extensions of the operators M_{n} which are defined by

$$
\left\{\begin{array}{l}
\mathscr{D}\left(M_{n}\right)=\mathscr{थ}_{0} \tag{3.8}\\
M_{n}=-\frac{d^{2}}{d r^{2}}+B(r)+C_{n}(r), \quad C_{n}(r)=\psi_{n}(r) C(r),
\end{array}\right.
$$

respectively, We can easily see that for each $n=1,2, \cdots, C_{n}(r)$ satisfies (3.2) and that the sequence $C_{n}(r)$ satisfies Assumption 4.1 in [7]. For each $n=1,2, \cdots$, $G_{n}(r, s, k)$ is the resolvent kernel for $A_{n} . \quad \Gamma_{n}(r, k), \Gamma_{n}^{ \pm}(r, k), \mathcal{G}_{n}^{ \pm}, \mathscr{F}_{n}^{ \pm}$and $E_{n}(\lambda)$ are defined as in Theorem 3.2.

Lemma 3.3. We have

$$
\begin{gather*}
\left(\left\{G_{n}(r, s, k)-G_{m}(r, s,-k)\right\} x, y\right)=2 i k\left(\Gamma_{n}(s, k) x, \Gamma_{m}(r, k) y\right) \tag{3.9}\\
+\int_{0}^{\infty}\left(\left\{C_{m}(\tau)-C_{n}(\tau)\right\} G_{n}(\tau, s, k) x, G_{m}(\tau, r, k) y\right) d \tau \\
(n, m=1,2, \cdots)
\end{gather*}
$$

where $k \in \boldsymbol{R}-\{0\}, r, s \in \bar{I}$ and $x, y \in X$.
6) $C_{0}^{0}(\bar{I}, X)$ denotes the set of all X-valued, continuous functions on $\bar{I}=[0, \infty)$ with a compact carrier in \bar{I}.

Proof. We obtain from Lemma 2.4

$$
\begin{align*}
&\left(\left\{G_{n}(r, s, k)-G_{m}(r, s,-k)\right\} x, y\right) \tag{3.10}\\
&= 2 i k\left(G_{n}(t, s, k) x, G_{m}(t, r, k) y\right) \\
&+\int_{0}^{t}\left(\left\{C_{m}(\tau)-C_{n}(\tau)\right\} G_{n}(\tau, s, k) x, G_{m}(\tau, r, k) y\right) d \tau \\
&+\left\{\left(\frac{d}{d t} G_{n}(t, s, k) x-i k G_{n}(t, s, k) x, G_{m}(t, r, k) y\right)\right. \\
&\left.-\left(G_{n}(t, s, k) x, \frac{d}{d t} G_{m}(t, r, k) y-i k G_{m}(t, r, k) y\right)\right\} \\
&= K_{1}(t)+K_{2}(t)+K_{3}(t) .
\end{align*}
$$

First it follows from (1.5) that

$$
\begin{align*}
& \left|\left(\left\{C_{n}(\tau)-C_{m}(\tau)\right\} G_{n}(\tau, s, k) x, G_{m}(\tau, r, k) y\right)\right| \tag{3.11}\\
& \quad \leqq 2(1+\tau)^{-1-\varepsilon} c_{0}\left(\left|G_{n}(\tau, s, k) x\right|+\left|B^{1 / 2}(\tau) G_{n}(\tau, s, k) x\right|\right)\left|G_{m}(\tau, r, k) y\right| \\
& \quad \leqq 4(1+\tau)^{-1-\varepsilon} c_{0}\left\{2\left|G_{n}(\tau, s, k) x\right|^{2}+2\left|B^{1 / 2}(\tau) G_{n}(\tau, r, k) x\right|^{2}\right. \\
& \quad+\left|G_{m}(\tau, r, k) y\right|^{2}
\end{align*}
$$

where we have noted that $G_{n}(\cdot, s, k) x, G_{m}(\cdot, r, k) y \in H^{-1-\varepsilon}(I, X)$ and $B^{1 / 2}(\cdot) G_{n}$ $(\cdot, s, k) x \in H^{-1+e}(I, X)$ by (1.14). Hence we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} K_{2}(t)=\int_{0}^{\infty}\left(\left\{C_{n}(\tau)-C_{m}(\tau)\right\} G_{n}(\tau, s, k) x, G_{m}(\tau, r, k) y\right) d \tau \tag{3.12}
\end{equation*}
$$

Since $G_{n}^{\prime}(\cdot, s, k) x-i k G_{n}(\cdot, s, k) x, G_{m}^{\prime}(\cdot, r, k) y-i k G_{m}(\cdot, r, k) y \in H^{-1+\varepsilon}(I, X)$ and $G_{n}(\cdot, s, k) x, G_{m}(\cdot, r, k) y \in H^{-1-\varepsilon}(I, X)$, we have $\lim _{j \rightarrow \infty} K_{3}\left(t_{j}\right)=0$ along some sequence $\left\{t_{j}\right\}, t_{j} \rightarrow \infty$. Finally we see from (3.3)

$$
\begin{align*}
\lim _{t \rightarrow \infty} K_{1}(t) & =\lim _{t \rightarrow \infty} 2 i k\left(e^{-i t k} G_{n}(t, s, k) x, e^{-i t k} G_{m}(t, r, k) y\right) \tag{3.13}\\
& =2 i k\left(\Gamma_{n}(s, k) x, \Gamma_{m}(r, k) y\right) .
\end{align*}
$$

Thus we obtain (3.9).
Q.E.D.

Now we are in a position to show that $\mathcal{G}_{n}^{ \pm} f$ is a Cauchy sequence in loc L_{2} ($\bar{I}, X, d k$) for any $f \in C_{0}^{0}(\bar{I}, X)$. Then $E(\lambda)$, the resolution of the identity for A, will be represented by unique extensions $\mathscr{F}^{ \pm}$of $\mathcal{G}^{ \pm}=\lim _{n \rightarrow \infty} \mathcal{Q}_{n}^{ \pm}$.

Theorem 3.4. Let us assume Assumption 1.1.
(i) Then for any $f \in C_{0}^{0}(\bar{I}, X)$ there exist

$$
\begin{equation*}
\mathcal{G}^{ \pm} f=\lim _{n \rightarrow \infty} \mathcal{G}_{n}^{ \pm} f \quad \text { in } L_{2}((\alpha, \beta), X, d k), \tag{3.14}
\end{equation*}
$$

where α and β are arbitrary numbers such that $0<\alpha<\beta<\infty$. For $0<\lambda_{1}<\lambda_{2}<$
∞ and $f, g \in C_{0}^{0}(\bar{I}, X)$ we have

$$
\begin{equation*}
\left(\left(E\left(\left(\lambda_{1}, \lambda_{2}\right)\right) f, g\right)\right)=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left(\mathcal{G}^{ \pm} f(k), \mathcal{G}^{ \pm} g(k)\right) d k \tag{3.15}
\end{equation*}
$$

where $E(\lambda)$ is the resolution of the identity for A. Hence $\mathcal{G}^{ \pm}$are bounded, linear operators from $C_{0}^{0}(\bar{I}, X)$ contained in $H^{0}(I, X)$ into $L_{2}((0, \infty), X, d k)$.
(ii) Let $\mathscr{F}^{ \pm}$be unique extensions of $\mathcal{G}^{ \pm}$to $H^{0}(I, X)$, respectively. Then for $\Delta=\left(\lambda_{1}, \lambda_{2}\right), 0 \leqq \lambda_{1}<\lambda_{2} \leqq \infty$ we have

$$
\begin{equation*}
E(\Delta)=\left(\mathscr{F}^{ \pm}\right)^{*} \chi \sqrt{\Delta} \mathscr{F}^{ \pm}, \tag{3.16}
\end{equation*}
$$

where $\chi_{\sqrt{\triangle}}$ is the characteristic function of $\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}\right)$ and $\left(\mathscr{F}^{ \pm}\right)^{*}$ are the adjoints of $\mathscr{F}^{ \pm}$acting from $L_{2}((0, \infty) ; X, d k)$ into $H^{\circ}(I, X)$, respectively.

The following corollary directly follows from (3.16).
Corollary 3.5. The spectrum of A is absolutely continuous on $(0, \infty)$.
For the proof of Theorem 3.4. we need
Lemma 3.6. We have

$$
\begin{equation*}
\left(\left(E\left(\left(\lambda_{1}, \lambda_{2}\right)\right) f, g\right)\right)_{0}=\int_{\sqrt{ } \bar{\lambda}_{1}}^{\sqrt{\lambda_{2}}} \frac{k d k}{\pi i} \int_{I} \int_{I} d r d s(\{G(r, s, k)-G(r, s,-k) f(s), g(r)) \tag{3.17}
\end{equation*}
$$ where $0<\lambda_{1}<\lambda_{2}<\infty$ and $f, g \in H^{0}(I, X)$ with compact carriers.

Proof. Let us start with the well-known relation ${ }^{7 \text { }}$

$$
\begin{align*}
\left.\left(\left(E\left(\lambda_{1}, \lambda_{2}\right)\right) f, g\right)\right)_{0}=\lim _{\eta \downarrow 0} \lim _{\mu \ngtr 0} \frac{1}{2 \pi i} \int_{\lambda_{1}+\eta}^{\lambda_{2}-\eta}(& (\{R(\lambda+i \mu) \tag{3.18}\\
& -R(\lambda-i \mu)\} f, g))_{0} d \lambda .
\end{align*}
$$

Using (2.13), $R(\lambda+i \mu) f$ can be represented by the resolvent kernel $G(r, s, k)$. Hence (3.18) becomes

$$
\begin{align*}
&\left(\left(E\left(\left(\lambda_{1}, \lambda_{2}\right)\right) f, g\right)\right)_{0} \tag{3.19}\\
&= \lim _{\eta \downarrow 0} \lim _{\mu \downarrow 0} \frac{1}{2 \pi i} \int_{\lambda_{1}+\eta}^{\lambda_{2}-\eta}\left(\left(\int_{I}\{G(\cdot, s, \sqrt{\lambda+i \mu})-G(\cdot, s, \sqrt{\lambda-i \mu})\} f(s) d s,\right.\right. \\
&= \lim _{\eta \downarrow 0} \lim _{\mu \downarrow 0} \frac{1}{2 \pi i} \int_{\lambda_{1}+\eta}^{\lambda_{2}-\eta} \int_{0}^{R} \int_{0}^{R}(\{G(r, s, \sqrt{8)} \\
& \overline{\lambda+i \mu}-G(r, s, \sqrt{\lambda-i \mu}\} f(s), \\
&g(r)) d s d r d \lambda,
\end{align*}
$$

[^3]where R is taken so large that the carriers of f and g are contained in $[0, R]$. Since $G(\cdot, s, \sqrt{\lambda \pm i \mu}) f(s)$ is the radiative function for $\left\{L, \lambda \pm i_{\mu}, \ell[s, f(s)], 0\right\}$, we can apply Theorem 3.7 in [7] to show that $G(r, s, \sqrt{\overline{\lambda+i \mu}}) f(s)$ is uniformly bounded for $(r, s, \lambda, \mu) \in[0, R] \times[0, R] \times\left[\lambda_{1}, \lambda_{2}\right] \times[0,1]$ and
\[

$$
\begin{equation*}
\lim _{\eta \ngtr 0} G\left(r, s, \sqrt{\lambda \pm i_{\mu}}\right) f(s)=G(r, s, \pm \sqrt{\lambda}) f(s) \quad \text { in } X \tag{3.20}
\end{equation*}
$$

\]

(3.17) follows from (3.19) and (3.20).
Q.E.D.

Proof of Theorem 3.4. Since we have

$$
\begin{align*}
& \int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left|\mathcal{G}_{n}^{ \pm} f-\mathcal{G}_{m}^{ \pm} f\right|^{2} d k=\int_{\sqrt{ } \bar{\lambda}_{1}}^{\sqrt{\bar{\lambda}_{2}}}\left|\mathcal{G}_{n}^{ \pm} f(k)\right|^{2} d k+\int_{\sqrt{\lambda_{1}}}^{\sqrt{\bar{\lambda}_{1}}}\left|\mathcal{G}_{m}^{ \pm} f(k)\right|^{2} d k \tag{3.21}\\
& \quad-\int_{\sqrt{\lambda_{1}}}^{\sqrt{ } \bar{\lambda}_{2}}\left(\mathcal{G}_{n}^{ \pm} f(k), \mathcal{G}_{m}^{ \pm} f(k)\right) d k-\int_{\sqrt{\lambda_{1}}}^{\sqrt{\bar{\lambda}_{2}}}\left(\mathcal{G}_{m}^{ \pm} f(k), \mathcal{G}_{n}^{ \pm} f(k)\right) d k,
\end{align*}
$$

in order to show that $\left\{\mathcal{G}_{n}^{ \pm} f\right\}_{n=1}^{\infty}$ are Cauchy sequences in $L_{2}\left(\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}\right), X, d k\right)$ it suffices to show

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \int_{\sqrt{\lambda_{1}}}^{\sqrt{\bar{\lambda}_{2}}}\left(\mathcal{G}_{n}^{ \pm} f(k), \mathcal{G}_{m}^{ \pm} f(k) d k=\left(\left(E\left(\lambda_{1}, \lambda_{2}\right)\right) f, f\right)\right)_{0} . \tag{3.22}
\end{equation*}
$$

Recalling (3.9) of Lemma 3.3 and (3.5), we have

$$
\begin{align*}
& \int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left(\mathcal{G}_{n}^{ \pm} f(k), \mathcal{G}_{m}^{ \pm} f(k)\right) d k=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\bar{\lambda}_{2}}} d k \int_{I} \int_{I} d r d s\left(\Gamma_{n}^{ \pm}(s, k) f(s),\right. \tag{3.23}\\
& \left.\quad=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}} \frac{2 k^{2}}{\pi} d k \int_{0}^{R} \int_{0}^{R} d r d s\left(\Gamma_{n}(s, \pm k) f(r)\right), \Gamma_{m}(r, \pm k) f(r)\right) \\
& \quad=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}} \pm \frac{k}{\pi i} d k \int_{0}^{R} \int_{0}^{R} d r d s\left[\left(\left\{G_{n}(r, s, \pm k)-G_{m}(r, s, \mp k)\right\} f(s), f(r)\right)\right. \\
& \left.\quad+\int_{0}^{\infty}\left(\left\{C_{n}(\tau)-C_{m}(\tau)\right\} G_{n}(\tau, s, \pm k) f(s), G_{m}(\tau, r, \pm k) f(r)\right) d \tau\right] \\
& \quad=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}} \pm \frac{k d k}{i \pi} \int_{0}^{R} \int_{0}^{R} d r d s\left[K_{n, m}^{(1)}(r, s, R)+K_{n, m}^{(2)}(r, s, k)\right],
\end{align*}
$$

where we take $R>0$ such that $[0, R]$ contains the carrier of f. Let us show that $\lim _{n, m \rightarrow \infty} K_{n, m}^{(2)}=0$ and $\left|K_{n, m}^{(2)}(r, s, k)\right|$ is uniformly bounded for $(r, s, k) \in[0, R] \times$ $[0, R] \times\left[\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}\right]$ and $n, m=1,2 \cdots$. Using (1.5) we estimate $K_{n, m}^{(2)}(r, s, k)$ as follows:

$$
\begin{align*}
& \left|K_{n, m}^{(2)}\right| \leqq c_{0} \int_{I}\left|\psi_{n}(\tau)-\psi_{m}(\tau)\right|(1+\tau)^{-1-\varepsilon}\left(\left|G_{n}(\tau, s, \pm k) f(s)\right|\right. \tag{3.24}\\
& \left.\quad+\left|B^{1 / 2}(\tau) G_{n}(\tau, s, \pm k) f(s)\right|\right) \times\left|G_{m}(\tau, r, \pm k) f(r)\right| d \tau \\
& \quad \leqq 8 c_{0} \int_{I}\left|\psi_{n}(\tau)-\psi_{m}(\tau)\right|(1+\tau)^{-1-\varepsilon}\left\{\mid G_{n}(\tau, s, \pm k) f(s)-\right.
\end{align*}
$$

$$
\begin{aligned}
& -\left.G(\tau, s, \pm k) f(s)\right|^{2}+\left|G_{m}(\tau, r, \pm k) f(r)-G(\tau, r, \pm k) f(r)\right|^{2} \\
& +|G(\tau, s, \pm k) f(s)|^{2}+|G(\tau, r, \pm k) f(r)|^{2} \\
& \left.+\left|B^{1 / 2}(\tau) G_{n}(\tau, s, \pm k) f(s)\right|^{2}\right\} d \tau \\
\leqq & 8 c_{0}\left[\left\{| | G_{n}(\cdot, s, \pm k) f(s)-G(\cdot, s, \pm k) f(s) \|\left.^{2}\right|_{-1-\varepsilon}\right.\right. \\
& \left.+\left\|G_{m}(\cdot, r, \pm k) f(r)-G(\cdot, r, \pm k) f(r)\right\|_{-1-\varepsilon}^{2}\right\} \\
& +\int_{\varepsilon(m, n)}^{\infty}(1+\tau)^{-1-\varepsilon}\left\{|G(\tau, s, \pm k) f(s)|^{2}+|G(\tau, r, \pm k) f(r)|^{2}\right\} d \tau \\
& \left.+\xi(m, n)^{-2 \varepsilon}\left\|B^{1 / 2}(\cdot) G_{n}(\cdot, s, \pm k) f(s)\right\|_{-1+\varepsilon}^{2}\right] \\
= & Q_{1}+Q_{2}+Q_{3},
\end{aligned}
$$

where we put $\xi(m, n)=\min (m, n)$. We see from (2.15) that $\ell[s, f(s)]$ is a $Q_{1+\varepsilon}$ (I)-valued, continuous function on $[0, R]$ such that

$$
\begin{equation*}
\|\|[s, f(s)]\|\|_{1+\varepsilon} \leqq \sqrt{2}(1+s)^{(1+\varepsilon) / 2}|f(s)| . \tag{3.25}
\end{equation*}
$$

Hence, applying Theorem 4.2 in [7], we see

$$
\begin{equation*}
Q_{3} \leqq c(\xi(m, n))^{-2 \varepsilon} \sqrt{2}(1+s)^{(1+\varepsilon) / 2}|f(s)| \rightarrow 0 \quad(m, n \rightarrow \infty) \tag{3.26}
\end{equation*}
$$

uniformly on $(s, k) \in[0, R] \times\left[\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}\right]$, where c is a positive constant. Putting $v_{n}=G_{n}(\cdot, s, \pm k) f(s)$ and $\ell_{n}(s, k) \equiv \ell[s, f(s)]$ (or $v_{m}=G_{m}(\cdot, r, \pm k) f(s)$ and $\left.\ell_{m}(r, k) \equiv \ell[r, f(r)]\right)$ in (ii) of Theorem 4.3 in [7], we obtain

$$
\left\{\begin{array}{lc}
\left\|G_{n}(\cdot, s, \pm k) f(s)-G(\cdot, s, \pm k) f(s)\right\|_{-1-\varepsilon} \rightarrow 0, & n \rightarrow \infty, \tag{3.27}\\
\left\|G_{m}(\cdot, r, \pm k) f(r)-G(\cdot, r, \pm k) f(r)\right\|_{-1-\varepsilon} \rightarrow 0, & m \rightarrow \infty
\end{array}\right.
$$

uniformly on $(r, s, k) \in[0, R] \times[0, R] \times\left[\sqrt{ } \bar{\lambda}_{1}, \sqrt{ } \bar{\lambda}_{2}\right]$, which implies the uniform convergence of $Q_{1} \rightarrow 0$. It follows from (1.14) and (3.25) that Q_{2} is uniformly bounded for $(r, s, k) \in[0, R] \times[0, R] \times\left[\sqrt{\lambda_{1}}, \sqrt{ } \bar{\lambda}_{2}\right]$ and $n, m=1,2, \cdots$, and $Q_{2} \rightarrow$
 and $K_{n, m}^{(2)}(r, s, k) \rightarrow 0$ as $n, m \rightarrow \infty$. For $K_{n, m}^{(1)}(r, s, k)$ we obtain from (3.27)

$$
\begin{align*}
& \int_{0}^{R} \int_{0}^{R} K_{n, m}^{(1)}(r, s, k) d r d s \tag{3.28}\\
& \quad \rightarrow \int_{0}^{R} \int_{0}^{R}(\{G(r, s, \pm k)-G(r, s, \mp k)\} f(s), f(r)) d r d s
\end{align*}
$$

as $n, m \rightarrow \infty$ uniformly for $k \in\left[\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}\right]$. Therefore with the aid of Lemma 3.6 we have

$$
\begin{align*}
& \left.\lim _{n, m \rightarrow \infty} \int_{\sqrt{\lambda_{1}}}^{\sqrt{\bar{\lambda}_{2}}} \mathcal{G}_{n}^{ \pm} f(k), \mathcal{G}_{m}^{ \pm} f(k)\right) d k \tag{3.29}\\
& \quad=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}} \frac{k d k}{i \pi} \int_{0}^{R} \int_{0}^{R} d r d s(\{G(r, s, k)-G(r, s,-k)\} f(s), f(r)) \\
& \quad=\left(\left(E\left(\lambda_{1}, \lambda_{2}\right) f, f\right)\right)_{0},
\end{align*}
$$

which implies the congergence of $\left\{\mathcal{Q}_{n}^{ \pm} f\right\}$.
We define $\mathcal{G}_{ \pm} f$ for $f \in C_{0}^{0}(\bar{I}, X)$ and $0<\alpha<\beta<\infty$ by

$$
\begin{equation*}
\mathcal{G}^{ \pm} f=\lim _{n \rightarrow \infty} \mathcal{G}_{n}^{ \pm} f \quad \text { in } L_{2}((\alpha, \beta), X, d k) \tag{3.30}
\end{equation*}
$$

Then putting $m=n$ in (3.22), we have

$$
\begin{align*}
\left.\left(\left(E\left(\lambda_{1}, \lambda_{2}\right)\right) f, f\right)\right)_{0} & =\lim _{n \rightarrow \infty} \int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left|\mathcal{G}_{n}^{ \pm} f(k)\right|^{2} d k \tag{3.31}\\
& =\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left|\mathcal{G}^{ \pm} f(k)\right|^{2} d k,
\end{align*}
$$

which implies that $\mathcal{G}^{ \pm} f \in L_{2}((0, \infty), X, d k)$ and

$$
\begin{equation*}
\left(\left(E\left(\left(\lambda_{1}, \lambda_{2}\right)\right) f, g\right)\right)_{0}=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left(\mathcal{G}^{ \pm} f(k), \mathcal{G}^{ \pm} g(k)\right) d k \tag{3.32}
\end{equation*}
$$

for $f, g \in C_{0}^{0}(\bar{I}, X)$ and $0 \leqq \lambda_{1}<\lambda_{2} \leqq \infty$. Thus (i) of Theorem 3.4 has been proved. (ii) follows directly from (i).
Q.E.D.

4. The operators $G_{n}^{ \pm}(\lambda)$ and $H_{n}^{ \pm}(\lambda)$

In this and the following two sections we study the property of A from the standpoint of perturbation theory. Stationary methods ${ }^{9}$ are useful for our purpose. In particular we shall make use of the results of Kato and Kuroda [6]. This section is a preliminary one. We shall define a family of operators $G_{n}^{ \pm}(\lambda)$, $H_{n}^{ \pm}(\lambda)(\lambda>0, n=1,2, \cdots)$ and study the properties of them.

Let $C_{n}(r), L_{n}, A_{n}, \mathscr{F}_{n}^{ \pm}$etc. be as in $\S 3$. Let $L_{0}=-\frac{d^{2}}{d r^{2}}+B(r)$ and A_{0} be as in $\S 1$. Starting with L_{0}, we can define the resolvent $R_{0}(z)$, the resolvent kernel $G_{0}(r, s, k)$, and the generalized Fourier transforms $\mathscr{F}_{0}^{ \pm}$. In this section we put $C(r)=C_{\infty}(r), L=L_{\infty}, A=A_{\infty}, R(z)=R_{\infty}(z)$ etc.

Let us set

$$
\begin{equation*}
\boldsymbol{C}_{1}=\boldsymbol{C}-(-\infty, 0] \text {, i.e., } \boldsymbol{C}_{1}=\left\{z \in \boldsymbol{C} / \sqrt{\bar{z}} \in \boldsymbol{C}^{+}\right\} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{C}_{1,+}=\left\{z \in \boldsymbol{C}_{1} / \operatorname{Im} z \geqslant 0\right\}, \boldsymbol{C}_{1,-}=\left\{z \in \boldsymbol{C}_{1} / \operatorname{Im} z \leqq 0\right\} . \tag{4.2}
\end{equation*}
$$

Then $R_{n}(z, f)=R_{n}(\cdot, z, f)$ is defined as the radiative function for $\left\{L_{n}, \sqrt{z}\right.$, $\ell[f], 0\}$, where $z \in C_{1}, f \in H^{1+\varepsilon}(I, X)$ and $n=0,1,2, \cdots, \infty$. By the regularity theorem of Jäger [3] (Satz 3.1) $C_{m}(r) R_{n}(r, z, f)$ is well-defined for any $f \in H^{1, B}$ $(I, X) \cap H^{1+\varepsilon}(I, X)$, where $n, m=0,1,2, \cdots, \infty$.

[^4]Lemma 4.1. Let us assume Assumption 1.1. Let K be a compact set in \boldsymbol{C}_{1}. Let $f \in H^{1, B}(I, X) \cap H^{1+\varepsilon}(I, X)$ and $z \in K$.
(i) Then there exists a constant $\delta_{3}>0$ such that

$$
\begin{equation*}
\left\|C_{m} R_{n}(z, f)\right\|_{1+\varepsilon} \leqq \delta_{3}\|f\|_{1+\varepsilon} \quad(n, m=0,1,2, \cdots, \infty) \tag{4.3}
\end{equation*}
$$

where δ_{3} depends only on K.
(ii) $C_{m} R_{n}(z, f)$ is an $H^{1+\varepsilon}(I, X)$-valued continuous function on both $\boldsymbol{C}_{1,+}$ and $\boldsymbol{C}_{1,-}$.

The proof is easy from Theorem 4.2 in [7] and we omit it.
It follows from Lemma 4.1 that the operator $C_{m} R_{n}(z, \cdot)$ from $H^{1, B}(I, X) \cap$ $H^{1+\varepsilon}(I, X)$ into $H^{1+\varepsilon}(I, X)$ is uniquely extended to a bounded linear operator $Q_{m, n}(z)$ from $H^{1+\varepsilon}(I, X)$ into $H^{1+\varepsilon}(I, X) . \quad Q_{m, n}(z) f$ is an $H^{1+\varepsilon}(I, X)$-valued continuous function on both $\boldsymbol{C}_{1,+}$ and $\boldsymbol{C}_{1,-}$.

Definition 4.2. For each $n=1,2, \cdots, \infty$ and each $z \in \boldsymbol{C}_{1}$ bounded linear operators $G_{n}(z), H_{n}(z)$ from $H^{1+\varepsilon}(I, X)$ into $H^{1+\varepsilon}(I, X)$ are defined by

$$
\left\{\begin{array}{l}
G_{n}(z)=1+Q_{n, 0}(z) \tag{4.4}\\
H_{n}(z)=1-Q_{n, n}(z)
\end{array}\right.
$$

In particular for $\lambda>0$ we put

$$
\begin{equation*}
G_{n}^{ \pm}(\lambda)=G_{n}(\lambda \pm i 0) \quad \text { and } \quad H_{n}^{ \pm}(\lambda)=H_{n}(\lambda \pm i 0) . \tag{4.5}
\end{equation*}
$$

Lemma 4.3. Let $G_{n}(z)$ and $H_{n}(z), n=1,2, \cdots, \infty$, be as above.
(i) Then we have for $z \in \boldsymbol{C}-\boldsymbol{R}$ and $f \in H^{1+\varepsilon}(I, X)$

$$
\begin{equation*}
G_{n}(z) f=\left(A_{n}-z\right) R_{0}(z) f \text { and } H_{n}(z) f=\left(A_{0}-z\right) R_{n}(z) f . \tag{4.6}
\end{equation*}
$$

(ii) For any $n=1,2, \cdots, \infty$ and any $f \in H^{1+\varepsilon}(I, X), G_{n}(z) f$ and $H_{n}(z) f$ are $H^{1+\varepsilon}(I, X)$-valued, continuous functions on both $\boldsymbol{C}_{1,+}$ and $\boldsymbol{C}_{1,-}$.
(iii) Let $z \in \boldsymbol{C}_{1}$. Then we have

$$
\begin{equation*}
G_{n}(z) H_{n}(z)=H_{n}(z) G_{n}(z)=1 \quad \text { on } H^{1+q}(I, X) \tag{4.7}
\end{equation*}
$$

In particular we obtain for $\lambda>0$

$$
\begin{equation*}
G_{n}^{ \pm}(\lambda) H_{n}^{ \pm}(\lambda)=H_{n}^{ \pm}(\lambda) G_{n}^{ \pm}(\lambda)=1 \tag{4.8}
\end{equation*}
$$

(iv) For any $f \in H^{1+\varepsilon}(I, X)$ we have

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} G_{n}(z) f=G_{\infty}(z) f \tag{4.9}\\
\lim _{n \rightarrow \infty} H_{n}(z) f=H_{\infty}(z) f
\end{array}\right.
$$

in $H^{1+8}(I, X)$ uniformly on any compact set in \boldsymbol{C}_{1}

Proof. Since we have

$$
\begin{equation*}
R_{n}(z, f)=R_{n}(z) f \quad\left(z \in \boldsymbol{C}-\boldsymbol{R}, f \in H^{1+\varepsilon}(I, X)\right) \tag{4.10}
\end{equation*}
$$

it follows that

$$
\begin{align*}
G_{n}(z) f & =\left\{1+C_{n} R_{0}(z)\right\} f=\left\{1+\left(\left(A_{n}-z\right)-\left(A_{0}-z\right)\right) R_{0}(z)\right\} f \tag{4.11}\\
& =\left(A_{n}-z\right) R_{0}(z) f \quad\left(f \in H^{1+z}(I, X)\right) .
\end{align*}
$$

Similarly we have $H_{n}(z)=\left(L_{0}-z\right) R_{n}(z)$ on $H^{1+\varepsilon}(I, X)$. (ii) follows from (ii) of Lemma 4.1. If $z \in \boldsymbol{C}-\boldsymbol{R}$, (4.7) follows from (4.6). Taking account of (ii), we can see that (4.7) is true for $z=\lambda>0$. (iv) follows from (ii) of Theorem 4.3 in [7].
Q. E. D

Next we show some formulas involving $G_{n}(z), H_{n}(z)$ and the radiative solutions $R_{n}(z, f)$. Let $\lambda>0$ and $n=0,1,2, \cdots, \infty$. Then, according to Kato and Kuroda [6], we introduce a bilinear form $e_{n}(\lambda ; \cdot \cdot \cdot)$ on $H^{1+\varepsilon}(I, X) \times H^{1+\varepsilon}(I$, X) by

$$
\begin{equation*}
e_{n}(\lambda ; f, g)=\frac{1}{2 \pi i}\left(\left(R_{n}(\lambda+i 0, f)-R_{n}(\lambda-i 0, f), g\right)\right)_{0} . \tag{4.12}
\end{equation*}
$$

Since $R_{n}(\lambda \pm i 0, f) \in H^{-1-\varepsilon}(I, X)$, the right-hand side of (4.8) is well-defined. We can easily see that $e_{n}(\cdot ; \cdot, \cdot)$ is a continuous function on $(0, \infty) \times H^{1+\varepsilon}(I$, $X) \times H^{1+8}(I, X)$. It follows from (3.18), (4.12) and the continuity in z of the radiative function $R_{n}(z, f)$ that we have $e(\cdot ; f, g) \in L^{1}((0, \infty) ; d \lambda)$ and

$$
\begin{equation*}
\left(\left(E_{n}(\Delta) f, g\right)\right)_{0}=\int_{\Delta} e_{n}(\lambda ; f, g) d \lambda \tag{4.13}
\end{equation*}
$$

where Δ is a Borel set in $(0, \infty)$ and $f, g \in H^{1+\varepsilon}(I, X)$. The bilinear form $e_{n}(\lambda ; f, g)$ is called the spectral form for $E_{n}(\lambda)$.

Lemma 4.4. (i) Let $z \in \boldsymbol{C}_{1}, f \in H^{1+\varepsilon}(I, X)$ and $n=1,2, \cdots, \infty$. Then we have

$$
\begin{equation*}
R_{n}(z, f)=R_{0}\left(z, H_{n}(z) f\right) \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0}(z, f)=R_{n}\left(z, G_{n}(z) f\right) \tag{4.15}
\end{equation*}
$$

in $H^{-1-\varepsilon}(I, X)$. In particular we have for $\lambda>0$

$$
\left\{\begin{array}{l}
R_{n}(\lambda \pm i 0, f)=R_{0}\left(\lambda \pm i 0, H_{n}^{ \pm}(\lambda) f\right) \tag{4.16}\\
R_{0}(\lambda \pm i 0, f)=R_{n}\left(\lambda \pm i 0, G_{n}^{ \pm}(\lambda) f\right)
\end{array} \quad \text { in } H^{-1-\varepsilon}(I, X)\right.
$$

(ii) Let $\lambda>0$ and let $n=1,2,3, \cdots, \infty$. Then the relations

$$
\left\{\begin{array}{l}
e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, G_{n}^{ \pm}(\lambda) g\right)=e_{0}(\lambda ; f, g) \tag{4.17}\\
e_{0}\left(\lambda ; H_{n}^{ \pm}(\lambda) f, G_{n}^{ \pm}(\lambda) g\right)=e_{n}(\lambda ; f, g)
\end{array}\right.
$$

hold for any pair of $(f, g) \in H^{1+\varepsilon}(I, X) \times H^{1+\varepsilon}(I, X)$.
Proof. Let us prove (i). The both sides of (4.14) are $H^{-1-\varepsilon}(I, X)$-valued continuous functions on $H^{1+\varepsilon}(I, X)$, and hence it suffices to show (4.14) for $f \in H^{1, B}(I, X) \cap H^{1+\varepsilon}(I, X)$. For $\varphi \in C_{0}^{2, B}(I, X)$ we have

$$
\begin{align*}
& \left(\left(R_{0}\left(z, H_{n}(z) f\right),\left(L_{n}-\bar{z}\right) \varphi\right)\right)_{0} \tag{4.18}\\
= & \left(\left(R_{0}\left(z, H_{n}(z) f\right),\left(L_{0}-\bar{z}+C_{n}\right) \varphi\right)\right)_{0} \\
= & \left(\left(H_{n}(z) f, \varphi\right)\right)_{0}+\left(\left(C_{n} R_{0}\left(z, H_{n}(z) f\right), \varphi\right)\right)_{0} \\
= & \left(\left(G_{n}(z) H_{n}(z) f, \varphi\right)\right)_{0} \\
= & ((f, \varphi))_{0},
\end{align*}
$$

i.e., $R_{0}\left(z, H_{n}(z) f\right)$ is the radiative function for $\left\{L_{n}, \sqrt{z}, \ell[f], 0\right\}$. It follows from the uniqueness of the radiative function (Theorem 2.2 in [7]) that we have $R_{0}\left(z, H_{n}(z) f\right)=R_{n}(z, f)$. In a similar way we can prove (4.15).

Next let us prove (ii). For $z \in \boldsymbol{C}-\boldsymbol{R}$ and $f, g \in H^{1+\varepsilon}(I, X) \cap H^{1, B}(I, X)$ we have

$$
\begin{align*}
& \left(\left(\left\{R_{n}(z)-R_{n}(\bar{z})\right\} G_{n}(z) f, G_{n}(z) g\right)\right)_{0} \tag{4.19}\\
= & \left(\left(R_{n}(z) G_{n}(z) f, G_{n}(z) g\right)\right)_{0}-\left(\left(G_{n}(z) f, R_{n}(z) G_{n}(z) g\right)\right)_{0} \\
= & \left(\left(R_{0}(z) f,\left\{1+C_{n} R_{0}(z)\right\} g\right)\right)_{0}-\left(\left(\left\{1+C_{n} R_{0}(z)\right\} f, R_{0}(z) g\right)\right)_{0} \\
= & \left(\left(\left\{R_{0}(z)-R_{0}(\bar{z})\right\} f, g\right)\right)_{0}
\end{align*}
$$

Here we have made use of (4.6) and the relation $Q_{n, 0}(z) f=C_{n} R_{0}(z) f$. Letting $z \rightarrow \lambda+i 0$ in (4.19), we obtain

$$
\begin{equation*}
e_{n}\left(\lambda ; G_{n}^{+}(\lambda) f, G_{n}^{+}(\lambda) g\right)=e_{0}(\lambda ; f, g) . \tag{4.20}
\end{equation*}
$$

The both sides of (4.20) are bounded forms on $H^{1+\varepsilon}(I, X) \times H^{1-\varepsilon}(I, X)$, and hence (4.20) holds for all $f, g \in H^{1+\varepsilon}(I, X)$. The other relations in (4.17) are obtained similarly.
Q.E.D.

Finally we shall show some formulas involving $\mathscr{F}_{n}^{ \pm}, \mathscr{F}_{0}^{ \pm}, G_{n}^{ \pm}(\lambda)$ and $H_{n}^{ \pm}(\lambda)$.
Lemma 4.5. (i) Let $k>0$ and $n=1,2, \cdots(n \neq \infty)$. Let $f \in C_{0}^{0}(\bar{I}, X)$. Then we have

$$
\begin{equation*}
\mathscr{F}_{0}^{ \pm}\left(H_{n}^{ \pm}\left(k^{2}\right) f\right)(k)=\mathscr{F}_{n}^{ \pm} f(k) \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{F}_{n}^{ \pm}\left(G_{n}^{ \pm}\left(k^{2}\right) f\right)(k)=\mathscr{F}_{0}^{ \pm} f(k) . \tag{4.22}
\end{equation*}
$$

(ii) Let $n=1,2, \cdots, \infty$ and let Δ be a Borel set in $(0, \infty)$. Let $f, g \in$ $H^{1+\varepsilon}(I, X)$. Then we have

$$
\begin{align*}
\left(\left(\mathscr{F}_{n}^{ \pm} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm} f, g\right)\right)_{0} & =\int_{\Delta} e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, g\right) d \lambda \tag{4.23}\\
& =\int_{\Delta} e_{n}\left(\lambda ; f, H_{n}^{ \pm}(\lambda) g\right) d \lambda
\end{align*}
$$

where $\chi_{\sqrt{\Delta}}$ is the characteristic function of $\sqrt{\Delta}=\left\{k>0 / k^{2} \in \Delta\right\}$.
Proof. First let us prove (i). We prove (4.21) only, since (4.22) can be shown similarly. Note that

$$
\begin{equation*}
R_{n}(z, g)=\int_{I} G_{n}(r, s, \sqrt{z}) g(s) d s \quad\left(n=0,1,2, \cdots, \infty, z \in \boldsymbol{C}_{1}\right) \tag{4.24}
\end{equation*}
$$

hold for $g \in H^{0}(I, X)$ with a compact carrier in \bar{I}, and that the carrier of $H_{n}^{ \pm}(\lambda) f$ is compact in \bar{I} for $n=1,2, \cdots$, and $f \in C_{0}^{0}(\bar{I}, X)$, as can be seen from the fact that $C_{n}(r)=0$ for $r \geqq n+1$. Then from the definition of $\mathscr{F}_{n}^{ \pm}$and (4.16) of Lemma 4.4 we see

$$
\begin{align*}
\mathscr{F}_{n}^{ \pm} f(k) & =\int_{I} \Gamma_{n}^{ \pm}(r, k) f(r) d r \tag{4.25}\\
& = \pm \sqrt{\frac{2}{\pi}} i k \lim _{t \rightarrow \infty}\left[e^{ \pm i t k} \int_{I} G_{n}(t, r, \pm k) f(r) d r\right] \\
& = \pm \sqrt{\frac{2}{\pi}} i k \lim _{t \rightarrow \infty}\left[e^{ \pm i t k} R_{n}\left(t, k^{2} \pm i 0, f\right)\right] \\
& = \pm \sqrt{\frac{2}{\pi}} i k \lim _{t \rightarrow \infty}\left[e^{ \pm i t k} R_{0}\left(t, k^{2} \pm i 0, H_{n}^{ \pm}\left(k^{2}\right) f\right)\right] \\
& = \pm \sqrt{\frac{2}{\pi}} i k \lim _{t \rightarrow \infty}\left[e^{ \pm i t k} \int_{I} G_{0}(t, r, \pm k)\left(H_{n}^{ \pm}\left(k^{2}\right) f\right)(r) d r\right] \\
& = \pm \sqrt{\frac{2}{\pi}} i k \int_{I} \Gamma_{0}(r, \pm k)\left(H_{n}^{ \pm}\left(k^{2}\right) f\right)(r) d r \\
& =\mathscr{F}_{0}^{ \pm}\left(H_{n}^{ \pm}\left(k^{2}\right) f\right)(r) .
\end{align*}
$$

Next let us prove (ii). Obviously we may assume that $\Delta=\left(\lambda_{1}, \lambda_{2}\right), 0<\lambda_{1}$ $<\lambda_{2}<\infty$. Since we obtain from (4.5) and Theorems 4.2 and 4.3 in [7] that for fixed $f, g \in H^{1+\varepsilon}(I, X) e_{n}\left(\lambda ; G_{n}(\lambda) f, g\right)$ is uniformly bounded for $\lambda \in \Delta$ and $n=$ $1,2, \cdots$, and $e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, g\right) \rightarrow e_{\infty}\left(\lambda ; G_{\infty}^{ \pm}(\lambda) f, g\right)$ as $n \rightarrow \infty$, we may assume that $n \neq \infty$. Both sides of (4.23) are bounded bilinear forms on $H^{1+\varepsilon}(I, X) \times H^{1+\varepsilon}$ (I, X), and hence we may assume that $f, g \in C_{0}^{0}(\bar{I}, X)$. Thus it suffices to show (4.23) for $n \neq \infty, \Delta=\left(\lambda_{1}, \lambda_{2}\right), 0<\lambda_{1}<\lambda_{2}<\infty$, and $f, g \in C_{0}^{0}(\bar{I}, X)$.

Using (4.12) and the continuity of $\left(\left(\left\{R_{n}\left(\lambda+i_{\mu}\right)-R_{n}(\lambda-i \mu)\right\}\left(G_{n}^{ \pm}(\lambda) f\right), g\right)\right)_{0}$ on $\left\{(\lambda, \mu) / \lambda_{1} \leqq \lambda \leqq \lambda_{2}, 0 \leqq \mu \leqq 1\right\}$, we have

$$
\begin{align*}
& \int_{\Delta} e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, g\right) d \lambda \tag{4.26}\\
= & \int_{\Delta} \frac{1}{2 \pi i}\left(\left(R_{n}\left(\lambda+i 0, G_{n}^{ \pm}(\lambda) f\right)-R_{n}\left(\lambda-i 0, G_{n}^{ \pm}(\lambda) f, g\right)\right)_{0} d \lambda\right. \\
= & \lim _{\mu \ngtr 0} \frac{1}{2 \pi i} \int_{\Delta} I(\lambda, \mu) d \lambda,
\end{align*}
$$

where $I(\lambda, \mu)=\left(\left(\left\{R_{n}(\lambda+i \mu)-R_{n}(\lambda-i \mu)\right\}\left(G_{n}^{ \pm}(\lambda) f\right), g\right)\right)_{0} . \quad I(\lambda, \mu)$ is calculated as follows:

$$
\begin{align*}
& I(\lambda, \mu)=\int_{0}^{\infty}\left(\mathscr{F}_{n}^{ \pm}\left\{R_{n}\left(\lambda+i_{\mu}\right)-R_{n}(\lambda-i \mu)\right\}\left(G_{n}^{ \pm}(\lambda) f\right)(k), \mathscr{F}_{n}^{ \pm} g(k)\right) d k \tag{4.27}\\
& +\sum_{j}\left(\left(\left\{R_{n}(\lambda+i \mu)-R_{n}(\lambda-i \mu)\right\}\left(G_{n}^{ \pm}(\lambda) f\right), \varphi_{n, j}\right)\right)_{0}\left(\left(\varphi_{n, j}, g\right)\right)_{0} \\
& \quad=\int_{0}^{\infty} \frac{2 i \mu}{\left(k^{2}-\lambda\right)^{2}+\mu^{2}}\left(\mathscr{F}_{n}^{ \pm}\left(G_{n}^{ \pm}(\lambda) f\right)(k), \mathscr{F}_{n}^{ \pm} g(k)\right) d k \\
& +\sum_{j} \frac{2 i \mu}{\left(\lambda_{n j}-\lambda\right)^{2}+\mu^{2}}\left(\left(G_{n}^{ \pm}(\lambda) f, \varphi_{n, j}\right)\right)_{0}\left(\left(\varphi_{n, j}, g\right)\right)_{0} \\
& \quad=I_{1}(\lambda, \mu)+I_{2}(\lambda, \mu),
\end{align*}
$$

where $-\infty<\lambda_{n, 1} \leqq \lambda_{n, 2} \leqq \cdots \leqq \lambda_{n, j} \leqq \cdots \leqq 0$ are the eigenvalues of A_{n} and for each $j \varphi_{n, j}$ is the normalized eigenfunction of A_{n} associated with $\lambda_{n, j}$. Here we have made use of the relation $\left(\mathscr{F}_{n}^{ \pm}\right)^{*} \mathscr{F}_{n}^{+} f+\sum_{j}\left(f, \varphi_{n, j}\right) \varphi_{n, j}=f$ for $f \in H^{0}(I, X)$ (Theorems 3.1 and 3.4 in §3). Since we can easily show that $I_{2}(\lambda, \mu) \rightarrow 0, \mu \rightarrow 0$, uniformly in $\lambda \in\left[\lambda_{1}, \lambda_{2}\right]$, we have

$$
\begin{align*}
& \int_{\Delta} e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, g\right) d \lambda \tag{4.28}\\
= & \lim _{\mu_{\downarrow 0}} \int_{\Delta} \frac{1}{\pi} \int_{I} \frac{\mu}{\left(k^{2}-\lambda\right)^{2}+\mu^{2}}\left(\mathscr{F}_{n}^{ \pm}\left(G_{n}^{ \pm}(\lambda) f\right)(k), \mathscr{F}_{n}^{ \pm} g(k)\right) d k d \lambda
\end{align*}
$$

Noting that

$$
\begin{align*}
& \left.\int_{\Delta} \int_{I} \frac{1}{\pi} \frac{\mu}{\left(k^{2}-\lambda\right)^{2}+\mu^{2}} \right\rvert\,\left(\mathscr{F}_{n}^{ \pm}\left(G_{n}^{ \pm}(\lambda) f\right)(k), \mathscr{F}_{n}^{ \pm} g(k) \mid d k d \lambda\right. \tag{4.29}\\
& \quad \leqq \frac{1}{\pi \mu} \int_{\Delta}\left\|G_{n}^{ \pm}(\lambda) f\right\|_{0} d \lambda\|g\|_{0}<\infty
\end{align*}
$$

we can change the order of integration to obtain

$$
\begin{align*}
& \int_{\Delta} e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, g\right) d \lambda \tag{4.30}\\
= & \int_{0}^{\infty} \lim _{\mu_{\downarrow 0}} \int_{\Delta} \frac{1}{\pi} \frac{\mu}{\left(k^{2}-\lambda\right)^{2}+\mu^{2}}\left(\mathscr{F}_{n}^{ \pm}\left(G_{n}^{ \pm}(\lambda) f\right)(k), \mathscr{F}_{n}^{ \pm} g(k)\right) d \lambda d k \\
= & \int_{\sqrt{\lambda_{1}}}^{\sqrt{\lambda_{2}}}\left(\mathscr{F}_{n}^{ \pm}\left(G_{n}^{ \pm}\left(k^{2}\right) f\right)(k), \mathscr{F}_{n}^{ \pm} g(k)\right) d k
\end{align*}
$$

$$
=\int_{\sqrt{\lambda_{1}}}^{\sqrt{\overline{\lambda_{2}}}}\left(\mathscr{F}_{n}^{ \pm} f(k), \mathscr{F}_{n}^{ \pm} g(k)\right) d k=\left(\left(\left(\mathscr{F}_{n}^{ \pm}\right)^{*} \chi \sqrt{\left.\left.\bar{\Delta} \mathscr{F}_{0}^{ \pm} f, g\right)\right)_{0}, ~}\right.\right.
$$

where we have made use of (i) and the well-known relation ${ }^{10)}$ for a continuous function $h(\lambda)$

$$
\frac{1}{\pi} \lim _{\mu \downarrow 0} \int_{a}^{\beta} \frac{\mu}{(a-\lambda)^{2}+\mu^{2}} h(\lambda) d \lambda=\left\{\begin{array}{l}
0, \text { if } a \notin(\alpha, \beta) \tag{4.31}\\
h(a), \text { if } a \in(\alpha, \alpha)
\end{array}\right.
$$

From (4.8) and (4.17) we can easily see that $e_{n}\left(\lambda ; G_{n}^{ \pm}(\lambda) f, g\right)=e_{0}\left(\lambda ; f, H_{n}^{ \pm}(\lambda) g\right)$. Thus we have proved (4.23) completely.
Q.E.D.

5. The orthogonality of $\mathscr{F}^{ \pm}$

The purpose of this section is to prove the orthogonality of the operators $\mathscr{F}^{ \pm}$which have been constructed in $\S 3$ under the assumption that $\mathscr{F}_{0}^{ \pm}$are orthogonal. By the orthogonality of $\mathscr{F}^{ \pm}$we mean the relation $\mathscr{F}^{ \pm}\left(\mathscr{F}^{ \pm}\right)^{*}=1$ on $L^{2}((0, \infty), X, d k)$ or, equivalently, that $\mathscr{F}^{ \pm}$transform $H^{0}(I, X)$ onto $L^{2}((0, \infty)$, $X, d k)$. For this we shall make use of the spectral representation for the absolutely continuous part of a spectral measure with values in the set of orthogonal projections in a Hilbert space which has been given in Kato and Kuroda [6], §1.

Put $\mathscr{X}=H^{1+\varepsilon}(I, X)$ and define the spectral form e for $E(\lambda)$, the resolution of the identity associated with A, by

$$
\begin{equation*}
e(\lambda ; f, g)=\frac{1}{2 \pi i}((R(\lambda+i 0, f)-R(\lambda-i 0, f), g))_{0} \tag{5.1}
\end{equation*}
$$

for each $\lambda>0$ as in $\S 4$, where $R(\lambda \pm i 0, f)$ is the radiative function for $\{L$, $\pm \sqrt{\lambda}, \iota[f], 0\}$. Let $\mathscr{N}(\lambda)$ be the set of all f with $e(\lambda ; f)=e(\lambda ; f, f)=0$. Then the quotient space $\mathfrak{X} / \mathscr{N}(\lambda)$ is a pre-Hilbert space with the inner product induced by $e(\lambda ; \cdot, \cdot)$. Its completion is denoted by $\mathscr{X}(\lambda)$ and the inner product and norm in $\mathscr{X}(\lambda)$ are denoted by $(,)_{\lambda}$ and $\left\|\|_{\lambda}\right.$. We denote by $J(\lambda)$ the canonical map of \mathscr{X} onto $\mathscr{X} / \mathscr{N}(\lambda) \subset \mathscr{X}(\lambda)$. Let Δ be a Borel set in $(0, \infty)$. Then a vector field $F=\{F(\lambda)\}_{\lambda \in \Delta} \in \mathscr{X}(\Lambda)=\prod_{\lambda \in \Delta} \mathscr{X}(\lambda)$ is said to be e-measurable if there is a sequence h_{n} of quasi-simple functions on Δ to \mathscr{X} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|F(\lambda)-J(\lambda) h_{n}(\lambda)\right\|_{\lambda}=0 \quad \text { for a.e. } \lambda \in \Delta . \tag{5.2}
\end{equation*}
$$

Here we mean by a quasi-simple function h a function of the form (finite sum)

$$
\begin{equation*}
h(\lambda)=\Sigma \alpha_{k}(\lambda) f_{k} \tag{5.3}
\end{equation*}
$$

where $f_{k} \in \mathscr{X}$ and $\alpha_{k}(\lambda)$ is a measurable, bounded scalar function on Δ. $\mathscr{M}(\Delta)$
is the set of all e-measurable elements $F \in \mathscr{X}(\Delta)$ such that $\|F\|^{2} \mathscr{M}_{(\Delta)}=$ $\int_{\Delta}\|F(\lambda)\|_{\lambda}^{2} d \lambda<\infty . \mathscr{M}(\Delta)$ is known to be a Hilbert space with the inner product

$$
\begin{equation*}
\left(F_{1}, F_{2}\right) \mathscr{M}_{(\Delta)}=\int_{\Delta}\left(F_{1}(\lambda), F_{2}(\lambda)\right)_{\lambda} d \lambda \tag{5.4}
\end{equation*}
$$

(Proposition 1.9 in Kato and Kuroda [6]). Then we see that there is a unitary map $\Pi(\Delta)$ from $E(\Delta) H^{0}(I, X)$ onto $\mathscr{M}(\Delta)$ which satisfies the following (a) and (b) (Theorem 1.11 in Kato and Kuroda [6]):
(a) We have

$$
\begin{equation*}
\Pi(\Delta) \alpha(E) u=\alpha \Pi(\Delta) u \tag{5.5}
\end{equation*}
$$

for $u \in E(\Delta) H^{0}(I, X)$ and a measurable, bounded scalar function $\alpha()$ on Δ, where

$$
\begin{equation*}
\alpha(E)=\int_{\Delta} \alpha(\lambda) d E(\lambda) \tag{5.6}
\end{equation*}
$$

(b) For each $f \in \mathscr{X}=H^{1+\varepsilon}(I, X)$ we have

$$
\begin{equation*}
\Pi(\Delta) E(\Delta) f=\{J(\lambda) f\} \tag{5.7}
\end{equation*}
$$

Let $e_{0}(\lambda ; \cdot, \cdot)$ be the spectral form for E_{0} as in $\S 4$. In a similar way, starting with $e_{0}(\lambda, \cdot, \cdot)$ and $\mathscr{X}_{0}=H^{1+\varepsilon}(I, X)$, we define the null set $\mathscr{I}_{0}(\lambda)$, the quotient space $\mathscr{X}_{0} / \mathscr{N}_{0}(\lambda)$, the Hilbert space $\mathscr{X}_{0}(\lambda)$ with the inner product ()$_{\lambda, 0}$, the canonical map $J_{0}(\lambda)$, the e_{0}-measurability, the Hilbert space $\mathscr{M}_{0}(\Delta)$ with the inner product $(,)_{M_{0}(\Delta)}$ and the unitary map $\Pi_{0}(\Delta)$. Thus we have obtained spectral representations for $E(\lambda)$ and $E_{0}(\Delta)$. We denote by $\mathscr{M}^{\prime}(\Delta)$ (or $\mathscr{M}_{0}^{\prime}(\Delta)$) the set of all $F(\lambda) \in \mathscr{M}(\Delta)$ (or $\mathscr{M}_{0}(\Delta)$) of the foim $F(\lambda)=\{J(\lambda) h\}_{\lambda \in \Delta}$ (or $F(\lambda)=$ $\left.\left\{J_{0}(\lambda) h\right\}_{\lambda \in \Delta}\right)$, where h is a quasi-simple function. $\mathscr{M}^{\prime}(\Delta)$ and $\mathscr{M}_{0}^{\prime}(\Delta)$ are dense in $\mathscr{M}(\Delta)$ and $\mathscr{M}_{0}(\Delta)$, respectively (Proposition 1.10 in Kato and Kuroda [6]). We put $G^{ \pm}(\lambda)=G_{\infty}^{ \pm}(\lambda)$ and $H^{ \pm}(\lambda)=H_{\infty}^{ \pm}(\lambda)$, where $G_{\infty}^{ \pm}(\lambda)$ and $H_{\infty}^{ \pm}(\lambda)$ are as in §4. Define the operator $G^{ \pm}(\Delta)$ on $\mathscr{M}_{0}^{\prime}(\Delta)$ into $\mathscr{M}(\Delta)$ and the operator $H^{ \pm}(\Delta)$ on $\mathscr{M}^{\prime}(\Delta)$ into $\mathscr{M}_{0}(\Delta)$ as follows:

$$
\left\{\begin{array}{l}
G^{ \pm}(\Delta):\left\{J_{0}(\lambda) h\right\}_{\lambda \in \Delta} \rightarrow\left\{J(\lambda) G^{ \pm}(\lambda) h\right\}_{\lambda \in \Delta} \tag{5.8}\\
H^{ \pm}(\Delta):\{J(\lambda) h\}_{\lambda \in \Delta} \rightarrow\left\{J_{0}(\lambda) H^{ \pm}(\lambda) h\right\}_{\lambda \in \Delta} .
\end{array}\right.
$$

From (ii) of Lemma 4.4 we obtain

$$
\left\{\begin{array}{l}
\left\|J(\lambda) G^{ \pm}(\lambda) h\right\|_{\lambda}^{2}=e\left(\lambda ; G^{ \pm}(\lambda) h\right)=e_{0}(\lambda ; h)=\left\|J_{0}(\lambda) h\right\|_{\lambda, 0}^{2}, \tag{5.9}\\
\left\|J_{0}(\lambda) H^{ \pm}(\lambda) h\right\|_{\lambda, 0}^{2}=e_{0}\left(\lambda ; H^{ \pm}(\lambda) h\right)=e(\lambda ; h)=\|J(\lambda) h\|_{\lambda}^{2},
\end{array}\right.
$$

and hence we have

$$
\left\{\begin{array}{l}
\left\|G^{ \pm}(\Delta) J_{0}(\cdot) h\right\|_{\mathscr{S}(\Delta)}=\left\|J_{0}(\cdot) h\right\| \mathscr{H}_{(\Delta)}, \tag{5.10}\\
\left\|H^{ \pm}(\Delta) J(\cdot) h \mathscr{S}_{0(\Delta)}=\right\| J(\cdot) h \| \mathscr{M}_{(\Delta)},
\end{array}\right.
$$

Definition 5.1. We define the operators $\widetilde{G}^{ \pm}(\Delta)$ and $\tilde{H}^{ \pm}(\Delta)$ as unique extensions $G^{ \pm}(\Delta)$ and $H^{ \pm}(\Delta)$, respectively. $\tilde{G}^{ \pm}(\Delta)$ is an isometric operator on $\mathscr{M}_{0}(\Delta)$ into $\mathscr{M}(\Delta)$. $\quad \hat{H}^{ \pm}(\Delta)$ is an isometric operator on $\mathscr{M}(\Delta)$ into $\mathscr{M}_{0}(\Delta)$.

We shall show that $\widetilde{G}^{ \pm}(\Delta)$ and $\widetilde{H}^{ \pm}(\Delta)$ are really unitary operators.
Lemma 5.2. Let Δ be a Borel set in $(0, \infty)$. Then $\tilde{G}^{ \pm}(\Delta)$ is a unitary operator from $\mathscr{M}_{0}(\Delta)$ onto $\mathscr{M}(\Delta)$ and $\widetilde{H}^{ \pm}(\Delta)$ is a unitary operator from $\mathscr{M}(\Delta)$ onto $\mathscr{M}_{0}(\Delta)$. Further, we have

$$
\begin{cases}\widetilde{G}^{ \pm}(\Delta) \widetilde{H}^{ \pm}(\Delta)=1 & \text { on } \mathscr{M}(\Delta), \tag{5.11}\\ \widetilde{H}^{ \pm}(\Delta) \widetilde{G}^{ \pm}(\Delta)=1 & \text { on } \mathscr{M}_{0}(\Delta) .\end{cases}
$$

Proof. It follows from (iii) of Lemma 4.3 that

$$
\begin{align*}
G^{ \pm}(\Delta) H^{ \pm}(\Delta)\{J(\lambda) h\}_{\lambda \in \Delta} & =G^{ \pm}(\Delta)\left\{J_{0}(\lambda) H^{ \pm}(\lambda) h\right\}_{\lambda \in \Delta} \tag{5.12}\\
& =\left\{J(\lambda) G^{ \pm}(\lambda) H^{ \pm}(\lambda) h\right\}_{\lambda \in \Delta}=\{J(\lambda) h\}_{\lambda \in \Delta}
\end{align*}
$$

holds for any quasi-simple function h and for any $\lambda>0$. Similarly we have

$$
\begin{equation*}
H^{ \pm}(\Delta) G^{ \pm}(\Delta)\left\{J_{0}(\lambda) h\right\}_{\lambda \in \Delta}=\left\{J_{0}(\lambda) h\right\}_{\lambda \in \Delta} \tag{5.13}
\end{equation*}
$$

(5.11) is obtained from (5.12) and (5.13). Hence $\tilde{G}^{ \pm}(\Delta)$ and $\tilde{H}^{ \pm}(\Delta)$ are unitary operators.
Q.E.D.

Lemma 5.3. Let Δ be a Borel set in $(0, \infty)$ and let $\mathscr{M}_{0}(\Delta), \mathscr{M}(\Delta), \Pi_{0}(\Delta)$, $\Pi(\Delta)$ be as above. Then for $f, g \in H^{0}(I, X)$ we have

$$
\begin{align*}
\left(\left(\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm} f, g\right)\right)_{0} & =\left(\widetilde{G}^{ \pm}(\Delta) \Pi_{0}(\Delta) E_{0}(\Delta) f, \Pi(\Delta) E(\Delta) g\right) \mathscr{M}_{(\Delta)} \tag{5.14}\\
& =\left(\Pi_{0}(\Delta) E_{0}(\Delta) f, \tilde{H}^{ \pm}(\Delta) \Pi(\Delta) E(\Delta) g\right) \mathscr{M}_{0(\Delta)}
\end{align*}
$$

where $\chi_{\sqrt{\Delta}}$ is the characteristic function of $\sqrt{\Delta}=\left\{k>0 / k^{2} \in \Delta\right\}$, and $\mathscr{F}^{ \pm}$and $\mathscr{F}_{0}^{ \pm}$ are as above.

Proof. Let f_{m} and g_{m} be sequences such that $f_{m}, g_{m} \in H^{1+\varepsilon}(I, X)$ and, $f_{m} \rightarrow f, g_{m} \rightarrow g$ in $H^{\circ}(I, X)$. Then it follows from Lemma 4.5 that

$$
\begin{align*}
\left(\left(\left(\mathscr{F}^{ \pm}\right) * \chi \sqrt{\Delta} \mathscr{F}_{0}^{ \pm} f_{m}, g_{m}\right)\right)_{0} & =\int_{\Delta} e\left(\lambda ; G^{ \pm}(\lambda) f_{m}, g_{m}\right) d \lambda \tag{5.15}\\
& =\int_{\Delta}\left(J(\lambda) G^{ \pm}(\lambda) f_{m}, J(\lambda) g_{m}\right)_{\lambda} d \lambda \\
& =\left(G^{ \pm}(\Delta)\left\{J_{0}(\lambda) f_{m}\right\}_{\lambda \in \Delta},\left\{J(\lambda) g_{m}\right\}_{\lambda \in \Delta}\right) \mathscr{M}_{(\Delta)} \\
& =\left(\widetilde{G}^{ \pm}(\Delta) \Pi_{0}(\Delta) E_{0}(\Delta) f_{m}, \Pi(\Delta) E(\Delta) g_{m}\right) \mathscr{M}_{(\Delta)}
\end{align*}
$$

where we have made use of (5.7). Let $m \rightarrow \infty$ in (5.15). Then the left-hand side of (5.15) tends to $\left(\left(\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm} f, g\right)\right)_{0}$ and the right-hand side tends to $\left(\widetilde{G}^{ \pm}(\Delta)\right.$ $\left.\Pi_{0}(\Delta) E_{0}(\Delta) f, \Pi(\Delta) E(\Delta) g\right) \mathscr{M}_{(\Delta)}$. From the unitarity of the mappings $\tilde{G}^{ \pm}(\Delta)$ and $\widetilde{H}^{ \pm}(\Delta)$ we obtain $\left(\widetilde{G}^{ \pm}(\Delta) \Pi_{0}(\Delta) E_{0}(\Delta) f, \Pi(\Delta) E(\Delta) g\right) \mathscr{M}_{(\Delta)}=\left(\Pi_{0}(\Delta) E_{0}(\Delta) f, \widetilde{H}^{ \pm}(\Delta)\right.$ $\Pi(\Delta) E(\Delta) g) \mathscr{M}_{0}(\Delta)$.
Q.E.D.

Now we can show the orthogonality of $\mathscr{F}^{ \pm}$assuming the orthogonality of $\mathscr{F}_{0}^{ \pm}$.

Theorem 5.4. Let us assume Assumption 1.1. Let $\mathscr{F}^{ \pm}$and $\mathscr{F}_{0}^{ \pm}$be as above. Suppose that \mathscr{F}_{0}^{+}is orthogonal. Then \mathscr{F}^{+}is also orthogonal. Similar results hold for \mathscr{F}^{-}.

Proof. Let $\Delta=(0, \infty)$ in Lemma 5.4. We put $\widetilde{G}^{+}((0, \infty))=\widetilde{G}^{ \pm}, \tilde{H}^{ \pm}((0$, $\infty))=\widetilde{H}^{ \pm}, \mathscr{M}((0, \infty))=\mathscr{M}, \mathscr{M}_{0}((0, \infty))=\mathscr{M}_{0}, \Pi((0, \infty))=\Pi, \Pi_{0}((0, \infty))=\Pi_{0}$ etc. It suffices to show that $\left(\mathscr{F}^{+}\right)^{*} \mathscr{F}^{+} f_{0}=0$ and $f_{0} \in E_{0}(0, \infty) H^{0}(I, X)$ imply $f_{0}=0$ in $H^{0}(I, X)$, because \mathscr{F}_{0}^{+}transforms $H^{0}(I, X)$ onto $L_{2}((0, \infty) ; X, d k)$ and $\mathscr{F}_{0}^{+} E_{0}$ $(0, \infty) f=\mathscr{F}_{0}^{+} f$. It follows from Lemma 5.4 that

$$
\begin{equation*}
\left(\tilde{G}^{ \pm} \Pi_{0} f_{0}, \Pi g\right)_{\mathscr{M}}=0 \tag{5.16}
\end{equation*}
$$

for any $g \in E((0, \infty)) H^{0}(I, X)$. Since $\Pi\left(E((0, \infty)) H^{0}(I, X)\right)=\mathscr{M}$ we have $\widetilde{G}^{ \pm} \Pi_{0} f_{0}=0$. Hence we obtain from the unitarity of $\widetilde{G}^{ \pm} \Pi_{0} f_{0}=0$ in \mathscr{M}_{0}, which implies $f_{0}=0$ in $H^{\circ}(I, X)$ by the unitarity of Π_{0}.
Q.E.D.

6. The wave operators $W^{ \pm}(\Delta)$

In this section we shall investigate the wave operators $W^{ \pm}(\Delta)$ for A which will be defined according to Kato and Kuroda [6] ${ }^{111}$. We shall see the ranges of $W^{ \pm}(\Delta)$ to be equal to $E(\Delta) H^{\circ}(I, X)$. We also discuss the invariance of the wave operators $W^{ \pm}(\Delta)$.

To make use of the results of Kato and Kuroda [6], §5 and §7, we consider the Cayley transforms U and U_{0} of A and A_{0}, respectively. Set

$$
\left\{\begin{array}{l}
U=(A-i)(A+i)^{-1}=\int_{0}^{2 \pi} e^{i \theta} F(d \theta) \tag{6.1}\\
U_{0}=\left(A_{0}-i\right)\left(A_{0}+i\right)^{-1}=\int_{0}^{2 \pi} e^{i \theta} F_{0}(d \theta)
\end{array}\right.
$$

where $F(\theta)$ and $F_{0}(\theta)$ are the resolutions of the identity on $(0,2 \pi)$ associated with U and U_{0}, and we have
11) In this section we assume Assumption 1.1 only. We do not assume the orthogonality of $\mathscr{F}_{0}^{ \pm}$.

$$
\left\{\begin{array}{l}
F(\theta)=E(\lambda(\theta)), \tag{6.2}\\
F_{0}(\theta)=E_{0}(\lambda(\theta)),
\end{array}\right.
$$

$E(\lambda)$ and $E_{0}(\lambda)$ being the resolutions of the identity on $(-\infty, \infty)$ associated with A and A_{0}. Let us define $R_{U}(\zeta)$ and $R_{U_{0}}(\zeta), \zeta \in \boldsymbol{C},|\zeta| \neq 1$ by

$$
\left\{\begin{array}{l}
R_{U}(\zeta)=\left(1-\zeta U^{*}\right)^{-1}=U(U-\zeta)^{-1} \tag{6.3}\\
R_{U 0}(\zeta)=\left(1-\zeta U_{0}^{*}\right)^{-1}=U_{0}\left(U_{0}-\zeta\right)^{-1}
\end{array}\right.
$$

Then we have by simple calculations

$$
\left\{\begin{array}{l}
R_{U}(\zeta)=\frac{1}{1-\zeta}\left\{1+\frac{2 i \zeta}{1-\zeta} R\left(\frac{1+\zeta}{1-\zeta} i\right)\right\} \tag{6.4}\\
R_{U_{0}}(\zeta)=\frac{1}{1-\zeta}\left\{1+\frac{2 i \zeta}{1-\zeta} R_{0}\left\{\frac{1+\zeta}{1-\zeta} i\right\}\right.
\end{array}\right.
$$

and hence if we write $\zeta=r e^{i \theta}, \zeta^{\prime}=r^{-1} e^{i \theta}$, we obtain for $f \in H^{1+\varepsilon}(I, X)$

$$
\left\{\begin{array}{l}
\lim _{r_{\uparrow 1}} R_{U}(\zeta) f=\frac{1}{1-e^{i \theta}} f+\frac{1}{i(1-\cos \theta)} R(\lambda(\theta)+i 0, f) \tag{6.5}\\
\lim _{r_{\uparrow 1}} R_{U}\left(\zeta^{\prime}\right) f=\frac{1}{1-e^{i \theta}} f+\frac{1}{i(1-\cos \theta)} R(\lambda(\theta)-i 0, f)
\end{array}\right.
$$

in $H^{-1-8}(I, X)$. We obtain quite similar relations for $R_{U_{0}}(\zeta)$ and $R_{U_{0}}\left(\zeta^{\prime}\right)$. Since we have

$$
\left\{\begin{array}{l}
\lim _{r \uparrow 1} \frac{1}{2 \pi}\left(\left(\left[R_{U}(\zeta)-R_{U}\left(\zeta^{\prime}\right)\right] u, v\right)\right)_{0}=\frac{d}{d \theta}((F(\theta) u, v))_{0} \tag{6.6}\\
\lim _{r \uparrow 1} \frac{1}{2 \pi}\left(\left(\left[R_{U_{0}}(\zeta)-R_{U_{0}}\left(\zeta^{\prime}\right)\right] u, v\right)\right)_{0}=\frac{d}{d \theta}\left(\left(F_{0}(\theta) u, v\right)\right)_{0}
\end{array}\right.
$$

for $u, v \in H^{0}(I, X)$ and a.e. $\theta \in(\pi, 2 \pi)^{12)}((5.4)$ in Kato and Kuroda [6]), the bilinear forms e_{U} and $e_{U_{0}}$ on $H^{1+\varepsilon}(I, X) \times H^{1+\varepsilon}(I, X)$ defined by

$$
\left\{\begin{align*}
e_{U}(\theta ; f, g) & =\frac{1}{2 \pi} \lim _{r_{\uparrow 1}}\left(\left(\left[R_{U}(\zeta)-R_{U}\left(\zeta^{\prime}\right)\right] f, g\right)\right)_{0} \tag{6.7}\\
& =\frac{1}{1-\cos \theta} e(\lambda(\theta) ; f, g) \\
e_{U_{0}}(\theta ; f, g) & =\frac{1}{2 \pi} \lim _{r_{\uparrow 1}}\left(\left(\left[R_{U_{0}}(\zeta)-R_{U_{0}}\left(\zeta^{\prime}\right)\right] f, g\right)\right)_{0} \\
& =\frac{1}{1-\cos \theta} e_{0}(\lambda(\theta) ; f, g)
\end{align*}\right.
$$

12) Note that $\lambda(\theta)$ maps $(\pi, 2 \pi)$ onto ($0, \infty$).
are the spectral forms for $F(\theta)$ and $F_{0}(\theta)$ for each $\theta \in(\pi, 2 \pi)$, respectively. Put $\mathscr{X}_{U}=\mathscr{X}_{U_{0}}=H^{1+\varepsilon}(I, X)$. Then we construct, starting with $e_{U}\left(\right.$ or $\left.e_{U_{0}}\right)$, the Hilbert space $\mathscr{X}_{U}(\theta)$ (or $\left.\mathscr{X}_{U_{0}}(\theta)\right)$ with the inner product $(,)_{\theta, U}$ (or $\left.(,)_{\theta, U_{0}}\right)$, the Hilbert space $\mathscr{M}_{U}(\Gamma)\left(\right.$ or $\left.\mathscr{M}_{U_{0}}(\Gamma)\right)$ for a Borel set Γ in $(\pi, 2 \pi)$ with the inner product $(,)_{\mathscr{M}_{U}(\Gamma)}\left(\right.$ or $\left.(,) \mathscr{M}_{U_{0}}(\Gamma)\right)$ and the unitary map $\Pi_{U}(\Gamma)\left(\right.$ or $\left.\Pi_{U_{0}}(\Gamma)\right)$ as in §5.

For each $\zeta \in \boldsymbol{C},|\zeta| \neq 1$, we put

$$
\left\{\begin{array}{l}
G_{U}(\zeta)=R_{U}(\zeta)^{-1} R_{U_{0}}(\zeta) \tag{6.8}\\
H_{U}(\zeta)=R_{U_{0}}(\zeta)^{-1} R_{U}(\zeta)
\end{array}\right.
$$

Then by the definition of $R_{U}(\zeta)$ and $R_{U_{0}}(\zeta)$ we have

$$
\left\{\begin{align*}
G_{U}(\zeta) & =\left(1-\zeta U^{*}\right)\left(1-\zeta U_{0}^{*}\right)^{-1}=1-\zeta\left(U^{*}-U_{0}^{*}\right) R_{U_{0}}(\zeta) \tag{6.9}\\
& =1+\frac{2 i \zeta}{1-\zeta} R(i) C R_{0}\left(\frac{1+\zeta}{1-\zeta} i\right) \\
H_{U}(\zeta) & =1-\frac{2 i \zeta}{1-\zeta} R_{0}(i) C R\left(\frac{1+\zeta}{1-\zeta} i\right)
\end{align*}\right.
$$

where $R(z)=(A-z)^{-1}, R_{0}(z)=\left(A_{0}-z\right)^{-1}$. We define the operators $G_{\bar{U}}^{ \pm}(\theta)$ and $H_{U}^{ \pm}(\theta), \theta \in(\pi, 2 \pi)$ by

$$
\left\{\begin{array}{l}
G_{U}^{ \pm}(\theta) f=f+\frac{2 i e^{i \theta}}{1-e^{i \theta}} R(i) C R_{0}(\lambda(\theta) \pm i 0, f) \tag{6.10}\\
H_{U}^{ \pm}(\theta) f=f-\frac{2 i e^{i \theta}}{1-e^{i \theta}} R_{0}(i) C R(\lambda(\theta) \pm i 0, f)
\end{array}\right.
$$

which transform $H^{1+\varepsilon}(I, X)$ onto itself. In fact we can see from (6.8) that the relations

$$
\begin{equation*}
G_{\bar{U}}^{ \pm}(\theta) H_{\bar{U}}^{ \pm}(\theta)=H_{\bar{U}}^{ \pm}(\theta) G_{\bar{U}}^{ \pm}(\theta)=1 \tag{6.11}
\end{equation*}
$$

hold on $H^{1+8}(I, X)$. We can also see from (6.8) that we have the relations

$$
\left\{\begin{array}{l}
e_{U}\left(\theta ; G_{\bar{U}}^{ \pm}(\theta) f, G_{U}^{ \pm}(\theta) g\right)=e_{U_{0}}(\theta ; f, g) \tag{6.12}\\
e_{U_{0}}\left(\theta ; H_{\bar{U}}^{ \pm}(\theta) f, H_{U}^{ \pm}(\theta) g\right)=e_{U}(\theta ; f, g)
\end{array}\right.
$$

for $\theta \in(\pi, 2 \pi)$ and $f, g \in H^{1+\varepsilon}(I, X)$. Thus, as in Definition 5.1, the unitary operators $\widetilde{G}_{U}^{ \pm}(\Gamma)$ and $\widetilde{H}_{U}^{ \pm}(\Gamma)$ are induced by $G_{U}^{ \pm}(\theta)$ and $H_{\bar{U}}^{ \pm}(\theta)$, respectively, i.e., $\widetilde{G}_{\bar{U}}^{ \pm}(\Gamma)$ (or $\widetilde{H}_{U}^{ \pm}(\Gamma)$) are defined by unique extensions of the operators

$$
\left\{\begin{array}{l}
G_{U}^{ \pm}(\Gamma):\left\{J_{U_{0}}(\theta) f\right\}_{\theta \in \Gamma} \rightarrow\left\{J_{U}(\theta) G_{U}^{ \pm}(\theta) f\right\}_{\theta \in \Gamma} \tag{6.13}\\
\left(\text { or } H_{U}^{\mp}(\Gamma):\left\{J_{U}(\theta) f\right\}_{\theta \in \Gamma} \rightarrow\left\{J_{U_{0}}(\theta) H_{\bar{U}}^{ \pm}(\theta) f\right\}_{\theta \in \Gamma}\right)
\end{array}\right.
$$

$J_{U}(\theta)$ (or $J_{U_{0}}(\theta)$) being the canonical map on \mathscr{X}_{U} (or $\mathscr{X}_{U_{0}}$) into $\mathscr{X}_{U}(\theta)$ (or $\left.\mathscr{X}_{U_{0}}(\theta)\right) . \tilde{G}_{\bar{U}}^{ \pm}(\Gamma)$ transform $\mathscr{M}_{U_{0}}(\Gamma)$ onto $\mathscr{M}_{U}(\Gamma)$ and $\tilde{H}_{\bar{U}}^{ \pm}(\Gamma)$ transform $\mathscr{M}_{U}(\Gamma)$
onto $\mathscr{M}_{U_{0}}(\Gamma)$.
Definition 6.1 Let Δ be a Borel set in ($0, \infty$). Put $\Gamma(\Delta)=\{\theta \in(\pi, 2 \pi) /$ $\lambda(\theta) \in \Delta\}$. Then the wave operators $W^{ \pm}(\Delta)$ on $H^{\circ}(I, X)$ are defined by

$$
\begin{equation*}
W^{ \pm}(\Delta) u=\Pi_{U}^{-1}(\Gamma(\Delta)) \tilde{G}_{\bar{U}}^{ \pm}(\Gamma(\Delta)) \Pi_{U_{0}}(\Gamma(\Delta)) F_{0}(\Gamma(\Delta)) u, \tag{6.14}
\end{equation*}
$$

where $\tilde{G}_{\bar{U}}^{ \pm}(\Gamma)$ are defined as above.
Using the unitarity of $\widetilde{G}^{ \pm}(\Gamma)$ and $\widetilde{H}^{ \pm}(\Gamma)$ we can show
Theorem 6.2. Let us assume Assumption 1.1. Let $W^{ \pm}(\Delta)$ be as above. Then $W^{ \pm}(\Delta)$ are partial isometries with initial set $E_{0}(\Delta) H^{0}(I, X)$ and final set $E(\Delta) H^{0}(I, X)$. In particular $W^{ \pm}(I)$ are complete. $W^{ \pm}(\Delta)$ have the intertwining property $\alpha(E) W^{ \pm}(\Delta)=W^{ \pm}(\Delta) \alpha\left(E_{0}\right)$ for any bounded measurable function α on Δ.

The proof is almost the same as the proofs of Theorems 2.3 and 2.4 in Kato and Kuroda [6], and hence we omit it.

Now we turn to the problem of the invariance of $W^{ \pm}(\Delta)$. Since $\mathfrak{X}=\mathscr{X}_{0}=$ $H^{1+\varepsilon}(I, X)$ is a Hilbert space, we can apply Theorem 7.1 in Kato and Kuroda [6] to our case.

Theorem 6.3. Let us assume Assumption 1.1. Let α be a real-valued function on $(0, \infty)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sum_{k=0}^{\infty}\left|\int_{0}^{2 \pi} e^{-i k \theta-i t a(\lambda(\theta))\rangle} \eta(\theta) d \theta\right|^{2}=0 \tag{6.15}
\end{equation*}
$$

for every $\eta \in L^{2}(0,2 \pi)$. Then we have

$$
\begin{equation*}
\underset{t \rightarrow \pm \infty}{ }-\lim _{t \rightarrow \infty} e^{i t a \alpha(E)} e^{-i t a\left(E_{0}\right)} E_{0}(\Delta) u=W^{ \pm}(\Delta) u \tag{6.16}
\end{equation*}
$$

for all $u \in H^{0}(I, X)$, where $\lambda(\theta)=-\sin \theta /(1-\cos \theta)$ as given in (6.2). In particular, we have

$$
\begin{equation*}
W^{ \pm}(\Delta)=s-\lim _{t \rightarrow \pm \infty} e^{i t A} e^{-i t A_{0}} E_{0}(\Delta) \tag{6.17}
\end{equation*}
$$

on $H^{0}(I, X)$.
Finally we represent $W^{ \pm}(\Delta)$ using $\mathscr{F}^{ \pm}$and $\mathscr{F}_{0}^{ \pm}$
Theorem 6.4. Let us assume Assumption 1.1. Let Δ be a Borel set in $(0, \infty)$. Then we have on $H^{0}(I, X)$

$$
\begin{equation*}
\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm}=W^{ \pm}(\Delta) . \tag{6.18}
\end{equation*}
$$

For the proof we need

Lemma 6.5. Let $G_{\bar{U}}^{ \pm}(\theta), \theta \in(\pi, 2 \pi)$ be as in (6.10) and let $G^{ \pm}(\lambda), \lambda>0$ be as in Definition 4.2. Then we have for $f \in C_{0,}^{2}{ }^{B}(I, X)$

$$
\begin{equation*}
G_{U}^{ \pm}(\theta) f=(A-i)^{-1} G^{ \pm}(\lambda(\theta))\left(A_{0}-i\right) f \tag{6.19}
\end{equation*}
$$

Proof. We have by an easy computation

$$
\begin{align*}
G_{U}(\zeta) f & =U^{-1}(U-\zeta)\left(U_{0}-\zeta\right)^{-1} U_{0} f \tag{6.20}\\
& =(A-i)^{-1} G\left(\frac{1+\zeta}{1-\zeta} i\right)\left(A_{0}-i\right) f
\end{align*}
$$

where $\zeta=r e^{i \theta}, r \neq 1$. Since $\left(A_{0}-i\right) f \in H^{1+\varepsilon}(I, X)$, we obtain (6.19) from (6.20), letting $r \uparrow 1$ and $r \downarrow 1$.
Q.E.D.

Proof of Theorem 6.4. Let $f, g \in C_{0}^{2, B}(I, X)$. Then it follows from Lemma 5.3 that

$$
\begin{align*}
& \left(\left(\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm} f, g\right)\right)_{0} \tag{6.21}\\
& \quad=\left(\left(\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm}\left(A_{0}-i\right) f,(A+i)^{-1} g\right)\right)_{0} \\
& \quad=\left(\widetilde{G}^{ \pm}(\Delta) \Pi_{0}(\Delta) E_{0}(\Delta)\left(A_{0}-i\right) f, \Pi(\Delta) E(\Delta)(A+i)^{-1} g\right) \mathscr{M}_{(\Delta)} \\
& \quad=\int_{\Delta} e\left(\lambda ; G^{ \pm}(\lambda)\left(A_{0}-i\right) f,(A+i)^{-1} g\right) d \lambda \\
& \quad=\int_{\Gamma} e\left(\lambda(\theta) ; G^{ \pm}(\lambda(\theta))\left(A_{0}-i\right) f,(A+i)^{-1} g\right) \frac{1}{1-\cos \theta} d \theta \quad(\Gamma=\Gamma(\Delta)) \\
& \quad=\int_{\Gamma} e_{U}\left(\theta ; G^{ \pm}(\lambda(\theta))\left(A_{0}-i\right) f,(A+i)^{-1} g\right) d \theta
\end{align*}
$$

where we have made use of $\frac{d \lambda}{d \theta}=\frac{1}{1-\cos \theta}$ and (6.7). On the other hand we see from (6.7) and Lemma 6.5

$$
\begin{align*}
& e_{U}\left(\theta ; G^{ \pm}(\lambda(\theta))\left(A_{0}-i\right) f,(A+i)^{-1} g\right) \tag{6.22}\\
& \quad=\frac{1}{2 \pi} \lim _{r_{\uparrow 1}}\left(\left(\left[R_{U}(\zeta)-R_{U}\left(\zeta^{\prime}\right)\right] G^{ \pm}(\lambda(\theta))\left(A_{0}-i\right) f,(A+i)^{-1} g\right)\right)_{0} \\
& \quad=\frac{1}{2 \pi} \lim _{r \uparrow 2}\left(\left(\left[R_{U}(\zeta)-R_{U}\left(\zeta^{\prime}\right)\right](A-i)^{-1} G^{ \pm}(\lambda(\theta))\left(A_{0}-i\right) f, g\right)\right)_{0} \\
& \quad=\frac{1}{2 \pi} \lim _{r \uparrow 1}\left(\left(\left[R_{U}(\zeta)-R_{U}\left(\zeta^{\prime}\right)\right] G_{U}^{ \pm}(\theta) f, g\right)\right)_{0} \\
& \quad=e_{U}\left(\theta ; G_{U}^{ \pm}(\theta) f, g\right) .
\end{align*}
$$

(6.21) and (6.22) are cooperated to give

$$
\begin{align*}
& \left(\left(\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{\square}^{ \pm} f, g\right)\right)_{0} \tag{6.23}\\
& \quad=\int_{\Gamma} e_{U}\left(\theta ; G_{U}^{ \pm}(\theta) f, g\right) d \theta
\end{align*}
$$

$$
\begin{aligned}
& =\int_{\Gamma}\left(G_{\bar{U}}^{ \pm}(\Gamma) J_{U_{n}}(\theta) f, J_{U}(\theta) g\right)_{\lambda, U} d \theta \\
& =\left(\tilde{G}_{\bar{U}}^{ \pm}(\Gamma) \Pi_{U_{0}}(\Gamma) F_{0}(\Gamma) f, \Pi_{U}(\Gamma) F(\Gamma) g\right) \mathscr{M}_{U}(\Gamma) \\
& =\left(\left(F(\Gamma) \Pi_{U}^{-1}(\Gamma) \tilde{G}_{\bar{U}}^{ \pm}(\Gamma) \Pi_{U_{0}}(\Gamma) F_{0}(\Gamma) f, g\right)\right)_{0} \\
& =\left(\left(W^{ \pm}(\Delta) f, g\right)\right)_{0} .
\end{aligned}
$$

Here we used (6.13) and (6.14). Thus we have proved (6.23) on $C_{0}^{2, B}(I, X)$. Since both $\left(\mathscr{F}^{ \pm}\right)^{*} \chi_{\sqrt{\Delta}} \mathscr{F}_{0}^{ \pm}$and $W^{ \pm}(\Delta)$ are bounded operators, (6.23) holds on the whole $H^{\circ}(I, X)$.
Q.E.D.

7. The Schrödinger operator in $\boldsymbol{R}^{\boldsymbol{n}}(\boldsymbol{n} \geqq \mathbf{3})$

The results obtained in the preceding sections can be applied to the Schrödinger operator in the whole space $\boldsymbol{R}^{\boldsymbol{n}}, n \geqq 3$.

We set in this section

$$
\begin{equation*}
X=L^{2}\left(S^{n-1}\right) \tag{7.1}
\end{equation*}
$$

where S^{n-1} is the ($n-1$)-sphere. Then there is a unitary operator V from $L^{2}\left(\boldsymbol{R}^{n}\right)$ onto $H^{0}(I, X)$ defined by

$$
\begin{equation*}
V: L^{2}\left(\boldsymbol{R}^{n}\right) \ni F(y) \rightarrow r^{(n-1) / 2} F(r \omega) \in H^{0}(I, X) \tag{7.2}
\end{equation*}
$$

where $y \in \boldsymbol{R}^{n}, r=|y|$ and $\omega=\frac{y}{r} \in S^{n-1}$.
Let us consider the Laplace operator in \boldsymbol{R}^{n}

$$
\begin{equation*}
-\Delta=-\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} \tag{7.3}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
V(-\Delta) V^{-1}=-\frac{d^{2}}{d r^{2}}+\frac{1}{r^{2}}\left(-\Lambda_{n}+\frac{(n-1)(n-3)}{4}\right) \tag{7.4}
\end{equation*}
$$

where Λ_{n} is the Laplace-Beltrami operator on S^{n-1}. We put

$$
\left\{\begin{array}{l}
B(r)=\frac{1}{r^{2}}\left(-\Lambda_{n}+\frac{(n-1)(n-3)}{4}\right) \tag{7.5}\\
\mathscr{D}(B(r))=\mathscr{D}\left(\Lambda_{n}\right)=D
\end{array}\right.
$$

Then it follows from (7.4) that we have for $\varphi \in C_{0}^{2, B}(I, X)$

$$
\begin{equation*}
\|\varphi\|_{B}=\left\|V^{-1} \varphi\right\|_{1} \tag{7.6}
\end{equation*}
$$

\| $\|_{1}$ being the norm of $\mathscr{D}_{L^{2}}^{1}\left(\boldsymbol{R}^{n}\right)$, i.e.,

$$
\begin{equation*}
\|F\|_{1}=\int_{R^{n}}\left\{\sum_{j=1}^{n}\left\|\frac{\partial F}{\partial x_{j}}\right\|^{2}+|F(x)|^{2}\right\} d x .{ }^{13)} \tag{7.7}
\end{equation*}
$$

Hence (7.6) holds on $H_{0}^{1, B}(I, X)$. It is easy to see that $B(r)$ satisfies (B.1)~ (B.4) of Assumption 1.1. (B.4) is implied by the compactness of the imbedding $\mathscr{D}_{L^{2}}^{1}(\Omega) \rightarrow L^{2}(\Omega)$ for any bounded domain Ω in \boldsymbol{R}^{n}. As is well known, the spectrum of the non-negative self-adjoint operator $-\Lambda_{n}$ is discrete. Let λ_{0} be an eigenvalue of $-\Lambda_{n}$ and let $x_{0}=x_{0}(\omega)$ be a normalized eigenfunction associated with λ_{0}. Then we have

$$
\begin{equation*}
B(r) x_{0}=\frac{1}{r^{2}}\left\{\lambda_{0}+\frac{(n-1)(n-3)}{4}\right\} x_{0} \rightarrow 0 \quad(r \rightarrow \infty) \tag{7.8}
\end{equation*}
$$

in $L^{2}\left(S^{n-1}\right)$. Thus we have seen that the condition (3.1) is satisfied.
Define a symmetric operator T_{0} by

$$
\left\{\begin{array}{l}
\mathscr{D}\left(T_{0}\right)=C_{0}^{\infty}\left(R^{n}\right), \tag{7.9}\\
T_{0} F=-\Delta F .
\end{array}\right.
$$

It is well-known ${ }^{14)}$ that T_{0} is essentially self-adjoint with a unique extension H_{0}.
Lemma 7.1. Let H_{0} be as above and let A_{0} be as in Definition 1.1. Then we have $V H_{0} V^{-1}=A_{0}$.

Proof. Noting that $\mathscr{D}\left(V T_{0} V^{-1}\right)=V C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) \subset \mathfrak{A}_{0}$, we can easily see that $M_{0} \supset V T_{0} V^{-1}$, where M_{0} is as given in (1.9). Since $\widetilde{T}_{0}=H_{0}^{15)}, V T_{0} V^{-1}$ is essentially self-adjoint in $H^{0}(I, X)$. Therefore M_{0} is essentially self-adjoint in $H^{0}(I, X)$. Thus we obtain

$$
\begin{equation*}
V H_{0} V^{-1}=V \tilde{T}_{0} V^{-1}=\widetilde{V T_{0} V^{-1}}=\tilde{M}_{0}=A_{0} \tag{7.10}
\end{equation*}
$$

which completes the proof.
Q.E.D.

Denote by $q(y)$ a real-valued function on $\boldsymbol{R}^{n} . \quad q(y)$ is assumed to satisfy the following conditions:
(Q) $q(y)$ is a real-valued function which is continuously differentiable. Further, $q(y)$ behaves like $O\left(|y|^{-1-\varepsilon}\right)(0<\varepsilon<1)$ at infinity, i.e., there exist $\rho>0, C>0$ and $0<\varepsilon<1$ such that

$$
\begin{equation*}
|q(y)| \leqq c|y|^{-1-\varepsilon} \quad(|y| \geqq \rho) . \tag{7.11}
\end{equation*}
$$

We define a symmetric operator T by

[^5]\[

\left\{$$
\begin{array}{l}
\mathscr{D}(T)=C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) \tag{7.12}\\
T F=-\Delta F+q(y) F=T_{0} F+q(y) F
\end{array}
$$\right.
\]

Since $q(y) \times$ is a bounded, linear operator and T_{0} is essentially self-adjoint, T is also essentially self-adjoint ${ }^{16)}$. We put $\widetilde{T}=H$. On the other hand we define an operatorvalued function $C(r)$ on I by

$$
\left\{\begin{array}{l}
\mathscr{D}(C(r))=C, \tag{7.13}\\
C(r) f=q(r \omega) f(r) .
\end{array}\right.
$$

We can easily see from (Q) that $C(r)$ satisfies $(\mathrm{C}-1) \sim(\mathrm{C}-3)$ in Assumption 1.1. Let M be as in (1.10). Then, proceeding as in the proof of Lemma 7.1, we have the following

Lemma 7.2. Let A be as in Definition 1.2. Then we have $V H V^{-1}=A$.
Let $G_{0}(r, s, k), \Gamma_{0}^{ \pm}(r, k)$ and $\mathscr{F}_{0}^{ \pm}$be as in §4. In order to show the orthogonality of $\mathscr{L}_{0}^{ \pm}$, we have to calculate $\Gamma_{0}^{ \pm}(r, k)$. Denote by $g_{0}\left(y, y^{\prime}, z\right)\left(y, y^{\prime} \in \boldsymbol{R}^{n}\right.$, $z \in \boldsymbol{C}-\boldsymbol{R}$) the Green kernel for H_{0}. Then we have

$$
\begin{equation*}
g_{0}\left(y, y^{\prime}, z\right)=\frac{i z^{(n / 4)-(1 / 2)}}{4\left(2 \pi\left|y-y^{\prime}\right|\right)^{(n / 2)-1}} H_{(n / 2)-1}^{(1)}\left(\sqrt{z}\left|y-y^{\prime}\right|\right)^{17)} \tag{7.14}
\end{equation*}
$$

where $H_{\nu}^{(1)}(t)$ is the Hankel function of the first kind. $\quad G_{0}(z, r, k)$ is represented by $g_{0}\left(y, y^{\prime}, z\right)$ as follows:

$$
\begin{align*}
& G_{0}(s, r, k) x(\omega)=s^{(n-1) / 2} r^{(n-1) / 2} \int_{S^{n-1}} g_{0}\left(s \omega, r \omega^{\prime}, k^{2}+i 0\right) x\left(\omega^{\prime}\right) d \omega^{\prime} \tag{7.15}\\
& \quad=\frac{i}{4} s^{(n-1) / 2} r^{(n-1) / 2} k^{(n / 2)-1} \int_{s^{n-1}} \frac{H_{(n / 2)-1}^{(1)}\left(k\left|s \omega-r \omega^{\prime}\right|\right)}{\left(2 \pi\left|s \omega-r \omega^{\prime}\right|\right)^{(n / 2)-1}} x\left(\omega^{\prime}\right) d \omega^{\prime},
\end{align*}
$$

where $k>0$ and $x(\omega) \in L^{2}\left(S^{n-1}\right)$. Thus by an easy computation we obtain from (3.3)

$$
\begin{align*}
& \Gamma_{0}(r, k) x(\omega)=\lim _{s \rightarrow \infty} e^{-i k s} G_{0}(s, r, k) \tag{7.16}\\
& \quad=-e^{-(\pi / 4)(n-1) i} \sqrt{\frac{\pi}{2}} \frac{1}{i k} \frac{k^{(n-1) / 2} r^{(n-1) / 2}}{(2 \pi)^{n / 2}} \int_{S^{n-1}} e^{-i k r\left(\omega, \omega^{\prime}\right)} x\left(\omega^{\prime}\right) d \omega^{\prime}
\end{align*}
$$

where $k>0$ and we used the asymptotic formula

$$
\begin{equation*}
H_{\nu}^{(1)}(t) \sim \sqrt{\frac{2}{\pi t}} e_{i(t(-\pi / 4)(2 \nu+1))} \quad(t \rightarrow \infty)^{18)} . \tag{7.17}
\end{equation*}
$$

16) See Kato [5], p. 287 - p. 293.
17) See Titchmarsh [9], p. 79.
18) See, for example, Watson [10], p. 197.

Hence we have

$$
\begin{equation*}
\Gamma_{0}^{+}(r, k) x(\omega)=-e^{-(\pi / 4)(n-1) i} \frac{k^{(n-1) / 2} r^{(n-1) / 2}}{(2 \pi)^{n / 2}} \int_{S^{n-1}} e^{-i k r\left(\omega, \omega^{\prime}\right)} x\left(\omega^{\prime}\right) d \omega^{\prime} \tag{7.18}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\left(\Gamma_{0}(r,-k) x_{1}(\cdot), x_{2}(\cdot)\right) & =\lim _{s \rightarrow \infty}\left(e^{i s k} G_{0}(s, r,-k) x_{1}(\cdot), x_{2}(\cdot)\right) \\
& =\lim _{s \rightarrow \infty}\left(x_{1}(\cdot), e^{-i s k} G_{0}(r, s, k) x_{2}(\cdot)\right) .
\end{aligned}
$$

As in (7.16) we have

$$
\begin{align*}
& \lim _{s \rightarrow \infty} e^{-i s k} G_{0}(r, s, k) x_{2}(\omega) \tag{7.19}\\
& \quad=-e^{-(\pi / 4)(n-1) i} \sqrt{\frac{\pi}{2}} \frac{1}{i k} \frac{r^{(n-1) / 2} k^{(n-1) / 2}}{(2 \pi)^{\prime / 2}} \int_{S^{n-1}} e^{-i \boldsymbol{k r}\left(\omega, \omega^{\prime}\right)} x_{2}\left(\omega^{\prime}\right) d \omega^{\prime}
\end{align*}
$$

whence follows for $k>0$

$$
\begin{align*}
\Gamma_{0}^{-}(r, k) x(\omega) & =-\sqrt{\frac{2}{\pi}} i k \Gamma_{0}(r,-k) x(\omega) \tag{7.20}\\
& =-e^{\pi / 4(n-1) i} \frac{i^{(n-1) / 2} k^{(n-1) / 2}}{(2 \pi)^{n / 2}} \int_{S} e^{i k r\left(\omega, \omega^{\prime}\right)} x\left(\omega^{\prime}\right) d \omega^{\prime} .
\end{align*}
$$

We see from (7.16) and (7.20) that $\mathscr{F}_{0}^{ \pm}$are essentially Fourier transforms, and hence we have

Lemma 7.3. $\mathscr{F}_{0}^{ \pm}$are orthogonal transforms.
By Lemmas $7.1 \sim 7.3$ we can apply to H the results obtained in the preceding sections.

Theorem 7.4. Let $q(x)$ be a real-valued function on $\boldsymbol{R}^{n}, n \geqq 3$, satisfying the conditions (Q). Let H be as above.
(i) Then H is bounded below. We have $\sigma_{e}(H)=(0, \infty)$ and the negative eigenvalues, if they exsit, are of finite multiplicity. The spectrum of H on $(0, \infty)$ is absolutely continuous.
(ii) Denote by $E_{H}(\lambda)$ the resolution of the identity associated with H. Then there exist unitary operators $\mathscr{F}_{H}^{ \pm}\left(=\mathscr{F}^{ \pm} V\right)$ from $E_{H}((0, \infty)) L^{2}\left(\boldsymbol{R}^{n}\right)$ onto $L^{2}((0, \infty)$, $\left.L^{2}\left(S^{n-1}\right), d k\right)$ such that we have for a Borel set Δ in $(0, \infty)$

$$
\left\{\begin{array}{l}
E_{H}(\Delta)=\left(\mathscr{F}_{H}^{ \pm}\right) * \chi_{\sqrt{\Delta}} \mathscr{F}_{H}^{ \pm} \tag{7.21}\\
\mathscr{F}_{H}^{ \pm}\left(\mathscr{F}_{H}^{ \pm}\right)^{*}=1
\end{array}\right.
$$

(iii) Let Δ be as above. Then there exist the wave operators $W_{H}^{ \pm}(\Delta)$ which are partial isometries with initial set $E_{H_{0}}(\Delta) L^{2}\left(\boldsymbol{R}^{n}\right)$ and finial set $E_{H}(\Delta) L^{2}\left(\boldsymbol{R}^{n}\right)$,
where $E_{H_{0}}(\Delta)$ denotes the resolution of the identity associated with $H_{0} . \quad W_{H}^{ \pm}(\Delta)$ have the intertwining property. We have

$$
\begin{equation*}
W_{\bar{H}}^{ \pm}(\Delta)=\left(\mathscr{F}_{H}^{ \pm}\right) * \chi_{\sqrt{\Delta}} \mathscr{I}_{H_{0}}^{ \pm}, \tag{7.22}
\end{equation*}
$$

where $\mathscr{F}_{\boldsymbol{H}_{0}}^{ \pm}=\mathscr{F}_{0}^{ \pm} V$ which are unitary operators from $E_{H_{0}}((0, \infty)) L^{2}\left(\boldsymbol{R}^{n}\right)$ onto $L^{2}\left((0, \infty), L^{2}\left(S^{n-1}\right), d k\right)$. For a real valued function α on $(0, \infty)$ which satisfies (6.15) for every $\eta \in L^{2}(0,2 \pi)$ we have

$$
\begin{equation*}
W_{H}^{ \pm}(\Delta) F=\mathrm{s}_{t \rightarrow \pm \infty} \lim _{t \rightarrow \infty} e^{i t a\left(E_{H}\right)} e^{-i t \omega\left(E_{B_{0}}\right)} E_{H_{0}}(\Delta) F \tag{7.23}
\end{equation*}
$$

for every $F \in L^{2}\left(\boldsymbol{R}^{n}\right)$. In particular we have

$$
\begin{equation*}
W_{H}^{ \pm}(\Delta)=\underset{t \rightarrow \pm \infty}{ } \lim _{t \rightarrow \pm} e^{i t H} e^{-i t H_{0}} E_{H_{0}}(\Delta) \tag{7.24}
\end{equation*}
$$

Osaka City University

References

[1] N. Dunford and J. Schwartz: Linear Operators, Part II, Interscience, New York, 1963.
[2] D.M. Eidus: The principle of limit amplitude, Uspehi Mat. Nauk. 24 (1969), 91-156 (Russian). (Russian Math. Surveys. 24 (1969), 97-169).
[3] W. Jäger: Ein gewöhnlicher Differentialoperator zweiter Ordnung für Funktionen mit Werten in einem Hilbertraum, Math. Z. 113 (1970), 68-98.
[4] T. Kato: Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc. 70 (1951) 195-211.
[5] -: Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
[6] T. Kato and S.T. Kuroda: Theory of simple scattering and eigenfunction expansions, Functional analysis and related fields, ed. by Browder, F., Springer, Berlin, 1970, 99-131.
[7] Y. Saitō: The principle of limiting absorption for second order differential equations with operator-valued coefficients, Publ. Res. Inst. Math. Sci. 7 (1972), 581-619.
[8] E.C. Titchmarsh:, Introduction to the Theory of Fourier Integrals, Oxford, 1937.
[9] -: Eigenfunction Expansions Associated with Second-Order Differential Equations, Part II, Oxford, 1958.
[10] G.N. Watson: Theory of Bessel Functions, Cambridge, 1922.

[^0]: 1) Assumption 1.1 is the same as Assumptions 1.1 and 1.2 in Saito [7].
[^1]: 2) Here and in the sequel we put $\|\quad\| \beta_{, I}=\|\quad\| \beta$ and $\|\quad\|_{B, I}=\|\quad\|_{B}$ for simplicity.
[^2]: 3) For the definition of $U(I)$ and $H^{1, B}(I, X)$ see the list of the notations in the Introduction.
[^3]: 7) See, for example, Dunford \& Schwartz [1], p. 1202.
 8) Here and in the sequel by $\sqrt{ } \bar{z}$ is meant the branch of the square root of z with $\operatorname{Im} \sqrt{z} \geq 0$.
[^4]: 9) For the literature of stationary methods see Kato [5] and Kato and Kuroda [6].
[^5]: 13) As usual $\mathscr{D}_{L^{2}}^{1}\left(\boldsymbol{R}^{n}\right)$ denotes the Hilbert space obtained by the completion of $\mathcal{C}_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ in the norm \| \| $\|_{1}$.
 14) See Kato [4].
 15) \widetilde{T} means the closure of T.
